POPLITEAL ARTERY ENTRAPMENT SYNDROME

Background
1. Definition: Rare cause of exertional leg pain
 o Due to an abnormal relationship between popliteal artery and surrounding myofascial structures in popliteal fossa.

Pathophysiology
1. Pathology of Disease
 o Structural—multiple variations. May be most important to describe the arterial path.
 ▪ Classification 1
 • Type I
 o Popliteal artery loops medially then deep to normal positioned medial gastrocnemius.
 • Type II
 o Artery lies in normal position but is compressed by laterally displaced edge of gastrocnemius.
 • Type III
 o Medial gastrocnemius has additional musculotendinous slip on lateral side, compressing artery as it runs into muscle bulk.
 • Type IV
 o Artery loops medially and then deep to medial gastrocnemius
 o Is compressed by fibrous bands tethered to artery.
 • Type V
 o Artery and vein loop medially then deep to normal positioned medial gastrocnemius.
 • Type VI
 o Normal anatomy with compression of vasculature during exercise by muscle and tendon structures
 o Functional 2
 ▪ Anatomically normal
 ▪ Muscle hypertrophy constricts artery with contraction.
 ▪ Theoretical compression between medial gastrocnemius and lateral condyle of femur.

2. Incidence, Prevalence
 o Absolute rates of occurrence cannot fully be described due to previously under recognized pathology.
 o Reports of 0.165%-3.5% of general population 3,4
 o Bilateral entrapment common: 27-67% of presenting patients 5,6

3. Risk Factors
 o Young Athletes
 o Male > Female—may be over-representation due to historic predominance of male athletes and military based studies 7
4. Morbidity / Mortality
 o Progressive condition
 o Symptoms correlate with degree of entrapment.
 § Repetitive trauma to arterial intima leads to intrinsic atherosclerosis and/or thrombus.
 § Intraluminal stenosis can lead to poststenotic dilation and aneurysm formation.
 § Distal embolic disease can lead to ischemia.

Diagnostics
1. History
 o Population:
 § Young, active, fit individuals often involved in military or athletics.
 § Higher muscle development may unmask occult pathology.
 o Presentation:
 § 90% with claudication - lower extremity pain at a reproducible duration and intensity of exercise, which resolves with rest.
 § 10% with acute or chronic ischemia signs and/or symptoms
 § Often free of atherosclerotic risk factors due to younger age at onset.
2. Physical Examination
 o Normal at rest
 o Pulses:
 § Decreased dorsalis pedis and posterior tibial pulse in plantar flexion compared to dorsiflexion considered highly sensitive.
 o If aneurismal formation: pulsatile mass in popliteal fossa
 o Venous involvement may occur and lead to exertional leg swelling.
3. Diagnostic Testing
 o Ankle/Brachial Index: ratio of blood pressure in ankle to arm. Calculated by dividing systolic blood pressure at ankle by systolic blood pressure in arm
 § Rest: Normal ABI > 1
 § Stressed (either plantar flexion or treadmill stress test):
 o ABI < 1 suggestive of exercise induced arterial insufficiency
 • Indicates need for further diagnostic testing.
 o Diagnostic imaging
 § All modalities:
 • Test or image bilateral popliteal artery due to common bilateral disease.
 • Bilateral exam of lower extremity in neutral, active plantar flexion, and passive dorsiflexion.
 § Digital Subtraction Angiography (DSA): Historically considered as reference standard.
 § Advantages:
 o Clearly shows anatomic features of arterial lesions
 o Typical popliteal artery findings:
 • Medial deviation of proximal portion
Segmental occlusion in mid-portion
- Post-stenotic dilation in distal portion
 - Suggestive finding: artery patent in neutral but absent in active plantarflexion or passive dorsiflexion.

- Limitations:
 - Invasive
 - Unable to show soft-tissue structures leading to entrapment
 - Unable to differentiate entrapment vs. arteriosclerosis or degenerative causes.

- Doppler Sonography11,12
- Advantages:
 - Quick, inexpensive, non-invasive
- Limitations:
 - False-positive possible
 - Common in athletes with developed musculature13
 - Poor identification of soft-tissue structures

- CT Angiogram (CTA)6,11
- Advantages:
 - Rapid high spatial-resolution images
 - Delineates muscle, vessel, fat tissue, and bone
 - Positional relationship of muscle to artery
 - Provides axial images.
 - Allows grading of stenosis/occlusion
 - 3-D reconstruction aids surgical planning.
 - Better than DSA at evaluating etiology of occlusion from arteriosclerosis and/or thrombus.
- Limitations:
 - Radiation exposure
 - Contrast dye
 - Less specificity in soft tissues than MRI

- Magnetic Resonance Imaging (MRI) & Magnetic Resonance Angiography (MRA)11
- Advantages:
 - Noninvasive, no radiation.
 - Best soft-tissue resolution, superior to CTA.
 - Provides surgically relevant anatomy
 - Able to investigate adventitia of artery.
- Limitations:
 - Expensive
 - Motion artifact common, especially with provocative, active plantarflexion.

Differential Diagnosis
1. Key Differential Diagnoses
 - Medial Tibial Stress Syndrome
o Stress Fracture of tibia or fibula
o Muscle Strain
o Tendinopathy
o Peripheral nerve entrapment, superficial peroneal or saphenous nerve
o Chronic exertional compartment syndrome
o Endofibrosis (external iliac artery)

Therapeutics

1. **Acute Treatment**
 - Avoid exacerbating activity

2. **Definitive Treatment**
 - Refer to Vascular surgery for surgical treatment.
 - **Structural Entrapment:**
 - Bypass graft or Vascular repair
 - Repair of musculotendinous anomaly
 - **Functional Entrapment:**
 - Musculotendinous resection
 - **Prognosis:**
 - Good to excellent surgical response.
 - Progressive disease without surgical correction.

References

Author: Robert Amrine, MD, FMR of Idaho

Editor: Carol Scott, MD, University of Nevada Reno FPRP