Blood Doping

Background

1. Definition:
 - "Blood doping" or "blood boosting" originally:
 - Transfusion of blood that had been withdrawn and stored (autologous)
 - Transfusion of another's blood (allogenic or heterologous)
 - To increase athlete's RBC count
 - Currently other technology exists to incr RBC count and capacity to carry and deliver oxygen
 - Recombinant human erythropoietin (rhEPO)
 - Other forms of artificial EPO
 - Artificial blood substitutes
 - Modified hemoglobin solutions
 - Perfluorocarbon-based emulsions
 - Novel erythropoiesis-stimulating protein (darbepoetin /Aranesp®)
 - Gene-activated erythropoietin (Dynepo®)
 - Encapsulated recombinant human erythropoietin
 - Gene therapy for alteration of endogenous erythropoietin production
 - Erythropoietin mimetics
 - Haematopoietic cell phosphatase inhibitors

2. Not considered blood doping:
 - Altitude training
 - Altitude tents
 - High altitude (nitrogen) house

3. General information
 - VO2max = max oxygen uptake
 - Major determinant of performance in endurance events
 - Affected by
 - Pulmonary respiratory fnx
 - Diffusion capacity of lung
 - Oxygen transport capacity
 - Fxn of hemoglobin concentration and cardiac output
 - Tissue ability to absorb and utilize delivered oxygen
 - Training protocols for endurance athletes often aim to improve VO2max
 - Legal
 - Exercise at low altitude, live at higher altitude ("live high-train low")
 - Exercising and living at high altitude ("live high-train high")
 - Altitude tents, altitude (nitrogen) houses, supplemental oxygen delivery
 - Illegal
 - Recombinant human erythropoietin (rhEPO)
 - Other forms of artificial EPO
 - Artificial blood substitutes
 - Autologous or heterologous blood transfusion
Performance improvement from blood transfusion may be small but significant in elite competition

- Study in two sets of cross-country skiers
 - Group that received autologous blood transfusion performed 5.3% better immediately after transfusion & 3.1% better 14 days after transfusion vs control group

Pathophysiology

1. Incidence/prevalence
 - Unknown how commonly this is used in sports
2. Risk factors
 - More benefit for endurance athletes
3. Morbidity/mortality
 - Autologous blood transfusion
 - Large quantity transfusions associated with hypercalcemia and coagulopathy
 - Due to citrate preservative used in blood storage
 - Allogenic/Heterologous blood transfusion
 - Hypercalcemia and coagulopathy if blood is stored in preservative prior to infusion
 - HIV, Hepatitis B, and Hepatitis C transmission is possible
 - Transfusion reactions
 - Mild fever and hives
 - Severe hemolysis and DIC
 - Recombinant Human Erythropoietin
 - Numerous risks, see prescribing info
 - Hyperviscosity
 - Thrombosis
 - HTN
 - Post-tx blunted endogenous erythropoietic response with secondary anemia
 - Development of anti-EPO antibodies
 - Pure red cell aplasia
 - Modified hemoglobin solns exist, complications include:
 - Increased pulmonary and peripheral arterial pressures
 - GI symptoms: pylorospasm, pancreatitis
 - Solutions from human or animal hemoglobin can contain and transmit infective agents or induce antibodies
 - Renal cell necrosis
 - Perfluorocarbon-based emulsions
 - Chemically inert and highly soluble chemicals that increase blood solubility of gases, incl oxygen
 - Perfluorocarbon is exhaled through lung and can be measured with chromatography, complications include:
 - Myalgia and fever
 - Thrombocytopenia
 - Some forms produced with egg, can induce allergic reaction
 - Phagocytosis can lead to engorgement of hepatic system by:
 - Microclots
Blood Doping

- Inhibition of white blood cells
- Complement activation
- Immune system disturbance
- EPO gene therapy
 - Early studies have demonstrated difficulties in regulating rate of EPO production

Diagnostics

1. History
 - No specific symptoms
 - May see improved performance
 - Hyperviscosity symptoms
 - Fatigue
 - Headaches
 - Malaise

2. Physical exam
 - No physical changes usually noted

3. Diagnostic testing
 - Continuing to evolve
 - Appropriate testing depends on doping method
 - Screening hematocrit used to determine athletes with "at risk" level
 - Hematocrit >50%
 - DNA testing, spectrometry, other methods in development

- Guidelines and recommendations
 - International Olympic Committee (IOC)
 - National Collegiate Athletic Association (NCAA)
 - World Anti-Doping Agency (WADA)
 - United States Anti-Doping Agency (USADA)

Differential Diagnosis

1. Polycythemia Rubra Vera
2. Severe dehydration

Therapeutics

1. If doping is suspected and pt has hyperviscosity symptoms
 - Phlebotomy is indicated

2. Discourage use of blood doping

3. Follow-Up
 - Follow-up should be based on individual pts symptoms and MDs request

References

Authors: Karen Milligan, MD, & Michael Milligan, MD, University of Nevada Reno FPRP

Editor: Carol Scott, MD, University of Nevada Reno FPRP