Hydration in Athletes

Background
1. Dehydration
 o >2% body weight loss from water deficit
2. Hyponatremia
 o Lower than normal concentration of sodium in blood
3. Euhydration
 o Normal body water content
4. Overview of hydration during exercise/sports:
 o Fluid replacement before, during and after sporting events/exercise is important for sustaining exercise performance and preventing morbidity (SOR:A)
5. For more information:
 o Mayo Clinic-Dehydration: http://www.mayoclinic.com/health/dehydration/ds00561

Pathophysiology
1. Pathology
 o Multiple factors influence sweat losses
 - Duration/intensity of exercise
 - Environment
 - Hot weather requires increased sweating: (SOR:A)
 o Dissipates metabolic energy
 o Avoids heat storage
 - Cooler environments:
 o Allow greater dry heat loss
 o Require lower sweating rates
 - Individual variation
 o Biochemistry of dehydration
 - Renin-angiotensin-aldosterone system regulates sodium retention
 - Vasopressin (anti-diuretic hormone ADH):
 o Regulates water retention in kidneys
 o Assists with thermoregulation
 - Atrial natriuretic peptide (ANP) secreted by the heart participates in water balance regulation
 o Daily water balance factors
 - Oral intake
 - Metabolic water produced 0.13 g/kcal
 - Respiratory water losses 0.12 g/kcal
 - Gastrointestinal tract losses 100-200 ml/day (excluding diarrhea)
 - Urine output:
 o Minimum 20 ml/hr
 o Maximum 1000 ml/hr
 o Total body water (TBW):
 - 60% of body mass (range 45-75%)
 - 70-kg person - approx 42 L of TBW
2. Incidence, prevalence
 o Based on specific activity and individual metabolic variability
 o Less incidence of dehydration:
  Swimming, netball, water polo, female tennis
  Intermediate incidence of dehydration
 • Male tennis, basketball
 o Higher incidence of dehydration
  Marathon/cross country running, ironman training/races, American football, soccer, rowing

3. Risk factors
 o Dehydration
  Poor oral hydration
  Diuretic use
  Alcohol consumption (SOR:B)
  Vomiting/diarrhea
 o Exercise associated hyponatremia
  Over drinking of fluids relative to sweat rate
  Inability to excrete relative fluid excess
 • During exercise
 • In initial recovery period
  Fluid replacement with water or electrolyte-poor beverages
 • Leads to dilution of plasma sodium
  Participation in endurance events
 o Age Related Variability
  Older adults
 • Have age related decreased thirst sensitivity when dehydrated making them slower to voluntarily reestablish euhydration (SOR:A)
 • Have age related slower renal responses to water and may be at greater risk for hyponatremia (SOR:A)
  Children
 • Have lower sweating rates than adults (SOR:B)

4. Morbidity / mortality
 o Dehydration-decrease in athletic performance (SOR:A)
  Low blood volume
  Reduced thermoregulation
  Decreased cognitive function (SOR:B)
  Reduced gastric emptying
  Worse in hot weather (SOR:A)
 o Heat stroke: (SOR:B)
  Core body temp >104°F (40°C)
  Hot dry skin
  CNS abnormalities:
 • Delirium
 • Convulsions
 • Coma
  Dehydration present in 17% of all heat stroke hospitalizations in U.S. Army
- Dehydration and vomiting may be associated with development of heat stroke (SOR:A)
 - Skeletal muscle cramps (SOR:B)
 - Rhabdomyolysis (SOR:B)
 - Release of skeletal muscle contents
 - Serum creatinine kinase >10 times normal
 - Acute renal failure
 - Exercise associated hyponatremia (SOR:A)
 - Sx occur with rapid plasma Na drop below 130 mmol/L
 - The lower plasma Na drops, the faster it continues to drop
 - Remains low longer
 - Increased risk for:
 - Dilutional encephalopathy
 - Pulmonary edema
 - Sx include:
 - Headache, vomiting, swollen hands and feet, restlessness, undue fatigue, confusion, disorientation, wheezing
 - Sx associated with plasma Na <120 include:
 - Seizure, coma, brainstem herniation, respiratory arrest, death

Diagnostics

1. History
 - Symptoms
 - Fatigue, muscle cramps, hypotension
 - Questions to ask
 - Fluid intake pre, during, post exercise
 - Fluid type: water, sports drink
 - Diuretic use
 - Alcohol consumption
 - Duration of exertion
 - Nausea/vomiting
 - Recent diarrhea
 - Recent bleeding/heavy menses

2. Physical exam
 - Assess skin turgor
 - Assess skin for presence of sweat
 - Weight
 - Mucous membranes-hydration assessment
 - Vital signs
 - Mental status

3. Diagnostic testing
 - Hydration biomarkers (urine and body weight)
 - Urine Specific Gravity of =1.020
 - Indicates euhydration
 - Am I Hydrated? Urine Color Chart:
 - Urine osmolality
 - More variability
 - Values < 700 mOsmol/kg indicate euhydration
• Baseline body weight for euhydration
 • First morning, post void, nude, body weight, taken over three consecutive days (SOR:B)
 o Laboratory evaluation
 • Electrolytes
 • Blood sugar
 • Urinalysis
 • BUN/Creatinine

Differential Diagnosis
1. Key DDx
 o Fatigue
 o Deconditioning
 o Anemia
 o Disruption of renin-angiotensin-aldosterone system
 • Kidney disease
 • Congestive Heart Failure
 • Previous MI
 • Medications
 • ACE inhibitors
 • AII receptor blockers
 • Aldosterone receptor blocker
2. Extensive DDx
 o Gastroenteritis
 o Diabetes

Therapeutics
1. Acute treatment:
 o Fluid replacement
 o Hydration before exercise
 • Prehydration with fluids should be initiated several hours before exercise
 • Enables fluid absorption
 • Ensures normal urine output
 • Consume beverages with sodium, salted snacks or small meals with fluids
 • Can help stimulate thirst and retain needed fluid.
 • 500-600 ml of water or sports drink 3 hrs before exercise
 • 200-300 ml of water or sports drink 10-20 mins before exercise
 o Hydration during exercise
 • Drink 0.4-0.8 L/hr
 • Use higher rate for faster, heavier individuals competing in warm environments
 • Football players
 • Use lower rates for slower, lighter persons competing in cooler environments
 • Marathon runners
• If exercise lasts >4 hours:
 • Consumption of electrolytes may reduce the risk of developing hyponatremia
• Prevent excess dehydration
 • >2% loss of body weight from water deficit
• Prevent significant changes in electrolyte balance
 o Hydration after exercise
 • Consumption of normal meals and beverages will restore euhydration if time permits between exertional events (SOR:A)
 • Rapid recovery from excessive dehydration may require 1.5 L of fluid for each kilogram of body weight lost
 • Consuming fluids and snacks with sodium will stimulate thirst and fluid retention
 • IV fluid replacement may be warranted in individuals with severe dehydration (>7% body wt loss) with nausea, vomiting, or diarrhea, or inability to ingest oral fluid

2. Further management (24 hrs)
 o Inadequate hydration—most common
 • Patient education
 o If dehydration was due to other cause—should have further work-up

3. Long-term care
 o Consider customized fluid replacement program
 o Should prevent >2% body weight reduction from baseline during exercise
 • Increased body weight during exercise from drinking may increase risk for hyponatremia

Follow-Up
1. Return to office
 o Return visit
 • 2-4 weeks if treated appropriately and Sx resolved in acute period
 o Earlier follow-up
 • If Sx were significantly recurrent or debilitation was prolonged
 • If associated with co morbid condition (cardiovascular or renal) dz

2. Refer to specialist
 o If associated with previously undiagnosed underlying medical condition
 o If significant dehydration occurred in spite of proper hydration before, during and after exercise

3. Admit to hospital
 o If dehydration is present with significant cardiovascular or renal disease
 o If significant dehydration is present in extremes of age
 • Infants or elderly without the means to hydrate themselves

Prognosis
1. Good if treated appropriately and no underlying medical conditions

Prevention
1. Prehydration
2. Educate patient
 o Performance can decrease with dehydration (SOR:A)
3. Meal consumption is critical to ensure full hydration on a day-to-day basis (SOR:A)
4. Sweat and electrolyte losses should be fully replaced to reestablish euhydration after exercise

Patient Education
3. Counsel patient on risk factors and strategies for hydration pre, during and post exercise

References
1. University of Nevada Sports Medicine Fluids Replacement Policy. Revised 6/24/08

Author: Christopher E. Kincaid, MD, *West Virginia SOM Department of FM*

Editor: Carol Scott, MD, *University of Nevada Reno FPRP*