Hypokalemia

Background
1. Definition:
 o Serum potassium < 3.5 mEq/L [3.5 mmol/L]
2. General info
 o Serum deficiency of potassium, the primary intracellular cation, integral for cellular function throughout the body

Pathophysiology
1. Pathology of disease
 o Decreased potassium intake
 o Increased intracellular uptake
 o Gastrointestinal loss
 o Urinary losses
 o Sweat losses
 o Losses via dialysis and plasmapheresis
2. Incidence, prevalence
 o In a series of PICU admissions in India, 14.8% of patients had hypokalemia
 o No other pediatric incidence / prevalence data found in exhaustive literature search
3. Risk factors
 o Underlying renal or GI condition
 o Diuretic use
 o Malnutrition
4. Morbidity / mortality
 o Muscle weakness or paralysis, including respiratory failure
 o Ileus
 o Skeletal muscle paresthesias, tetany, muscle tenderness, atrophy
 o Rhabdomyolysis, including myoglobinuria acute renal failure
 o ECG abnormalities, including U waves and cardiac arrhythmias
 o Renal abnormalities, including impaired renal concentrating ability, increased renal ammonia production, increased bicarbonate reabsorption, and hypokalemic nephropathy
 o Mortality is rare, usually associated with cardiac surgery, arrhythmia, or underlying heart disease requiring digoxin therapy

Diagnostics
1. History
 o HPI
 - Muscle weakness / tenderness / tetany / paresthesias, palpitations, polyuria, oliguria, red or brown colored urine, emesis, abdominal distention, anorexia
 o Medications
 - Diuretics, asthma medications, insulin, psychotropic medications
 o Family and personal Hx
 - Kidney disease, adrenal disease, mucosal GI disease
Social Hx
- Huffing, rapid weight loss dieting, access to inciting medications or chemicals

2. Physical exam
 - General
 - May see cachexia, decreased consciousness
 - Musculoskeletal
 - Weakness, tetany, muscular tenderness, atrophy
 - Cardiac
 - Arrhythmias
 - Respiratory
 - Respiratory failure
 - Gastrointestinal
 - Ileus, distention, emesis

3. Diagnostic testing
 - Laboratory evaluation
 - Serum electrolytes, magnesium, BUN, creatinine
 - Blood gas analysis if suspicion for acid-base disturbance or respiratory failure
 - Urinalysis and urine electrolytes if changes in urination or suspicion of renal cause or sequelae
 - Drug screen if suspicion for sympathomimetic stimulant intoxication (eg amphetamine)
 - Albumin / prealbumin / CRP if concerned about malnutrition

4. Diagnostic imaging
 - Unnecessary unless otherwise indicated

5. Other studies
 - Electrocardiogram to assess for cardiac effects of hypokalemia, or if arrhythmia noted

6. Diagnostic "Criteria"
 - Serum potassium < 3.5 mEq/L [3.5 mmol/L]

Differential Diagnosis

1. Key differential diagnoses
 - Gastroenteritis
 - Classically considered the most common cause of hypokalemia in children
 - Malnutrition
 - Renal disease
 - Septicemia
 - Acute diarrhea
 - Heart disease with congestive failure
 - Meningoencephalitis
 - Diuretic use
 - Beta-agonist use
 - Corticosteroid use
2. Extensive differential diagnoses

 o Decreased potassium intake
 - Malnutrition
 - Anorexia nervosa
 - Alcoholism

 o Increased intracellular uptake
 - Metabolic alkalosis
 - Respiratory alkalosis
 - Increased circulating insulin
 - Insulin therapy / overdose
 - PO or IV carbohydrate load
 - Elevated beta-adrenergic activity
 - Acute illness
 - Theophylline or beta-agonist therapy
 - Hypokalemic periodic paralysis
 - Familial
 - Thyrotoxic

 o Increased hematopoiesis, including acute leukemia

 o Hypothermia

 o Intoxications
 - Barium
 - Chloroquine
 - Risperidone
 - Quetiapine
 - Cesium

 o Gastrointestinal loss
 - Vomiting
 - Diarrhea (including laxatives, enemas, homeopathic cathartics)
 - Enteral tube drainage
 - Villous adenoma or VIPoma

 o Urinary losses
 - Increased aldosterone effect
 - Primary mineralocorticoid excess, pheochromocytoma, Conn's syndrome
 - Increased distal nephron flow
 - Diuretics (acetazolamide, thiazides, loop diuretics)
 - Nonreabsorbable anions
 - Renal Tubular Acidosis type 1 and type 2
 - Diabetic ketoacidosis
 - Toluene abuse (glue-sniffing / huffing)
 - High-dose penicillin therapy
 - Hypomagnesemia
 - Polyuria of any cause
 - Increased potassium secretion
 - Amphotericin B therapy

 o Salt-wasting nephropathies
 - Bartter's or Gitelman's syndrome
 - Tubulointerstitial diseases (eg interstitial nephritis)
• Hypercalcemia
• Acute leukemia (esp monocytic, myelomonocytic)

 o Sweat losses
 ▪ Exercise in hot climate
 ▪ Cystic fibrosis
 o Losses via dialysis and plasmapheresis

Therapeutics

1. Acute treatment
 o Potassium >3 mEq/L and asymptomatic:
 ▪ Potassium chloride 2 mEq/kg/day PO divided BID to QID (Grade 2B)
 ▪ More aggressive if heart disease
 ▪ Use potassium bicarbonate or citrate if metabolic acidosis present (Grade 2B)
 ▪ May use crystalline form (salt substitute from grocery store), which contains 50-65 mEq per teaspoon
 ▪ If unable to take PO, treat as severe symptoms below
 o Potassium 2.5-3 mEq/L or Mild to Moderate Symptoms:
 ▪ Potassium chloride 4 mEq/kg/day PO divided BID to QID until serum potassium concentration >3 mEq/L and symptoms resolve (Grade 2B)
 ▪ If unable to take PO, treat as severe symptoms
 o Potassium <2.5 mEq/L or Severe Symptoms
 ▪ Potassium chloride IV in saline solution, esp if receiving insulin or bicarbonate therapy (Grade 1B)
 ▪ 0.5-1 mEq/kg (maximum 30-40 mEq per dose) every 3-4 hrs as needed, to infuse at 0.3-0.5 mEq/kg/hr (max 1 mEq/kg/hr)
 ▪ Infusion rate >0.5 mEq/kg/hr may be necessary in critical hypokalemia, and warrants continuous ECG monitoring
 ▪ Absolute maximal IV rate in an adolescent or adult is 20 mEq/hr
 ▪ Maximal IV concentration is 200 mEq/L
 ▪ Concentrations >60 mEq/L are painful and should only be infused into a central vein via infusion pump
 ▪ Try not to use dextrose solutions, as stimulation of insulin secretion will shift potassium into cells from the intravascular space
 ▪ Check serum potassium concentration between IV doses to avoid over correction
 o Identify and treat any predisposing conditions

2. Further management (24 hrs)
 o Match any subsequent replacement to ongoing losses
 ▪ For chronic replacement, consider PO potassium chloride, potassium-based salt substitutes sprinkled on food, or potassium-sparing diuretic (Grade 2B)
Combination of potassium supplement and potassium-sparing diuretic requires close monitoring of serum potassium level
 - At least every 4 months in any patient with chronic therapy
 - More frequently if concurrent chronic kidney disease, ACEI therapy or ARB therapy, or recent change in potassium or diuretic dosing
 - Follow-up ECG if abnormalities were initially present
 - Identify and treat any predisposing conditions

3. Long-term care
 - Depends upon precipitating cause and predisposing conditions, medications

Follow-Up
1. Return to office
 - Time frame for return visit
 - Depends upon etiology and stability of potassium level after intervention
 - Follow potassium level at least every 4 months in patients on potassium supplementation and/or potassium-sparing diuretic therapy
 - Recommendations for earlier follow-up:
 - Unstable potassium levels, recent change in medication(s) that affect potassium

2. Refer to specialist
 - After correction of hypokalemia, consultation with specialist may be necessary to manage predisposing conditions
 - Consider nephrology if unclear etiology or renal etiology
 - Consider endocrinology if contributing endocrine etiology
 - Consider GI if underlying GI cause

3. Admit to hospital
 - Recommendations / urgency
 - No evidence regarding criteria for inpatient admission
 - Consider admission if
 - Potassium <2.5 mEq/L, or
 - Pt is symptomatic of hypokalemia

Prognosis
1. Excellent with control of potassium level and control / resolution of predisposing conditions
2. Complications of treatment include hyperkalemia, cardiac dysrhythmia, and gastric erosions or strictures (from PO tablets)

Prevention
1. Follow potassium level at least every 4 months (more frequently after medicine changes and/or changes in patient condition) in patients on potassium-wasting diuretic therapy or with conditions that predispose them to hypokalemia

Patient Education
1. http://www.hmc.psu.edu/healthinfo/h/hypokalemia.htm
References

Author: Michael Geurin, MD, Montana FMR

Editor: Perry Brown, MD, Idaho State University FPR