INBORN ERRORS OF METABOLISM (IEM)
A GENERAL OVERVIEW

Background
1. General Information
 o Classification
 - Traditionally IEM have been classified according to the type of metabolism involved. (note Purine & Pyrimidine disorders, Porphyrias, and Metal metabolism disorders are classified as IEM by only some sources. They are included here in my attempts to be thorough.)
 • Amino Acid Disorders
 • Organic Acidemias (acidurias)
 • Urea Cycle Defects
 • Disorders of Carbohydrate Metabolism
 • Fatty Acid Oxidation Defects
 • Mitochondrial Disorders
 • Peroxisomal Disorders
 • Lysosomal Storage Diseases
 • Purine and Pyrimidine Disorders
 • Porphyrias
 • Metal Metabolism Disorders
 o Screening
 - Tandem Mass Spectrometry has been mandated in multiple states.
 - Information on current national & state-by-state screening can be found through the online resource: http://genes-r-us.uthscsa.edu/ (National Newborn Screening and Genetics Resource Center).

Pathophysiology
1. Pathology of Disease:
 o IEM occur when an enzyme or its cofactor(s) are either absent or abnormal and as a result, leads to an accumulation of substrate or deficiency of metabolic products.
 o The physiologic manifestations of an IEM are dependent on the specific metabolite(s) involved.
2. Incidence
 o There is no consensus on the incidence of IEM
 o Most estimates are regionally specific, and exhibit significant variation between different racial and ethnic groups.
 o One estimate of the collective incidence of IEM was around 1:1500 persons
3. Risk Factors
 o Positive Familial History (modes of inheritance of common IEM):
 - Autosomal dominant:
 • Marfan syndrome
 • Acute intermittent porphyria
 • Familial hypercholesterolemia
 - Autosomal recessive:
 • PKU (Phenylketonuria)
• MSUD (Maple syrup urine disease)
• Glycogen storage disease
• Galactosemia
• Organic acidurias
• MCAD (medium chain acylCoA dehydrogenase deficiency)
• Zellewerger syndrome
 ▪ X-linked recessive:
 • Ornithine carbamylase deficiency
 • Fabry disease
 • Pyruvate dehydrogenase deficiency
 ▪ Mitochondrial:
 • Kearns-Sayre syndrome
 • Leigh syndrome

Diagnostics

1. Presentation
 o Onset & Severity may vary with:
 ▪ individual disease processes/severity of disease
 ▪ age of individual
 ▪ changes in:
 • diet/fasting
 • hydration/dehydration
 • exercise/exertion/stress
 • concurrent illness/infection/trauma
 • medications/supplements
 o Symptomatic Infants:
 ▪ The clinical picture varies between different metabolic disorders. However, there are general characteristics that are common.
 • Afflicted individuals are usually asymptomatic in the early stages of most inborn metabolic disorders.
 • Early signs of an IEM include (Acute presentation):
 o Lethargy
 o Decreased appetite/feeding
 o Vomiting
 o Tachypnea (associated with acidosis)
 o Decreased perfusion
 o seizures
 • As the metabolic derangement progresses, so does its manifestations
 o Increasing stupor or coma
 o Progressive neuromuscular abnormalities
 ▪ tone (increased or decreased)
 ▪ spasticity
 ▪ posturing (opisthotonus, fisting)
 ▪ movements (lip smacking, tongue thrusting, myoclonic jerks)
 o Symptomatic Older Infants & Children (Chronic presentation)
 ▪ Paroxysmal stupor/lethargy
 ▪ Emesis
- Failure to thrive
- Organomegaly (classically hepatosplenomegally)
- Neurometabolic findings
 - Macro/microcephaly
 - Hypotonia
 - Hypertonia +/- spasticity
 - seizures
 - Skeletal abnormalities
 - Coarse facial features
 - Macular or retinal changes
 - Corneal clouding
 - Skin changes
- Regression of previously achieved developmental milestones.
 - Loss of cognitive milestones
 - Loss of expressive/receptive language abilities
- Progressive decline/deficits in attention, focus, and/or concentration.
- Maladaptive behavioral changes/decline

2. Diagnostic testing:
 - Initial Laboratory Investigations
 - Blood
 - CBC (complete blood count)
 - CMP (complete metabolic panel/chem12)
 - Hepatic & Renal Function
 - Electrolytes
 - Uric Acid
 - Serum Ammonia
 - Obtain without tourniquet
 - Transport on ice for immediate analysis
 - ABG (arterial blood gas)
 - Urine
 - Urinalysis
 - pH
 - color
 - odor
 - specific gravity
 - ketones
 - Urine-reducing substances
 - Additional Laboratory Investigations
 - Blood/Plasma
 - quantitative amino acids
 - lactate
 - Obtain without tourniquet
 - Transport on ice for immediate analysis
 - pyruvate
 - Obtain without tourniquet
 - Transport on ice for immediate analysis
 - Collect in perchlorate to prevent degradation
 - aldolase, creatine kinase
 - acyl carnitine kinase
• lipid Profile
 • Urine
 • qualitative amino acids
 • organic acids
 • myoglobin
 • Imaging
 • MRI brain
 • echocardiogram
 • Biopsy
 • muscle
 • skin
 • Genetic
 • as indicated
 • Laboratory findings & likely metabolism involved
 • Metabolic Acidosis with:
 • Anion gap
 o Organic Acidemias
 • Respiratory Alkalosis
 • Urea Cycle Disorders
 • Hyperammonemia
 • Urea Cycle Disorders
 • Organic Acidemias
 • Lactic acidosis
 • Mitochondrial disorders
 • Glycogen storage diseases
 • Disorders of Glyconeogenesis
 • Disorders of Pyruvate metabolism
 • Organic acidemias
 • Disorders of fatty acid oxidation
 • Aminoacidurias
 • High lactate/pyruvate ratio (normal: 10/1 to 20/1)
 • Mitochondrial disorders
 • Pyruvate carboxylase deficiency
 • Acylcarnitine profile (abnormal)
 • Disorders of fatty acid oxidation
 • Organic acidemias
 • Hypoglycemia
 • with ketosis
 o Glycogen storage diseases
 o Organic acidemias
 • without ketosis
 o Glycogen storage diseases
 o Maple syrup urine disease
 o Disorders of fatty acid oxidation
 o Disorders of ketogenesis
 • Quantitative amino acid profiles
 • Patterns are specific for individual disorders
 • Urine organic acids
 • Patterns are specific for individual disorders
Management

1. Specific to individual disorders and is outside the scope of this general overview.

References

Author: Michel Ritenuti, MD, Penn State Hershey Medical Center, PA

Editor: Dongsheng Jiang, MD, Penn State Hershey Medical Center, PA