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QUANTIFYING ERROR IN VEGETATION MAPPING 
Erica Serna 

Drs. Hong He, Daniel Dey and John Fresen, Thesis Advisers 

Abstract 
Understanding the current distribution and structure of forest vegetation is 

important for designing forest management plans and prioritizing restoration at 

landscape scales. This project provides information on Random Forest, a relatively new 

statistical package in the field of forestry, and patterns in mapping errors, a less 

explored field of study particularly in the forests of the Midwest United States. 

Vegetation maps can be made from classification and regression trees, such as Random 

Forest, by integrating environmental variables with vegetation information. An 

understanding of the accuracy of the maps is important because management plans and 

restoration efforts are more effective with accurate data. This study was done in 

forested regions in Minnesota with the purpose of 1) analyzing physiographic factors 

controlling tree species distribution; 2) mapping potential species distributions; 3) 

quantifying error in vegetation mapping; and 4) understanding map accuracy by 

evaluating minimum amounts of sample data necessary for reliable mapping. The 

results from Random Forest were found to be realistic ecologically and biologically. Also, 

tree species required records of 1-2 trees per 10,000 ha to produce accurate maps. 

Knowing the minimum amount of data points necessary for acceptable accuracy assists 

scientists mapping vegetation. This study demonstrates the effectiveness of Random 

Forest in vegetation mapping, which can be useful for future vegetation mapping.  
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Chapter 1 

MAPPING TREE SPECIES DISTRIBUTIONS USING FOREST 

INVENTORY DATA AND ENVIRONMENTAL VARIABLES 

 

 

 

Introduction 

 Understanding the current distribution and structure of forest vegetation is 

important for designing forest management plans and prioritizing restoration at 

landscape scales (Mladenoff, White, Pastor, & Crow, 1993). Humans have severely 

altered North American forests, including the boreal and northern hardwood forests in 

Minnesota, through decades of harvest, fire suppression, and other anthropogenic land 

uses (Friedman & Reich, 2005). Restoring these altered forests requires a landscape 

scale mapping assessment of current forest composition and structure.  

Forest inventories provide the vegetation information to describe current 

conditions. A major source of forest inventory data nationally is the Forest Inventory 

and Analysis database administered by the USDA Forest Service (Data and Tools, 2010). 

The FIA database contains inventory plots distributed across the nation that have 

various parameters ranging from individual tree level information to the entire 0.4 

hectare field plot (Forest Inventory and Analysis Program, 2008).  
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 Researchers often use the FIA data in assessing and monitoring the nation’s 

forest ecosystem health, though the point data has two fundamental limitations. First, 

FIA data are at a density of 1-2 plots/10 km2. The distance between points is generally 

too far for a typical ecological restoration task that is often conducted at individual sites 

less than a square kilometer in size. Second, point data is limiting in depicting spatially 

continuous vegetation (He, et al., 2007). GIS and spatial inference are often needed to 

convert point data into spatially continuous data forms. With additional environmental 

variables, spatial inference can also be effective in interpolating data from coarse 

resolutions to fine resolutions by determining vegetation in locations that data were not 

recorded.  

 Besides forest field inventories, researchers use remote sensing as another 

common vegetation mapping method at the regional and landscape scale (Jensen, 

2000). Remote sensing is effective in capturing vegetation distribution but has 

limitations such as the inability to detect understory species (He, Mladenoff, Radeloff, & 

Crow, 1998; Stenback & Congalton, 1990). This prevents an accurate description of the 

forest structure and species composition.  

Scientists have developed statistical models that integrate environmental 

variables with forest inventory plots to derive vegetation maps at fine resolutions and 

over large areas (Cutler, et al., 2007). Linear models, such as logistic regression, are 

often used in vegetation mapping by determining linear combinations of predictor 

variables to classify the data (Cutler, et al., 2007). Linear models limit accuracy in 
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mapping by the removal of correlating variables, which hinders interactions between 

variables to be expressed (Miller, Turner, Smithwick, Dent, & Stanley, 2004).  

Classification and regression trees, such as Random Forest (RF), are a 

nonparametric alternative to the often inadequate linear models in modeling ecological 

data (De'ath & Fabricius, 2000). Classification trees develop rules for partitioning 

observations into two or more classes using predictor variables (Cutler, et al., 2007). The 

partitioning creates branches resulting in a tree-like appearance, hence the name 

classification tree. Random Forest exceeds the use of other common classification and 

regression methods in ecology (Cutler, et al., 2007; Prasad, Iverson, & Liaw, 2006) 

because the classification accuracy is high, it does not overfit the data and is very stable 

to small perturbations in the data (Cutler, et al., 2007). Other advantages include the 

ability to input missing values and determine variable importance.  

Objectives 

 The first objective of this project is to analyze physiographic factors controlling 

tree species distribution. The second objective is to predict and map potential 

distributions of individual tree species based on the identified relationships between 

tree species and physiographic factors. 

Study Area 

 According to the United States Forest Service (USFS) National Hierarchical 

Framework of Ecological Units, the study area includes a section of the Laurentian 

Mixed Forest (LMF) province in Minnesota (MN) as shown in Appendix A (Avers, et al., 
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1994). This landscape was selected because forests are the dominant vegetation type 

and because there are differences in common tree species that vary with the 

environment.  

 The LMF province covers 9.3 million hectares of the northeastern region of MN. 

Rolling to steep ridges, low bedrock knobs, peatlands and glacial lake plains dominate 

the landscape (Albert, 1995). The average elevation is between 200 and 400 meters 

above sea level. Annual precipitation ranges from 53 cm in the western portion of the 

region to 81 cm in the east. Vegetation is influenced by the low precipitation in the 

winter. The climate is characterized by short, mild summers with a mean temperature of 

18°C and long, cold winters with a mean of -11°C. The soils are mainly alfisols, entisols 

and histisols (Albert, 1995). Conifer and hardwood-conifer forests dominate the 

province with species such as quaking aspen (Populus tremuloides), black spruce (Picea 

mariana) and balsam fir (Abies balsamea).  Black spruce is most abundant according to 

FIA records (50%), followed by quaking aspen (13%), balsam fir (6%), and paper birch 

(Betula papyrifera) (5.7%).  

Methods 

Data Preparation 

The Forest Service updates the FIA database containing tree data across the US 

every five to ten years. Forest Service employees collected the data for this project 

between 2000 and 2004. Field crews used fixed-radius plot layouts for sample tree 

selection in ground plots 0.4 ha in size. Across the landscape, the plot density is 1-2 



5 
 

plots/10 km2. For more information on FIA sampling design, please refer to the FIA 

manual (Miles, et al., 2001). Due to privacy laws, the Forest Service fuzzed and swapped 

the exact plot locations (Lister, et al., 2005). All coordinates were fuzzed within 1.6 km 

of the exact plot location while most were within 0.8 km. Also, up to 20% of the private 

plot coordinates were swapped with similar private plots in the same county (Forest 

Inventory and Analysis Program, 2008). A Forest Service employee overlaid the accurate 

FIA data and prepared environmental data to produce accurate site conditions for tree 

species while maintaining privacy for private landowners.  

The Natural Resources Conservation Service (NRCS) provides county level soil 

information available across the nation at mapping scales between 1:12,000 and 

1:63,360 through the Soil Survey Geographic (SSURGO) Database. Limitations include 

error from digitizing the soil maps, which were hand drawn and unrepeatable. Also, the 

surveys are time consuming and done infrequently. The NRCS has not completed the 

SSRUGO database in the entire LMF province, so the study area is only a portion of the 

province, where the soil survey has been completed. Five environmental variables were 

selected from SSURGO to predict tree distributions: available water capacity, organic 

matter, pH, and percent sand and clay. These covariates were selected because (1) they 

influence the basic needs of vegetation (e.g. sunlight, water and nutrients), (2) they 

were available in the study area (NRCS), and (3) they are relatively stable over time, and 

it is better to include more variables than necessary because Random Forest 

hierarchically determines the importance of each variable. All SSURGO calculations were 

at the map unit level, which contain one to three soil components each. All 
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environmental variables, including the raster data calculated at a resolution between 

thirty and sixty meters, were generalized to the SSURGO map unit level for determining 

potential species distributions. 

Digital elevation models (DEM) were used at thirty meter resolution to calculate 

the topographic position index (TPI), topographic convergence (wetness) index (TCI), 

terrain ruggedness, mean slope in percent, aspect (transformed) in degrees and 

elevation for each SSURGO polygon. A sixty meter DEM was used to calculate solar 

radiation index due to the computation limitation.  

These twelve environmental variables from SSURGO and DEMs are chosen to 

reflect the three main types of influences on species: limiting factors, disturbances and 

resources (Guisan & Thuiller, 2005). Though no actual disturbance variable is used, like 

fire frequency, this influence is accounted for by other variables like terrain ruggedness 

since highly rugged terrains typically have less disturbance than non-rugged terrains 

(Guyette, Spetich, & Stambaugh, 2006). Also, locations with high water availability have 

little disturbance. Random Forest statistical package performs best with quantitative 

data so qualitative variables like anthropogenic and natural disturbances were not used.    

The TPI and TCI tools were downloaded from the Environmental Systems 

Research Institute (ESRI) website in a toolbox called Topography Tools written by 

Thomas Dilts (ESRI SUPPORT CENTER). The TPI categorizes raster cells into topographic 

position (i.e. ridge top, valley bottom, mid-slope, etc.) by finding the difference between 

a cell elevation value and the average elevation of the neighborhood around that cell. 
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Positive values mean the cell is higher than its surroundings while negative values 

indicate the cell is lower. Significantly higher values than the surrounding neighborhood 

indicate the cell is likely at or near the top of a hill or ridge. Significantly lower values 

suggest the cell is at or near the bottom of a valley. Values near zero could mean either 

a flat area or a mid-slope area. The TCI quantifies topographic control on soil moisture 

by calculating the upslope contribution area in hectares in relation to slope in percent 

by the equation                where   is the upslope contribution and   is the 

local slope angle. Locations with high topographic convergence accumulate water more 

than areas with low convergence.  

The terrain ruggedness was calculated with a vector ruggedness measure (VRM) 

for use in GIS written by Mark Sappington (Sappington M. , 2008). The script is available 

through the ESRI website. The VRM utilizes the heterogeneity of slope and aspect in the 

dispersion of vectors in three dimensions (Sappington, Longshore, & Thompson, 2007). 

Values in the output raster range from 0 (no variation in the terrain) to 1 (complete 

variation). Natural terrains typically range between 0 and 0.4.  

ESRI provided all other needed calculation tools within the GIS software 

ArcMap® version 9.3 (Environmental Systems Research Institute, 2008). Aspect was 

transformed using the equation A = sin(A1 + 45) + 1, where A is the transformed aspect 

and A1 is the original aspect in azimuth degrees (Trimble & Weitzman, 1956). A value of 

zero is equivalent to southwest.  
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After calculating all the environmental variables from raster data, the results 

were joined to the SSURGO data and generalized to the map unit level. All twelve 

environmental variables were then at a resolution equal to the SSURGO map unit.   

Similar species were combined into the following species groups: ash, elm, 

maple, populus, red oak, spruce and white oak (Appendix B). The ash group contains 

black ash (Fraxinus nigra) and green ash (Fraxinus pennsylvanica). The elm group 

contains American elm (Ulmus americana) and slippery elm (Ulmus rubra). The maple 

group comprises red maple (Acer rubrum), silver maple (Acer saccharinum) and sugar 

maple (Acer saccharum). The populus group comprises balsam poplar (Populus balsam), 

bigtooth aspen (Populus grandidentata) and quaking aspen (Populus tremuloides). The 

red oak group contains northern pin oak (Quercus ellipsoidalis) and northern red oak 

(Quercus rubra). The spruce group contains white spruce (Picea glauca) and black spruce 

(Picea mariana). The white oak group comprises white oak (Quercus alba) and bur oak 

(Quercus macrocarpa).  

The species groups were partitioned into three spatial patterns, aggregately, 

sparsely and widely distributed species based on species habit and current MN 

distribution (Appendix B). The aggregated species include jack pine (Pinus banksiana), 

northern white cedar (Thuja occidentalis), tamarack (Larix laricina) and white pine 

(Pinus strobus). The sparsely distributed species include the elm group, the red oak 

group, red pine (Pinus resinosa) and the white oak group. The widely distributed species 
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include American basswood (Tilia Americana), the ash group, balsam fir, the maple 

group, paper birch, the populus group and the spruce group. 

Spatial modeling 

  Random Forest in R® statistical software was used for determining presence 

probability of species distribution (R Development Core Team, 2009). Random Forest 

was selected for this study because of the very high classification accuracy, and its 

ability to determine variable importance while performing statistical analyses like 

regression and classification. Another important feature of Random Forest for this study 

is the algorithm for imputing missing values.  

Random Forest classifies observations by recursive binary partitioning into 

regions that are increasingly homogeneous (Breiman, 2001). Each classification tree that 

is created has ending branches called nodes. The tree is fully grown when further 

subdivision no longer reduces the Gini index (Cutler, et al., 2007). A difference between 

Random Forest and other classification trees is that Random Forest trees are not pruned 

once fully grown (Breiman, 2001). Many trees are grown from the data set and the 

predictions from all trees are combined to produce more accurate classifications.  

Random Forest grows multiple trees by drawing bootstrap samples with in-bag 

observations (typically 63% of the data points are selected to develop trees) and out-of-

bag observations (the unused data points to calculate error and variable importance 

later). Bagging increases accuracy when randomizing methods are used (Breiman, 2001). 

Each bootstrap sample grows one tree and at each node only a small amount of 
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randomly selected variables are used to grow the individual branches. Often the number 

of variables is the square root of the total amount of variables used. The random and 

small amount of variables at each node ensures that correlations among the grown 

trees are small (Cutler, et al., 2007). The fully grown trees are used to predict the out-of-

bag observations, performing a cross-validation of the results.  

Fifteen maps, one for each species, were created based on the FIA tree data and 

prepared environmental variables using Random Forest. The FIA data provides tree 

species presence information and the environmental variables provide information on 

relevant site conditions which Random Forest uses to predict probability of tree 

presence. The Random Forest results were imported into ArcMap® to create the fifteen 

individual species group maps (Environmental Systems Research Institute, 2008).  

The accuracy and error rates were computed for each observation using the out-

of-bag predictions, and the results simplified by averaging all observations creating a 

kind of cross-validation of accuracy estimates without needing a set aside data set 

(Cutler, et al., 2007). Sixty three percent of the inputs were used for modeling and 37% 

for the validation. Cross-validation creates bias without a known extent but the out-of-

bag estimates are unbiased (Breiman, 2001). In Random Forest, each tree is given a 

misclassification rate according to the out-of-bag observations. Then the values of the 

predictor variables are randomly altered for the out-of-bag data and pass through the 

tree to get new predictions. To determine the importance value of a variable, the 
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difference between misclassification rates (original and altered out-of-bag data) are 

divided by the standard error (Cutler, et al., 2007).  

The results from Random Forest were joined to a Minnesota map in ArcMap to 

create presence probability maps. These maps display probability classes as follows: 0-

0.25, 0.25-0.5, 0.5-0.75 and 0.75-1.  

The map results were compared to the FIA known present locations using the 

receiver operating characteristic (ROC) package called ROCR in R statistical software to 

quantify the accuracy of each map. A curve is created that is a graphical plot of the 

sensitivity of the system when the value considered truly present from the Random 

Forest presence probability results is varied. This is done by plotting the true positive 

rate against the false positive rate. The true positive rate is the fraction of presences 

found in the FIA data and the Random Forest results out of the total presences from the 

FIA data. The false positive rate is the fraction of FIA locations without a species present 

that Random Forest predicted as present to the total absences from the FIA data. A true 

positive rate of 1 would imply that Random Forest perfectly classified each location 

where a species was present in the FIA data. 

Results 

Predicted potential species distribution 

 The widely distributed species that Random Forest predicted include American 

basswood, the ash group, balsam fir, the maple group, paper birch, the populus group 

and the spruce group (Figures 1-6). The most important variables for American 

basswood include topographic convergence index (TCI), terrain ruggedness, also known 
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as vector ruggedness measure (VRM), and clay. American basswood is most frequently 

found in a TCI around 5.16, VRM of 3x10-4 and percent clay around 12% (Figure 1). For 

the ash group, Random Forest found percent sand and aspect to be the most important 

variables. Ash is most frequently found in percent sand near 5% or 48% and a NW 

aspect (Figure 2). Ash is representative of a species with a wide distribution. This species 

group can be found throughout the study area, beyond the north-central area where 

there is a high density of high probability polygons. Solar radiation index, organic matter 

(OM) and elevation are most important for balsam fir. Balsam fir is most frequently 

found when SRI is near 5483 Watt hours per square meter (WH/m2), OM is 7.2% and at 

elevations around 417 m (Figure 3). For the maple group, Random Forest found TCI and 

aspect to be the most important variables. Maples are typically found when TCI is 

around 5.0 and on NW aspects (Figure 4). The probability potential of paper birch 

occurrence is best predicted using TCI, solar radiation index (SRI), and elevation (Figure 

5). Paper birch is most frequently found when TCI is near 5.1, SRI averages 5483 WH/m2 

and at elevations of 419 m. The most important variables for the populus group include 

TCI and SRI. Populus species are most frequently found when TCI is around 5.2 and SRI is 

5487 WH/m2 (Figure 6). The spruce group is best predicted according to Random Forest 

by OM and percent sand. The highest probabilities of occurrence for spruce occur when 

OM is near 10 percent and percent sand is 5 (Figure 7). 

 The aggregated species groups that Random Forest predicted include jack pine 

(Figure 8), northern white cedar (Figure 9), tamarack (Figure 10) and white pine (Figure 

11). For jack pine, Random Forest found percent sand and clay to be the most important 



13 
 

variables. Jack pine is typically found in areas of 90% sand and 4% clay. Jack pine is a 

good representative of aggregated species because of the clumps of high probability 

polygons. Most polygons are aggregated as opposed to isolated. Percent OM and aspect 

are the most important predictor variables for northern white cedar. Northern white 

cedar is most frequently found when OM is near 9.5% and on NW aspects. The most 

important variables for tamarack include OM, slope and TCI. Tamarack is most 

frequently found in soils with 10% OM, on gentle (1.3%) slopes and where TCI is 6.5. 

White pine is best predicted according to Random Forest by TCI, sand and slope. White 

pine corresponds to a TCI value of 5.0, 71% to 93% sand and 3.7% slope.  

 The sparsely distributed species that Random Forest predicted include the elm 

group (Figure 12), the red oak group (Figure 13) and red pine (Figure 14). The pH and SRI 

are the most important predictor variables for the elm group. The elm group is most 

frequently found in a pH of 6.5 and an SRI near 5476 WH/m2. For the red oak group, 

Random Forest found the VRM, TCI and slope to be the most important variables. The 

red oak group is typical of a VRM of 0.000401, TCI near 5.0 and a slope around 1.7%. The 

most important variables for red pine include sand and available water capacity (AWC). 

Red pine corresponds with soils with 87% sand and 0.032 cm/cm AWC and is typical of 

sparsely distributed species. The majority of the landscape has less than 50% probability 

of containing red pine and only a small portion with larger than 75% probability. Large, 

aggregated sections of the study area do not show red pine as potentially present.  
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 Random Forest created a map of the white oak group distributed widely 

throughout the study area when it is a sparsely distributed species group (Figure 15). 

White oaks are generalists and are sprinkled throughout the range in varying densities, 

making it difficult for Random Forest to map. The most important variables for the white 

oak group include TCI and OM.  The white oak group is most frequently found in a TCI 

near 5.18 and OM around 1.06%. 

 The northern white cedar had the highest true positive rate (TPR) at 0.96, which 

is near perfect classification (Table 2). The American basswood, jack pine, red pine and 

tamarack are also at or above 0.90. All of the aggregately distributed species, except for 

white pine, have the highest TPR values. Balsam fir and the spruce group have TPR 

values of 0.88. The ash, maple, red oak and white oak groups also have TPR values 

above 0.80. Paper birch, the populus group and white pine have TPR values in the 0.70 

to 0.79 range and elm has the lowest TPR at 0.63. These TPR values are based on a 0.75 

cutoff, where all Random Forest presence probabilities above 0.75 are considered 

present.  
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Table 1 Importance value results produced by RF for the ten most important variables for each species group. 
Random Forest assigned how important each variable was for predicting the presence probability for each species. 

  Most Important           Least Important 

basswood TCI VRM Clay Aspect AWC Sand Slope OM TPI Elevation 

IV 1 0.821 0.806 0.789 0.738 0.734 0.726 0.702 0.673 0.665 

ash Sand Aspect Slope TCI Elevation TPI OM Clay AWC SRI 

IV 1 0.72 0.691 0.688 0.654 0.648 0.64 0.639 0.576 0.568 

balsam fir SRI OM Elevation pH TCI VRM Clay Sand Aspect Slope 

IV 1 0.818 0.815 0.802 0.785 0.704 0.699 0.684 0.664 0.636 

maple TCI Aspect Slope VRM Sand Elevation SRI Clay TPI AWC 

IV 1 0.711 0.688 0.63 0.617 0.613 0.522 0.482 0.465 0.463 
paper 
birch TCI SRI Elevation Slope VRM Aspect OM Sand pH TPI 

IV 1 0.693 0.68 0.647 0.633 0.535 0.517 0.478 0.449 0.437 

populus TCI SRI Elevation Aspect Clay Sand OM AWC TPI VRM 

IV 1 0.853 0.633 0.564 0.555 0.525 0.513 0.513 0.502 0.495 

spruce OM Sand Slope Aspect AWC TCI VRM Clay SRI Elevation 

IV 1 0.837 0.787 0.742 0.68 0.648 0.593 0.401 0.373 0.373 

jack pine Sand Clay AWC SRI Elevation Aspect pH TPI TCI Slope 

IV 1 0.605 0.478 0.431 0.412 0.396 0.301 0.3 0.247 0.186 

cedar OM Aspect Slope TCI VRM Sand AWC TPI Elevation SRI 

IV 1 0.885 0.615 0.564 0.517 0.482 0.461 0.427 0.426 0.411 

tamarack OM Slope TCI Aspect Sand VRM AWC TPI Clay SRI 

IV 1 0.795 0.743 0.696 0.487 0.461 0.42 0.385 0.36 0.282 

white 
pine TCI Slope Sand Elevation VRM TPI OM AWC SRI Aspect 

IV 1 0.63 0.625 0.578 0.577 0.57 0.531 0.51 0.474 0.454 

elm pH SRI Elevation Clay OM AWC Aspect Slope Sand TCI 

IV 1 0.943 0.863 0.861 0.836 0.785 0.784 0.784 0.754 0.722 

red oak TCI VRM Slope TPI Aspect pH Elevation Sand AWC OM 

IV 1 0.989 0.849 0.634 0.629 0.589 0.586 0.551 0.538 0.525 

red pine Sand AWC SRI Clay Elevation TCI OM Aspect TPI pH 

IV 1 0.823 0.781 0.734 0.69 0.672 0.573 0.538 0.519 0.513 

white oak TCI OM Elevation SRI Slope pH Aspect AWC TPI Sand 

IV 1 0.987 0.828 0.792 0.705 0.682 0.652 0.61 0.609 0.513 
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Figure 1 Probability classes for potential American 
basswood occurrence 
 

 
Figure 2 Probability classes for potential ash group 
occurrence 
 

 
Figure 3 Probability classes for potential balsam fir 
occurrence 
 

 
Figure 4 Probability classes for potential maple group 
occurrence 
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Figure 5 Probability classes for potential paper birch 
occurrence 
 

 
Figure 6 Probability classes for potential populus group 
occurrence 
 

 
Figure 7 Probability classes for potential spruce group 
occurrence 
 

 
Figure 8 Probability classes for potential jack pine 
occurrence 
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Figure 9 Probability classes for potential northern 
white cedar occurrence 
 

 
Figure 10 Probability classes for potential tamarack 
occurrence 
 

 
Figure 11 Probability classes for potential white pine 
occurrence 
 

 
Figure 12 Probability classes for potential elm group 
occurrence 
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Figure 13 Probability classes for potential red oak 
group occurrence 
 

 
Figure 14 Probability classes for potential red pine 
occurrence 
 

 
Figure 15 Probability classes for potential white oak 
group occurrence 
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Table 2 True positive rate for each species from the ROCR package in R statistical software. 

Species 
True Positive 

Rate 

basswood 0.90 

ash 0.82 

balsam fir 0.88 

maple 0.84 

paper birch 0.78 

populus 0.74 

spruce 0.88 

jack pine 0.93 

cedar 0.96 

tamarack 0.93 

white pine 0.76 

elm 0.63 

red oak 0.83 

red pine 0.93 

white oak 0.83 

 

Discussion 

The results from Random Forest for widely distributed species (American 

basswood, ash, balsam fir, maple, paper birch, poplar, aspen and spruce) are supported 

by the species habitat characteristics. American basswoods are large, rapid growing 

trees found in deep moist soils (Fowells, 1965). They are shade tolerant. Random Forest 

predicted presence probability the highest in moist soils and low variations in terrain.  

Black and green ashes grow in moist soil areas. They are shade intolerant, early 

successional species. Random Forest predicted the highest probability in sandy soils, 

that occur near streams (Burns & Honkala, 1990). There is also high probability of ash in 

sand at only 5%, typical of peats, bogs and lakes. Ashes are also predicted to grow on 

NW facing slopes, providing cool and moist soils. 
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Balsam firs are small to medium size trees that are very shade tolerant (Burns & 

Honkala, 1990; Bergeron, 2000). Soil moisture is an important environmental factor to 

the species, which explains Random Forest considering solar radiation the most 

important predictor variable. Higher incoming solar radiation dries out soils and lower 

amounts of solar radiation can provide an environment for cool and moist soils.  

Maples grow on a wide variety of sites and are very shade tolerant (Allen, 

Molloy, Cooke, & Pendrel, 1999). Optimum growth is on soils that are not too wet and 

not too dry. They are not fire tolerant but grow well after disturbance. Random Forest 

predicted presence probability the highest in average to low TCI values compared to 

other species and slopes with a NW aspect, suggesting that shaded locations are more 

favorable for maples. 

Paper birches are medium-sized, fast-growing trees found on almost any soil and 

topographic position, which are characteristics of species that have low mapping 

accuracy (Guisan, et al., 2007). They are shade intolerant and have thin bark (Bergeron, 

2000; Burns & Honkala, 1990). Paper birch is predicted in similar locations to balsam fir 

but more wide spread.  

Balsam poplar, bigtooth aspen and quaking aspen are early successional species 

found in floodplains. They are fast growing, shade intolerant and medium-sized trees 

(Huffman, Fajvan, & Wood, 1999). Random Forest predicted the highest probability in 

sunny and moist locations, like river bottoms.  
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Black and white spruces are found in a wide range of edaphic and climatic 

conditions. They are intermediate in tolerance to shade (Bergeron, 2000; Fowells, 1965). 

Spruces do not grow well in sandy soil which is supported by Random Forest by 

predicting spruces in about 5% sand locations.  

The aggregated species (jack pine, northern white cedar, tamarack and white 

pine) are logically mapped by Random Forest according to previously known habitat 

characteristics of the tree species. The high true positive rate (TPR) values of the 

aggregately species, except for white pine, also demonstrate the accuracy of Random 

Forest predictions (Table 2). Jack pines are small to medium-sized, very shade intolerant 

trees that invade areas after major disturbances (Bergeron, 2000). They can grow on 

very dry, sandy soils that are inhospitable to other species but grow best on well drained 

loamy sands. Red pines often succeed jack pines on loamy sand soils, followed by white 

pine, then hardwoods such as sugar maple, basswood and northern red oak. Paper birch 

and quaking aspen frequently succeed jack pine instead of red and white pine, followed 

by the hardwoods or a spruce-fir association (Burns & Honkala, 1990). Random forest 

found percent sand and clay to be the most important variables and predicted highest 

probability of jack pines in 90% sand soils.  

Northern white cedar is a shade tolerant and found in the northeastern part of 

MN (Bergeron, 2000). It grows most commonly on cool, moist, organic soils like near 

streams and drainage-ways (Burns & Honkala, 1990). Random Forest assigned OM and 

aspect as most important variables supporting previously known habitat characteristics 
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of northern white cedar. The preferable NW aspect provides the cool and moist 

environment on which the cedars thrive. 

Tamaracks are small to medium-sized deciduous conifers that are very shade 

intolerant. They can tolerate a wide range of edaphic conditions but are most commonly 

found in moist, organic soils (Burns & Honkala, 1990). Tamaracks can grow in more 

extreme sites like peatlands. Random Forest correctly identified moisture and organic 

matter to be important variables with tamarack having higher probability of presence in 

organic, moist locations. 

White pines are intermediate in shade tolerance and associated with somewhat 

excessively drained sandy deposits (Burns & Honkala, 1990). They can survive in soils 

with a pH value as low as 4.0 and are climax species in these extreme sites. Random 

Forest predicted highest probability of white pines on sandy, steep slopes. White pine 

has a low TPR value suggesting that the Random Forest model is not as strong for this 

species as it is for other species even though the previously known habitat 

characteristics of the tree species align with the Random Forest results.     

The results from Random Forest for sparsely distributed species (elm, red oak 

and red pine) are supported by the species habitat characteristics. Elms are 

intermediate in shade tolerance and exist in a pH range of 5.5 to 8.0 (Fowells, 1965). In 

MN, elms are associated with plains, moraine hills, bottomlands and swamp margins. 

They can be found a variety of soils like well drained sands to poorly drained clays. 

Dutch elm disease has severely decreased the amount of American elms leaving a small 
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percentage of large diameter trees in mixed forest stands. Random Forest predicted elm 

at a mean pH of 6.5 and also found the average amount of solar radiation in MN suitable 

for elms. Even with the correlation between the species habitat characteristics and the 

Random Forest results, elm had the lowest TPR value (0.63) suggesting that the model 

used was not sufficient for mapping this species.  

Northern red oak and northern pin oak grow on a wide range of soils and 

topography which proves more difficult to map than species that grow in narrow niches. 

Red oaks are intermediate in shade tolerance and often form pure stands. Random 

Forest considers lightly rough terrains on slopes with a TCI of 5.0 to be the most 

important environmental variables for mapping. Previous research determined aspect, 

slope position and shape to be important variables for red oaks (Burns & Honkala, 

1990).  

Red pines are medium-sized trees that are shade intolerant. They grow best on 

sandy soils adjacent to bodies of water. Due to changes in land management and timber 

harvesting, red pine populations declined drastically in previous decades (Leahy & 

Pregitzer, 2003). Random forest found percent sand to be the most important variable 

and predicted highest probability of red pines in 87% sand soils. 

White oaks and bur oaks are very drought resistant and often dominate severe 

sites like thin soils, claypans and gravel ridges (Burns & Honkala, 1990). They are 

intermediate in shade tolerance and are often replaced by maple-basswood 

communities. Random Forest mapped the white oak group as widely distributed in the 
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study area when it is a sparsely distributed species group. One reason may be most of 

the land has a potential for white oaks according to the variables used to create the 

model. White oaks do not out-compete other species, like maples, well in colder 

climates like northern MN. A climate variable, like temperature, would be a good 

addition for predicting species distributions.  

In summary, the predictions from Random Forest are realistic ecologically 

because the locations that were predicted to have high probability of presence align 

with the species biological and ecological attributes. Also, the important variables 

chosen by Random Forest align with the species known attributes.  

A suggestion for future research is including weather variables to see if species, 

like white oak, are mapped more ecologically realistic. Another suggestion would be to 

use a different statistical approach, other than a CART, and adding disturbance variables 

like type of disturbance (fire, clearcut, shelterwood) and frequency of the disturbance. 
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Chapter 2 

QUANTIFYING ERROR IN TREE SPECIES MAPPING 

 

 

 

Introduction 

Species maps are often used in management planning and restoration projects. 

Accurate estimates of species distributions are required to create effective management 

and restoration projects. The modeling of the species distribution is an important tool in 

the area of conservation (Guisan & Zimmermann, 2000). 

Many statistical methods have been developed to compare created maps to data 

assumed to be true (Engler, Guisan, & Rechsteiner, 2004). The comparison can be done 

between forest inventory plots and a vegetation map, or between two vegetation maps. 

A comparison between point data and a vegetation map has limitations due to the lack 

of overlapping data. On the other hand, it is difficult to acquire an accurate vegetation 

map to which one can compare a second vegetation map.  

To determine the accuracy of created maps, Kappa statistics have been used 

frequently in previous studies, though many have not differentiated between location 

and quantity errors (Pontius, 2000; Congalton, 1999). The Kappa statistic was found to 

be the most useful statistic for determining agreement between maps in previous 

research (Monserud & Leemans, 1992). Specific knowledge of the source of error, 
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location or quantity, can better assist the user in understanding map accuracy. 

Limitations to the Kappa statistic include an assumption that the data samples are 

independent, which is not always true in vegetation mapping since the created maps are 

often derived from the same data set (Leeuw, et al., 2006).  

Other similar cross-tabulation methods based on locations throughout a map 

have been used (Foody, 2007). McNemar’s test is based on a chi-square statistic. The 

null hypothesis states that the proportion of pixels will be correctly classified in both 

maps (Leeuw, et al., 2006). A limitation of McNemar’s test is that the variable must be 

dichotomous. Explained deviance calculates the percentage of deviance but is limited to 

goodness of fit for generalized linear models (Finos, Brombin, & Salmaso, 2010). The 

receiver-operating characteristic plot method (ROC) creates a curve that is a graphical 

plot of the sensitivity of the system when the value considered truly present is varied. 

The ROC has the advantage of being threshold-independent but has limitations in 

models that do not have predictions across the entire study area (Peterson, Papes, & 

Soberon, 2008).   

Mapping species with different spatial distribution patterns and life history 

characteristics can have diverse mapping accuracies (Guisan, et al., 2007). Species with 

high mapping accuracy include dominant, slow-growing species with narrow geographic 

distributions and that are good competitors (Guisan, et al., 2007). Also, species with 

contiguous distributions map more accurately (Reese, Wilson, Hoeting, & Flather, 2005). 

Conversely, early successional species that are rarely dominant and often scattered 
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among other species prove more difficult to map (Guisan, et al., 2007). Map accuracy 

can be affected by the spatial pattern of tree species distributions, such as aggregately, 

sparsely and widely distributed patterns. Understanding mapping accuracy is critical for 

the end user who will use the map for management plans. 

The amount of data points used to create a vegetation map affects the accuracy 

of the map. Using larger sample sizes improves model performance (Reese, Wilson, 

Hoeting, & Flather, 2005). Guisan, et al. (2007) found that larger sample sizes produce 

more accurate results and that each species varies greatly in necessary data points, even 

within each tree genus.  

Many studies have been done to determine the minimum amount of data 

required to create an accurate map, particularly for animals. In multiple studies, as low 

as 10 data points in a landscape scale have been found to be sufficient for mapping 

species (Hernandez, Graham, Master, & Albert, 2006; Wisz, et al., 2008). Hernandez, et 

al. (2006) studied insects, birds and mammals in California. Wisz, et al. (2008) studied a 

variety of animals and plant species around the globe. The results of the mobile and 

non-mobile species were comparable with as low as 10 data points necessary for 

accurate mapping. Kadmon, Farber, and Danin (2003) found 50 data points (a density of 

about 0.18 trees per 10,000 ha) to be sufficient for accurate mapping of woody 

vegetation in Israel.  

This study aims to research the minimum data points necessary for mapping 

common tree species. Different maps were created in the study area for each tree 
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species by using varying amounts of tree data. These maps were then compared to 

determine the accuracy of each map. Comparing the similarity in location of categorical 

information and the quantity of locations with each category between two maps can be 

used to quantify map accuracy.   

Objectives 

The first objective of this project is to quantify error in vegetation mapping 

based on the common species distribution patterns, aggregately, widely and sparsely 

distributed. The second objective is to understand map accuracy by evaluating minimum 

amounts of sample data necessary for reliable mapping.  

 This project provides information on patterns in mapping errors, a less explored 

field of study particularly in the forests of the Midwest United States. Also, a fairly new 

technology in the forestry field was used, Random Forest statistical package, to gain 

more accurate results than in previous research. Random Forest is a nonparametric 

alternative to the often inadequate linear models in modeling ecological data (De'ath & 

Fabricius, 2000). Linear models, such as logistic regression, are often used in vegetation 

mapping by determining linear combinations of predictor variables to classify the data 

(Cutler, et al., 2007). Linear models limit accuracy in mapping by the removal of 

correlating variables, which hinders interactions between variables to be expressed 

(Miller, et al., 2004). 

Random Forest exceeds the use of other common classification and regression 

methods in ecology (Cutler, et al., 2007; Prasad, Iverson, & Liaw, 2006) because the 
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classification accuracy is high, it does not overfit the data and is very stable to small 

perturbations in the data (Cutler, et al., 2007).  More accurate maps and an 

understanding of the limitations of a map can aid in designing forest management plans 

and in prioritizing large scale restoration.  

The tree species in the study area have diverse distributions and spatial patterns. 

The differences in mapping accuracy were determined between three spatial patterns in 

tree species distributions, aggregately, sparsely and widely distributed. Based on a set of 

unique site characteristics, presence probability maps in the Laurentian Mixed Forest 

(LMF) province in Minnesota were produced. Various amounts of data points were used 

for each species to generate a set of maps and compared individual map predictions 

among all maps for that species using kappa statistics. Knowing the minimum amount of 

data points necessary for acceptable accuracy will help scientists mapping vegetation. 

Separating the species into spatial patterns provides a more specific number of points 

tailored to individual species.  

Study Area 

According to the United States Forest Service (USFS) National Hierarchical 

Framework of Ecological Units, the study area includes a section of the Laurentian 

Mixed Forest (LMF) province in Minnesota (MN) as shown in Appendix A (Avers, et al., 

1994). This landscape was selected because forests are the dominant vegetation type 

and because there are differences in common tree species in the environment.  
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 The LMF province covers 9.3 million ha of the northeastern region of MN. Rolling 

to steep ridges, low bedrock knobs, peatlands and glacial lake plains dominate the 

landscape (Albert, 1995). The average elevation is between 200 and 400 meters above 

sea level. Annual precipitation ranges from 53 cm in the west to 81 cm in the east of the 

province. Vegetation is influenced by the low precipitation in the winter. The climate is 

characterized by short, mild summers with a mean temperature of 18°C and long, cold 

winters with a mean of -11°C. The soils are mainly alfisols, entisols and histisols (Albert, 

1995). Conifer and hardwood-conifer forests dominate the province with species such as 

quaking aspen (Populus tremuloides), black spruce (Picea mariana) and balsam fir (Abies 

balsamea).  Black spruce grows most abundantly according to FIA records (50%), 

followed by quaking aspen (13%), balsam fir (6%), and paper birch (Betula papyrifera)  

(5.7%).  

Methods 

Chapter 1 discusses the data preparation and creation of maps using the 

maximum amount of data points available in the study area. After creating a map for 

each species using the maximum amount of data points for the model in Random 

Forest, maps were produced with successively less data points. Seventy five percent of 

the total data points were used, then fifty percent, followed by twenty five percent. 

Also, two more sets of maps were created using different amounts of data points to find 

the minimum amount necessary to create accurate maps for each species by predicting 

the minimum based on results from the 75%, 50% and 25% trials. Amounts used can be 

found in Appendix C.  
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Random Forest produces a table including species presence probability for each 

SSURGO polygon. In ArcMap the table that Random Forest produced based on the 

maximum data points available was joined to the MN SSURGO shapefile. Then the 75% 

data point prediction table was also joined to the shapefile. Each polygon in the 

shapefile has two probability categories, one for the maximum data points and one for 

the 75%. These values were compared to determine the mapping accuracy. This process 

was repeated for the various trials of different data point amounts. 

An error matrix was constructed to compare the maps of the same species with 

different sample amounts. From the matrix, Kno, Klocation and Khisto values were 

calculated to quantify error. Kappa is the amount of agreement between two maps after 

chance agreement has been removed ranging from -1, major difference, to 1, perfect 

similarity. Kno shows the proportion correctly classified in relation to the expected 

proportion classified correctly by a model with no ability to specify the quantity or 

location accurately (Pontius, 2000). Klocation and Khisto demonstrate the source of 

error, whether location or quantity. Klocation indicates the similarity in spatial 

distribution of categories but does not differentiate between categories that are close 

and categories that are distant and is independent of the total number of cells per 

category (Pontius, 2000). Values are similar to kappa except Klocation can go far below  

-1. Khisto is a measure of quantitative similarity between two maps (Hagen, 2002) and 

multiplying Khisto by Klocation yields kappa (Prasad, Iverson, & Liaw, 2006).  
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Kappa values between 0.81 and 1 represent almost perfect agreement, 0.61 to 

0.8 represent substantial agreement, 0.41 to 0.6 represent moderate agreement, 0.21 

to 0.4 represent fair agreement, 0 to 0.2 represent slight agreement and less than 0 

represent poor agreement (Landis & Koch, 1977). Accurate maps are defined as having a 

K statistic above 0.61.  

Another quantification error statistic, Kquantity (Pontius, 2000), is dependent on 

Klocation, defeating the purpose of separating quantity error from location error (Sousa, 

Caeiro, & Painho, 2002) and is not used in this study. Klocation and Khisto demonstrate 

the sources of error showing scientists where improvement is most needed (Pontius, 

2000). 

Each map is homogenous in species but produced from different data points and 

amounts. Species groups were partitioned into three spatial patterns, aggregately, 

sparsely and widely distributed species based on species habit and current MN 

distribution for further analysis (Appendix B). The aggregated species include jack pine, 

northern white cedar, tamarack and white pine. The sparsely distributed species include 

the elm group, the red oak group, red pine and the white oak group. The widely 

distributed species include American basswood, the ash group, balsam fir, the maple 

group, paper birch, the populus group and the spruce group. 

 

Results 

Comparison of prediction agreement 



34 
 

According to Kno, the aggregated species are mapped more accurately than the 

widely distributed species followed by the sparsely distributed species (Figure 16). The 

Kno displays four distinguished groups of accuracy, groups Akno, Bkno, Ckno and Dkno 

(Figure 17). Group A represents the most accurate mapping and group D represents the 

least accurate. Group Akno consists of only aggregated species, group Bkno and Ckno 

contain aggregately, sparsely and widely, and group Dkno contains only sparsely. The 

aggregated species produce maps with substantial agreement even with only 25% of the 

data points used in building the model. No other species attained this level of accuracy. 

Most species have a large drop in mapping accuracy after the data points used is below 

50%, most likely because below 50% results in about 600 or less data points or 1.23 

trees per 10,000 ha in the study area.  

 Klocation produced similar results. The aggregated species are mapped more 

accurately than the widely distributed species, followed by the sparsely distributed 

species (Figure 18). Group Akloc comprises aggregately and widely distributed species, 

group Bkloc sparsely and widely, group Ckloc aggregately, sparsely and widely, and group 

Dkloc only sparsely distributed species (Table 3).  

 Khisto also shows that aggregated species are mapped more accurately than the 

widely distributed species, followed by the sparsely distributed species (Figure 19). 

Group Akloc has only aggregated species, group Bkloc aggregated and widely, group Ckloc 

aggregated, sparsely and widely, and group Dkloc only sparsely distributed species (Table 
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4). Tamarack is found in group A for all three statistics while the elm group is found in 

group D for all three statistics (Figure 17, Table 3, and Table 4).   

Sparsely distributed species require the fewest data points to produce accurate 

location maps. The widely distributed species require the most amount of data points, 

while aggregated species fall in the middle (Figure 20). Of the widely distributed species, 

the ash group and the populus group require 900 points or 1.84 trees per 10,000 ha, 

paper birch and the spruce group require 800 points or 1.63 trees per 10,000 ha, balsam 

fir and the maple group require 600 points or 1.23 trees per 10,000 ha and American 

basswood requires 400 points or 0.82 trees per 10,000 ha to map location accurately. Of 

the aggregated species, northern white cedar and tamarack require 700 points or 1.43 

trees per 10,000 ha, jack pine requires 300 points or 0.61 trees per 10,000 ha and white 

pine requires 100 points or 0.20 trees per 10,000 ha. Of the sparsely distributed species, 

red pine requires 600 points or 1.23 trees per 10,000 ha and the elm group, the red oak 

group and the white oak group require 400 points or 0.82 trees per 10,000 ha to map 

accurately.  

Random Forest mapped quantity better than location for all species and required 

fewer data points to accurately map quantity.  As with the location maps, sparsely 

distributed species require the fewest points to produce accurate quantity maps. 

Aggregated species require the second fewest while widely distributed species require 

the most data points (Figure 21). The widely distributed species need between 400 and 

700 points or 0.82 and 1.43 trees per 10,000 ha. The ash group, paper birch and the 
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populus group require 700 points or 1.43 trees per 10,000 ha, balsam fir and the maple 

group require 500 points or 1.02 trees per 10,000 ha and American basswood and the 

spruce group require 400 points or 0.82 trees per 10,000 ha. The aggregated species, 

northern white cedar and jack, require 300 points or 0.61 trees per 10,000 ha, tamarack 

requires 350 points or 0.71 trees per 10,000 ha and white pine a mere 40 points or 0.08 

trees per 10,000 ha. The sparsely distributed species need as low as 40 points or 0.08 

trees per 10,000 ha and as high as 400 points or 0.82 trees per 10,000 ha. Red pine 

requires 400 points or 0.82 trees per 10,000 ha, the elm group requires 200 points or 

0.41 trees per 10,000 ha and red and white oak group require 150 points or 0.30 trees 

per 10,000 ha.  

 The widely distributed species had the largest amount of data records in the FIA 

database and did not map accurately when building the model with less than 700 

records or 1.43 trees per 10,000 ha. This brings into question the accuracy of the map 

for white pine because there are less than 700 records present in the database. The map 

considered real is merely created from the maximum records available, up to 2,500 

records due to computer limitations.  

Exact amounts of data points necessary to accurately map aggregately, sparsely 

or widely distributed species could not be determined due to the vast differences 

between species within each spatial pattern group. With a conservative approach, the 

largest minimum amount of points required in each spatial pattern can be considered 

the minimum (Table 5). For example, the ash group, a widely distributed species group, 
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requires 1,100 points or 2.25 trees per 10,000 ha to produce an accurate map according 

to Kno so the minimum amount of data points for widely distributed species is 1,100. 

The widely distributed species require more data points than sparsely and aggregated to 

attain the same level of mapping accuracy. According to Kno, aggregated species require 

700 points or 1.43 trees per 10,000 ha and sparsely require 500 points or 1.02 trees per 

10,000 ha. To accurately map location, more data points are necessary than to 

accurately map quantities of each category. Widely distributed species require a 

minimum of 900 points or 1.84 trees per 10,000 ha to map location and 700 points or 

1.43 trees per 10,000 ha to map quantity accurately. Aggregated species require 700 

points or 1.43 trees per 10,000 ha for location and 350 points or 0.71 trees per 10,000 

ha for quantity. Sparsely distributed species require 400 points or 0.82 trees per 10,000 

ha for location and only 200 points or 0.41 trees per 10,000 ha to map quantity 

accurately (Table 5).  

 

Figure 16 Average Kno at each comparison level, 75%, 50% and 25% of total FIA points by each spatial pattern 
group 
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Figure 17 Kno values for all 15 tree species broken into four distinct accuracy groups 

 

Figure 18 Average Klocation value by spatial pattern group 
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Table 3 Groupings based on accuracy according to Klocation 

Group A Group B Group C Group D 

balsam fir maple group ash group elm group 

American basswood red oak group white oak group 
 paper birch red pine white pine 
 jack pine 

   northern white cedar 
   populus group 
   spruce group 
   tamarack 
    

 

Figure 19 Average Khisto by spatial pattern group 
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Figure 20 Amount of data points necessary to create accurate maps by species according to Klocation 

 

 

Figure 21 Amount of data points necessary to create accurate maps by species according to Khisto 

 

Table 5 Largest minimum density of species that each spatial pattern requires in trees per 10,000 ha 

  Kno Location Quantity 

Widely 2.25 1.84 1.43 
Aggregately 1.43 1.43 0.71 

Sparsely  1.02 0.82 0.41 
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Discussion 

Quantifying error 

Aggregated species mapped most accurately in both location and quantity. This 

was expected because dominant species have previously been found to have higher 

mapping accuracy and aggregated species often out-compete and become dominant in 

stands (Guisan, et al., 2007). Widely distributed species fell second in accuracy and 

sparsely were the least accurate. Widely distributed species were probably difficult to 

map because they do not have a narrow geographic distribution. They can be found on a 

variety of landscapes making it difficult for Random Forest to accurately predict 

presence probability. Sparsely distributed species are difficult to map because they are 

the minority in stands. 

According to all three statistics, Kno, Kloc and Khisto, elm had the lowest 

mapping accuracy and tamarack had the highest accuracy. Elms are moderately fast 

growing species, which have been previously found to have lower mapping accuracy 

(Guisan, et al., 2007). Tamaracks often form pure stands making them the dominant 

trees in a stand. In mixed stands, tamaracks are in the overstory. Both characteristics 

are associated with high mapping accuracy.  

Sparsely distributed species require the fewest data points to accurately map 

location. This may be caused by the fewer data points available to create the true map 

since the species is not as common as widely distributed species. Widely distributed 

species require the largest amount of data points to map location accurately. A potential 
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reason for this is the small fraction of the total data points used to create the model in 

Random Forest and an overwhelming amount of points to test the accuracy of the 

model. Two thirds of the data should be used to build the model but due to computer 

limitations, a maximum of 2,500 data points could be used. This is a small fraction of the 

24,440 points of trees in the populus group, resulting in a sample taken from a sample 

which can lead the data farther from being an accurate representation of reality.  

The ash group and populus group, both widely distributed, require the most 

points to map location accurately. White pine, aggregated distribution, requires the 

least amount of data points. The accuracy of white pine’s true map should be 

questioned because it was created with only 322 points at a density of 0.66 trees per 

10,000 ha.   

The quantity of polygons in each probability class mapped more accurately 

overall and with fewer data points than the location of each polygon when comparing 

the true map to the alternate maps with fewer data points used to build the model. As 

with location, sparsely distributed species required the fewest data points for quantity 

accuracy and widely distributed species required the most. Again the ash and populus 

groups require the most amount of data points while white pine requires the least. 

Paper birch is also among the species that require the largest amount of data points to 

map accurately.  
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Improving mapping accuracy 

 The creation of accurate species distribution maps needs a certain amount of 

data points. Each species is unique and has a different minimum amount of data points 

necessary. In this project, I attempted to determine the minimum amount necessary to 

create accurate maps using Random Forest based on the species distribution pattern. 

The results show that in general, widely distributed species require more data points, 

followed by aggregated then sparsely.  

 Widely distributed species had the most available data points to create the true 

map. It may be inferred that the widely distributed species true maps are the most 

accurate and it was found that the widely distributed species require a minimum of 

1,100 points or 2.25 trees per 10,000 ha to maintain accuracy. Elm and white pine did 

not have 1,100 records in the study area. 

 This study produced a wide range of minimum data points within the three 

distribution groups making it difficult to determine a minimum amount necessary based 

on distribution pattern. According to the largest amount necessary of a species within 

each group, widely distributed species should have at least 1,100 points or 2.25 trees 

per 10,000 ha to produce an accurate map. Only 900 points or 1.84 trees per 10,000 ha 

are required to map location accurately and 700 points or 1.43 trees per 10,000 ha to 

map quantity accurately. Aggregated species require 700 points or 1.43 trees per 10,000 

ha but if the user is only interested in quantity accuracy, only 350 points or 0.71 trees 

per 10,000 ha are required. Sparsely distributed species require 500 points or 1.02 trees 
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per 10,000 ha to map accurately according to Kno, 400 points or 0.82 trees per 10,000 

ha for location accuracy and only 200 points or 0.41 trees per 10,000 ha for quantity 

accuracy.  

 Using larger sample sizes improves model performance (Reese, Wilson, Hoeting, 

& Flather, 2005) and with current technology, there is no need to decrease data with 

the goal of improving processing time. Kadmon, Farber, and Danin (2003) found 50 data 

points (a density of about 0.18 trees per 10,000 ha) to be sufficient for accurate 

mapping. In multiple studies, as low as 10 data points in a landscape scale have been 

found to be sufficient for mapping species (Hernandez, Graham, Master, & Albert, 2006; 

Wisz, et al., 2008). Guisan, et al. (2007) found that larger sample sizes produce more 

accurate results and that each species varies greatly in necessary data points, even 

within each tree genus. A limitation in this study may be in the grouping species 

together. Further studies should be done in Minnesota without grouping species to 

determine minimum data points necessary for accurate mapping.  

Limitations in this study include relying solely on FIA data to demonstrate 

current tree species locations because of the spatial gaps in the FIA point data. Only 

species presence information was available. The absence of a species was not taken into 

account. Also, the environmental variables are at a coarse resolution and have 

heterogeneous environmental conditions within each map unit. The FIA plots are 

smaller than the map unit which may affect mapping accuracy. The model was 

developed using the observed distribution of tree species in relation to the calculated 
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environmental variables but is not extensive enough to describe all possible 

combinations of environmental variables.  A model limitation can be seen in species like 

white oak, white pine and elm. The white oak species was expected to be sparsely 

distributed but Random Forest predicted it as a widely distributed species, white pine 

had very few data records in FIA and elm had the lowest Kappa values. A computer 

limitation occurred with large data sets, like the populus group. A sample of the FIA 

sample had to be taken, possibly leading the data set farther from an accurate 

representation of reality.  

Suggestions for future research are including weather variables to see if species, 

like white oak, are mapped more ecologically realistic. Also, research should be done on 

why white oak was mapped as widely distributed and why elm had the lowest mapping 

accuracy. Future vegetation mapping projects could use a different statistical approach 

for the methodology of variable selection, regression and dealing with large data sets.   
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Appendix 

Appendix A 

Map of study area in the Laurentian Mixed Forest Province in Minnesota 
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Appendix B 

Tree species in the study for MN. 

 

 

 

 

 

 

 

 

Species   Species Group Spatial Pattern 

Larix laricina tamarack tamarack aggregately 

Pinus banksiana jack pine jack pine aggregately 

Pinus strobus white pine white pine aggregately 

Thuja occidentalis northern white cedar cedar aggregately 

Pinus resinosa red pine red pine sparsely  

Quercus alba white oak white oak sparsely  

Quercus ellipsoidalis northern pin oak red oak sparsely  

Quercus macrocarpa bur oak white oak sparsely  

Quercus rubra northern red oak red oak sparsely  

Ulmus americana American elm elm sparsely  

Ulmus rubra slippery elm elm sparsely  

Abies balsamea balsam fir fir widely  

Acer rubrum red maple maple widely  

Acer saccharinum silver maple maple widely  

Acer saccharum sugar maple maple widely  

Betula papyrifera paper birch birch widely  

Fraxinus nigra black ash ash widely  

Fraxinus pennsylvanica green ash ash widely  

Picea glauca white spruce spruce widely  

Picea mariana black spruce spruce widely  

Populus balsam balsam poplar populus widely  

Populus grandidentata bigtooth aspen populus widely  

Populus tremuloides quaking aspen populus widely  

Tilia americana American basswood basswood widely  
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Appendix C 

Amount of FIA data points used in each trial. 

  

Maximum 
data 

points 
available 

75% of 
maximum 

data 
points 

50% of 
maximum 

data 
points 

25% of 
maximum 

data 
points 

Test 1 of 
minimum 

data points 
necessary 

Test 2 of 
minimum 

data points 
necessary 

ash 2500 1875 1250 625 1000 800 

basswood 1833 1375 916 458 400 300 

birch 2500 1875 1250 625 1000 700 
cedar 2500 1875 1250 625 400 300 

elm 683 513 342 171 200 150 

balsam fir 2500 1875 1250 625 1000 600 
jack pine 1494 1121 747 374 100 300 

maple 2500 1875 1250 625 1000 600 

populus 2500 1875 1250 625 1000 800 
red pine 2021 1516 1011 505 400 350 

red oak 1179 885 590 295 200 150 

spruce 2500 1875 1250 625 400 350 
tamarack 2500 1875 1250 625 400 300 

white pine 322 242 161 81 70 40 

white oak 1733 1300 867 433 375 200 
 

 

 

 

 

 


