Obstructive Sleep Apnea-Hypopnea Syndrome (OSAHS)

See Excessive Daytime Sleepiness

See Insomnia

See Obstructive Sleep Apnea (Peds)

Background

- 1. Definition
 - Repetitive episodes of partial (hypopnea) or complete (apnea) airflow obstruction during sleep resulting
 - Gas exchange abnormalities
 - Sleep fragmentation
 - Daytime somnolence
 - Cardiovascular consequences
- 2. General info
 - o Apnea
 - Cessation of airflow for at least 10 s²
 - Associated with
 - Arousal
 - 4% drop in SaO2
 - o Hypopnea
 - 30-50% reduction in airflow for at least 10 s²
 - Associated with
 - Arousal
 - O2 desaturation
 - Upper airway resistance syndrome (UARS)
 - Recurrent arousals due to periods of increased airway resistance without overt apneas or hypopneas, leading to daytime hypersomnolence
 - Strong associations between OSAHS and
 - Cardiovascular disease
 - Motor vehicle accidents
 - Cognitive impairment
 - Endocrine abnormalities (glucose intolerance and insulin resistance)
 - o Some goals of therapy of OSAHS include
 - Improving quality of life
 - Reducing risk of medical comorbidities

Pathophysiology

- 1. Pathology of disease
 - OSAHS is characterized by narrowing/ collapse at various sites in the upper airway
 - Site of upper airway obstruction is the pharynx
 - Obesity exacerbates the narrowing due to increased adipose tissue in the neck
 - OSA seems to increase levels of leptin, in turn, makes it difficult for pts to lose weight⁴
- 2. Incidence, prevalence
 - o 2% F and 4% M between age of 30-60
 - o Prevalence increases with age but plateaus after age 65

- Increasing incidence due to diagnostic awareness and escalating obesity
- Prevalence of OSA without daytime sleepiness
 - 25% middle age males
 - 9% middle age females

3. Risk factors

- Body habitus
 - Body mass index (BMI) >28 kg/sq m
 - Neck circumference > 40 cm
 - Central body fat distribution
- Craniofacial and upper airway abnormalities
 - Enlarged tonsils and adenoids
 - Abnormalities of mandibular or maxillary size and position
 - Narrowed nasal cavities
 - Macroglossia
 - Low-lying soft palate
 - Enlarged uvula³
 - Anatomical imbalance between tongue size and craniofacial dimensions⁴
- o Genetic / family Hx
 - Heritability found in 30-35% of cases⁶
- OSAHS may be aggravated by
 - Nighttime alcohol ingestion
 - Sedatives
 - Supine posture
 - Nasal congestion
 - Allergies
 - Smoking⁶

4. Morbidity/mortality

- Increased incidence of co-morbid conditions
 - Hypertension, CAD, MI, CHF, stroke
 - Risk of stroke nearly doubled for men w/sleep apnea
 - DM 2 and insulin resistance are present in 30% and 20% of OSA pts, respectively⁵
 - Oxidative stress by producing radicals can cause vascular inflammation and atherosclerosis which in turn play important role in OSA⁵
 - BMI highly associated with oxidative stress⁵

Diagnostics

- 1. Questionnaires, physical exam, and clinical prediction rules estimate pretest probability of OSAHS, but are not specific enough to make dx
- 2. History
 - Habitual snoring
 - Nocturnal snorting
 - Gasping
 - Witnessed apneas
 - Fatigue, daytime sleepiness, MVAs, personality changes, irritability, depression
 - o Morning or nocturnal headaches

- 3. Physical exam
 - o Pay special attention to body habitus and upper airway
 - Retrognathia
 - Macroglossia
 - Low-lying soft palate
 - Tonsillar hypertrophy
 - Nasal septal deviation
 - Size and asymmetry of nares
 - o Chronic leg edema
- 4. Diagnostic testing
 - o Polysomnography (PSG) (SOR:A)²
 - Recording of
 - Sleep architecture
 - Airflow and ventilatory effort
 - Oxygen saturation
 - EKG
 - Limb movement
 - Body position
 - EEG
 - Electrooculogram
 - PSG documents adequacy of sleep and indicates whether other etiologies are present, such as narcolepsy or PLMD
 - o Apnea-hypopnea index (AHI) (SOR:C)²
 - Number of apneas and hypopneas per hour of sleep
 - OSAHS
 - AHI of 5 or greater combined with daytime somnolence
 - Severity
 - Mild with AHI 5-14
 - Moderate with AHI 15-30
 - Severe with AHI >30
 - CPAP titration study (SOR:A)²
 - To determine the optimal pressure that eliminates snoring and apneashypopneas
 - Done when diagnosis of OSAHS is established
 - Can be done as a split-night or second full night study

Differential Diagnosis

- 1. Upper airway resistance syndrome (UARS)
- 2. Central sleep apnea
- 3. Periodic limb movement disorder of sleep
- 4. Narcolepsy
- 5. Idiopathic hypersomnia

Therapeutics

- 1. Conservative measures
 - o Weight loss (SOR:B)^{9,10,11}
 - o Alcohol and sedative avoidance
 - o Avoiding the supine position in the case of positional OSAHS
 - o Good sleep hygiene

2. CPAP

- o Treatment of choice for most patients (SOR:B)^{12,13,14}
- o Primary treatment target is hypersomnolence
- Tolerability of CPAP is challenging
 - Compliance as low as 40%
 - Can be improved with heated humidification, machines that ramp up slowly, and bilevel pressure machines
- Complications
 - Epistaxis
 - Rhinorrhea
 - Nasal dryness
 - Congestion
 - Facial abrasions
 - Conjunctivitis
- o Uncertain benefit for those with mild disease

3. Oral appliances

- o Move the tongue or mandible forward
- Inconsistent results
- o More for patients with mild to moderate OSA⁷

4. Surgery

- Uvulopalatopharyngoplasty (UPPP) (SOR:2C)²
 - Mixed results
 - Success rate is approximately 50%
 - Long-term success rate falls to 35% after 4 years⁷
 - Less effective in patients with BMI > 30 and in patients with severe disease
 - Associated with significant pain post-op
- Nasal surgery (SOR:C)⁷
- Maxillomandibular advancement (SOR:C)
 - May be effective in patients with anatomical abnormalities leading to OSAHS
- o Temperature controlled radiofrequency ablation (SOR:C)²
 - Volume reduction of tongue and soft palate
 - 20% success rate⁷
- Tracheostomy (SOR:C)
 - Last-resort measure
 - In life-threatening situations
- Bariatric surgery (SOR:C)⁷
 - Effective in the treatment of OSAHS caused by obesity
 - Must meet BMI requirements of 40 without existing medical conditions and 35 with co-existing medical conditions⁷

5. Medications

- Modafinil (SOR:B)⁷
 - Wake promoting that can be used at the same time as other treatments in a complementary manner⁷

Follow-Up

- 1. Every 6-12 mo
- 2. CPAP machine needs maintenance q 6-12 mo

Prognosis

- 1. Varies with degree of obstruction and patient compliance with treatment
- 2. Higher mortality¹⁵
- 3. Use more medical resources¹⁵
- 4.3 to 6 fold increased risk of all cause mortality¹⁵
- 5. Vehicle accidents more common among patient with OSA¹⁶
- 6. Increases inattention and fatigue, consequently limiting daily function, also exacerbates already existing cognitive deficits¹⁶

Prevention

- 1. The most preventable factor is weight gain
- 2. Avoid muscle relaxants
- 3. Avoid alcohol beverages before sleeping

Patient Education

- 1. www.sleepapnea.org
- 2. http://familydoctor.org/online/famdocen/home/articles/212.html

References

- 1. Victor LD: Treatment of Obstructive Sleep Apnea in Primary Care. Am Fam Physician 2004; 69(3):561-68.
- 2. Olson EJ, et al: Obstructive Sleep Apnea-Hypopnea Syndrome. Mayo Clin Proc 2003;78:1545-1552.
- 3. Young T, et al: Risk Factors for Obstructive sleep apnea in Adults. JAMA 2004; 291(16): 2013-16
- 4. Isono S. Obstructive sleep apnea of obese adults: pathophysiology and perioperative airway management. Anesthesiology. 2009 Apr;110(4):908-21. Review. PubMed PMID: 19293689
- 5. Lavie L. Oxidative stress--a unifying paradigm in obstructive sleep apnea and comorbidities. Prog Cardiovasc Dis. 2009 Jan-Feb;51(4):303-12. Review. PubMed PMID: 19110132.
- 6. Al Lawati NM, Patel SR, Ayas NT. Epidemiology, risk factors, and consequences of obstructive sleep apnea and short sleep duration. Prog Cardiovasc Dis. 2009 Jan-Feb;51(4):285-93. Review. PubMed PMID: 19110130.
- 7. Fleisher KE, Krieger AC. Current trends in the treatment of obstructive sleep apnea. J Oral Maxillofac Surg. 2007 Oct;65(10):2056-68. Review. PubMed PMID:17884538
- 8. Rubins JB, Kunisaki KM. Contemporary issues in the diagnosis and treatment of obstructive sleep apnea. Postgrad Med. 2008 Jul;120(2):46-52. Review. PubMed PMID: 18654068.
- 9. Browman, CP, Sampson, MG, Yolles, SF, et al. Obstructive sleep apnea and body weight. Chest 1984; 85:435.
- 10. Smith, PL, Gold, AR, Meyers, DA, et al. Weight loss in mildly to moderately obese patients with obstructive sleep apnea. Ann Intern Med 1985; 103:850.
- 11. Wittels, EH, Thompson, S. Obstructive sleep apnea and obesity. Otolaryngol Clin North Am 1990; 23:751.

- 12. Sullivan, CE, Berthon-Jones, M, Issa, FG, Eves, L. Reversal of obstructive sleep apnea by continuous positive airway pressure applied through the nares. Lancet 1981; 1:862.
- 13. Hirshkowitz, M, Sharafkhaneh, A. Positive airway pressure therapy of OSA. Semin Respir Crit Care Med 2005; 26:68.
- 14. Waldhorn, RE, Herrick, TW, Nguyen, MC, et al. Long-term compliance with nasal continuous positive airway pressure therapy of obstructive sleep apnea. Chest 1990; 97:33.
- 15. Marshall, NS, Wong, KK, Liu, PY, et al. Sleep apnea as an independent risk factor for all-cause mortality: the Busselton Health Study. Sleep 2008; 31:1079.
- 16. George, CF. Sleep apnea, alertness, and motor vehicle crashes. Am J Respir Crit Care Med 2007; 176:954

Evidence-Based Inquiry

- 1. Is surgery effective for reducing symptoms in adult patients with obstructive sleep apnea?
- 2. Is sleep apnea associated with increased risk of stroke?
- 3. What is the differential diagnosis of chronic leg edema in primary care?
- 4. Sleep apnea in adults: How accurate is clinical prediction?

Authors: Philip Delgado, MD, & Helene Rubeiz, MD, Kaiser Permanete Medical Center FPRP, Riverside, CA

Editor: Vince WinklerPrins, MD, Georgetown University-Providence Hospital, Washington DC