Gymnasts' Wrist - Distal Radius Growth Plate Injury

Background

1. Definition
 o Chronic stress injury of distal radial physis
 o Also known as epiphysiolysis

2. General info
 o Common injury in pediatric gymnast
 o Diagnosis made by history and physical exam
 • Confirmed with plain x-rays or MRI
 • Treatment often nonsurgical
 • Rest until pain free
 • Web Site:
 • Gymnast's Wrist
 http://www.medcyclopaedia.com/library/topics/volume_vii/g/gymnasts_wrist.aspx

Pathophysiology

1. Pathology of disease
 o Repetitive axial loading of wrist in pronation and extension
 • Causes stress injury to distal radial physis
 • Causes injury to metaphyseal blood vessels
 • Interferes with calcification
 • Prolongs the life of chondrocytes

2. Incidence/prevalence
 o Incidence of acute gymnast wrist-unknown
 • Most do not seek medical attention
 • Chronic wrist pain occurs in 46-79% of elite and non-elite gymnasts\(^2,3\)

3. Risk factors
 o Age 10-14
 o 80-90% female
 o Bilateral presentation in one third of athletes
 o Starting gymnastics at a younger age
 o Higher number of years training
 o Higher skill level
 o Greater number of elements performed per week
 o Higher intensity training
 o Specific activities most associated with wrist pain:
 • Floor
 • Pommel horse
 • Balance beam

4. Morbidity
 o 42% of gymnasts with wrist pain report that pain interferes with performance\(^2\)
 o Effect of shortening of radius resulting in future complication-not clear
Diagnostics
1. History
 - Initially achy wrist pain
 - Worse with axial loading/extension
 - Swelling may be present
 - No history of acute trauma
 - Age for physeal immaturity
2. Physical exam
 - Pain with palpation
 - Possible swelling at distal radius over physeal area
 - Pain with extension
 - Restricted extension compared to contralateral wrist
 - Note: normal wrist extension is 60-75°
 - In gymnasts this can exceed 90°
3. Diagnostic testing
 - Laboratory evaluation:
 - Not indicated
 - May be used to diagnose other conditions
 - Diagnostic imaging:
 - Plain films:
 - Anterior/Posterior (AP), oblique radiographs usually sufficient
 - AP radiographs of contralateral wrist should be used for comparison
 - Note: Changes may be seen bilaterally
 - MRI:
 - May show increased T2 signal in and surrounding radial physis
 - Not necessary in all cases, useful if diagnosis is in doubt
 - Bone scan will show uptake
 - Normal immature physis will show uptake as well
4. Diagnostic "Criteria"
 - No commonly used clinical diagnostic criteria
 - Radiographic criteria have been developed
 - Grade Findings
 - 0 - Normal
 - 1 - Haziness of physis or irregularity of physeal border or both
 - 2 - At least one of the following: cystic changes, metaphyseal sclerosis, striations, or beaking of metaphysis
 - 3 - Widening of physis (with or without any additional findings)
Differential Diagnosis
1. Key DDx
 - Distal radius fracture
 - Scaphoid fracture
 - Distal radioulnar joint (DRUJ) instability
 - Wrist capsule sprain
 - Scapholunate instability
 - Ulnar abutment syndrome
2. Extensive DDx
 - Kienbock's Disease
 - Madelung's Deformity
 - Osteomyelitis
 - Bone tumor
 - Muscle tumor
 - Juvenile Rheumatoid Arthritis
 - Gout

Therapeutics
1. Acute treatment:
 - Remove athlete from play
 - Ice
 - Compression
 - Analgesic as needed for pain
 - Narcotics rarely needed

2. Further management (24 hrs)
 - Grade 0-1
 - Relative rest (avoiding loading of wrist) for 2-4 weeks
 - Pain control as needed
 - Grade 2
 - Absolute wrist rest for 4-6 weeks
 - Pain control as needed
 - Splinting or casting is rarely indicated
 - Grade 3
 - Absolute wrist rest for 6-12 weeks
 - Consider immobilization in cast or splint

3. Long-term care
 - Relative rest (see above) for 4-8 weeks
 - Slow return to practice as long as the athlete remains pain free
 - The focus should be on limiting repetitive loading
 - Bracing that limits extension may be helpful

Follow-Up
1. Return to office
 - After initial visit, follow-up in 2-3 weeks
 - Serial radiographs if persistent or worsening symptoms

2. Refer to specialist
 - Referral to orthopedic surgeon if:
 - Patients develop significant ulnar positive variance (>2.5mm)
 - Fail conservative management
 - Urgency: non-urgent

Prognosis
1. Majority of athletes return to competition without restriction or growth abnormalities
2. Long-term complications:
 - Symmetrical and asymmetrical growth plate retardation
 - Positive ulnar variance
o Associated pathoanatomic sequelae Madelung's deformity

Prevention

1. Minimal information on effectiveness of modifications leading to injury prevention in gymnastics (SOR:3C)
 - Correct poor technique
 - Strengthen wrist flexors/extensors
 - Wrist braces

References

Authors: Brent H. Messick, MD, & Kevin Burroughs, MD, *Cabarrus FMRP, NC*

Editor: Carol Scott, MD, *University of Nevada Reno FPRP*