Exercise Induced Collapse: "Hitting the Wall"

Background
1. "Hitting the Wall" / "Bonking"
 - Severe energy loss during prolonged exercise
 - Runners collapse around 20 mile point in marathon
 - Possibly due to depletion of muscle glycogen
 - Fat stores (even in leanest runners) are inexhaustible
 - Unable to utilize fat without carbohydrate as primer for metabolism

Pathophysiology
1. Old theory: exhaustion of carbohydrate fuel
 - Muscle glycogen or blood glucose falls to critically low level
 - Glycogen depletion contributes to muscle fatigue
 - At 80 % maximum capacity
 - Glycogen content of muscles dropped near zero in 90 min
 - Marathon at normal pace
 - Fuel consumption ratio:
 - 75 % carbohydrates
 - 25% fatty acids
 - Carbohydrate supplies fall
 - Body relies on fatty acids
 - Body stores 2,000 calories of glycogen in muscles and liver
 - Enough for about 20 miles
2. New theory: CNS fatigue
 - Muscle damage may cause "hitting the wall"
 - Protective mechanism
 - Mediated by interleukin-6
 - Brain decreases muscle stimulation
 - Discomfort/exhaustion when muscle damage approaches dangerous levels during prolonged exercise
 - Mediated by serotonin
 - Prolonged exercise increases serotonin production
 - Tryptophan-amino acid
 - Precursor to serotonin
 - Increase levels with muscle damage
 - Increased tryptophan
 - Leads to increased serotonin
 - Increased serotonin causes brain to stimulate release of serum fatty acid
 - Increased serum fatty acid causes increased CNS fatigue
 - Mediated by insulin
 - Protein stimulates insulin release
 - Insulin speeds muscle cells' absorption of blood glucose by 50%
 - Transports amino acids into muscle
 - Decreased release of stress hormone cortisol
 - Stimulates blood flow to muscle
Diagnostics
1. Detailed history of syncopeal event
 - Time frame of collapse
 - Around 20 miles
2. Serum blood sugar for hypoglycemia
3. Serum Interleukin-6 level for muscle tissue damage
 - Experimental only
 - Possible correlation with exercise intensity
 - Does not correlate with length of exercise
4. Serum serotonin/tryptophan level
 - Experimental only
5. Insulin level

Therapeutics
1. CHO supplementation during exercise studies
 - 1960s-subjects exercised to exhaustion
 - Consumed 200 g of glucose
 - Extended performance by one hour
 - 3 fluids: 4:1 CHO-protein solution, normal sports drink, water,
 - CHO-protein beverage: 30 min
 - Carbohydrate-only group: 20 min
 - Water only group: 14 minutes
 - Endurox R4/Accelerade
 - Use a 4:1 carbohydrate-protein ratio
 - Enough protein to stimulate insulin secretion
 - Not enough to stimulate peptide enzymes and induce gastric distress

Training/Prevention
1. "Hitting the Wall" - multifactorial
2. Prevention needs to address diet and training:
3. Carbohydrate loading pre-event
 - 7 day pre-event cycle
 - Low CHO diet first three days to deplete glycogen stores
 - 70% CHO diet final four days
 - OR 75% CHO diet 7 days
 - Taper intensity of training 7 days prior to event
 - Both methods increased muscle glycogen up to 150%
4. Physiologic goal of training: optimize aerobic metabolism
 - Muscles increase utilization of oxygen
 - Due to increased size/number of mitochondria
 - Increased aerobic enzymes
 - Trained muscles better mobilize and use fat for energy
 - Preserves carbohydrate stores
 - Some muscle fibers can be adapted for aerobic or anaerobic exercise
 - For marathon, can adapt convertible muscles for aerobic/endurance work
 - Training increases:
- Number of capillaries
- Muscle nutrient supply
- Adaptation of cardiovascular/respiratory systems
 - Heart muscle: increased size, weight, blood volume
 - Resting and submaximal exercise heart rates decreased
 - Stroke volume-increases distribution of blood/oxygen to active muscles
- Maximal oxygen uptake (VO2 Max)
 - Quantitative measure of capacity for aerobic energy transfer (ability to do work)
- Variables that determine VO2 Max:
 - Heredity
 - Sex
 - Body composition (amount of lean body tissue)
 - Age
 - Training
- Can improve VO2 Max up to 20-25
 - Peaks 6 months-2 years after implementing endurance training
 - Typical marathoners can maintain pace using 75-80% VO2 Max for over 2 hr
 - Ultramarathoners able to work for prolonged periods at near 90% VO2 Max
- The ability to perform at higher VO2 Max
 - Probably related to anaerobic threshold
 - Lactic acid accumulation impairs performance
 - Anaerobic threshold can be increased by endurance training
 - Improved anaerobic threshold
 - Allows longer period before anaerobic metabolism dominates
 - Lactic acid accumulation affects performance

References
3. Camargo, C, Simmons, FE. Anaphylaxis: Rapid recognition and treatment. UpToDate Online 16.3 Topic last update 10/10/08

Author: Tony Chang, MD, University of Nevada Reno FPRP

Editor: Carol Scott, MD, University of Nevada Reno FPRP