PEDs Tuberculosis

Background

- 1. Definition
 - Infection w/ Mycobacterium tuberculosis
- 2. General information
 - Notifiable disease
 - Mandatory reporting⁶

Pathophysiology

- 1. Pathology of disease
 - o Transmission
 - Inhalation of acid fast Mycobacterium tubeculosis
 - Congenital (hematogenous spread)
 - Granuloma
 - Right lung base (ghon focus)
 - o After initial exposure, bacterium can:
 - Progress (infants)
 - Lay dormant without Sx (LTBI)
 - Spread hematogenously to organs
 - Recur years later in the lung (adolescents)
 - Infection chronology
 - 2-6 mos: milliary (disseminated)
 - 4-12 mos: pulmonary/lymphatic
 - 1-2 yr: skeletal
 - 5 yr: renal
- 2. Incidence, Prevalence
 - o 1/3 of global population has LTBI
 - ~11% of these cases are children <15 years⁸
 - New global cases: 9 million/yr
 - New U.S. cases: 13,000/yr⁴
 - Children: 820/yr⁴
 - More prevalent in immuno-compromised individuals and developing countries
- 3. Risk factors
 - Travel to high prevalence areas
 - http://www.mass.gov/Eeohhs2/docs/dph/cdc/tb/endemic_country_lis t.pdf
 - Foreign born individuals
 - 9.5x risk of contracting TB than US born⁴
 - o Immunocompromise (untreated HIV)
 - High risk population contact
 - Prisons
 - Health care workers
 - IV drug users
 - Socioeconomically disadvantaged groups
 - Children <4 years at increased risk for disseminated disease
- 4. Morbidity / mortality

- Mortality low, but difficult to measure⁴
- TB meningitis
 - Mortality 33%
 - Residual neuro deficits in 50%⁴
- Congenital/neonatal TB
 - Mortality 50%⁹

Diagnostics

- 1. History
 - o Chronic cough ≥ 3 weeks (pulmonary dz)
 - Hemoptysis (cavitary lesions)
 - Low grade fever \geq 2 weeks
 - Weight loss
 - o Failure to thrive
- 2. Physical Examination
 - o Pulmonary TB
 - Cough
 - Hemoptysis (cavitary lesions)
 - Extrapulmonary TB
 - Lymphadenopathy: 67%⁴
 - Ant. cervical, post. triangle, submandibular, and supraclavicular
 - Meningitis: 13%⁴
 - Subacute onset, communicating hydrocephalus, stroke, incr ICP
 - Pleural TB: 6 %⁴
 - Older children and adolescent
 - Auscultation mimics pneumonia
 - Miliary TB: 5%⁴
 - Pyrexia, hepatomegaly, splenomegaly
 - Skeletal: 4%⁴
 - Spondylitis (thoracic/lumbar), arthritis, osteomyelitis
 - Congenital TB:
 - Respiratory distress
 - Fever
 - Hepatomegaly
 - Splenomegaly
 - Poor feeding
 - Lethargy, irritability
 - Low birth weight
- 3. Diagnostic Testing
 - o PPD
 - Measure induration (not erythema) 48-72 hours after injection of 0.1 ml PPD
 - Becomes positive 3 wks to 3 mos after infection and stays positive for life
 - False negative
 - Infants, untreated HIV, miliary TB

- False positive
 - Nontuberculous mycobacterium, multiple sequential PPD tests
 - BCG vaccine in past 10 yrs
 - Protects against meningeal and disseminated TB (not pulmonary TB) it is advised to treat a positive PPD in a vaccinated person the same as in a non vaccinated person¹³
- Sensitivity
 - 60% immunocompetent (culture-confirmed TB)
 - 90% pulmonary TB,
 - 80% extrapulmonary TB
 - 50% miliary or meningeal TB ^{2,7,10,12,13}
- Chest X-ray
 - 1° ghon focus
 - Calcification in lower right hilum
 - 2° reactivation
 - Does not typically occur in lung apex as in adults
 - Findings include
 - Infiltrates
 - Nodules
 - Consolidation
 - Cavities
 - Fibrosis
- o Bacteriologic confirmation (30-40% of cases)
 - Gastric aspirates (for swallowed sputum)
 - 3 early AM aspirates before child eats or ambulates
 - Induced sputum culture
 - Must be induced, children often lack tussive force
- Whole Blood Interferon-Gamma Release Assays (IGRAs)
 - No false positive result from other mycobacteria or past BCG
 - No return visit
 - Like PPD, does not distinguish LTBI and TB dz
- 4. Diagnostic criteria⁴
 - Clinical case definition
 - Must include all:
 - Pos tuberculin skin test or positive IGRA for M. tuberculosis
 - Other s/s of TB:
 - Abnl CXR
 - Abnl chest CT
 - Other chest imaging study or clinical evidence of current dz
 - Tx with ≥ 2 anti-TB medications
 - Completed diagnostic evaluation
 - o Laboratory criteria for diagnosis
 - Must incl 1 of the following:
 - Isolation of M. tuberculosis from clinical specimen
 - M. tuberculosis complex found by nucleic acid amplification test (NAAT)

- Evidence of acid-fast bacilli in clinical specimen when culture
 - Has not/cannot be obtained
 - Falsely negative or contaminated

Differential Diagnosis

- 1. Key DDx
 - o Fever
 - Lymphoma/Leukemia
 - Pertussis
 - Pneumonia
 - Weight Loss
 - Lymphoma/Leukemia
 - Cough
 - Bronchitis
 - Pertussis
 - Pneumonia
 - Empyema
- 2. Extensive DDx
 - Wegener's granulomatosis
 - o PCP
 - Sarcoidosis
 - Cystic Fibrosis

Therapeutics

- 1. Overview
 - Respiratory isolation
 - Establish case source
 - Report to local public health authorities
 - Standard of care: Directly Observed Therapy (DOT)
 - Completion rate of therapy rises from 50% to 100%³
- 2. Tx protocol
 - o TB exposure
 - <4 yo or immuno-compromised:</p>
 - Start INH pending results of PPD testing
 - D/c treatment if PPD is negative
 - >4 years of age and immuno-competent: place PPD
 - o LTBI (positive PPD without symptoms)
 - INH for 9 months (SOR:B), or
 - INH and Rifampin for 3 months (SOR:A)
 - Randomized controlled trials, but not yet on CDC recommendations¹¹
 - o TB disease: Combined treatment with
 - INH 6 months
 - Side effects: hepatotoxicity, abdominal pain, dark urine, pale stools
 - Rifampin 6 months
 - Side effects: reddish orange body fluids, hepatotoxicity

- Pyrazinamide 2 months
 - Side effects: gout, rash
- Ethambutol 6 mos if case source not susceptible to all 3 other drugs
 - Side effect: optic neuritis
- Disseminated TB, persistent positive sputum cultures, cavitary lesions, or HIV positive:
 - Treat 9-12 mos
- Drug resistant TB:
 - Treat 12-18 mos
- o If Tx interrupted for ≥ 14 d, restart course from the beginning
- Always add ≥ 1 drug if resistance occurs to current regimen
- No age cut off for Tx of LTBI or TB disorder

Follow-Up

- 1. Return to office
 - o Monthly f/u to check adherence to Tx, wt gain and milestones
 - Pulmonary dz
 - CXR 1-2 mos after beginning Tx
- 2. Refer to specialist
 - Multi-drug resistant TB (MDR-TB)
- 3. Admit to hospital:
 - o Respiratory collapse/organ failure

Prognosis

- 1. LTBI → TB dz
 - >3 yo: 5-10% progress within in 1-2 years
 - o <3 yo: 30-40%⁴
- 2. LTBI Tx 100% effective if "excellent" adherence⁴
- 3. TB dz has cure rate 95-100% with good adherence to Tx⁴
- 4. Clinical cure 100% of children with LTBI if adherence to Tx

Prevention

- 1. Chemoprophylaxis of exposed or LTBI children (see therapeutics section)
- 2. Respiratory Isolation of confirmed cases of TB disease
- 3. Treatment of source cases
- 4. BCG vaccine only approved in the U.S for HIV negative, PPD negative children continually exposed to MDR-TB who cannot be removed from that setting or receive chemo prophylaxis

References

- 1. Advisory Council for the Elimination of Tuberculosis (ACET) *The Role of BCG* Vaccine in the Prevention and Control of Tuberculosis in the United States A Joint Statement by the Advisory Council for the Elimination of Tuberculosis and the Advisory Committee on Immunization Practices. CDC Morbidity Mortality Weekly Report April 26, 1996 / 45(RR-4);1-18
- American Academy of Pediatrics. *Tuberculosis*. In: Red Book: 2009 Report of the Committee on Infectious Diseases, 28th ed, Pickering, LK (Ed), American Academy of Pediatrics, Elk Grove Village, IL 2009. p. 680.

- 3. Campos-Outcalt D, *Tuberculosis, Old Problems, New Concerns*. The Journal of Family Practice. October 2003. Vol 52, No 10 pg 792-798.
- 4. Cruz AT, Starke JR, *Pediatric Tuberculosis*. Pediatrics in Review. 2010, 31; 13-26.
- CDC. (2009, June) CDC Tuberculosis Surveillance Data Training: Report of Verified Case of Tuberculosis (RVCT) Instruction Manual. Atlanta, GA: U.S. Department of Health and Human Services, CDC. (Appendix A - Tuberculosis Case Definition for Public Health Surveillance) Available at: ftp://ftp.cdc.gov/pub/Software/TIMS/2009%20RVCT%20Documentation/RVCT%20Training%20Materials/RVCT%20Instruction%20Manual.pdf
- 6. Centers for Disease Control and Prevention. [Summary of notifiable diseases—United States, 2007]. Published July 9, 2009 for MMWR 2007;56(No. 53):[1-3]. Available at: http://www.cdc.gov/mmwr/PDF/wk/mm5653.pdf
- 7. Hatherill, M, Hawkridge, T, Zar, HJ, et al. *Induced sputum or gastric lavage for community-based diagnosis of childhood pulmonary tuberculosis?*. Arch Dis Child 2009; 94:195.
- 8. Nelson, LJ, Wells, CD. *Global epidemiology of childhood tuberculosis*. International Journal of Tuberculosis Lung Disease 2004; 8: 636.
- 9. Starke, JR. *Tuberculosis in childhood and pregnancy*: In: Friedman LN, editor. Tuberculosis: current concepts and treatment. 2nd ed. Boca Raton: CRC Press; 2000.
- 10. Steiner, P, Rao, M, Victoria, MS, et al. *Persistently negative tuberculin reactions:* their presence among children with culture positive for Mycobacterium tuberculosis (tuberculin-negative tuberculosis). Am J Dis Child 1980; 134:747.
- 11. Safranek S, Sharma U. What is the recommended approach to asymptomatic patients who develop a reactive PPD? February 2006. The Journal of Family Practice, Vol 55, No 2 pg 163-165.
- 12. van den Bos, F, Terken, M, Ypma, L, et al. *Tuberculous meningitis and miliary tuberculosis in young children*. Trop Med Int Health 2004; 9:309.
- 13. van der Weert, EM, Hartgers, NM, Schaaf, HS, et al. *Comparison of diagnostic criteria of tuberculous meningitis in human immunodeficiency virus-infected and uninfected children*. Pediatr Infect Dis J 2006; 25:65.

Authors: Michael Flanagan, MD, & Matt Chabot, MD, Penn State Hershey Medical Center, PA

Editor: Juan Jan Qiu, MD, Penn State Hershey Medical Center, PA