Rhesus (Rh) Alloimmunization

Background
1. Definition
 - Incompatibility between an Rh negative mother and her Rh positive fetus
 - Mother can develop antibody to fetal blood group factor through exposure to fetal blood antenatally

2. General info
 - Fisher-Race nomenclature for Rh blood group system includes five major (C, c, D, E, e), and many variant antigens expressed on blood products
 - Most cases of Rh alloimmunization result from incompatibility w/D antigen
 - Rh positive - refers to presence of D antigen
 - Rh negative - refers to absence of D antigen on erythrocytes

Pathophysiology
1. Pathology of disease
 - Fetal-to-Maternal hemorrhage
 - Happens spontaneously in most pregnancies: highest risk during delivery
 - Rh (D) negative mother exposed to Rh (D) positive fetal RBCs
 - Rh(D) negative mother develops IgG antibodies against fetal RBCs
 - Maternal antibodies cross placenta, sensitize fetal RBCs, fetal RBCs destroyed by macrophages in fetal spleen
 - Severity of fetal anemia related to antibody concentration
 - Incompatibility
 - RH (D)
 - KELL
 - OTHER RH (C, c, E, e)
 • Managed similarly to Rh (D) alloimmunization
 • RhoGAM does not protect

2. Incidence, prevalence
 - Rh sensitization in 6.7/1000 live births in US in 2002
 - Worldwide incidence of clinically significant RBC antigen: 25/10,000 live births

3. Risk factors for any miscarriage
 - Race
 - Incidence of Rh(D) negativity highest in Caucasians (15%)
 - Parity
 - Incidence incr w/increasing parity

4. Morbidity / mortality
 - Fetal
 - Immune hydrops
 - Hydrops fetalis
 - Hyperbilirubinemia
 - Hemolytic anemia
 - Mortality in tertiary care centers, virtually zero

Diagnostics
1. History
 - Known prior history of maternal/paternal blood types
 - Previous sensitized pregnancy

2. Diagnostic testing
 - Antepartum
 - Maternal blood type and screen for serum antibodies
 - Indirect Coombs
 - Detects presence and titer of antibody
 - Most sensitive
 - Frequency of evaluation
 - First prenatal visit, 28 wks, delivery in uncomplicated Rh (D) negative mother
 - If alloimmunization is detected at a level of 1:8 or less, repeat antibody testing every 4 wks
 - If alloimmunization is detected at a level of 1:8 or greater, initiate fetal assessment (see therapeutics)
 - Alloimmunization to antigens other than D, use above titer level rules except for anti-Kell (Kell antibodies do not correlate w/fetal status)
 - Paternal Rh(D) testing
 - Caution parents about risk of false paternity
 - If heterozygous for Rh(D) or paternity is unknown proceed w/additional testing
 - If father of baby is Rh (D) negative, mom's antibodies will not harm Rh (D) negative fetus
 - Amniocentesis for fetal blood type (PCR)
 - Use if:
 - Maternal antibody screen is in critical range (>1:8) and paternal genotype is either unknown or positive (and heterozygous) for antibody in question
 - Paternal homozygous and positive for antibody then fetus is known to be at-risk and amniocentesis is not needed
 - Goal: to confirm an at-risk Rh(D) positive fetus
 - If negative, repeat maternal antibodies screen, 4-6 weeks
 - 1.5% false negative
 - Postpartum
 - Neonate
 - Direct Coombs
 - Blood type

Advanced Diagnostics
1. Accurate pregnancy dating
2. Repeat maternal Ab titers if initial Ab screen is positive
 - Every 4 weeks so long as titer is below critical level
 - Critical level for anti-D is between 1:8 and 1:32
 - If patient has had prior affected pregnancy OR titer levels are critical, fetal assessment is recommended
 - After initiating fetal assessments, maternal titers are no longer obtained
3. Non-invasive fetal assessment - Doppler assessment of Middle Cerebral Artery Peak Systolic Velocity (MCA-PSV)
 o Indirect ultrasound assessment of fetal anemia
 ▪ If >1.5 MoMs (multiples of the median) fetal blood sampling needed
 o Safe but less accurate than direct measurement
 o Done every 1-2 weeks before 35 weeks gestation
 o After 35 weeks gestation false positive rate too high

4. Invasive fetal assessment - to identify and assess severity of anemia
 o Amniocentesis
 ▪ Indirect assessment of fetal anemia made from analysis of amniotic fluid bilirubin levels
 • If value suggests moderate to severe anemia, fetal blood sampling needed
 • Trend currently favors MCA Doppler instead
 ▪ Determine fetal blood type - if Rh(D) negative, no further maternal or fetal testing is needed
 o Fetal blood sampling PUBS (percutaneous umbilical blood sampling), cordocentesis, funipuncture)
 ▪ Directly measures hematocrit, direct Coombs, fetal blood type, reticulocyte count, total bilirubin
 ▪ Complications: 1-2% risk fetal loss

Therapeutics

1. Repeat ultrasound examinations
 o Not reliable to diagnose anemia until findings of hydrops are present, helpful only for other surveillance of fetus

2. Intrauterine fetal transfusion of RBCs if fetal hematocrit <30%
 o Can be done during diagnostic PUBS

3. Serial antenatal testing with nonstress tests or biophysical profiles

4. Delivery
 o Ideal age is controversial, refer to specialist
 o Induce at 37-39 weeks for mild anemia
 o Moderate to severe preterm anemia
 ▪ Weigh risks of antenatal interventions with risk of preterm delivery
 ▪ Neonatal survival at 32 weeks is greater than 95% in most neonatal intensive care nurseries
 ▪ Deliver after maternal steroid administration for enhanced fetal lung maturity
 ▪ Consider Phenobarbital
 • 30mg PO TID x1 week to accelerate hepatic maturity
 • Minimizes risk of neonatal exchange transfusion
 • Induce after one week of phenobarbital

Follow-Up

1. Depends on spectrum of disease
 o See therapeutics and diagnostics
2. Refer to maternal fetal specialist
 - Maternal titer >1:8
 - History of previous affected gestation

Prognosis
1. Effects of preterm delivery
2. Subsequent child development

Prevention of Sensitization
1. RhoGAM: for Rh negative mother who is not previously sensitized (unless biological father is known to be Rh negative)
 - Early pregnancy loss
 - 300ug dose of Rh (D) immunoglobulin if >13 weeks, give 50ug dose if <13 weeks
 - Elective abortion
 - 300ug dose of Rh (D) immunoglobulin if >13 weeks, give 50ug dose if <13 weeks
 - Amniocentesis
 - 300ug dose of Rh (D) immunoglobulin after procedure
 - After routine antibody testing at 24-28 weeks
 - 300ug dose of Rh (D) immunoglobulin
 - Postpartum
 - After delivery of an Rh positive or weakly Rh positive infant
 - Ideally within 72 hours of delivery
2. Maternal education
 - Clinical importance of:
 - True paternity
 - Reporting early miscarriages and bleeding to physician
 - Early and consistent prenatal care

References
Evidence-Based Inquiry

1. What is the best way to prevent isoimmunization in an Rh-negative patient with frequent first trimester spotting?

Author: Julie Taraday, MD, University of Washington Medical Center FMR

Editor: Kara Cadwallader, MD, Rural FMR of Idaho