Anemia

Background

- 1. Definition
 - o Decrease in circulating RBC mass below age-/gender-specific limits
- 2. General information
 - Usually clinically defined by low hemoglobin or hematocrit on CBC
 - Most often discovered by laboratory evaluation since most patients are asymptomatic

Pathophysiology

- 1. Pathology
 - Decreased RBC production
 - Primary bone marrow diseases
 - Aplastic anemia, pure RBC aplasia, myelodysplasia or tumor
 - Bone-marrow suppression
 - Medication, chemotherapy, radiation
 - Nutrition
 - Deficiencies of vitamin B12, folate, iron, lead intake
 - Decreased stimulating hormones
 - Erythropoietin, thyroid, hormone, androgens
 - Chronic disease
 - Increased RBC destruction
 - Congenital hemolytic anemias
 - Hereditary spherocytosis, G6PD, sickle cell disease, thalassemia
 - Acquired hemolytic anemias
 - Coomb's positive autoimmune hemolytic anemia, malaria, hypersplenism
 - TTP, HUS
 - DIC, toxins, prosthetic valves
 - o Increased RBC loss
 - Obvious bleeding
 - GI, trauma, menorrhagia
 - Occult bleeding
 - Slow GI bleed, retroperitoneal, upper thigh, pelvis
 - Iatrogenic bleeding
 - Postoperative, hemodialysis, recurrent blood donation
 - o Increase in plasma volume
 - Pregnancy
 - Fluid overload
- 2. Incidence/prevalence
 - o Males: 6.6/100
 - o Females: 12.4/100
 - o Increases with age to 44.4% among men >85 yo
 - o 4.7 million Americans are anemic

- 3. Risk factors
 - Advancing age
 - o Gender: women > men
 - Family history
- 4. Morbidity/mortality
 - Symptoms, morbidity and mortality depend greatly on how rapidly the anemia develops
 - Slow development leads to fewer symptoms
 - Rapid development leads to increased symptoms
 - eg, A young, healthy person can be expected to tolerate rapid loss of 500-1000 mL (10-20% of blood volume) with few or no symptoms, although about 5% of the population will have a vasovagal reaction
 - Mortality depends on the cause of the anemia (eg, dietary iron deficiency versus sickle cell disease)
 - Recent studies have shown anemia to be a powerful predictor of worsened outcomes in heart failure, with a hazard ratio of 1.39 for mortality and 1.55 for hospitalization (SOR:A)³

Diagnostics

- 1. History
 - o Fatigue
 - Dyspnea on exertion
 - o Melena/hematochezia
 - Hemoptysis
 - o Menorrhagia
 - Falls/fractures
 - Invasive procedures
 - Chronic illness
- 2. Physical exam
 - General
 - Pallor, general ill appearance
 - Signs of chronic illness
 - HEENT
 - Decreased visual and auditory abilities
 - Retinal hemorrhages and/or exudates (severe anemia)
 - Cardiovascular
 - Tachycardia and/or flow murmurs
 - Dyspnea, tachypnea, and/or other signs of CHF (severe anemia)
 - Hepatosplenomegaly
 - o Paresthesias in finger or toes; loss of position and vibration sense
 - o Abnormal mental status (dementia, psychosis, depression)
- 3. Diagnostic tests
 - See also Anemia: iron studies
 - See also Anemia testing algorithms
 - CBC

- Anemias generally classified by MCV as being microcytic, normocytic, or macrocytic
- Microcytic
 - Thalassemias, iron deficiency, lead poisoning
 - Stool guaiac (occult GI bleed)
 - Ferritin (low if iron stores low but can be elevated as acute phase reactant)
 - Iron (decreased in deficiency)
 - Total iron binding (increased in deficiency)
 - Lead
 - Peripheral smear (may point to specific cause)
 - Hemoglobin electrophoresis
- Normocytic
 - Hemorrhage, chronic disease, hemolysis, iron deficiency (up to 30% are normocytic)
 - Stool guaiac
 - Ferritin
 - Total iron binding capacity
 - Percent transferrin saturation (decreased with decreased iron stores)
 - Peripheral Smear
 - Reticulocyte index (elevated if healthy bone marrow is able to respond to anemia, eg, hemolysis, early blood loss; if suspicious for hemolysis then direct Coomb's test)
 - Haptoglobin (decreased in hemolysis)
- Macrocytic
 - Folate/ vit B12 deficiency, thyroid disease, alcoholism, reticulocytosis
 - RBC folate
 - B12 level
 - TSH
 - Reticulocyte count
- Other procedures
 - Imaging
 - Tagged RBC scan for slow lower GI bleed
 - Abdominal CT for suspected retroperitoneal bleeding
 - EGD/colonoscopy for suspected upper/lower bleeding
 - Bone-marrow biopsy if abnormal cells on peripheral smear or deficient reticulocytosis
 - Gold standard for iron deficit, evaluation of stem cell population and if dx not clear
- 4. Diagnostic criteria
 - o Mild
 - Detectable only when exercising → Hgb 10-14 g/dL [6.2-8.7 mmol/L]
 - Moderate
 - Minimal exertion causes symptoms → Hgb 7-10 g/dL [4.3-6.2 mmol/L]

- o Severe
 - End-organ dysfunction (eg, myocardial/peripheral ischemia) → Hgb 3-7 g/dL [1.9-4.3 mmol/L]

Differential Diagnosis

- 1. Hypothyroidism
- 2. Depression
- 3. Adrenal insufficiency
- 4. Hyperthyroidism
- 5. CHF
- 6. CAD
- 7. Tuberculosis
- 8. Endocarditis/pericarditis
- 9. Malignancy

Therapeutics

- 1. RBC transfusions
 - o End organ ischemia
 - o Acute hemorrhage
 - >25% of blood volume
 - Blood loss > 1500 mL
 - o Surgical /anticipated major blood loss
 - Hgb <7 g/dL [SI: <4.3 mmol/L]
 - Hgb <8 g/dL [SI: <5 mmol/L] prior to surgery
 - Hgb <10 g/dL [SI: <6.2 mmol/L] with cardiopulmonary disease
 - Hgb >10 g/dL [SI: >6.2 mmol/L] if symptomatic anemia
 - Loss >2 L
 - Chronic anemia
 - Hgb <7 g/dL [SI: < 4.3 mmol/L]
 - If symptomatic or underlying cardiopulmonary disease
 - Exchange or hypertransfusion for hemoglobinopathy
- 2. O2 if symptomatic
- 3. LR/NS up to 2L
- 4. Correct underlying etiology
- 5. Factor supplementation: iron, folate, vit B12
 - O USPSTF recommends routine iron supplementation for asymptomatic children aged 6-12 months who are at increased risk for iron deficiency anemia (premature, low birth weight, fed cow's milk). Grade: B
 - USPSTF concludes that evidence is insufficient to recommend for or against routine iron supplementation for asymptomatic children aged 6-12 months who are at average risk for iron deficiency anemia. Grade: I
 - o USPSTF concludes that evidence is insufficient to recommend for or against routine iron supplementation for non-anemic pregnant women. Grade: I
- 6. Erythropoietin (CRF, AIDS, inadequate endogenous erythropoietin production)
 - Combination of iron + erythropoietin has been shown to improve outcomes in anemic heart failure patients in small trials, larger trials underway (SOR:B)⁷

- Recent studies suggest that Erythropoiesis Stimulating Agents (ESA) treatment of cancer-related anemias does not improve outcomes and increases risk of thromboembolic disease
 - The FDA has issued an advisory strongly recommending that healthcare
 professionals discuss the risks of ESA-associated tumor progression and
 shortened survival in patients with cancer before starting or continuing
 ESA therapy
- For CRF, new information states that Hgb should be maintained with ESAs between 10-12. Higher Hgb levels have been associated with death and other serious morbidity (SOR:A)^{8,9}

Follow-Up

- 1. Return to office
 - Quarterly monitoring of CBC
 - o Sooner if increased fatigue, melena, external bleeding
- 2. Refer to specialist
 - o Gastroenterology if suspected GI bleeding
 - Urology if suspected GU bleeding
 - o Hematology if suspected hemolysis, primary bone marrow disease or malignancy
- 3. Admit to hospital
 - o Acute blood loss, especially with underlying cardiovascular disease
 - o Experiencing secondary organ effects of anemia
 - Angina, confusion, dyspnea
 - o Hemodynamically unstable: admit to ICU

Prognosis

1. Varies depending upon underlying disease

Prevention

- 1. Prevention of underlying causes
- 2. Fall prevention
- 3. Good nutrition (sources of iron, vit B12, and folate)
- 4. Iron supplementation in pregnancy
- 5. Societal bans on lead paint in homes

Evidence-Based Inquiry

1. Are any oral iron formulations better tolerated than ferrous sulfate?

References

- 1. Marks PW, Glader B. Approach to Anemia in the Adult and Child. in Hoffman R, Benz EJ Jr, Shattil SJ: Hematology: Basic Principles and Practice. 5th ed. New York, NY: Churchill Livingstone; 2008:
- 2. Schrier, SL. Approach to the patient with anemia. UpToDate: www.uptodate.com. Accessed 4/09.
- 3. Anand IS, Kuskowski MA, Rector TS, Florea VG, Glazer RD, Hester A, Chiang YT, Aknay N, Maggioni AP, Opasich C, Latini R, Cohn JN. Anemia and change in

- hemoglobin over time related to mortality and morbidity in patients with chronic heart failure: results from Val-HeFT. Circulation. 112(8):1121-7, 2005 Aug 23.
- 4. U.S. Preventive Services Task Force. Screening for Iron Deficiency Anemia —Including Iron Supplementation for Children and Pregnant Women. http://www.ahrq.gov/CLINIC/uspstf/uspsiron.htm Accessed 4/09.
- 5. Dubois RW, Goodnough LT, Ershler WB, Van Winkle L, Nissenson AR. Identification, diagnosis, and management of anemia in adult ambulatory patients treated by primary care physicians: evidence-based and consensus recommendations. Curr Med Research & Opinion. 22(2):385-95, 2006 Feb.
- 6. Guyatt GH, Oxman AD, Ali M, et al. Laboratory diagnosis of iron-deficiency anemia: an overview. J Gen Intern Med. 1992 Mar-Apr;7:145-53.
- 7. Palazzuoli A. Silverberg D. Iovine F. Capobianco S. Giannotti G. Calabro A. Campagna SM. Nuti R. Erythropoietin improves anemia exercise tolerance and renal function and reduces B-type natriuretic peptide and hospitalization in patients with heart failure and anemia. Am Heart J 152(6):1096.e9-15, 2006 Dec.
- 8. Bennett CL. et al. Venous thromboembolism and mortality associated with recombinant erythropoietin and darbepoetin administration for the treatment of cancer-associated anemia. JAMA. 299(8):914-24, 2008 Feb 27.
- 9. FDA Safety Information and Adverse Event Reporting Program. Erythropoiesis Stimulating Agents: Aranesp (darbepoetin alfa), Epogen (epoetin alfa), and Procrit (epoetin alfa) November 2007. Downloaded 8/19/09 from http://www.fda.gov/Safety/MedWatch/SafetyInformation/SafetyAlertsforHumanMedical Products/ucm152274.htm
- 10. Rimon E, Kagansky N, Kagansky M, et al. Are we giving too much iron? Low-dose iron therapy is effective in octogenarians. Am J Med. 2005;118:1142-7.

Author: John Brill, MD, St. Luke's FMRP, Milwaukee, WI

Editor: David Wakulchik, MD, Aultman FMRP, OH