Aortic Stenosis (AS)

Background
1. Definitions
 - Failure of the aortic valve to open completely, resulting in left ventricular outflow obstruction during systole
 - Normal valve area is 3.0 to 4.0 cm².
 - As aortic stenosis develops, minimal valve gradient is present until the orifice area becomes less than half of normal
 - Low gradient aortic stenosis
 - severe aortic stenosis (valve area <1.0 cm²)
 - transvalvular pressure gradient of less than 30 mmHg¹
 - Severity is determined by valve area: Error! Bookmark not defined.
 - Mild AS: valve area > 1.5 cm²,
 - Moderate AS: valve area 1-1.5 cm² and
 - Severe AS: valve area <1.0 cm²
 - Critical aortic stenosis < 0.75 cm² or the Doppler aortic jet velocity over 5 m/sec
 - True stenosis
 - severe aortic stenosis with secondary LV dysfunction that results in low transvalvular pressure gradient

2. General information
 - Most common cause (USA and Europe)
 - 70 year and older: predominantly degenerative calcification of aortic valve
 - Age under 70: predominantly bicuspid valve²,³
 - Worldwide rheumatic heart disease is still the main cause
 - Guidelines: American Heart Association and American College of Cardiology Guidelines for Treatment of Valvular Heart Disease
 - www.americanheart.org

Pathophysiology
1. Pathology of disease
 - Narrowed valve orifice leads to left ventricle (LV) outflow obstruction
 - Increased LV afterload, wall stress, and myocardial oxygen demand
 - compensatory LV hypertrophy
 - Increased atrial contraction to maintain stoke volume
 - Eventually heart cannot meet increased demand
 - decreased stroke volume, cardiac output, heart failure
 - As stenosis increases aortic/mitral regurgitation may develop
 - Acquired aortic stenosis
 - Age-related degenerative calcification of anatomically normal valves
 - Most common type of aortic stenosis
 - Calcification from wear and tear of abnormal valves
 - Bicuspid or unicuspid aortic valves
 - Valves scarred from rheumatic fever
 - Calcification of valves due to systemic process
 - Paget's disease
 - Chronic renal failure
• Rheumatoid arthritis
• Chlamydia pneumonia infection

○ Congenital aortic stenosis
 ▪ Congenital defect of atrial valve in which leaflets are fused and/or
 underdeveloped
 ▪ Often accompanies other congenital heart defects such as patent ductus
 arteriosus, coarctation of the aorta

2. Incidence/prevalence
 ○ Most common valve lesion in US
 ○ 2% of US population, 3% of population above 75, and 4% percent population
 above age 85 have the disorder
 ○ 1-2% of US population has bicuspid valve
 ○ Congenital aortic stenosis male: female ratio is 4:1

3. Risk Factors
 ○ Risk factors for degenerative calcification
 ▪ Male gender
 ▪ Increased age
 ▪ Hyperlipidemia
 ▪ Chronic kidney disease
 ▪ High low density lipoprotein (LDL) and hiperlipoproteinemias
 ▪ Smoking
 ○ Abnormal valves
 ▪ Bicuspid or unicuspid aortic valve
 ▪ Valves scarred from rheumatic fever
 ▪ Aortic Sclerosis
 ○ Congenital AS
 ▪ Increased risk with other congenital heart lesions

4. Morbidity/Mortality
 ○ Progression from asymptomatic to symptomatic AS varies, but averages about 5
 yr
 ○ When symptoms develop, if untreated, mortality exceeds 90% within a few years
 ▪ Development of angina: 5-year mean survival
 ▪ Development of syncope: 3-year mean survival
 ▪ Development of CHF: 2-year mean survival
 ▪ Good prognosis with aortic valve replacement (AVR)
 ▪ High mortality if symptomatic patients do not undergo AVR
 ▪ Pulmonary HTN can develop with severe AS and indicates poor prognosis
 ○ Asymptomatic patients have 1% mortality/year. Some may qualify for surgery
 ○ Increased risk of infective endocarditis (IE)
 ○ Increased bleeding tendency
 ▪ Association of AS with gastrointestinal angiodysplasia
 ○ Severe AS is a risk factor for perioperative morbidity and mortality in noncardiac
 surgery

Diagnostics
1. History
 ○ Variable asymptomatic period
 ○ Symptoms usually appear when valve area < 1 sq.cm
1. Symptoms
- Decreased exercise tolerance and dyspnea on exertion are most common symptoms
- Classic triad of angina, syncope and heart failure develop as disease progresses
- Atrial Fibrillation uncommon but can come with heart failure

2. Physical Exam
- Carotid pulse
 - Weak, late and slowly rising (parvus and tardus)
- Cardiac auscultation
 - Soft, single S2, may be split with severe disease
 - Ejection click heard with bicuspid aortic valve
 - S4 due to vigorous atrial contraction
 - Harsh ejection systolic crescendo/decrescendo murmur at right upper sternal border (RUSB), radiating to carotids
 - Mild to moderate AS has early peaking and severe stenosis has late peaking
 - Most patients with severe stenosis have grade 3, but many have grade 1-2
 - Soft diastolic murmur (if aortic regurgitation)

3. Diagnostic Test
- Laboratory evaluation
 - Brain natriuretic peptide (BNP)
- Diagnostic imaging
 - CXR
 - Normal if AS is mild or moderate
 - With severe disease
 - Calcification of aortic leaflets and aortic roots
 - LV hypertrophy (rounding of LV apex)
 - Poststenotic dilatation of ascending aorta
 - EKG
 - Non specific
 - LVH commonly, A-fib occasionally if heart failure present
 - Echocardiogram (most sensitive)
 - Thickened/calcified aortic leaflets
 - Small aortic valve orifice during systole
 - May see bicuspid aortic valve
 - LV wall hypertrophy but normal chamber size
 - Jet velocity, left V-A gradient and valve area measured with Doppler
 - Concurrent aortic or mitral regurgitation can be picked up
 - PA pressure can be high in about 15%
 - Recommended echo frequency: yearly for severe, every 1-2 yr for moderate and every 3-5 yr for mild AS
 - MRI
 - Velocity- encoded MRI an option to measure antegrade velocity
 - Other
 - Cardiac catheterization
 - Only in asymptomatic patient if non invasive tests inconclusive
Differential Diagnosis

1. Key differential diagnoses
 - Cardiac
 - Ischemic heart disease
 - EKG, cardiac enzyme and echo helpful to differentiate
 - Both AS and CAD can present with angina.
 - AS and CAD can coexist
 - AS can cause ischemia w/o CAD
 - CHF (CXR, BNP, Echo)
 - Both AS and CHF can present with dyspnea
 - HF is also a late complication of AS
 - Other valvular heart disease (auscultation, echocardiogram)
 - Pericardial tamponade (history, pulsus paradoxicus, distended neck veins, echo)
 - Infectious
 - Endocarditis (fever, positive blood cultures, echocardiogram)
 - Rheumatic fever (post streptococcal pharyngitis, elevated ASO titer)
 - Aortic dissection (exam, CT scan)
 - Pulmonary embolus (tachycardia, tachypnea, positive V/Q scan or CT angiogram)

2. Extensive differential diagnosis
 - Cardiac
 - Hypertrophic cardiomyopathy (murmur changes with valsalva and standing)
 - Dilated cardiomyopathy
 - Hypertensive heart disease
 - Pericarditis
 - Arrhythmias
 - Aortic sclerosis: can cause AS (echo)
 - Hyperthyroid Pulmonary
 - COPD Asthma
 - Neurological Stroke or seizures (history, physical, CT scan head, EEG)
 - Chagas disease: parasitic cardiomyopathy endemic in South/Central America

Surgical Treatment

1. Introduction
 - Aortic valve replacement is definitive and mainstay of treatment
 - It is the only effective treatment of severe AS

2. Strong Indications
 - Symptomatic severe AS
 - Severe AS in patients going for CABG or cardiac surgery
 - Severe AS with LVEF < 50%

3. Possible Indications
 - Moderate AS in patients going for CABG or cardiac surgery (class 2 Indication)
 - Strong possibility of rapid disease progression (especially in remote area)
 - Development of symptoms on stress test

4. Benefits of surgery
 - Excellent overall prognosis

5. Risks of Surgery
 - Asymptomatic patient with severe AS need close risk benefit assessment.
If surgical mortality is not <2-3%, the operative risk outweighs risk of sudden death in asymptomatic patient on conservative treatment.

AVR does not eliminate the risk of sudden death. Other complications: prosthesis dysfunction, paravalvular leak, thrombus formation, arterial embolism, endocarditis.

Increased bleeding risk with anticoagulation.

6. Types of Valve Replacements

- **Mechanical**
 - Benefits
 - Long lasting
 - Drawback
 - Need for anticoagulation

- **Tissue**
 - Benefits
 - No need for anticoagulation
 - Drawback
 - Need to be replaced after 10-15 years

Types of tissue valves
- Porcine transplant from pig
- Bovine transplant from cow
- Homograft (allograft)-human cadaveric transplantation

Procedures

1. **Ross procedure**- First performed in 1967, the Ross procedure has been the preferred method for pediatric aortic valve replacement. The patient's own pulmonic valve is used to replace the aortic valve. A cadaveric pulmonic valve is then used to replace the patient's pulmonic valve.
 - Benefits
 - The valve grows with the patient
 - Reduced risk of thromboembolism
 - No need for anticoagulation.
 - Favourable hemodynamics
 - Drawbacks
 - Often require re-operation in later life
 - Single valve disease treated with a two valve procedure

2. **Bentall procedure**- First performed in 1968, a graft is used to replace the aortic valve and/or the ascending aortic root with reimplantation of the coronary arteries into the graft.

3. **Percutaneous Valve Replacement**- Widely used in Europe in patients who aren't candidates for open heart procedure, clinical trials are ongoing in the United States (see the PARTNER trial at http://www.clinicaltrials.gov/ct/show/NCT00530894?order=4)

Therapeutics

1. **Acute Therapy**
 - ABCs, IV, O2, monitor
 - Acute angina should be treated with ACS protocol
 - Heart Failure:

Aortic Stenosis

Page 5 of 9

11.30.10
• Acute HF with severe AS should treated in ICU
• Volume status, diuretic, vasodilator21, beta blocker
• Nitroprusside can be considered in acute setting22
 o Hypertension
 ▪ ACE inhibitors OK, diuretics, beta blockers and nitrates with caution
 o Atrial Fibrillation (AF): treated same as in patient without AS

2. Long-Term Care
 o No medical treatment proven to delay disease progression
 o Physical activity/exercise: recommendation varies with degree of stenosis and symptoms23

3. Endocarditis prophylaxis
 o High peak gradient across the valve carries a greater risk of IE.
 o Overall incidence is low
 o AHA/ACC recommends prophylaxis only if highest risk:24
 ▪ Patients with prosthetic valves,
 ▪ Previous IE
 ▪ Certain types of congenital heart disease
 ▪ Cardiac transplantation patients with valvopathy
 o Educate for dental hygiene and regular dental visits

4. Medical treatment
 o Treat high cholesterol with statins25
 o Control of hypertension:
 ▪ consider ACE inhibitors26
 ▪ Vasodilators (esp. nitrates) can decrease preload and cause hypotension
 ▪ Avoid (esp. in severe AS)
 ▪ Heart Failure
 ▪ Cardiac arrhythmias are poorly tolerated and should be treated
 o Volume status, diuretic, vasodilator \textbf{Error! Bookmark not defined.}
 o Negative inotropes (esp. beta-blockers and nondihydropyridene CCBs [verapamil, diltiazem]) can worsen heart failure

\textbf{Follow-Up}
1. Asymptomatic patients
 o Mild AS: Echo every 3-5 year
 o Moderate AS: Echo every 1-2 year
 o Severe As: Annual echo \textbf{Error! Bookmark not defined.}
 o Stress test to see abnormal response (an indication for AVR)

2. Symptomatic patients
 o Refer to cardiologist for urgent evaluation for valve replacement

3. Admit to hospital
 o Uncontrolled symptoms of CHF, angina, or syncope

\textbf{Prognosis}
1. Usually slowly progressive until symptoms develop
 o Angina: 5-year mean survival
 o Syncope: 3-year mean survival
 o CHF: 2-year mean survival
2. Excellent prognosis following surgery

Prevention
1. Aortic stenosis cannot be prevented

Patient Education
1. Medline Plus information pages:
2. AAFP information page: http://www.aafp.org/afp/2008/0915/p725.html

Evidence-Based Inquiry
1. When should patients with asymptomatic aortic stenosis be evaluated for valve replacement?

References
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T10-3Y9X75NF-F&_user=8121862&_coverDate=01%2F15%2F2000&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000065493&_version=1&_urlVersion=0&_userid=8121862&md5=30c113ab6c3b94daee869453594cc76d9

http://eurheartj.oxfordjournals.org/content/28/2/230.full.pdf+

http://www.contentnejmorg.zuom.info/cgi/content/full/343/9/611

http://www.ahjonline.com/article/S0002-8703(99)00505-0/abstract

http://circ.ahajournals.org/cgi/content/full/107/14/1884

Author: Asghar Bajwa, MD, LSUHSC FPRP Kenner, LA

Editor: Michele Larzelere, PhD, LSUHSC FPRP Kenner, LA