Rotator Cuff Tear
See also Rotator Cuff Injuries
See also Shoulder Physical Exam
See also Shoulder Rehabilitation

Background
1. Impingement: shoulder pain caused by:
 o Inflammation of acromion
 o Coracoacromial ligament
 o Acromioclavicular joint
 o Coracoid process
 • May lead to rotator cuff tear
2. Rotator cuff tear
 o Injury to:
 • Supraspinatus
 • Infraspinatus
 • Subscapularis
 • And/or teres minor muscles
 • Supraspinatus tendon most commonly affected

Pathophysiology
1. Gross anatomy/ function:
 o Glenohumeral joint
 • Diarthrodial, ball-socket joint
 • Allows motion in multiple planes
 o Rotator cuff
 • Subscapularis:
 • Internal rotation
 • Supraspinatus
 • Abduction
 • Infraspinatus
 • External rotation
 • Teres minor
 • External rotation
 • Rotator cuff stabilizes humeral head in glenoid during ROM
2. Micro-anatomy
 o Connective tissues are composed of collagen
 o Collagen is thinner, less uniform, decr vascularity near articular surfaces
3. Impingement
 o Compression of rotator cuff between humerus and coracoacromial arch/glenoid rim from throwing motion
 o Causes micro-trauma, tendon tissue degeneration, tear
4. Mechanics
 o Muscle imbalance causes micro-trauma
 o Repeated/ freq throwing activity may not allow proper tissue repair
5. Incidence
 o Shoulder injury accounts for 4-8% of injuries in physically active population
6. Risk factors
 o Sports w/ overhead activity:
 - Baseball
 - Softball
 - Volleyball
 - Tennis
 - Swimming
 o Age > 40 yrs
 o Poor posture (slouching)
 o Falls/ accidents
 o Lifting overhead
 o Improper rehabilitation from previous injury

7. Morbidity
 o 4% of full rotator cuff tears develop cuff arthropathy

Diagnostics
1. History
 o Age
 o Sport
 o Activity
 o Pain- acute/ chronic
 o Location/ radiation
 - Pain: anterior-lateral, superior
 - Radiation to elbow
 - Full-thickness tears: pain referred to deltoid insertion
 o Duration of symptoms
 o Limitations
 - Overhead activities (60-120°)
 - Pain at rest

2. Symptoms
 o Onset- may be acute, following trauma, or insidious
 o Incr pain w/ overhead activity
 o Night pain: difficulty sleeping on affected side
 o Weakness, catching, stiffness, crepitus/ clicking are common

3. Physical examination
 o Atrophy: top/ back of shoulder
 o Palpation: bone, muscle, bursae for tenderness
 o ROM: passive ROM normal, active ROM limited
 o Strength: assess external rotation, internal rotation, abduction
 - Supraspinatus ("empty can" test)
 - Elbow extended, arms abducted, thumbs pointing down
 - Apply downward force against arms
 - Positive if pt cannot keep arms abducted
 - Infraspinatus/ teres minor
 - Arms at sides, elbow flexed at 90°
 - Apply force w/ internal rotation
 - Pt attempts to externally rotate against resistance
 - Positive if external rotation is unsuccessful
 - Subscapularis (lift-off test)
- Place dorsum of hand behind back in lumbar area
- Positive if unable to lift hand off back
- If pt cannot complete behind back motion, place palm of hand on umbilicus
- Apply external rotation to arm
- Positive if pt cannot resist external rotation

- AFP The Painful Shoulder
 - http://www.aafp.org/afp/20000515/3079.html

 o Provocative testing: proceed if any of strength tests are positive
 - Neer's test: shoulder impingement
 - Hawkins: shoulder impingement
 - Elevate arm forward to 90°, internally rotate shoulder
 - Pain indicates positive test
 - Hornblower: tests external rotation (teres minor)
 - Examiner places both forearms in 90° flexion w/max external rotation
 - Release both forearms
 - Positive if pt cannot remain in external rotation
 - Apley scratch test: positive if decr ROM
 - Abduction and external rotation
 - Reach behind head, over shoulder and touch opposite superior scapula
 - Adduction and internal rotation
 - Reach behind back, under shoulder and touch opposite inferior scapula
 - Drop arm test
 - Abduct pts shoulder
 - Observe as pt slowly lowers arm to waist
 - Positive if arm suddenly drops to side

 o Combination of supraspinatus weakness, external rotation weakness, impingement in internal/external rotation
 - 98% have rotator cuff tear

4. Diagnostic imaging
 - X-ray: 1st imaging study
 - AP: internal, external humeral rotation; axillary lateral and/or scapular
 - Cystic and sclerosing changes in greater tuberosity
 - Reduction of acromiohumeral distance (<7mm)
 - If present: 78% sensitive/ 98% specific for rotator cuff tear
 - Must rule out fractures and dislocations
 - AP view only recommended for sub-acute shoulder pain (3 months)

 o Reserve advanced imaging for suspected rotator cuff tear w/2 or more of following
 - >50% loss of mid-arc abduction/ external rotation
 - Age >62
 - Fall onto an outstretched arm/ direct blow to shoulder
 - Hx of recurrent shoulder tendonitis
 - Narrowed subacromial space on x-ray
Ultrasound (U/S): 4 criteria for rotator cuff pathology
- Non-visualization of cuff
- Localized absence or focal non-visualization
- Discontinuity
- Focal abnormal echogenicity
 - Sensitivity/ specificity operator dependent, can be >90% for full cuff tears
 - Not recommended for low likelihood of cuff dz

MRI/ MRA: recommended if full rotator cuff tear is suspected; study of choice for shoulder fx and soft tissue injuries
- MRA recommended to distinguish full vs. partial tears
- Considered more accurate than U/S
- American College of Radiology Guidelines

Arthrogram: use if MRI/ MRA or U/S unavailable/ contraindicated
- More specific than MRI
- Cannot detect partial cuff tears or associated soft tissue injury
- Invasive procedure
- Contraindicated in pts w/dye allergy

CT: procedure of choice if MRI is contraindicated or not available
- May change in future w/evolving CT technology

Differential Diagnosis
1. Key DDx
 - Shoulder impingement
 - Biceps tendon rupture
 - Acute calcific tendinitis
 - Adhesive capsulitis
 - Acromioclavicular arthritis
 - Glenohumeral arthritis
 - Suprascapular neuropathy
 - Shoulder instability

2. Extensive DDx
 - Septic arthritis
 - Rheumatoid arthritis
 - Gout
 - Lyme disease
 - Lupus
 - Spondyloarthopathy
 - Avascular necrosis
 - Cervical radiculopathy
 - Pancoast's tumor
 - Thoracic outlet syndrome

Therapeutics
1. Acute Tx
 - Rest: limit painful/ overhead activities for 2 days
 - Shoulder sling discouraged (frozen shoulder)
Ice:
- 5-20 mins, up to q2h, for 2 days

Heat:
- After 2 days if symptoms improve, limit to 20 mins

NSAIDs:
- All equally effective

Rehabilitation-Link:
- Rotator cuff exercises
- Office handout
- Physical therapy/ athletic trainer

2. Further management
- Corticosteroid inj
 - Pain relief only
 - Limit to 3 inj w/6 wk intervals
- Physical therapy referral: shoulder rehabilitation

Follow-Up
1. Return to office
- Re-eval in 2-4 wks
- Recommendations for earlier follow-up
 - Worsening pain
 - Decr ROM
 - Sensory/ motor abnormalities

2. Refer to specialist
- Orthopedic consult
 - Conservative Tx for small to medium tears shows no improvement in 3-6 wks
- Immediate referral for
 - Medium to large tears in pts <25 yrs

Prognosis
1. Conservative tx: 33-90% successful
2. Surgery improves fxn in all ages: 77-86%
3. Return to play
 - Must have full ROM
 - Greater or equal: 90% strength compared to uninjured shoulder
 - Able to do sport specific exercises

Prevention
1. Rotator cuff specific exercises
2. Biomechanics: proper technique & coaching

References

Evidence-Based Inquiry
1. What is the initial approach to the treatment of shoulder pain?
2. What is the best way to diagnose a suspected rotator cuff tear?
3. Which history and physical findings are most useful in identifying rotator cuff tears?

Authors: Tom Lin, MD, & Benjamin Fredrick, MD, Penn State Hershey Medical Center, PA

Editor: Carol Scott, MD, University of Nevada Reno FPRP