Medial Tibial Stress Syndrome

Background
1. Condition of pain/discomfort along posteromedial aspect of distal two-thirds of the tibia
 - Mechanical failure of bone due to accumulation of micro-damage
 - Secondary to repetitive strain episode
 - Bone fatigue failure continuum
 - Shin splints early (mild) side of spectrum
 - Can lead to stress fractures (severe)
 - Associated with tendonitis/periostitis of anterior tibialis, posterior tibialis or medial soleus muscles.
2. Also known as:
 - Shin splints, medial distal tibial syndrome (MDTS) or medial tibial syndrome
3. Useful web sites:
 - AAFP:
 - "Common Stress Fractures" - Common Stress Fractures - October 15, 2003 - American Family Physician
 - AAFP:
 - http://www.aafp.org/afp/20070715/237.html
 - ACSM (American College of Sports Medicine):
 - Exercise-induced lower leg pain
 - http://www.acsm.org/AM/Template.cfm?Section=Search&;section=20026&template=/CM/ContentDisplay.cfm&ContentFileID=298

Pathophysiology
1. Pathology of disease
 - Shin splits-early symptoms of progressive injury process
 - Periostial edema
 - Marrow involvement
 - Resorption outweighs formation
 - Due to repetitive loading on bone
 - Results in microfissures
 - Continued stress without adequate repair time
 - Micro fractures propagate (crack propagation)
 - Can lead to stress fractures
 - Treatment and return-to-play instructions based on:
 - Location of injury
 - Low Risk:
 - Not likely to recur, experience non-union or complications
 - Femoral shaft
 - Medial tibia
 - Ribs
 - Ulna shaft
 - First-fourth metatarsals
- **High Risk:**
 - Delay in diagnosis or aggressive treatment can lead to non-union, complete fracture, surgical intervention or recurrence
 - Femoral neck
 - Patella
 - Anterior tibial diaphysis
 - Medial malleolus
 - Talus
 - Tarsal navicular
 - Proximal 5th metatarsal and 1st metatarsal phalangeal sesamoids
- Grade of fatigue failure
- Low Grade (Arendt & Griffiths criteria)
 - Grades 1-3 reflect increasing degree of periosteal change and marrow edema
- High Grade:
 - Grade 4 is complete fracture

2. **Cause**
 - Biomechanical abnormalities
3. **Incidence, prevalence**
 - Most common lower leg injury in sports
 - Accounts for 6-16% of all running injuries
4. **Risk factors**
 - Sport-dependent
 - Runners (most common)
 - Sports with frequent starts and stops (jumping, basketball, racket sports)
 - Change in exercise regimens (new or increased)
 - Military recruits
 - Poor conditioning
 - Novice runners
 - Recent increased mileage
 - Training too hard, too fast or too long
 - Biomechanical anomalies
 - Intrinsic:
 - Structural abnormalities:
 - Hyperpronation
 - Femoral neck anteversion
 - Genu varus (bow-legged)
 - Genu valgus (knock-knees)
 - Pes planus (flat arches)
 - Pes clavus (high arches)
 - External rotation of hip
 - Leg-length discrepancy
 - Low bone density
 - Extrinsic:
 - Running in worn-out or ill-fitting footwear
 - Running on uneven surface
 - Running downhill
5. Morbidity / mortality
 - Most cases of MTSS recover completely with proper therapeutics
 - Complications-characterized by prolonged, increased or more frequent pain despite conservative therapy
 - Stress fracture
 - Requires relative to complete rest
 - May need crutches/orthosis
 - Chronic Ischemic Compartment Syndrome
 - Requires a non-urgent orthopedic surgeon evaluation
 - Stat referral if evidence of neurovascular compromise
 - Patient at risk for limb loss/possible death

Diagnoses

1. History
 - Location of pain:
 - Distal two-thirds of posteromedial border of tibia
 - Most common
 - Anterior tibial compartment
 - Tibialis anterior and extensor hallucis longus muscles
 - Interosseous membrane region of lower leg
 - Area of discomfort 4-6 inches (10-15 cm) in length frequently present
 - Pain noted at early portion of workout, then lessens
 - Often reappears near end of training session
 - Discomfort described as dull initially, gradually worsens
 - Pain can lead to cessation of workouts, can interfere with activities of daily living or can become continuous
 - Signs of advancement of disease to severe end of spectrum

2. Physical exam
 - Diffuse tenderness along posteromedial tibia (distal two-thirds)
 - Pain elicited by maneuvers that contract or stretch soleus muscle:
 - Plantar flexion of ankle against resistance
 - Passive ankle dorsiflexion
 - Standing on tiptoe
 - Jumping in place
 - Mild swelling/induration possible
 - Suspect compartment syndrome:
 - If pain worsens during exercise
 - If sensory or motor nerve deficit (tingling in foot)
 - Suspect stress fracture:
 - If localized rather than diffuse tenderness

3. Diagnostic testing typically not indicated, usually diagnosed clinically
 - Lab evaluation: not indicated
 - Diagnostic imaging:
 - May be useful to differentiate MTSS from suspected stress fractures
 - Plain film x-ray:
 - Stress fractures may not be evident early
 - Periosteal change: 2-3 weeks
Callus formation: 4-6 weeks

- X-ray normal in shin splint syndrome

Technetium Bone Scan:
- High sensitivity (84-100%)
- Not useful for follow-up: uptake persists
- Changes evident within three days of injury in both disorders
 - Stress fracture: localized uptake
 - Shin splints: diffuse and longitudinal uptake involving posteromedial tibia cortex

Fat Suppressed MRI-imaging of choice in differentiating stress fractures from shin splints
- Sensitivity equivalent to bone scan
- Stress fractures:
 - Abnormally wide region of high signal localized to bone marrow
 - Changes evident prior to periosteal changes on plain films
- Shin Splints:
 - Narrower linear high signal areas located along medial posterior surface of tibia or along medial bone marrow adjacent to cortical bone
- Other pathology evaluated:
 - Periostitis
 - Tears of musculotendinous structures
 - Ischemic compartment syndrome

Differential Diagnosis

1. **Key DDx**
 - Stress Fracture
 - Pain generally well localized
 - Chronic ischemic compartment syndrome:
 - Suspect if:
 - Pain out of proportion to clinical findings
 - Vascular or neurological symptoms
 - Bone tumors-pediatric
 - Pes anserine bursitis

2. **Extensive DDx - other sources of exercise-induced leg pain**
 - Fascial hernia
 - Peripheral neuropathy
 - Spinal stenosis
 - Peripheral arterial disease
 - Venous stasis

General Therapeutics

1. Therapy and return-to-play are dependent on:
 - Extent of fatigue failure
 - Location on stress reaction continuum
 - Individual's athletic and personal goals
Acute Treatment

1. Relative rest: (SOR:B)²
 - Duration at least 7-10 days
 - Recommend until pain-free
 - May take up to 4-8 weeks
 - Avoid activities that cause pain, swelling, discomfort
 - Can continue low-impact exercises (swimming, bicycling, water running)

2. Ice:
 - 15-20 minutes per session
 - Four times a day for 3-5 days
 - Wrap ice packs in a thin towel to avoid direct contact of ice on skin

3. Rest and ice alone promote faster recovery than rest and ice combined with NSAIDs, walking cast, heel-cord stretching (SOR:B)³

4. Compression:
 - 4-inch ace elastic bandage/compression sleeve
 - If pain worsens, loosen wrap

5. Elevation:
 - Keep affected shin above level of heart, especially at night

6. Medication:
 - NSAIDs for pain/inflammation

7. If athlete limps due to pain:
 - Consider use of crutches until normal walking does not cause pain

8. Stretching:
 - No benefit to recovery or prevention¹⁰

9. Competitive athletes:
 - Low-risk:
 - Desire to finish season and heal later
 - Goal: decrease repetitive stress at fractures site enough to allow bones to restore dynamic balance without loss of conditioning
 - Decrease volume, intensity, evaluate technique, cross-train and consider equipment change
 - If pain increases:
 - Complete rest
 - Immobilization
 - Consider surgical intervention
 - High risk:
 - Low Grade injury: treat according to individual risk for re-injury and desired speed of recovery
 - Recommendations: rest until pain-free⁸
 - Significant risk of complications if fracture progresses
 - High grade injury: athlete should cease all activities until proper treatment and complete healing
 - Goal:
 - Prevent progression of fracture
 - Avoid delayed healing
 - Avoid non-union
 - Avoid re-injury/re-fracture
 - Treatment:
- Absolute rest
- Prolonged immobilization with non-weight bearing restriction
- Internal fixation
- Depending on site and grade
- Tibial stress fracture
 - Pneumatic leg brace decreases healing time

Further Management

1. **Prevention**
 - Further exacerbation
 - Modifiable risk factors

2. **Proper shoes**
 - Athlete may need shoes fit to biomechanical needs
 - Physician, exercise tech, physical therapist or specialty running store should evaluate foot type, stride and particular sport
 - Fit shoe accordingly

3. **Orthotics: inserts to correct poor alignment between foot and lower leg**
 - Especially useful for "pronators" who have pain while running and repeat injuries
 - No evidence of prevention (SOR:A)
 - Do significantly relieve symptoms and promote return to running (SOR:C)

4. **Arch supports**
 - Help cushion/disperse stress

5. **Nutrition**
 - High dose of calcium (2 g daily) plus a normal dose of vitamin D3 (800 IU daily)
 - Reduced the incidence of stress fractures by 20% (P<0.003) in study of female Navy recruits

6. **Training errors**

Long-term Care

1. **After resolution of pain**-gradually resume usual activities
 - Reduce weekly mileage
 - Avoid hard surface running
 - Shorten running stride to reduce impact
 - Soft, level terrain is best
 - Limit distance to 50% of pre-injury distance
 - Decrease intensity by half
 - Slow pace to twice as long as prior to injury
 - Gradually increase distance over 3-6 weeks
 - If tolerated, gradually increase pace

2. **If worsening/recurrent symptoms or failed therapy consider:**
 - Stress fracture
 - Pain may become more localized and persist throughout exercise
 - May need extended rest period (6 weeks+)
 - Use crutches if pain with ambulation
 - Compartment syndrome
 - No relief with conservative therapy
- Aching or cramping of leg in anatomic distribution of the compartment within 10-30 minutes of exercise
- Diagnosis confirmed with elevated compartment pressures (>20 mmHg) using a tonometer
 - Stryker, ACE tonometers
 - Compare pre- and post-exercise measurements
- Treatment is surgical
 - Chronic compartment is non-urgent versus acute which needs immediate surgical referral
 - Lower limb fasciotomy:
 - Can reduce symptoms caused by shin splints
 - Rate of return to previous level of sports activity modest at best (SOR:C)11,12,13
 - Usually no long-term sequelae unless co-existent diabetes or alcoholism

Follow-Up

1. Return to office
 - Re-evaluate athlete at end of rest period ~4 weeks
 - Determine if appropriate to gradually resume activities
 - Consider re-evaluation at 2-weeks:
 - Ensure resolution of pain
 - Monitor athlete adherence to relative rest
 - Return to office sooner if pain persists, worsens, changes intensity, or if "numbness and tingling"

2. Refer to orthopedic surgeon
 - If pain persists despite conservative management
 - If suspect compartment syndrome
 - Immediately if evidence of neurovascular symptoms

3. Admit to hospital
 - If suspect Acute Compartment Syndrome-5 Ps:
 - Pain-out of proportion
 - Pulselessness
 - Pallor
 - Paresthesia
 - Paralysis
 - Consult orthopedic surgeon immediately
 - Most cases that progress are chronic ischemic compartment syndrome

Prognosis

1. Pain
 - Early in disorder pain usually resolves with several minutes of rest
 - Later stages pain becomes severe and more persistent
 - May require several days of rest to resolve
 - Advanced stage:
 - Can affect activities of daily living
 - Pain may occur at rest

2. Healing
 - Dependent on the Grade of Fatigue/Failure (Arendt & Griffiths)8
- Grade 1: average 3.3 weeks for healing
- Grade 2: 5.5 weeks
- Grade 3: 11.4 weeks
- Grade 4: 14.3 weeks
 - Early intervention speeds healing and return-to-play

Prevention

1. Graduated training program
 - Avoid doing "too much too soon"
 - Do not increase running mileage by more than 10% per week
 - Avoid running more than 40 miles per week
 - Little evidence that running more than 40 miles per week improves performance
 - There is evidence that running more than 40 miles per week increases risk of an overuse injury
 - Follow hard training/running days with easy days
 - Cross-train with sport that places less impact on shins (swimming, walking, biking)

2. Choose appropriate shoes and terrain
 - Avoid running on slanted or uneven surfaces
 - Best running surface is soft, flat terrain
 - Get new running shoes every 500 miles
 - After 500 miles, shoes lose their ability to absorb the shock of running
 - Choose shoes appropriate for sport and alignment/biomechanics
 - Use shock-absorbing insoles (SOR:B)

3. Anticipate warning signs
 - Do not "run through pain."
 - Pain is a sign that something is wrong
 - If athletes have muscle pain after running:
 - Recommend ice and rest for two or three days
 - If the pain continues for a week, need further work-up

Patient Education

1. Running: Preventing Overuse Injuries:
 - familydoctor.org

2. Avoiding Running Injuries:

3. Exercise: How to get started:

4. Weight-Training and Weight-Lifting Safety:

Evidence-Based Inquiry

1. How can you help athletes prevent and treat shin splints?

References

Authors: Heather Hammonds, MD, Maria Mahmoodi, MD, & Sonya Dominguez, MD, St. Vincent’s FMR, Jacksonville, FL

Editor: Carol Scott, MD, University of Nevada Reno FPRP