Vitamin D Deficiency

Background
1. Definitions
 - Vitamin D is a fat-soluble vitamin
 - Vitamin D deficiency is measured by low circulating levels of 25-OH vitamin D in the serum

Pathophysiology
1. Absorption and metabolism
 - 2 main sources of Vitamin D
 - Vitamin D3 (cholecalciferol) - activated in skin by UV light
 - Vitamin D2 (ergocalciferol) - ingested form
 - Vitamin D is hydroxylated in liver to 25-OH Vitamin D (calcidiol)
 - Best serum marker of vitamin D sufficiency
 - Calcidiol is hydroxylated in kidney to 1,25-OH Vitamin D (calcitriol)
 - Most biologically active form
2. Normal physiology
 - Vitamin D
 - Facilitates intestinal absorption of calcium and phosphate
 - Acts mainly in upper small intestine
 - Enhances renal reabsorption of phosphate
 - Aids in mineralization of bone
 - Plays a major part in homeostasis of calcium and phosphate
 - Calcium metabolism
 - Ionized calcium in ECF is maintained in a very narrow range
 - Low serum calcium stimulates PTH release from parathyroid glands
 - PTH encourages calcium resorption from bone and decreases calcium excretion from kidneys
 - PTH stimulates production of 1,25-OH Vitamin D in the kidney, which in turn increases intestinal calcium absorption
 - Elevated serum calcium suppresses PTH and Vitamin D production
3. Pathology of disease
 - Decreased vitamin D leads to
 - Reduced absorption of calcium if Vitamin D deficiency is moderate - severe
 - Hypocalcemia may lead to decreased bone mineralization, muscle cramps, spasm, tetany, seizures, confusion, encephalopathy, papilledema, and QT prolongation
 - Stimulated release of PTH
 - Stimulates resorption of calcium from bone
 - Decreased resorption of phosphate in the kidney
 - Elevated vitamin D levels
 - Rare, seen mostly due to over-supplementation
 - May lead to hypercalcemia and hypercalciuria
4. Incidence and prevalence
 - Certain patient groups at high risk for Vitamin D deficiency
 - Children
 - Among 618 Asian children in UK, 27% were vitamin D deficient
2.23.09

Elderly
- In homebound elderly, 54% prevalence in community dwellers and 38% in nursing home residents

Hospitalized patients
- 57% of patients on a general medical service
- Subgroup of patients with no known risk factors had 42% prevalence
- Women treated for osteoporosis
- 52% of community-dwelling women were also Vitamin D deficient
- Chronic renal disease
- 28-58% Vit D deficiency in patients with decreased GFR
- Gastrointestinal disease
- Healthy adults in winter
- 36% of healthy adults residing in Boston demonstrated Vitamin D deficiency at the end of winter as opposed to only 4% at the end of summer

5. Risk factors
- Inadequate sun exposure
 - Infants
 - Decreased sun exposure
 - Breast milk is poor source of Vitamin D
 - Formula supplementation only adequate if >1 L consumed daily
 - Persons residing at northern latitudes
 - Elderly
 - Indoor confinement
 - Skin of those older than 70 does not convert vitamin D effectively
 - Poor vitamin D intake
- Inadequate dietary intake
 - Vitamin D found naturally in fatty fish, cod liver oil, and small amounts in eggs, butter, cheese
 - Commercial milk and cereals fortified with Vit D, but amounts may be inconsistent
- Malabsorption
 - Fat malabsorption, steatorrhea
 - Celiac disease, cystic fibrosis
- 5 hydroxylase deficiency
- Increased catabolism
 - Vitamin D catabolized in liver by p450 system
 - Catabolism accelerated by phenytoin, phenobarbital, alcohol
- End-organ resistance
 - Hereditary vitamin D resistant rickets

6. Morbidity/ mortality
- Inadequate treatment can lead to:
 - Osteomalacia (rickets in children)
 - Associated hypocalcemia may result in osteoporosis, fractures, seizures
 - Some evidence of increased all-cause mortality among elderly
Diagnostics
1. History
 - Dietary intake – cod liver oil, fatty fish, egg yolks, cheese, supplemented milk and cereals
 - Sun exposure / sunscreen use
 - Mostly asymptomatic
 - Moderate to severe deficiency may result in non-specific musculoskeletal pain
 - Has been identified in patients with no known risk factors for Vitamin D deficiency
 - Vitamin D replacement may not improve pain symptoms
2. Physical exam
 - No findings specific to vitamin D deficiency
3. Diagnostic testing - Decreased serum 25-OH vitamin D
 - Laboratory evaluation: assays may vary, making exact measures difficult to define
 - Optimal levels 30-40 ng/ml (75-100 nmol/L)
 - Mild vitamin D deficiency 10-20 ng/ml (25-50 nmol/L)
 - Increased PTH production and bone turnover
 - Moderate vitamin D deficiency 5-10 ng/ml (12.5-25 nmol/L)
 - High bone turnover, reduced bone density, increased risk hip fracture
 - Severe vitamin D deficiency <5 ng/ml (<12.5 nmol/L)
 - Osteomalacia
 - Poor indicators of vitamin D status:
 - Calcium, phosphate, alkaline phosphatase, PTH
4. Diagnostic imaging
 - Incidental finding on radiograph
 - Osteopenia/osteoporosis may suggest Vitamin D deficiency
 - Rickets/osteomalacia may be seen on X-ray

Differential Diagnoses
1. Vitamin D deficiency is established by serum testing
2. See Risk factors for review of underlying causes

Therapeutics
1. Vitamin D replacement
 - Cholecalciferol (Vitamin D3) is preferred supplement (SOR:2C)
 - Severe deficiency - Treatment recommended (SOR:1A)
 - Treat with vitamin D 50,000 IU once per week for 6-8 weeks
 - Mild to moderate deficiency - Treatment recommended (SOR:2B)
 - Treat with vitamin D 800 - 1000 units / day and check levels in 3 months
 - May need higher doses if inadequate response
 - Continue Vitamin D intake of 800 - 1000 units/day to maintain adequate 25 OH Vit D
 - Vitamin D metabolites calcidiol or calcitriol may be required in patients with liver or renal disease
 - Calcidiol not available in the US
2.23.09

- Calcitriol used mainly in patients with chronic renal failure
 - Check levels 3 months after initiating treatment

2. Precautions
 - Vitamin D toxicity has been noted at levels as low as 88 ng/ml
 - Hypercalcemia
 - Hypercalciuria
 - Calcitriol has rapid onset and half life of 6 hr
 - High incidence of hypercalcemia and patients should be monitored closely

Prognosis
1. No sequelae with proper treatment

Prevention & Screening
1. Prevention
 - Exposure to ultraviolet light of limited use as risks may outweigh benefits
 - Oral consumption of vitamin D 800-1000 units/day for adults (SOR:2B)
 - Infants
 - 400 IU of Vitamin D daily beginning in 1st few days of life for all breast and formula fed infants
 - Formula fed infants will receive adequate Vitamin D if they consume >1 L of Vit D supplemented formula / day
 - Pregnancy and lactation
 - No current recommendation, but maternal vitamin D deficiency is a known risk factor for infant vitamin D deficiency
 - It is therefore reasonable to assess Vitamin D intake in pregnant and lactating mothers

2. Screening
 - No recommendation for routine screening (SOR:2C)

Patient Education

References
10. Independent association of low serum 25-OH Vitamin D and 1, 25 dihydroxyvitamin D and all cause and cardiovascular mortality Arch Intern Med 2008 June23; 168(12): 1340
19. Armas, LA, Hollis BW et al. Vitamin D2 is much less effective than vitamin D3 in humans. J Clin Endocrinol Metab 2004; 89:5387

Author: Christina Gillespie, MD, Georgetown University Providence Hospital, DC
Editor: Vince WinklerPrins, MD, Georgetown University-Providence Hospital, Washington DC