Neonatal Hyperbilirubinemia

Background

- 1. Definition
 - Elevated bilirubin in a newborn caused by either an increased production or a decreased clearance of bilirubin
- 2. General information
 - Hyperbilirubinemia becomes dangerous at very high levels, when bilirubin can cross the blood brain barrier, causing kernicterus
 - o Hyperbilirubinemia is common
 - o Kernicterus is rare

Pathophysiology

- 1. Pathology of disease
 - o Bilirubin
 - RBCs breakdown → heme → unconjugated bilirubin → bilirubin conjugated in liver → excreted via bile to intestine → excreted with stool
 - Liver does not begin conjugating bilirubin until several days after birth
 - If baby not stooling well, can be re-absorbed (enterohepatic cycling)
 - Neonatal RBCs less stable, shorter half-life
 - Peak serum bilirubin level (generally)
 - Term: 3-4 days old
 - Pre-term: 4-6 days old
 - Conjugated (direct) bilirubin
 - Fraction of circulating bilirubin conjugated with glucuronic acid by the liver
 - Elevated unconjugated (indirect) bilirubin
 - Most common
 - Usually non-pathologic in etiology
 - Elevated conjugated (direct) bilirubin
 - Rare
 - Usually associated with pathologic etiology
- 2. Incidence, prevalence
 - Unconjugated hyperbilirubinemia
 - Term (>38 wks GA): 65% visibly jaundiced
 - Near-term (35-38 wks GA): 80% visibly jaundiced
 - <2% become severely hyperbilirubinemic (TsB >20)
 - Kernicterus
 - Rare, likely under-reported, so exact incidence unknown
 - ~ 10 cases per year reported to US national registry
 - o Conjugated hyperbilirubinemia: 1 in 2500 live births
- 3. Risk factors
 - For unconjugated hyperbilirubinemia
 - Major
 - Visible jaundice in first 24 hr

- Blood group incompatibility (with direct antibody or Coombs test positive) or other known hemolytic dz
- Gestational age <38 wk
- Previous sibling receiving phototherapy
- Cephalhematoma or significant bruising
- Exclusive breast feeding
- East Asian race
- Minor
 - Jaundice before discharge
 - Previous sibling with jaundice
 - Macrosomic infant of diabetic mother
 - Maternal age >25 yo
 - Male gender
- Negative (protective) risk factors
 - Gestational age \geq 41 wk
 - Exclusive bottle feeding
 - Black race
 - Discharge from hospital >72 hr
- For kernicterus
 - Premature
 - Low birth weight
 - Sepsis
 - Hemolysis
 - Perinatal asphyxia
- 4. Morbidity / mortality
 - Unconjugated hyperbilirubinemia → lethargy / poor feeding / may lead to dehydration → decreased bilirubin clearance → increased total serum bili [vicious cycle]
 - Kernicterus
 - Results from unconjugated bilirubin crossing blood brain barrier and depositing in / damaging basal ganglia

Diagnostics

- 1. History
 - Presence of risk factors
 - Pregnancy history
 - Birth history
 - Birth weight, gestational age, traumatic, bruising, perinatal asphyxia / compromise
 - Feeding history
 - Breast vs. bottle, frequency, volume, percent weight loss (>10% weight loss concerning), urine and stooling pattern
 - Family history
 - Previous sibling with jaundice or requiring phototherapy

- Ethnicity
 - Asian, Native American increased risk; black race decreased risk;
 G6PD more common in Mediterranean, Middle East, Arabian peninsula, Southeast Asia and Africa

2. Physical exam

- o Vital signs
- o General appearance, hydration status, activity level
- Skin (perform in well-lit [ideally sunlit] room, but recognize degree of potential inaccuracy of exam): bruising, hematomas, skin color (can be deceptive) focusing on inferior-most leading edge of jaundice
 - General rule for leading edge of jaundice:
 - Nipple line: total serum bili = $\sim 5 \text{ mg/dL}$
 - Waist: total serum bili = ~ 10 mg/dL
 - Knees: total serum bili = ~ 15 mg/dL
 - Ankles: total serum bili = $\sim 20 + \text{mg/dL}$
- o Head: cephalhematoma, other signs of trauma
- o Abdomen: hepatomegaly, splenomegaly
- o Anus: patency
- Neuro: signs of kernicterus
 - High pitched cry
 - Opisthotonus
 - Irritability
 - Poor sucking
 - Lethargy
 - Gaze paralysis

3. Laboratory evaluation

- Need to investigate etiology if receiving phototherapy or if bilirubin rising rapidly
- Neonatal
 - Total serum bilirubin (TsB) vs. transcutaneous bilirubin (TcB) measurement
 - TsB preferable and more accurate
 - TcB reasonable for screening, often within +/- 2 mg/dL, but occasionally much more inaccurate; if exam and TcB are discrepant, always check TsB
 - TcB of no value after phototherapy initiated should only follow TsB!
 - Direct bilirubin if >7 days age; if still visibly jaundiced at > 3 weeks age, re-check direct bilirubin
 - If need to investigate etiology of unconjugated hyperbilirubinemia: (due to requiring phototherapy or rapid rise of TsB)
 - CBC with manual differential and peripheral smear review
 - Reticulocyte count (elevated in hemolysis)
 - Cord blood type and direct antibody (Coombs) test
 - Consider RBC G6PD assay: if unexplained hemolysis, and especially if ethnicity suggestive of risk for G6PD deficiency

- Perform this test only after retic count normalizes (2-3 weeks later) - elevated retic count can cause falsely normal assay
- Consider urine for reducing substances
- Consider sepsis work up (if indicated by clinical history, physical exam, or CBC)
- Consider cath U/A and urine culture (even in asymptomatic neonate) if >24 hrs age and hyperbilirubinemia persisting / not responding to phototherapy, without other explanation)
- Consider albumin if low, decreased binding of bili, so may want to give albumin IV
- If conjugated hyperbilirubinemia noted
 - LFTs + GGT
 - PT (to assess liver synthetic function)
 - Serum CO2 (to assess for acidosis suggestive of inborn error of metabolism)
 - Ammonia (to assess liver function)
 - Urine reducing substances (to evaluate for galactosemia)
 - TSH and free T4
 - Cultures of blood and urine
 - Alpha-1-antitrypsin genotype
 - Sweat chloride vs. genotype for cystic fibrosis
- Maternal
 - ABO type
 - Rh(D) type
 - Screen for isoimmune antibodies
- 4. Diagnostic imaging
 - Rarely consider (if worried about extravascular blood collection)
 - Head U/S
 - Abdominal U/S
 - If conjugated hyperbilirubinemia noted
 - Abdominal U/S: recommended first study
 - ERCP vs. MRCP: if needed, discuss with pediatric gastroenterology
 - o Other (if conjugated hyperbilirubinemia noted)
 - Liver biopsy
 - Duodenal aspirate via nasoduodenal tube (if bilirubin level in aspirate < serum, highly suggestive of biliary atresia)
- 5. Diagnostic criteria
 - Unconjugated hyperbilirubinemia
 - TsB at level requiring phototherapy or exchange transfusion intervention
 - Conjugated hyperbilirubinemia
 - Total bilirubin <5 mg/dL, direct bilirubin >1 mg/dL
 - Total bilirubin >5 mg/dL, direct bilirubin >20% of total bilirubin

Differential Diagnosis

- 1. Unconjugated hyperbilirubinemia
 - Key differential diagnoses (by age)
 - <24 hours age (must worry about pathologic etiology!)</p>
 - Hemolysis (isoimmune, RBC membrane defect, RBC enzymatic defect)
 - Infection
 - Extravascular blood collection (cephalhematoma, intraventricular hemorrhage, etc.)
 - Polycythemia
 - Infant of diabetic mother
 - 1-3 days age
 - Usually physiologic jaundice
 - Breastfeeding jaundice (breastfeeding failure, >10% weight loss, dehydration)
 - Infection
 - Polycythemia
 - Extravascular blood collection (cephalhematoma, intraventricular hemorrhage, etc.)
 - Infant of diabetic mother
 - 3-7 days age
 - Usually physiologic jaundice
 - Breastfeeding jaundice
 - Infection
 - Prolonged effect from cause noted in early age ranges above
 - Persistence beyond 1 week of age
 - Usually breast milk jaundice (due to inhibitors of conjugation / glucuronidation in breast milk)
 - Prolonged effect from cause noted in early age ranges above
 - Extensive differential diagnoses (by cause)
 - Hemolysis
 - Isoimmune
 - o ABO, Rh(D), or minor antibody incompatibility
 - RBC membrane defect
 - o Hereditary spherocytosis, hereditary elliptocytosis
 - RBC enzymatic defect
 - o G6PD deficiency, pyruvate kinase deficiency, congenital erythropoietic porphyria
 - Infection
 - Bacteremia
 - UTI
 - Meningitis
 - Viremia
 - Other

- Defect in bilirubin conjugation
 - Gilbert's syndrome
 - Crigler-Najjar syndrome
 - OATP-2 polymorphism
- Metabolic disease
 - Congenital hypothyroidism
 - Galactosemia
- Intestinal obstruction
- 2. Conjugated hyperbilirubinemia
 - Key differential diagnoses
 - Extrahepatic obstruction
 - Extrahepatic biliary atresia
 - Choledochal cyst
 - Inspissated bile / mucus plug
 - Cholelithiasis / biliary sludge
 - Infection
 - Viral: TORCH, HIV, adenovirus
 - Bacterial: sepsis, UTI, syphilis
 - Metabolic / genetic disease
 - Alagille syndrome
 - Nonsyndromic paucity of interlobular bile ducts
 - Alpha-1-antitrypsin deficiency
 - Cystic fibrosis
 - Congenital hypothyroidism
 - Toxic
 - Drugs
 - Parenteral nutrition
 - Miscellaneous
 - Shock / hypoperfusion
 - Intestinal obstruction
 - Extensive differential diagnoses
 - Extrahepatic obstruction
 - Tumors / masses
 - Neonatal sclerosing cholangitis
 - Spontaneous perforation of bile ducts
 - Infection
 - Protozoal: Toxoplasma
 - Metabolic / genetic disease
 - Progressive familial intrahepatic cholestasis, types 1-3 (Byler dz)
 - Congenital hepatic fibrosis (Caroli's dz)
 - Inborn errors of metabolism
 - Neonatal hemochromatosis
 - Hypopituitarism / septo-optic dysplasia
 - Miscellaneous
 - Idiopathic neonatal hepatitis

Acute Treatment

- 1. Unconjugated hyperbilirubinemia
 - o ABCs
 - Hydration
 - If patient dehydrated, consider supplemental PO feedings (with expressed breast milk or formula) vs. IV fluid hydration to increase bilirubin clearance
 - Feeding
 - Early and frequent feeding recommended; cessation of breastfeeding not recommended
 - Phototherapy
 - See Treatment thresholds
 - Only appropriate for unconjugated hyperbilirubinemia; causes "bronze baby syndrome" (discolored skin that will not normalize for months) if used for conjugated hyperbilirubinemia
 - Uses specific wavelength of blue light to photoisomerize unconjugated bilirubin into a more hydrophilic form, that can be cleared via the kidneys / urination
 - Maximize skin exposure of neonate (even remove diaper, if feasible and if can keep newborn thermostable)
 - Maximize intensity of phototherapy, ideally via 2 banks of lights from above and a "bili blanket" below
 - Re-check TsB within 4-8 hrs. after starting phototherapy to ensure adequate response (decreasing level)
 - If TsB near threshold for phototherapy, baby appears well, and caregivers are trustworthy, can consider home phototherapy with a "bili blanket" or "bili suitcase", and daily outpatient re-checks with measurement of TsB
 - Exposure to sunlight not effective/safe and not recommended
 - o IVIG
 - Consider if immune-related hemolytic cause and if bilirubin continuing to rise despite intensive phototherapy
 - Double-volume exchange transfusion
 - Rarely necessary
 - Only as a last resort if TsB exceptionally high and/or above doublevolume exchange transfusion threshold and not decreasing rapidly
 - Treatment thresholds
- 2. Conjugated hyperbilirubinemia
 - o Treat underlying cause

Further Management (24 hrs)

- 1. Unconjugated hyperbilirubinemia:
 - o Bilirubin monitoring with phototherapy
- 2. Hospital phototherapy
 - Repeat TsB 4-8 hours after initiation of phototherapy to determine pattern of decrease
 - May spread out TsB monitoring if TsB stable or decreasing

- o May stop phototherapy when bilirubin reaches <13-14 mg / dL; consider 6-8 hour rebound TsB (after stopping phototherapy) if neonate younger than predicted peak serum bilirubin [Link to relevant pathophysiology above]
- 3. Home phototherapy: continue to monitor daily serum bilirubin levels
 - Continue to aggressively feed and hydrate newborn; cessation of breastfeeding not recommended
 - o Conjugated hyperbilirubinemia: treat underlying cause

Long-Term Care

- 1. If severe hyperbilirubinemia:
 - Close developmental follow-up
 - o Consider neurological consultation and follow-up if any abnormalities
 - Consider head CT vs. MRI
- 2. Follow for kernicterus signs and symptoms

Follow-Up

- 1. Return to office
 - o Time frame for return visit:
 - All newborn infants should be evaluated within the first 2-3 days after discharge
 - o Recommendations for earlier follow-up
 - Increasing jaundice
 - Poor feeding
 - Decreased urine output
 - Decreased stool output
 - Lethargy
- 2. Refer to specialist
 - Consider neonatology consultation if signs of kernicterus or if exchange transfusion indicated
 - Consider pediatric gastroenterology or neonatology consultation if direct hyperbilirubinemia noted
- 3. Admit to hospital
 - o If requires intensive phototherapy
 - If dehydrated
 - o If requires double-volume exchange transfusion
 - o If caregivers unreliable

Prognosis

- 1. Unconjugated hyperbilirubinemia:
 - Very good if treated appropriately
 - If untreated and severe, encephalopathy/kernicterus can lead to irreversible CNS damage including cerebral palsy
- 2. Conjugated hyperbilirubinemia:
 - Variable, depends upon etiology

Prevention (of kernicterus)

- 1. Pre-discharge screening of all newborns (exam, consider transcutaneous bilirubin)
- 2. Early hospital follow-up for all discharged infants (within 2-3 days of discharge)
- 3. Pre-discharge education for parents
- 4. Frequent breast feeding along with appropriate support and education for breastfeeding moms (supplementation with water or dextrose water does not prevent hyperbilirubinemia)
- 5. Prenatal testing of maternal blood type (ABO and Rh), and provision of anti-D antibody (Rhogam) to mothers who are Rh-negative
- 6. Screening (ABO, Rh, Coombs) of all babies of type O and Rh negative mothers, and mothers with minor antibodies

References

- 1. American Academy of Pediatrics. Clinical Practice Guideline. Management of Hyperbilirubinemia in the Newborn Infant 35 or More Weeks of Gestation. Pediatrics. 2004 July; 114 (1) 297-316.
- 2. Kliegman: Nelson Textbook of Pediatrics [Internet].18th ed.Saunders, An Imprint of Elsevier;c2008. 102.3 Jaundice and Hyperbilirubinemia in the Newborn; [cited 2008 July 10]. Available from:

 http://www.mdconsult.com.offcampus.lib.washington.edu/das/book/body/992867.36
 - http://www.mdconsult.com.offcampus.lib.washington.edu/das/book/body/992867 36-3/723781660/1608/328.html#4-u1.0-B978-1-4160-2450-7..50104-3-- cesec26_2706
- 3. Porter M, Dennis B. Hyperbilirubinemia in the Term Newborn. Am Fam Physician [Internet]. 2002 Feb 15;65(4):599-606[cited 2008 Jul 10]. Available from: http://www.aafp.org/afp/20020215/599.html
- DynaMed Editorial Team. Neonatal Hyperbilirubinemia. Last updated 2008 June25. Available from DynaMed: http://www.ebscohost.com.offcampus.lib.washington.edu/dynamed. Accessed July 10, 2008.
- 5. Alcock GS, Liley H. Immunoglobulin infusion for isoimmune haemolytic jaundice in neonates. Cochrane Database of Systematic Reviews 2002, Issue 3. Art. No.: CD003313. DOI: 10.1002/14651858.CD003313
- 6. Ip S, Chung M, Kulig J, O'Brien R, Sege R, Glicken S, Maisels MJ, Lau J; American Academy of Pediatrics Subcommittee on Hyperbilirubinemia. An evidence-based review of important issues concerning neonatal hyperbilirubinemia. Pediatrics. 2004 Jul;114(1):e130-53

Author: Lisa Brandes, MD, University of Wyoming FPRP-Cheyenne

Editor: Perry Brown, MD, Idaho State University FPR