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ABSTRACT 
 

 A testbed for flow meters was built and validated.  The testbed targeted intravascular 

pressure and flow monitoring applications.  The testbed consists of a data acquisition system 

and two MEMS pressure sensors (SM5108).  For simplicity the evaluation of the testbed was 

performed using air flow.  Air was pumped across a simulated blockage and pressure was 

built up to intravascular pressure ranges (35 to 230 mmHg).  The base fractional flow rate 

(FFR) equation was used to calculate flow, hinting that the SM5108 pressure sensors can 

become part of an implantable flow meter.  In addition, small and flexible RFID coil 

antennas were designed, built and tested. Measurements show that enough power can be 

collected by the coil antennas to power a microchip. 
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CHAPTER 1 

INTRODUCTION 

1.1 Cardiovascular Diseases  

In 2007 heart disease was the leading cause of death in the United States of America 

[1].  Death rates reached an age adjusted average of 747 annual deaths per 100,000 as seen in 

Figure 1.1.  These deaths are not just tragic in and of themselves but also create significant 

economic demand. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1:  Heart disease death rates, 2000-2006 [2] 
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The cost of heart disease to the nation’s economy, as adjusted by a review of the 

1957-1958 data, totals $4.1 billion [3].  In 2010, the total costs of cardiovascular diseases in 

the United States were estimated to be $444 billion [4].  Take a moment and consider what it 

will be in 2060.  The serious problem of heart disease has deservingly been given a 

tremendous amount of investigation.  The investigation has lead to many preventative 

measures, diagnosis techniques and treatment options.            

 

1.2 Typical Treatment Options 

Treatment options fall into three categories: (1) non-invasive, (2) minimally-invasive, 

and (3) surgical procedures [5].  Non-invasive measures include medication, diet and 

exercise.  Minimally-invasive includes interventional cardiology.  Surgical procedures 

include coronary artery-bypass surgery.  While none of these three provide a cure, each one 

does eliminate or alleviate the symptoms for varying amounts of time. In other words, the 

disease and its causes are still present after treatment and require the patient to modify his or 

her lifestyle to prevent the disease from progressing and the symptoms from recurring [6]. 

 

1.3 Problems Associated with Treatment Options 

When considering interventional cardiology and the fact that life style changes are not 

easy, the rates of restenosis are not staggering.  Stenosis is defined as the abnormal 

narrowing of a passage in the body, and used as a medial term for a blockage in an artery.  In 

layman’s terms, restenosis is when the artery becomes blocked again.  Restenosis can be 

defined as a reduction in the circumference of the lumen of an artery or blood vessel of 50% 

or more.  Restenosis has a high incidence rate (25-50%) in patients who had undergone 

balloon angioplasty, with the majority of patients needing further angioplasty within 6 



3 
 

months [7].  Prevention of restenosis can be done in two stages.  The first stage is medication 

typically focused on anti-platelet drugs (lessens blood clotting).  The second stage of 

prevention is to use a drug-eluting stent.  There has been some success with these new stents 

in reducing the occurrence of restenosis, with clinical studies showing an incidence rate of 

5% or lower [7].   

Even with the hope that restenosis is a thing of the past the problem of measuring a 

blockage, the restricted flow, and the arterial pressures still involve a hospital stay.   

1.4 Creative Proposal to Solve the Treatment Problems  

     One of the most creative solutions would be to implant a stent that has the ability 

to self-diagnose restenosis. In a survey of stent designs, the authors suggest Figure 1.2 to be 

the structure of classifications of stent design features [8].  The ability to self-diagnose 

restenosis should now be added to the ADDITIONS section of the pyramid.   

 

 

 

 

 

 

 

 

Figure 1.2:  Stent design pyramid [8] 
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   The wireless electronic self-diagnose chip would monitor for restenosis and 

communicate with the doctor at regular checkups.  The monitoring could be done with 

MEMS pressure sensors.  The wireless communication could leverage Radio Frequency 

Identification (RFID) technology.  The self-diagnosing chip would allow the physician to 

only have to read on their computer the restenosis status rather than having to do the current 

complex and time consuming methods of restenosis diagnosis.  The ability to do all this 

would easily prove useful. 

1.5 Previous Work Supporting the Proposal 

The most relevant paper to this thesis was written by several engineers at the 

University of Michigan, Ann Arbor titled “A Wireless Microsensor for Monitoring Flow and 

Pressure in a Blood Vessel Utilizing a Dual-Inductor Antenna Stent and Two Pressure 

Sensors.” That paper shows progress in the direction of a wireless implantable system for 

sensing flow and pressure inside a blood vessel [10].  The paper shows the use of the system 

but makes no reference to the uncertainties of their measurements and moreover does not set 

reasonable expectations for a system designer to meet.  In that paper the pressure sensor that 

is used is capacitive which has noticeable differences from available resistive MEMS 

pressure sensors. 

Another relevant paper to this field of study was written by several engineers at the 

University of California.  A fully implantable wireless pressure sensor system was developed 

to monitor bladder pressures in vivo [11].  This paper uses the same pressure sensor in this 

thesis but in a different way (bladder not blood pressure).  The authors claim resolution of .02 

psi (about 1 mmHg), however the entire sensing system has a sizeable package (Figure 1.3). 
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This fully implantable package is obviously too large for intravascular purposes; inasmuch, a 

wireless RFID technology would be more reasonable to consider for diagnosing restenosis.   

 

 

 

 

 

  Figure 1.3:  The implantable device after being fully packaged [10] 

 
 A more reasonable size of implantable device was proposed by Oklahoma State 

University.  Though not published, the Oklahoma State VLSI department is working on a 

prototype neural RFID IC.  The overall dimensions of this IC are 5mm x 14mm x 1mm.  

Though this is more reasonable, a finial size of less than this, say 1mm x 4mm x .5 mm is 

necessary to not be a blockage itself.  

 

1.6 Plan of Development 

There is one very clear problem that comes after considering the proposed wireless 

microelectronic chip and sensor and previous work.  Will this device have the accuracies 

suitable for a physician’s diagnosis?  This is the primary focus of this thesis; a question that 

needs to be answered before building a stent that has the ability to self diagnose restenosis.  

The process of building a stent with said ability is vast and varied.  A secondary question is 

can a miniature RFID collect enough power for a microchip.  By leveraging current 

capabilities one could divide the process of building a wireless electrical self diagnosing chip 

into three phases.  (1) Build a test bed and measuring device, of reasonable size, that has the 
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capability to produce and measure intravascular pressures with the desired accuracies.  (2) 

Consolidate and miniaturize the test bed and device produced in phase one.  (3) Make the 

phase two device biocompatible and begin the long road to human implementation.   

 

1.7 Contributions 

Phase one in the plan of development has begun.  A brief description can be found in 

an IEEE Sensors conference paper [11].  This thesis is meant to be a more thorough and 

complete documentation of the effort.  The contributions can be segmented into 5 parts:  (1) 

research MEMS sensors; (2) research flow measuring techniques; (3) development a data 

acquisition board (4) calibration and experimentation; and (5) uncertainty analysis.   

Many types of pressure sensors exist.  Navigating them for a particular application 

proves challenging.  The decision to utilize available MEMS pressure sensors is logical based 

on their small size and time savings in comparison to an exhaustive search of all available 

pressure sensors.  That said some searching shows that the sensors investigated are very 

competitive to others in a comparable size.   

Flow measuring techniques were researched which lead to the decision to use 

Fractional Flow Rate (FFR).  Dr. Steve Marso, a practicing physician at St. Luke’s hospital 

clearly outlined many options for measuring flow through arteries.  Dr. Marso suggested FFR 

due to it being widely used and documented.  Fortunately pressure readings directly relate to 

FFR lending FFR useful in terms of the sensors chosen. 

The output of the sensors needs to be amplified, converted to digital format, stored 

and displayed.  Figure 1.4 shows the sensor front-end and a microcontroller to acquire 

pressure readings from two MEMS pressure sensors.     
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Figure 1.4:  Schematic of pressure data acquisition system [11] 

 

The microcontroller sends the pressure data through its UART to a PC.  At the PC a Matlab 

Graphical User Interface (GUI) program receives, filters and displays the pressure data. 

Developing the testing environment was a challenge in and of its self.  To begin with, 

the wire-bonded MEMS pressure sensors were fragile.  Being fragile meant that great caution 

is necessary to insure no damage was done.  A repeatable and measurable intravascular 

pressure and flow environment was created and tested.  The calibration of this environment 

was also performed each time before taking measurement.  

Last, a complete uncertainty analysis was performed to insure the measurement were 

accurate.  The Guide to expressing Uncertainty in Measurement (GUM) method was used.  

The final uncertainty obtained was compared to the physician’s expectation.   
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CHAPTER 2 

BACKGROUND 

2.1 Introduction 

 This chapter focuses on introducing the reader to pressure sensors, flow 

measurements, medical instrumentation, Fractional Flow Rate (FFR), physicians 

expectations, and the uncertainty target of a FFR measuring device.  Introduction to all of 

these areas is critical in understanding the logic behind a FFR measuring device.  Each topic 

serves a different purpose that will be identified below.  

2.2 Pressure Sensors 

 There are many types of pressure sensors. Pressure sensors come in all shapes sizes 

and use various methods for measuring pressure.  There are three ways to refer to pressure 

measurements: gage, absolute and differential.  Gage examples include tire pressure, blood 

pressure, and pressure of air tanks.  Absolute examples are vacuum pressures, atmospheric 

pressures, and altimeter pressures.  Differential pressure measurements are typically for flow 

or level in pressurized vessels. 

 The difference between Gage and Absolute is simple.  Gage is the pressure relative to 

the current atmospheric pressure (no matter what atmospheric pressure is).  Absolute is what 

the pressure is from a true vacuum.  To illustrate, blood pressure is typically 120 mmHg over 

80 mmHg (gage) or 196 mmHg over 156 mmHg (absolute).  The conversion is to add 

atmospheric pressure (typically 76 mmHg). 
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 Differential pressure measurements need not consider atmospheric pressure since an 

offset to both values would be subtracted out.  Here one must consider why there is a 

difference.  Tube architecture could cause a difference as in a differential pressure flow 

meter.  A restriction could cause a difference as in Bernoulli’s principle.  Once one knows 

why there is a difference one can determine what the magnitude of that difference means 

(whether it be flow or level of a pressurized vessel).       

  MEMS pressure sensors currently dominate the market for greater-than-atmospheric-

pressure sensors [12]. A MEMS pressure transfers a pressure change into mechanical motion.  

This motion can then convert into a resistance or capacitance change or even through a 

piezoelectric and directly into an electrical signal.  Figure 2.1 shows the applied pressure 

resulting in a diaphragm strain.  This strain is then converted into a resistance difference.  

The SM5108 has a linier relationship between pressure and resistance.        

 
Applied pressure

Reference pressure

Piezoresistive

Pressure 

sensors

 

Figure 2.1: Diagram of a MEMS pressure working. 

 

 When the diaphragm is round with a clamped circular plate with small deflections the 

equation to model the deflection (w), radial distance from the center of the diaphragm (r), 

diaphragm area (a), applied pressure (P) and flexible rigidity (D) is given in 2.0. 
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           (2.0) 

 

Interfacing with a MEMS device is a challenging endeavor especially since the 

sensors used are not packaged to keep their low profile.  The pressure sensors have five 

aluminum pads that must be wire bonded.  There are two materials for wire bonding, gold 

and aluminum.  There are two main types of wire bonding, ball and wedge.  As it turned out 

the pressure sensors would only allow a gold or aluminum ball bond when mounted with 

lock tight to a stiff ceramic (Figure 2.2). 

 

 

Figure 2.2: Wire bonded pressure sensor next to U.S. dime. 

  

2.3 Flow Measurement and Medical Instrumentation 

One of the primary measurements the physician would like to acquire from a patient is that of 

the concentration of O2 and other nutrients [13].  Because this is difficult to measure, doctors 

may choose the second class measurement of blood flow [13].  Measuring blood flow is not 

easy due to its invasive nature.  There are many ways to measure flow.  The two most 

common ways are coronary angiography and catheter FFR. 
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Figure 2.3: Example of coronary angiography [14] 

Coronary Angiography is a test that uses dye and special X-rays to show the inside of 

your coronary arteries [15].  Coronary Angiography is the gold standard for diagnosing 

blockages.  Figure 2.3 shows a clear picture of a blockage in 56-year old man with chest pain 

[14].   In order to get the die in the blood a procedure called cardiac catheterization is used.  

A long, thin, flexible tube called a catheter is put into a blood vessel.  The tube is then 

threaded into your coronary arteries and the die is injected [15].   

A second way of determining flow is also using cardiac catheterization but this time 

instead of just injecting die from afar, that catheter goes directly into the blockage and 

pressure is measured proximally and distally.  When both these pressures are known one can 

calculate Fractional Flow Rate (FFR) with equation 2.1.   

 

 (2.1) 
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P2 is the distal pressure and P1 is the proximal pressure.  When there is no blockage 

the pressures are equal and FFR = 1.  When a blockage begins, FFR moves down to 0.9 and 

then at 0.8 some doctors will choose some sort of intervention.  When the blockage is below 

.8 most doctors will act to increase flow.   

2.4 Current FFR Measurement Apparatuses  

There are two primary manufactures of FFR measuring equipment: St Jude Medical 

and Volcano [16].  Both use sensors at the end of a long catheter (Figure 2.4 and 2.5).  Both 

have a computer interface that a doctor would use to determine the severity of a blockage.  

Most importantly, as previously mentioned, both require invasive surgery whenever a doctor 

would like to take an FFR measurement.   

 

Figure 2.4: Example of Volcano sensor tip [17] 

 

 

 

Figure 2.5: Example of St Jude Medical sensor tip [18] 
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The process of using said devices is simple in nature but requires great skill.  First, a 

catheter is inserted into the femoral or radial arteries using a guide wire.  Second, the catheter 

is guided to the blockage (Figure 2.6).  Third, the pressure is measured both proximally and 

distally.   Last FFR is calculated per equation 2.1.  This calculation is usually done by the 

computer and displayed for a doctor to see (Figure 2.7). 

 

 

Figure 2.6: Catheter in place measuring FFR [16] 
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Figure 2.7: Software screen of Volcano’s FFR Device [17] 

 

2.5 Physician’s Expectations - The Uncertainty Target of FFR 

Medical Instrumentation has a very wide verity of measurement uncertainties.  

Physicians obviously want the best measurement possible when life is on the line.  

Physicians also want to be as least invasive as possible; however, the less invasive the less 

accurate. Here in lies the notorious engineering balance.  An interview with a leading cardio-

vascular specialist, Dr Steve Marso, hinted that an acceptable uncertainty target for FFR is 10 

percent.  
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CHAPTER 3 

THE DESIGNED AND IDENTIFIED SOLUTION 

3.1 Introduction 

 To restate the primary focus of this thesis from Chapter 1, we must build a device and 

testbed and then investigate if the device has the accuracies suitable for a physician’s 

diagnosis.  In the process of designing anything one must find the engineering balance.  The 

engineering balance is found when there is a balance between the boundary conditions.  For 

this example there are 3 boundaries: power, size and accuracy.  The design must be low 

power it cannot be powered on batteries and must be powered inductively.  The design must 

be small so that it is able to fit in a stent without being a blockage itself.  The design must 

meet or exceeded the accuracies that a physician needs.   

The primary focus of the research is to find a system that would meet the required 

accuracy.  This system needs a data acquisition interface, and it needs to be calibrated.  The 

experimental setup around the solution needs to simulate a blockage, and the heart.  The 

secondary focus of this research is to design, build and test a miniature RFID coil antenna 

that is capable of collecting enough power for a microchip.  In the upcoming sections a more 

detailed view of the antenna and applicable results will be discussed. 

 

3.2 Data Acquisition 

 Many types of data acquisition exist.  They range in price and accuracy.  When 

considering the balance of price and accuracy, if one happens to be skilled in microcontroller 

programming, a microcontroller is an obvious choice.  The final system evaluated is based on 
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a microcontroller and a Matlab Graphical User Interface.  The microcontroller added a 

significant power savings over the high accuracy bench top data acquisition system used 

initially, i.e. Agilent 3458 DMM (Figure 3.1) 

 

Figure 3.1: (Top) The MEMS sensor in a closed pressure chamber being read by an Agilent 
3458 DMM. (bottom) Pressure chamber opened to expose the MEMS sensor 

 

 Initially high accuracy bench top equipment was used to evaluate the MEMs pressure 

sensors.  Pressure was accurate to .04% and resistance was accurate to .05%.  This system 

showed the linearity of the pressure sensor.  The R2 value was one.  The MEMs sensor also 

showed no Hysteresis.  Figure 3.2 has the data taken from this system.  As mentioned earlier, 

the first system was too power hungry and needless to say huge. 
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PSIA Resistance PSIA Resistance

14.572 94.731 20.12 132.328

15.176 98.861 19.02 124.899

15.885 103.622 18.105 118.741

17.02 111.367 17.118 112.026

18.012 118.067 16.018 104.617

19.065 125.201 15.118 98.555

20.122 132.348 14.542 94.594

Increading Decreasing

 
Figure 3.2: A table of measured values of the system in Figure 3.1  
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Figure 3.3: The values graphed with a trendline, equation, and calculated R2 value. 

 

 In the end it is obvious the system will need to be on a single chip.  The midpoint 

between the bench top described above and a single chip is shown in Figure 3.4.  This circuit 

board was made to show that commercially available microelectronics can be used to make 

accurate measurements with the MEMS sensors used above, as shown on Figure 1.4.   
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Figure 3.4: The finial printed circuit board based off figure 1.4 system block diagram.   

 The pressure sensor contains four piezo resistors connected in a bridge configuration.   

Each bridge has four wires that need to be connected i.e. Vdd, Gnd, Vdiff+ and Vdiff-.  Thus 

with two sensors, eight wires leave the board where it is labeled “ports of sensor connection.”  

The differential voltage from the sensors is feed into the INA 2331 instrumentation amplifier.  

The model of the amplifier is shown in Figure 3.5.  The gain of said amplifier is given by 

equation 3.1. 
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Figure 3.5: Schematic of INA2331 Instrumentation Amplifier. 
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           (3.1) 

 After amplification the signal is converted from analog to digital by the 

microcontroller.  After conversion the digital value is sent through the UART to a computer 

that has a Matlab GUI program running.  The GUI is shown in Figure 3.6.  One can clearly 

see the communication control box that connects to the appropriate communications port.  

The Data control box contains the buttons to begin capturing the data (Start), stop capturing 

the data (Stop), save the data to an excel file (Save), and clear the data (Clear).  With that 

functionality the data acquisition system is considered complete.  

 

 

 

 

 

 

 

 

Figure 3.6: Screen shot of the Matlab Pressure Capture System GUI 
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3.3 Calibration 

Calibration is defined as the transformation of the 12-bit integer value sent by the 

microcontroller into a pressure value.  The calibration process requires only two steps.  Step 

one, the two pressure sensors are left at atmospheric pressure and the integers from Chanel 1 

and Chanel 2 are read and recorded (from the GUI).  These values will be Zero Integer one 

and two (ZI1 and ZI2).  The second step is to bring both pressure sensors to the same known 

maximum pressure as seen in Figure 3.7.  These values will be the Maximum Integer one and 

two (MI1 and MI2).  The maximum pressure value is recorded as the last of the five 

calibration coefficients (MP).   

 

 

Figure 3.7: Showing the two pressure sensors at the same pressure. 

Standard pressure gage 
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 With all five calibration coefficients and assuming a linear pressure to integer 

relationship, one can convert from an integer representation to pressure using equation 3.2.  

This conversion could be done in the microcontroller but it is done just as easy in Matlab.   

 

           (3.2) 

 

 The process of calibration is displayed on the right side of the Matlab GUI.  The 

integer values are displayed at the top right hand side.  After one knows the values one can 

place them in the correct boxes top to bottom (ZI1 – MP2).  Then when the Update 

calibration constants (Update Cal Const) button is pressed, the GUI will start to display to 

correct pressures for channel one and channel two and their difference (above the Update Cal 

Const button). 

3.4 Simulating Blockages 

Now that we have two working MEMS pressure gages we can insert them into 

quarter inch tubing and place a valve between them to simulate a blockage.  This can be 

visualized with Figure 3.8  

There must be a back pressure for the experiment to work.  Experimentally the back 

pressure was achieved with a latex tube and clamp.   If one refers back to equation (1.1), FFR 

can now be easily calculated as the blockage increases over time.   
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Valve 1

Valve 2
 

 
 

 

Figure 3.8: Showing the experiment, Valve 1 simulated blockage and Valve 2 creates the 
back pressure. 
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3.5 Simulating the Heart 

Just before Valve 2, one can also insert an artificial heart.  An artificial heart varies 

pressure approximately 60 beats per minute.  Blood pressure is usually given in two numbers 

systolic and diastolic.  These values can vary wildly in people.  Figure 3.9 has some good 

approximations of maximum and minimum.  By changing the pressure from maximum to 

minimum in at comparable time as the heart, would show an even closer example of 

intravascular pressures. 

 

Figure 3.9: Blood pressure ranges [20] 
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Figure 3.10 shows ECG, arterial pressure (Pa), right arterial pressure (Pra), 

pulmonary artery pressure (Ppa), LV area (LVA), and airway pressure (Paw) recorded over 

time following apnea in a patient after cardiac bypass surgery during the closed chest 

condition [21].  If one could mimic this (Pa) curve that would be the closest to an 

intravascular environment.  Figure 3.10 graphically represents pressure changes as compared 

to the heart beat. 

 

 

Figure 3.10: Blood pressure vs time and compared to other parameters [20] 
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3.6 Antenna Design and Manufacture 

 In order to power the final chip, a coil antenna will be used.  A coil antenna tuned to 

13.56 MHz (ISO15693 RFID standard) collects electromagnetic energy in the near field of a 

transmitting antenna.  Initial variations of these miniature RFID antennas were designed and 

fabricated.  Figure 3.11 shows what the coils look like before being cut out with a laser.  

Figure 3.12 shows the reverse side where the chip and cap and sensors will be soldered or 

bonded.  Two types of coils were manufactured  – square and rectangle.  Square is an good 

choice as it maximizes the loop area.  A rectangle would fit better inside a stent.   Flexible 

PCB materials enabled the coil to bend around the stent to minimize impact of flow.  For 

development purposes some of the coils have 10 contact flexible cables stemming off to 

interface with the board in Figure 3.4.   

 

Figure 3.11: Picture of antenna before laser cutting 
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Figure 3.12: Picture of circuit side next to U.S. dime. 

In order for the coil antenna to work it must be tuned.  The antennas were tuned using 

three different techniques: Impedance Analyzer, Network Analyzer, and brute force.  All 

three gave similar capacitance values to counteract the reactance of the coil antenna.      

3.7 Results and Discussion 

 The first experiment was using an air pump to provide continual flow and turning the 

valve twice (moderate blockage and sever blockage).  A severe blockage is one that results in 

an FFR of below 0.8.  In Figure 3.13 one can see the blockage becoming worse in two steps. 

This blockage ends at a point where intervention would be necessary.   
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Figure 3.13: (Top) Pressure as blockage increases (Bottom) FFR as blockage increases with 
continual flow.  Red line denotes medical intervention is necessary. 

 

 The second experiment was using a pump and a heart simulator to provide variable 

flow by turning the valve twice (moderate blockage and severe blockage).  A sever blockage 

is one that results in an FFR of below 0.8.  In Figure 3.13 and 3.14 one can see the blockage 

becoming worse in two steps.  The last third of the graph show the point where intervention 

would be necessary.   
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Figure 3.14: (Top) Pressure with increasing blockage and Heart Simulator (Bottom) FFR 
with Heart simulator 
 

The third experiment was using a commercial RIFD reader antenna, a signal generator 

and power meter to determine how much power one can collated with the new miniture 

antenna.  The first step in this process is to build connectorized versions of the antenna.  To 

insure the antenna remained toned 4 different 0402 capacitance values were used for the 

same coil.   
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Figure 3.15: Connectorized versions of the miniture RFID antennas 

 

The second step in this experiment is to broadcast 13.56 MHz with an Agilent E8257C.  

The power was maximized at 25 dBm into a commercial RFID antenna.  The last step in the 

experiment is to measure the power received at different distances from the reader.  The 

power was measured on a Agilent E4419B Power meter and a E4412A sensor. 

After determining what the collected power was through air a beaker of water was placed 

between the tranmitting anteanna and the test anteanna.  In Figure 3.16 one can see the entire 

measurement setup including the beaker of water.  The results were tabulated in Figure 3.17       
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Figure 3.16: Antenna coupling tests (picture of source and power meter) 

 

 

Source: 

Agilent E8257C 

Power Meter:  

Agilent E4419B 

w/  E4412A Sensor 
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13.56Mhz at 25dBm through Air 

 
680 pF 820 pF 1000 pF 2200 pF 

3 in -25.2 -24.6 -24.4 -28.5 

2 in -20.7 -19.4 -19.1 -23.7 

1 in -16.3 -14.8 -14.5 -19.4 

0 in -14.4 -12.6 -12.4 -17.7 

     

     
13.56Mhz at 20dBm through Air 

 
680 pF 820 pF 1000 pF 2200 pF 

3 in -28.4 -27.3 -27.2 -32.1 

2 in -23.5 -22.2 -22.6 -27 

1 in -19.5 -18 -18.3 -23 

0 in -17.6 -16.1 -16.4 -20.9 

     

     
13.56Mhz at 20dBm through Water 

 
680 pF 820 pF 1000 pF 2200 pF 

4 in -34.2 -32.2 -32.1 -36.2 

3 in -29.1 -27.8 -27.1 -31.8 

2 in -25.1 -23.7 -22.5 -26.6 

1 in -20 -18.6 -18.4 -22.6 

 

Figure 3.17: Tables of power at different distances with different capacitors  

 

Based in the data collected above, a microchip could be powered 4 inches into the 

body (assueming the 20% of the body that is not water does not have a tremendious 

effect).  The link loss is 52.1 dBm and so if one is brodcasting at 36 dBm than a 

microchip would receive 24 microwatts of power.  Assuming it is a low power chip with 

a resistance of 10kOhm than it would have a Vdd of about half a volt. 

The last evaluation is the power spectrical density of the MEMS Pressure sensors.  

This is seen in three stages.  The first stage is when there is not stimuli.  The second 
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stages is with the pump as stimuli.  The last stage is seen with the pump and heart 

simulator as stimuli.   

The measurement system sampling rate was 300 Hz.  The nyquest cutoff is then 150 

Hz.  That said, there is sufficient bandwidth for the application selected.  This can be seen 

in last picture of Figure 3.18.  In this picture one can see the heart simulator frequency of 

about 3 Hz and other high-frequency components that are the product of mechanical 

vibrations in the pump.  

 

Figure 3.18: The three stages of power spectral density 
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CHAPTER 4 

UNCERTAINTY ANALYSIS 

4.1  Introduction 

 In chapter 3 results were presented for pressure and FFR but uncertainties were not 

discussed.  This Chapter will utilize the Guide to the Expression of Uncertainty in 

Measurement (GUM method) [22] to calculate the total uncertainty of the FFR measurement.  

Though this is obviously not a critical measurement at the time, having good traceability is a 

best practice.  At the risk of over simplification, the guide recommends classifying the 

uncertainties, combining and then expanding the total uncertainty.   

Uncertainties can be classified into two categories Type A and Type B.  Type A 

uncertainties are those which are evaluated by statistical methods.  Type B uncertainties are 

those which are evaluated by other means (e.g. manufacture specifications, data sheets, 

judgment, etc.).  The process of combining and expanding uncertainties will be covered in 

Section 4.4.  Last the uncertainty of the FFR measurements acquired in chapter 3 will be 

shown in tabular form.              

4.1 Type A Uncertainties 

 When considering the pressure measurements one must consider the system in which 

they came.   The system has sensor resolutions and sensitivity in and of itself.  Next there is 

analog signal noise.  There is the quantization errors associated with the analog to digital 

conversion.  Last there is the error of the standard used to calibrate the system. 

 For simplification purposes we can start by lumping the first three together and then 

only if we want to find dominant source can we delineate further.  To determine the said 
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lump of the first three sources a simple experiment is conducted.  The sensor is left 

measuring pressure at an unchanging pressure for a long amount of time.  This experiment 

resulted Figures 4.1 through 4.4 (Please Note: C1 is P1 and C2 is P2). 

 

 

 

 

 

Figure 4.1:  Descriptive statistics 

 

 

 

 

 

 

 

 

 

Figure 4.2   Normality tests 

 

 

 

 

Variable  
n Mean StDev Median 

C1 
4999 526.95 1.64 527 

C2 
4999 588.04 2.15 588 
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Figure 4.3:  Dot Plots 

 

 

 

 

 

 

 

 

Figure 4.4:  Histograms with Distribution Fit 

 

 The thorough statistical analysis above includes general descriptive statistics, a 

normality test, dot plots and histograms with a normal distribution fit on top.  The general 

descriptive statistics show the standard deviation that will be used in the next section.  Before 

one can blindly use a standard deviation as the uncertainty a normality test should be done.  

This mathematical test would show the distribution is normal if the p value is greater than 

0.05.   
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Our P-values for both pressures are less than 0.005 meaning the distribution is not 

normal.  Because of this, one should look at a dot plot or histogram to see if the distribution 

even looks normal.  After investigation of both, one can see our data is dominated by 

quantization noise and so is too sharp to be normal.  Two mathematical inequalities can still 

work in our favor as well; Chebyshev’s and Vysochanskii-Petunin.  Both say that even 

through the distribution is not normal, if the distribution is continuous and in the case of 

Vysochanskii-Petunin, unimodal, then two standard deviations is sufficient in capturing the 

error.  

 Once the error in the integer is known one can translate said error into pressure error 

by using the calibration coefficients and the Pressure Equation 3.2.  Here the same process of 

understanding error propagation can be done as it was in equations 4.2 – 4.4 but now with a 

system equation of 3.2.  Using the statistical analysis for the basis of the zero integers works 

well.  However, one cannot use this for the maximum pressure integers as there is more error 

associated with determining theses quantities.  To determine the error of these terms one can 

look at historical data.  

Date  mpi1  mpi2

7/18/2011 652 710

7/14/2011 649 707

7/13/2011 646 707

7/5/2011 647 705

6/30/2011 623 685

MEAN 643.4 702.8

STDEV 10.4038 9.04212364

% 1.62% 1.29%

% (K=2) 3.23% 2.57%  

Figure 4.5:  Errors associated with maximum pressure calibration factors 
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4.3 Type B Uncertainties 

 The first Type B uncertainty used in the calibration procedure outlined in section 3.3 

is the uncertainty of the standard pressure gage used to calibrate the MEMs pressure sensors.  

This uncertainty is assumed to be 2 % based on the following calibration results 

documentation. 

 The standard pressure gage used in section 3.3 will be called the Test Instrument (TI).  

The TI was compared to a NIST traceable standard pressure gage with an uncertainty of 

.04% (better than 4 times that of which it is calibrating).  When comparing the two gages the 

following results were obtained (Figure 4.1).  In short, the known gage used in section 3.3 is 

2 % accurate – our first Type B accuracy.     

 

 

Figure 4.6:  Comparison of the TI (our standard) with another Absolute pressure standard  
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Standard mmHg TI_ mmHg Calk_mmHg Error (abs) Error (%)

738.170 0 735 -2.810 -0.4%

760.750 20 755 -5.512 -0.7%

780.249 40 775 -5.133 -0.7%

800.834 60 795 -5.84 -0.7%

821.315 80 815 -6.443 -0.8%

840.710 100 835 -5.96 -0.7%

861.089 120 855 -6.461 -0.8%

881.001 140 875 -6.495 -0.7%

900.448 160 894 -6.064 -0.7%

920.671 180 914 -6.409 -0.7%

1041.176 300 1034 -7.646 -0.7%

739.182 0 735 -3.822 -0.5%

Resolution is 2 mmHg Average Error Average (K=1)

In persentage = 1.25% -5.72 -0.7%

Average (K=2)

RSS of Resolution Error and Abs Error (K=2) = 2.0% -1.36%  

Figure 4.7:  Tabular form showing the combining of uncertainties. 
 

Our second Type B uncertainty comes from the mathematical evaluation of the 

system equation expressing FFR.  Equation 2.1 is the system equation.  The GUM method 

mathematical equation for evaluating the propagation of error of equation 2.1 is given in 

(4.1).  

 

���� = ��������1 × ��1�2 + �������2 × ��2�2  
 (4.1) 

 

Simple steps (equations 4.2 and 4.3) show the transformation into equation 4.4.  The 

steps can be described as evaluating the change in FFR due to a change in P1 (4.2) and 

evaluating the change in FFR due to a change in P2 (4.3).  Equation 4.4 expresses the 
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uncertainty of FFR in terms of quantities that we either know or can find out through 

statistical evaluation. 

 

                                 (4.2) 

 

 

                                 (4.3) 

 

 

                       (4.4) 

 

 

4.4 Combining and Expanding Uncertainties 

Once the errors are classified we can begin to combine them into one expression of 

uncertainty for FFR.  First all errors will be tabulated and classified.  Second, the errors will 

be Root Sum Squared (RSS) for the two Pressure Errors in the system equation 4.4.  Third, a 

sample calculation using example pressures and equation 4.4 will be used to determine a 

system error.  Fourth, the system error will be expanded to a coverage factor of 2 sigma. 
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Error Source Type Quantity

Pressure standard B 2%

ZI1 A 0.62%

ZI2 A 0.73%

MPI1 A 3.23%

MPI2 A 2.57%

P1 B 3.85%

P2 B 3.34%  

Figure 4.7:  Errors tabulated 

P1 P2 dP1 dP2 dFFR (K=1) FFR Percent

110 120 4.23 4.01 0.047 0.917 5.10%  

Figure 4.8:  Example calculation using equation 4.3 

 

10.2%FFR with a coverage factor of 2 sigma =  

Figure 4.9:  Error expanded 

 

To conclude, the expanded system error with a coverage factor of 2 sigma is 10.2 

present.  This means that we know the FFR value to ±10.2%.  Even though the dot plots are 

dominated by quantization uncertainty making them non normal moving to a 16 bit ADC 

would only make the cure pass a normality test and not improve the sigma.  Thus, the 12 bit 

ADC is sufficient and to improve the uncertainties one would be better off reducing the 

sources of noise in the circuit.   
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CHAPTER 5 

FUTURE WORK 

5.1  Introduction 

 It will not be long before implantable sensors are strewn about human bodies.  In fact 

according to e-Science news as of January  21, 2009 Fraunhofer researchers are currently 

conducting clinical trials of an implantable pressure sensor [22].  As it was shown in this 

thesis, the accuracies necessary can be obtained for a flow meter.  What remains to be found 

are other applications and the necessary accuracies for those applications.  Specifically with 

regard to this thesis the next steps toward miniaturization can be discussed.  By far the largest 

obstacle that must be obtained is biocompatibility.     

5.2 Other Applications 

 Other applications for this work start with the same parameter, pressure, and with 

only a few minor changes can provide other uses.  Imagine the ability to measure eye 

pressure in glaucoma patients and based off the pressure reading have a small implantable 

pump regulate eye pressure.  Imagine being able to measure cranial blood pressure trends in 

people who suffer from migraines and be able to warn them to take medicine before the 

migraine even starts.   

 Applications of this work will ultimately end with many more parameters than 

pressure.  Implanted sensors of all types could interface with the outside world like cell 

phones and thermostats.  The sensors could call for help or regulate the room temperature.  

ECG, EKG, core temperature of people working in extreme climates, inertial sensors 

(accelerometers, magnetometers, gyros) in athletes providing real time feedback on 
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performance.  An artificial pancreas will not only give connivance to the diabetic but save 

lives.  All of these just name a few of the limitless application on the horizon. 

5.3 Next Steps for Miniaturization 

  The next steps of this work in the way to miniaturization can be defined well in terms 

of VLSI.  A system designer could start at the top and work down until the entire circuit 

board, wireless communication circuit, and sensor could be on one silicon chip about 1 mm 

by 2 mm.  A good first step is to pick a technology that would lend to the low power, high 

accuracy, and MEMS sensor compatibility. 

 Another step that could be useful is standardizing an implantable wireless power 

source (RFID antenna with a Zener diode and an LDO) capable of powering a low current 3 

volt chip.  This standard platform could be used by the hundreds of electrical engineers that 

need to enter this new field. 

5.4 Considering Biocompatibility 

 The human body is a great place to find spectacular electrochemistry.  After all, any 

exposed electrode over one volt in water is characterized by electrolysis.  This 

biocompatibility problem has been addressed through magnificent packaging and creative 

design techniques.  The pace maker is the best example of this.  The electrodes in a pace 

maker are 2mm square gold and they allow cell growth on them.  The pacemaker measure 

the impedance change caused by these cells and changes the voltage to get the desired wave 

form.  But when dealing with sensors, one must be more sensitive to the interface between 

the sensor and the body.  Specifically with regard to the sensor used in this thesis, if cells 

build up on the diaphragm, the system would have to be recalibrated because of the errors 
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resulting from the buildup.  This can be done but while in the design stages why not propose 

material research. 

 When considering the cutting edge of most engineering disciples it is often up to the 

material scientist to drive the march forward.  Think about Leonardo da Vinci planning to 

build a helicopter.  He had the plans right but did not have the materials to succeed. Today 

materials are being researched at an alarming rate.  Still we need more biocompatible 

materials.  

 The material research that would be ideal could be in two forms: (1) Better packaging 

and (2) a biocompatible fabrication process.  The latter is much more ideal due the sheer size 

of fabrication knowledge that could be levered.  
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CHAPTER 6 

SUMMARY AND CONCLUDING REMARKS 

 The first chapter pointed at cardiovascular disease as the primary driver for the 

research.  The chapter proposed that a sensor with the ability of self diagnosis is a creative 

solution to the diagnosis of restenosis.  The main question this thesis answers is - Will this 

device have the accuracies suitable for a physician’s diagnosis?  First a proof of concept 

device must be built.  Second, an experimental test bed must be built.  Last a system 

uncertainty was calculated. 

 The background necessary to make sense of this work falls into three large categories. 

(1) Pressure sensors and flow meters.  (2) Current medical equipment and its measurement. 

(3) Physician’s expectations.  The pressure sensor used in this thesis is a resistive bridge that 

changes linearly in resistance with a linear pressure change.  Current medical equipment is 

made by two vendors that utilize a wired catheter.  The measurement they make is functional 

flow rate (FFR) and it is defined as the distal pressure divided by the proximal pressure.  

Physicians expect accuracy of 10%. 

 The MEMS sensors were wire bonded.  A differential signal amplification and data 

acquisition circuit board was made to connect to the sensors and talk to a computer.  A 

Matlab GUI was made to interface with the data acquisition board and update calibration 

coefficients.  A test bed was made that simulated different blockages and the heart.  A 

calibration procedure was created.  All of this work resulted in the ability to measure FFR.  

Our experiments indicate that the pressure sensors employed at a sampling frequency of 300 

Hz have a bandwidth of 150 Hz suggesting that MEMS sensors could provide high-

frequency information that can be exploited for improved diagnosis.             
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 After taking the measurements one is left with the fundamental question of how good 

are they.  The Guide to the expression of Uncertainty Measurements was used to analyze, 

document and arrive at the conclusion of uncertainty for this system.  The uncertainty of this 

system is 10.2%. 

 The 12 bit accuracy of the ADC used was sufficient.  Noise could be reduced further 

to improve the FFR measurement accuracy.  This reduction could be done by strictly insuring 

the geometric centroid of the out current is that of the in current.  The miniature RFID coil 

antennas, with the right broadcasting antenna, are capable of collecting 24 microwatts of 

power through 4 inches of water.     

 Overall, this thesis (1) researched MEMS sensors (2) researched flow measuring 

techniques (3) development an amplifying data acquisition board (4) built and designed  

calibration and experimentation (5) characterized the uncertainty of the proof of concept that 

was built.  The characteristic uncertainty of the proof of concept system matched with the 

physician’s expectations. 
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APPENDIX 

 

MATLAB GUI CODE 

 

 
 

function varargout = telemetry_gui(varargin) 
% TELEMETRY_GUI M-file for telemetry_gui.fig 
%      TELEMETRY_GUI, by itself, creates a new TELEMETRY_GUI or raises the 
existing 
%      singleton*. 
% 
%      H = TELEMETRY_GUI returns the handle to a new TELEMETRY_GUI or the 
handle to 
%      the existing singleton*. 
% 
%      TELEMETRY_GUI('CALLBACK',hObject,eventData,handles,...) calls the 
local 
%      function named CALLBACK in TELEMETRY_GUI.M with the given input 
arguments. 
% 
%      TELEMETRY_GUI('Property','Value',...) creates a new TELEMETRY_GUI 
or raises the 
%      existing singleton*.  Starting from the left, property value pairs 
are 
%      applied to the GUI before telemetry_gui_OpeningFcn gets called.  An 
%      unrecognized property name or invalid value makes property 
application 
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%      stop.  All inputs are passed to telemetry_gui_OpeningFcn via 
varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only 
one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 
  
% Edit the above text to modify the response to help telemetry_gui 
  
% Last Modified by GUIDE v2.5 29-Jun-2011 20:03:39 
  
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @telemetry_gui_OpeningFcn, ... 
                   'gui_OutputFcn',  @telemetry_gui_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 
  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 
  
%======================================================================== 
%========================== Global variables ============================ 
  
%global bytes_available; 
%global buffer; 
%global sample_ptr; 
%global Vref; 
%global max_samples; 
%global serial_obj; 
%global t; 
  
%bytes_available = 0; 
%sample_ptr      = 1; 
%buffer          = zeros(max_samples, 1); 
%Vref            = 3.3; 
%max_samples     = 2000; 
%serial_obj = serial('COM13', 'BaudRate', 115200, 'InputBufferSize', 500); 
%t = timer('StartDelay',1, 'Period', 1, 'ExecutionMode','fixedRate'); 
%set(t, 'TimerFcn', {'timer_callback_read_serial', serial_obj, Vref}); 
%set(t, 'TimerFcn', {'timer_callback'}); 
  
  



48 
 

%======================================================================== 
  
% --- Executes just before telemetry_gui is made visible. 
function telemetry_gui_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to telemetry_gui (see VARARGIN) 
  
global sample_ptr; 
global buffer; 
global data_ptr; 
global buffer_size; 
global data_buffer_size; 
global CH1; 
global CH2; 
global delta; 
global time_index; 
global pressure_difference; 
global filtered_diff; 
global filt1; 
global A1; 
global B1; 
global zi1; 
global zi2; 
global mp; 
global mpi1; 
global mpi2; 
global FFR; 
  
  
  
load 'C:\Users\public\Documents\Masters Project\Matlab\filter1' filt1; 
%load 'C:\Users\kh9cb\Desktop\Pressure_capture_system\Matlab\filter2' 
filt2; 
A1 = filt1.tf.den; 
B1 = filt1.tf.num; 
  
buffer_size             = 2000;             %make this 1.5x the length 
between SYNC sequences 
data_buffer_size        = 5000; 
handles.bytes_available = 0; 
sample_ptr              = 1; 
data_ptr                = 1; 
buffer                  = zeros(1, buffer_size); 
CH1                     = zeros(1, data_buffer_size); 
CH2                     = zeros(1, data_buffer_size); 
pressure_difference     = zeros(1, data_buffer_size);  
FFR                     = zeros(1, data_buffer_size); 
delta                   = 74; 
time_index              = linspace(0, data_buffer_size-1, 
data_buffer_size); 
handles.Max             = 1024; 



49 
 

COMPort                 = get(handles.edit_COM_port, 'String'); 
handles.serial_obj      = serial(COMPort, 'BaudRate', 9600, 
'InputBufferSize', 2000); 
handles.t               = timer('StartDelay',1, 'Period', 0.5, 
'ExecutionMode','fixedRate'); 
set(handles.t, 'TimerFcn', {'timer_callback', hObject, handles}); 
  
set(handles.button_start, 'Enable', 'off'); 
set(handles.button_stop, 'Enable', 'off'); 
  
plot(handles.axes_pressure, time_index, CH1, 'blue', time_index, CH2, 
'red'); 
axis(handles.axes_pressure, [0 data_buffer_size 0 handles.Max]); 
grid(handles.axes_pressure); 
  
%pressure_difference = ((CH2-CH1)-delta); 
  
plot(handles.offset_plot,pressure_difference, 'green'); 
axis(handles.offset_plot, [0 data_buffer_size -0.1 0.3]); 
grid(handles.offset_plot); 
  
zi1 = str2num(get(handles.edit_zi1, 'String')); 
zi2 = str2num(get(handles.edit_zi2, 'String')); 
mp = str2num(get(handles.edit_mp, 'String')); 
mpi1 = str2num(get(handles.edit_mpi1, 'String')); 
mpi2 = str2num(get(handles.edit_mpi2, 'String')); 
  
  
%plot(handles.axes_pressure, CH2, 'red'); 
  
% Choose default command line output for telemetry_gui 
handles.output = hObject; 
  
% Update handles structure 
guidata(hObject, handles); 
  
% This sets up the initial plot - only do when we are invisible 
% so window can get raised using telemetry_gui. 
  
% UIWAIT makes telemetry_gui wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 
  
  
% --- Outputs from this function are returned to the command line. 
function varargout = telemetry_gui_OutputFcn(hObject, eventdata, handles) 
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Get default command line output from handles structure 
varargout{1} = handles.output; 
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% --- Executes on button press in pushbutton1. 
function pushbutton1_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
%axes(handles.axes_data); 
cla; 
  
popup_sel_index = get(handles.popupmenu1, 'Value'); 
switch popup_sel_index 
    case 1 
        plot(rand(5)); 
    case 2 
        plot(sin(1:0.01:25.99)); 
    case 3 
        bar(1:.5:10); 
    case 4 
        plot(membrane); 
    case 5 
        surf(peaks); 
end 
  
  
% -------------------------------------------------------------------- 
function FileMenu_Callback(hObject, eventdata, handles) 
% hObject    handle to FileMenu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
  
% -------------------------------------------------------------------- 
function OpenMenuItem_Callback(hObject, eventdata, handles) 
% hObject    handle to OpenMenuItem (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
file = uigetfile('*.fig'); 
if ~isequal(file, 0) 
    open(file); 
end 
  
% -------------------------------------------------------------------- 
function PrintMenuItem_Callback(hObject, eventdata, handles) 
% hObject    handle to PrintMenuItem (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
printdlg(handles.figure1) 
  
% -------------------------------------------------------------------- 
function CloseMenuItem_Callback(hObject, eventdata, handles) 
% hObject    handle to CloseMenuItem (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
selection = questdlg(['Close ' get(handles.figure1,'Name') '?'],... 
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                     ['Close ' get(handles.figure1,'Name') '...'],... 
                     'Yes','No','Yes'); 
if strcmp(selection,'No') 
    return; 
end 
  
delete(handles.figure1) 
  
  
% --- Executes on selection change in popupmenu1. 
function popupmenu1_Callback(hObject, eventdata, handles) 
% hObject    handle to popupmenu1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: contents = get(hObject,'String') returns popupmenu1 contents as 
cell array 
%        contents{get(hObject,'Value')} returns selected item from 
popupmenu1 
  
  
% --- Executes during object creation, after setting all properties. 
function popupmenu1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to popupmenu1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: popupmenu controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
     set(hObject,'BackgroundColor','white'); 
end 
  
set(hObject, 'String', {'plot(rand(5))', 'plot(sin(1:0.01:25))', 
'bar(1:.5:10)', 'plot(membrane)', 'surf(peaks)'}); 
  
  
% --- Executes on button press in button_start. 
function button_start_Callback(hObject, eventdata, handles) 
% hObject    handle to button_start (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
%global serial_obj; 
  
if handles.serial_obj.Status == 'open' 
   start(handles.t);  
   set(handles.button_stop, 'Enable', 'on'); 
   set(handles.button_start, 'Enable', 'off'); 
   guidata(hObject, handles);     
end     
  
  



52 
 

% --- Executes on button press in button_stop. 
function button_stop_Callback(hObject, eventdata, handles) 
% hObject    handle to button_stop (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
stop(handles.t); 
set(handles.button_stop, 'Enable', 'off'); 
set(handles.button_start, 'Enable', 'on'); 
guidata(hObject, handles);     
  
% --- Executes on button press in button_save. 
function button_save_Callback(hObject, eventdata, handles) 
% hObject    handle to button_save (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global CH1; 
global CH2; 
global data_buffer_size; 
global pressure_difference; 
global filtered_diff; 
global delta; 
global zi1; 
global zi2; 
global mp; 
global mpi1; 
global mpi2; 
global P1; 
global P2; 
  
delta  = 74; 
%pressure_difference = 3.3*((CH2-CH1)-delta)/1024; 
  
file = uiputfile('*.xls'); 
if ~isequal(file, 0) 
    fid = fopen(file, 'wt'); 
     
    fprintf(fid, 'zi1\t zi2\t mp\t mpi1\t mpi2\n'); 
    fprintf(fid, '%d\t %d\t %d\t %d\t %d\n', zi1, zi2, mp, mpi1, mpi2); 
     
    fprintf(fid, 'CH1\t CH2\t pressure_difference\t filtered_diff\t P1\t 
P2\n'); 
    for ii=1:data_buffer_size 
      fprintf(fid, '%d\t %d\t %2.3f\t %2.3f\t %2.3f\t %2.3f\n', CH1(ii), 
CH2(ii), P1(ii), P2(ii),pressure_difference(ii), filtered_diff(ii)); 
    end 
    fclose(fid); 
    save 'C:\Users\Public\Documents\Masters Project\Matlab\pressure_data' 
CH1 CH2 pressure_difference filtered_diff; 
end 
  
  
% --- Executes on button press in button_connect. 
function button_connect_Callback(hObject, eventdata, handles) 
% hObject    handle to button_connect (see GCBO) 
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% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
%global t; 
    com_str                 = get(handles.edit_COM_port, 'String'); 
    handles.serial_obj.Port = com_str; 
    fopen(handles.serial_obj); 
  
    if handles.serial_obj.Status ~= 'open' 
       set(handles.text_status, 'String', 'Failed to open serial port'); 
       set(handles.button_disconnect, 'Enable', 'off'); 
       set(handles.button_connect, 'Enable', 'on'); 
       set(handles.button_start, 'Enable', 'off'); 
       set(handles.button_stop, 'Enable', 'off'); 
    else     
       set(handles.text_status, 'String', 'COM port opened successfully'); 
       set(handles.button_disconnect, 'Enable', 'on'); 
       set(handles.button_connect, 'Enable', 'off'); 
       set(handles.button_start, 'Enable', 'on'); 
       set(handles.button_stop, 'Enable', 'off'); 
     
    end 
    guidata(hObject, handles);    
  
  
  
function edit_COM_port_Callback(hObject, eventdata, handles) 
% hObject    handle to edit_COM_port (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit_COM_port as text 
%        str2double(get(hObject,'String')) returns contents of 
edit_COM_port as a double 
  
  
% --- Executes during object creation, after setting all properties. 
function edit_COM_port_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit_COM_port (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
  
% --- Executes on button press in button_disconnect. 
function button_disconnect_Callback(hObject, eventdata, handles) 
% hObject    handle to button_disconnect (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
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% handles    structure with handles and user data (see GUIDATA) 
stop(handles.t); 
fclose(handles.serial_obj); 
set(handles.text_status, 'String', 'COM port closed'); 
set(handles.button_disconnect, 'Enable', 'off'); 
set(handles.button_connect, 'Enable', 'on'); 
set(handles.button_start, 'Enable', 'off'); 
set(handles.button_stop, 'Enable', 'off'); 
guidata(hObject, handles);  
  
  
% --- Executes on button press in buttonClear. 
function buttonClear_Callback(hObject, eventdata, handles) 
% hObject    handle to buttonClear (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global CH1; 
global CH2; 
global delta; 
global data_buffer_size; 
global sample_ptr; 
global data_ptr; 
global buffer_size 
global buffer 
global pressure_difference; 
global FFR; 
  
sample_ptr = 1; 
data_ptr   = 1; 
CH1                  = zeros(1, data_buffer_size); 
CH2                  = zeros(1, data_buffer_size); 
pressure_difference  = zeros(1, data_buffer_size); 
FFR                  = zeros(1, data_buffer_size); 
delta  = 74; 
buffer = zeros(1, buffer_size); 
  
plot(handles.axes_pressure, CH1, 'blue'); 
axis(handles.axes_pressure, [0 data_buffer_size 0 handles.Max]); 
plot(handles.axes_pressure, CH2, 'red'); 
axis(handles.axes_pressure, [0 data_buffer_size 0 handles.Max]); 
  
%pressure_difference = ((CH2-CH1)-delta); 
plot(handles.offset_plot, pressure_difference, 'green'); 
axis(handles.offset_plot, [0 data_buffer_size -0.1 0.3]); 
  
fread(handles.serial_obj, handles.serial_obj.BytesAvailable, 'uint8'); 
  
  
  
% --- Executes on button press in pushbutton_update. 
function pushbutton_update_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton_update (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
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global zi1; 
global zi2; 
global mp; 
global mpi1; 
global mpi2; 
  
zi1 = str2num(get(handles.edit_zi1, 'String')); 
zi2 = str2num(get(handles.edit_zi2, 'String')); 
mp = str2num(get(handles.edit_mp, 'String')); 
mpi1 = str2num(get(handles.edit_mpi1, 'String')); 
mpi2 = str2num(get(handles.edit_mpi2, 'String')); 
  
  
  
function edit_zi1_Callback(hObject, eventdata, handles) 
% hObject    handle to edit_zi1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit_zi1 as text 
%        str2double(get(hObject,'String')) returns contents of edit_zi1 as 
a double 
  
  
% --- Executes during object creation, after setting all properties. 
function edit_zi1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit_zi1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
  
  
function edit_zi2_Callback(hObject, eventdata, handles) 
% hObject    handle to edit_zi2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit_zi2 as text 
%        str2double(get(hObject,'String')) returns contents of edit_zi2 as 
a double 
  
  
% --- Executes during object creation, after setting all properties. 
function edit_zi2_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit_zi2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
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% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
  
  
function edit_mp_Callback(hObject, eventdata, handles) 
% hObject    handle to edit_mp (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit_mp as text 
%        str2double(get(hObject,'String')) returns contents of edit_mp as 
a double 
  
  
% --- Executes during object creation, after setting all properties. 
function edit_mp_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit_mp (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
  
  
function edit_mpi1_Callback(hObject, eventdata, handles) 
% hObject    handle to edit_mpi1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit_mpi1 as text 
%        str2double(get(hObject,'String')) returns contents of edit_mpi1 
as a double 
  
  
% --- Executes during object creation, after setting all properties. 
function edit_mpi1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit_mpi1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
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% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
  
  
function edit_mpi2_Callback(hObject, eventdata, handles) 
% hObject    handle to edit_mpi2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit_mpi2 as text 
%        str2double(get(hObject,'String')) returns contents of edit_mpi2 
as a double 
  
  
% --- Executes during object creation, after setting all properties. 
function edit_mpi2_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit_mpi2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
 

MATLAB TIMER CALL BACK CODE 

 

 
function timer_callback(obj, event, hObject, handles) 
  
  global sample_ptr; 
  global buffer; 
  global data_ptr; 
  global CH1; 
  global CH2; 
  global delta; 
  global buffer_size; 
  global data_buffer_size; 
  global time_index; 
  global pressure_difference; 
  global filtered_diff; 
  global A1; 
  global B1; 
  global time_index; 
  global zi1; 
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  global zi2; 
  global mp; 
  global mpi1; 
  global mpi2; 
  global P1; 
  global P2; 
  global FFR; 
    
  bytes_available = handles.serial_obj.BytesAvailable; 
  len             = buffer_size; 
  
%  if bytes_available > 0 
%    if sample_ptr + bytes_available >= len              %takes care of 
the buffer boundaries 
%        buffer(sample_ptr:len) = fread(handles.serial_obj, len-
sample_ptr+1, 'uint8'); 
%        if bytes_available - (len-sample_ptr+1) > 0     %number of bytes 
left in the serial object memory 
%           buffer(1: bytes_available - (len-sample_ptr+1) ) = 
fread(handles.serial_obj,  bytes_available - (len-sample_ptr+1), 'uint8'); 
%           sample_ptr = bytes_available - (len-sample_ptr+1)+1; 
%        else 
%           sample_ptr = 1; 
%        end    
%    else     
%        buffer(sample_ptr:sample_ptr + bytes_available-1) = 
fread(handles.serial_obj, bytes_available, 'uint8'); 
%        sample_ptr = sample_ptr + bytes_available; 
%    end 
  
  if bytes_available > 0 
  
    % ========== RX buffer management ==========   
    x = bytes_available - (len - sample_ptr); 
     
    if x <= 0 
      buffer(sample_ptr:sample_ptr + bytes_available-1) = 
fread(handles.serial_obj, bytes_available, 'uint8'); 
      sample_ptr = sample_ptr + bytes_available; 
    else 
      buffer(1:sample_ptr-x)     = buffer(x+1:sample_ptr);          %shift 
buffer 
      buffer(sample_ptr+1-x:len) = fread(handles.serial_obj, 
bytes_available, 'uint8'); 
      sample_ptr                 = sample_ptr - x + bytes_available; 
    end     
     
    %========= Finds and processes a packet ========== 
    sync_pos = strfind(buffer, 'PAK'); 
     
    for nn=1:length(sync_pos)-1 
  
%       for sample_index=1:4 



59 
 

%           CH1(data_ptr)  = buffer( sync_pos(nn) + 3 + (sample_index-1)*2 
)*256 + buffer( sync_pos(nn) + 4 + (sample_index-1)*2 ); 
%           CH2(data_ptr)  = buffer( sync_pos(nn) + 5 + (sample_index-1)*2 
)*256 + buffer( sync_pos(nn) + 6 + (sample_index-1)*2 ); 
           CH1(data_ptr)  = buffer( sync_pos(nn) + 3 )*256 + buffer( 
sync_pos(nn) + 4 ); 
           CH2(data_ptr)  = buffer( sync_pos(nn) + 5 )*256 + buffer( 
sync_pos(nn) + 6 ); 
       
           data_ptr = data_ptr + 1; 
           if data_ptr >= data_buffer_size 
              data_ptr = 1; 
           end 
 %      end 
       buffer(sync_pos(nn): sync_pos(nn) + 2) = 0;                  % 
deletes packet header so it wont be read again 
    end     
     
    plot(handles.axes_pressure, time_index, CH1, 'blue', time_index, CH2, 
'red'); 
    %plot(handles.axes_pressure, CH2, 'red'); 
    axis(handles.axes_pressure, [0 data_buffer_size 0 handles.Max]); 
    grid(handles.axes_pressure); 
     
    delta = 74; 
    %pressure_difference = 3.3*((CH2-CH1)-delta)/1024; <-old old  
    %pressure_difference = ((CH2-CH1)-delta);   <-old 
     
    P1 = (CH1-zi1)*(mp/(mpi1-zi1)); 
     
    P2 = (CH2-zi2)*(mp/(mpi2-zi2)); 
     
    pressure_difference = P2-P1; 
     
    FFR = P1./P2; 
        
    filtered_diff = filter(B1, A1, pressure_difference); 
    plot(handles.offset_plot, time_index, pressure_difference, 'green', 
time_index, filtered_diff, 'magenta'); 
    axis(handles.offset_plot, [0 data_buffer_size -50 50]); 
    grid(handles.offset_plot); 
     
    if data_ptr>5 
      set(handles.text_ch1, 'String', strcat('CH1=', num2str(  mean(  
CH1(data_ptr-6:data_ptr-1)), 3   ))); 
      set(handles.text_ch2, 'String', strcat('CH2=', num2str(  mean(  
CH2(data_ptr-6:data_ptr-1)), 3   ))); 
       
      set(handles.text_p1, 'String', strcat('P1=', num2str(  mean(  
P1(data_ptr-6:data_ptr-1)), 3   ))); 
      set(handles.text_p2, 'String', strcat('P2=', num2str(  mean(  
P2(data_ptr-6:data_ptr-1)), 3   ))); 
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      set(handles.text_pdiff, 'String', strcat('PDIFF=', num2str(  mean(  
pressure_difference(data_ptr-6:data_ptr-1)), 3   ))); 
      set(handles.text_FFR, 'String', strcat('FFR=', num2str(  mean(  
FFR(data_ptr-6:data_ptr-1)), 3   ))); 
    end 
     
    guidata(hObject, handles);     
  end   
 

MATLAB FILTER CODE 

 

 
function Hd = efilt 
%EFILT Returns a discrete-time filter object. 
  
% 
% M-File generated by MATLAB(R) 7.9 and the Signal Processing Toolbox 
6.12. 
% 
% Generated on: 21-Jun-2011 18:46:40 
% 
  
% Equiripple Lowpass filter designed using the FIRPM function. 
  
% All frequency values are in Hz. 
Fs = 100;  % Sampling Frequency 
  
Fpass = 5;               % Passband Frequency 
Fstop = 7;               % Stopband Frequency 
Dpass = 0.057501127785;  % Passband Ripple 
Dstop = 0.0001;          % Stopband Attenuation 
dens  = 20;              % Density Factor 
  
% Calculate the order from the parameters using FIRPMORD. 
[N, Fo, Ao, W] = firpmord([Fpass, Fstop]/(Fs/2), [1 0], [Dpass, Dstop]); 
  
% Calculate the coefficients using the FIRPM function. 
b  = firpm(N, Fo, Ao, W, {dens}); 
Hd = dfilt.dffir(b); 
  
% [EOF] 

 

MICROCONTROLLER CODE 

 

 
 
// This code can be to be used with matlab interface or with Hyper Terminal with minor changes 

#include "msp430x22x4.h" 

#include "Receiver_Serial.h" 

 

void MCU_Init(void);               // Microcontroller Initialization 
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void ATD(void); 

void ATD_ascii(void); 

 

const char splash[] = {"\r\n**ICAS LAB, ADC & UART Unit**\r\n"}; 

const char errors[] = {"\r\n Please press s to start A2D conv and display data\r\n"}; 

const char error[]  = {"\r\n Please press 'i' or 'a' to start A2D conv and display data\r\n"}; 

const char integer[]= {"\r\n Data in Integer format\r\n"}; 

const char ascii[]  = {"\r\n Data in ASCII format\r\n"}; 

 

enum TState {Idle, Tgo} State; 

 

unsigned int digital_data[7]; 

 

int main( void ) 

{ 

  WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer to prevent time out reset 

  MCU_Init(); 

 

  TXString((char*)splash, sizeof splash); 

  digital_data[0] = 'P'; digital_data[1] = 'A'; digital_data[2] = 'K'; 

  P2OUT = 0x01; // Makes P2.0 pin high 

  P3OUT = 0x01; // Makes P3.0 pin high 

  P1OUT = 0x04; // Makes P1.2 pin high 

  State = Idle; 

 // while(1); 

 

  for(;;){ 

        ATD_ascii(); //Start A2D module 

  } 

} 

 

// ADC10 interrupt service routine 

#pragma vector=ADC10_VECTOR 

__interrupt void ADC10_ISR(void) 

{ 

  __bic_SR_register_on_exit(LPM3_bits);          // Exit LPM3 

} 

 

// Initializes MCU peripherals... 

void MCU_Init(void) 

{ 

  BCSCTL1 = CALBC1_1MHZ;                         // Set DCO 

  DCOCTL = CALDCO_1MHZ;                          // 16Mhz at a max Vcc of 3v 

 

  // USCI_A0 is programmed to work in UART mode for serial comm. with PC 

  // Initialize all the registers befor you reset the UCSWRST 
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  P3SEL |= 0x30;                                 // P3.4,5 = USCI_A0 TXD/RXD 

  UCA0CTL0 = 0;                                  // no parity, LSB first, 8 bits, 1 stop, async. 

  UCA0CTL1 |= UCSSEL_2;                          // SMCLK 

  UCA0BR0 = 104; // 65;                          // 9600 => BR0= 65, BR1= 3 from 8 Mhz 

  UCA0BR1 = 0;  // 3;                            // 9600 => BR0= 131, BR1= 6 from 16 Mhz   

  UCA0MCTL = UCBRS2 + UCBRS0;                    // Modulation UCBRSx = 5 

  UCA0CTL1 &= ~UCSWRST;                          // **Initialize USCI state machine** 

  IE2 |= UCA0RXIE;                               // Enable USCI_A0 RX interrupt 

   

  // Configure ADC 

   

  ADC10AE0 |= 0x06;                              // P2.1 (A1), P2.2 (A2) ADC option select 

  ADC10AE1 |= 0xF0;                              // p4.3,4,5,6 (A12 - A15) ADC option select 

  // Configure I/O pins  

   

  P1DIR = 0xFF;                                  // p1.1 //all P1 pins as output pins 

  P2DIR = 0x01;                                  // P2.0  as output 

  P3DIR = 0x01;                                  // P3.0 as output 

   

  __enable_interrupt();  

} 

 

// Analog to Digital converter settings inside the microcontroller 

void ATD (void){ 

  ADC10CTL1 = INCH_1 + ADC10DIV_3 + ADC10SSEL_3; // A1, P2.1, DC10 Clock Divider Select 4, 

SMCLK 

  ADC10CTL0 = ADC10SHT_3 + ADC10ON + ADC10IE;    // 16xADC10CLKs, ADC10 On/Enable, ADC10 

Interrupt Enable 

  ADC10CTL0 |= ENC + ADC10SC;                    // Sampling and conversion start 

  while(ADC10CTL1 & ADC10BUSY); 

//  digital_data[0]=ADC10MEM; 

  TXIntValue(ADC10MEM); 

   

  ADC10CTL0 &= ~ENC; 

   

  ADC10CTL1 = INCH_2 + ADC10DIV_3 + ADC10SSEL_3; // A2, P2.2, DC10 Clock Divider Select 4, 

SMCLK 

  ADC10CTL0 = ADC10SHT_3 + ADC10ON + ADC10IE;    // 16xADC10CLKs, ADC10 On/Enable, ADC10 

Interrupt Enable 

  ADC10CTL0 |= ENC + ADC10SC;                    // Sampling and conversion start 

  while(ADC10CTL1 & ADC10BUSY); 

//  digital_data[1]=ADC10MEM; 

  TXIntValue(ADC10MEM); 

   

  ADC10CTL0 &= ~ENC; 

  ADC10CTL0 &= ~ADC10ON; 

} 
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void ATD_ascii (void){ 

 

  ADC10CTL1 = INCH_1 + ADC10DIV_3 + ADC10SSEL_3; // A1, P2.1, DC10 Clock Divider Select 4, 

SMCLK 

  ADC10CTL0 = ADC10SHT_3 + ADC10ON + ADC10IE;    // 16xADC10CLKs, ADC10 On/Enable, ADC10 

Interrupt Enable 

  ADC10CTL0 |= ENC + ADC10SC;                    // Sampling and conversion start 

  while(ADC10CTL1 & ADC10BUSY); 

  digital_data[3] = (ADC10MEM>>8)%256;           //MSB 

  digital_data[4] = (ADC10MEM%256);              //LSB 

  P1OUT = P1OUT ^ 0x04; 

   

  ADC10CTL0 &= ~ENC; 

   

  ADC10CTL1 = INCH_2 + ADC10DIV_3 + ADC10SSEL_3; // A2, P2.2, DC10 Clock Divider Select 4, 

SMCLK 

  ADC10CTL0 = ADC10SHT_3 + ADC10ON + ADC10IE;    // 16xADC10CLKs, ADC10 On/Enable, ADC10 

Interrupt Enable 

  ADC10CTL0 |= ENC + ADC10SC;                    // Sampling and conversion start 

  while(ADC10CTL1 & ADC10BUSY); 

  digital_data[5] = (ADC10MEM>>8)%256;           //MSB 

  digital_data[6] = (ADC10MEM%256);              //LSB 

  P1OUT = P1OUT ^ 0x04; 

   

  ADC10CTL0 &= ~ENC; 

  ADC10CTL0 &= ~ADC10ON; 

   

  int i; 

  for(i=0;i<7;i++){ 

    UCA0TXBUF = digital_data[i]; 

    while (!(IFG2&UCA0TXIFG)); 

  } 

   

} 

 

/*// Echo back RXed character, confirm TX buffer is ready first 

#pragma vector=USCIAB0RX_VECTOR 

__interrupt void USCI0RX_ISR(void) 

{ 

   

  if(IFG2&UCA0RXIFG){    

    if (UCA0RXBUF == 'i'){ 

        TXString ((char*)integer, sizeof integer);  

        ATD(); 

      }else 

        if (UCA0RXBUF == 'a'){ 
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          TXString ((char*)ascii, sizeof ascii); 

            ATD_ascii(); 

        }else 

          TXString ((char*)error, sizeof error); 

  }  

}*/ 

 

#pragma vector=USCIAB0RX_VECTOR 

__interrupt void USCI0RX_ISR(void) 

{ 

  if(IFG2&UCA0RXIFG){    

    if(UCA0RXBUF == 'a'){ 

      if (State == Tgo) 

        State = Idle; 

       else 

         State = Tgo; 

    } 

  } 

} 
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