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Abstract 

Chapter 1. Improved Measures of Financial Risk for Hedge Funds 

During the current financial crisis, several US and foreign banks and investment 

firms have failed due to excessive losses in some of their investments. Many of these 

financial institutions relied on a widely-used risk model known as the Value-at-Risk 

(VaR) to gauge the risks taken by their businesses, and several authors have pointed to 

some key flaws in the VaR measure that tend to understate the risks that these firms 

actually faced. In particular, VaR does not properly account for the joint risks of 

investments based on more than one asset (i.e., the risk measure is not subadditive). Also, 

VaR computations are commonly based on the assumption that the probability 

distribution of asset returns is normal (Gaussian), which understates the probability of 

encountering large losses for some investments.  

To overcome the subadditivity flaw of VaR, researchers in financial economics 

have proposed an alternative measure, the Conditional Value-at-Risk (CVaR), which is 

defined as the expected losses that are strictly larger than the VaR. The CVaR measure 

may more appropriately compute the potential losses associated with holding two or more 

assets.  

The purpose of this paper is to evaluate two recent innovations in the financial 

economics literature that may help banks and investment firms to properly assess the 

risks they face. First, we employ Extreme Value Theory (EVT) to estimate non-normal 

models of the return distribution tails. In particular, we use the peaks-over-threshold 

(POT) method in which extremes are defined as excesses over a threshold, and we 
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estimate the marginal (univariate) return distributions. The POT observations are used to 

estimate the Generalized Pareto (GP) model of the upper and lower tail areas of the return 

distributions.  Second, we use the estimated GP models to compare the relative 

performance of the VaR and CVaR for assessing forward-looking risk in observed hedge 

fund returns.  The main objective of this analysis is to evaluate competing claims from 

the financial economics literature about the relative importance of the VaR flaws (e.g., 

subadditivity) and probability model specification errors in risk measurement. 

Chapter 2. Optimal Hedging under Copula Models with High Frequency Data 

The current financial disturbance is partly due to the failure of risk management 

tools to warn of rapidly-evolving market events.  One important lesson gained from this 

experience is that we must improve our ability to manage such financial risks by 

developing a better understanding of the microstructure of financial markets.  

Accordingly, we may be able to use models based on high frequency (e.g., intra-day) 

financial data to better assess the current risk of financial positions and to improve our 

predictions of future price movements.  However, there are special problems associated 

with modeling high frequency data -- for example, previous research shows that high 

frequency returns might be correlated in a nonlinear fashion.  To handle these problems, 

we may use copula-based probability models, which represent the dependence structure 

and the univariate marginal properties of the risky asset returns. The methodology turns 

out to be useful in such a way that multivariate non-normality is readily modeled and the 

associated correlation parameter is easily updated on the basis of time varying structure. 

We estimate these models in order to determine optimal hedge ratios for currency futures 
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positions used to manage price return risks in spot exchange rates. A Dynamic hedging 

strategy with futures contracts is considered to allow the hedge position to be adjusted 

over time. With the dynamic strategy, hedgers should be able to improve hedging 

performance over a static hedging strategy, which keeps a constant hedge ratio over time. 

Various GARCH models are used to capture the volatility of the value of short futures 

positions coupled with foreign exchange rate fluctuations.  For the purpose of measuring 

the conditional dependence between the two asset returns in a GARCH context, we use 

the Copula-based GARCH models. We compare the performance of the alternative 

dynamic hedging models with the hedging effectiveness of the static model. 

Chapter 3. Copula Model Selection Based on Non-Nested Testing 

The copula approach adopted in Essay 2 may be used to model any multivariate 

probability distribution by separately estimating the marginal distributions and the 

dependence structure. In practice, one needs to choose an appropriate copula model (from 

the many candidates) that provides the “best” fit to the observed data.  In the statistics 

and econometrics literature, researchers have proposed various model selection 

procedures, and examples include L
2
-norm distances, graphical selection procedures 

based on Kendall’s process, adjusted R
2
 statistics, and likelihood-based procedures such 

as the pseudo-likelihood ratio tests.  If the candidate models are not members of the same 

copula family, we must use model selection procedures that are specifically designed to 

handle non-nested models.  We propose a non-nested test procedure for copula model 

selection that is based on the Cox test statistic, which is a centered version of the standard 

LR statistic. That is, the test statistic combines the standard LR statistic with the expected 
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log-likelihood ratio statistic, which is the Kullback-Liebler information criterion (KLIC) 

measure of closeness between two non-nested models.  The Cox test and related non-

nested testing methods hold conceptual advantages over the alternative tools mentioned 

above, but these methods are not widely used in practice due to computational 

difficulties.  To resolve some of these practical challenges, we could use Monte Carlo 

sampling methods for computing the Cox test statistic and evaluating its distributional 

properties. The objective of this research is to propose a model selection procedure that is 

computationally feasible and statistically reliable in order to facilitate applications of 

these improved risk models in practice.  
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1 Improved Measures of Financial Risk for Hedge Funds 

1.1 Introduction 

This study of risk management in the hedge fund industry is concerned with how 

new methodologies to manage risks compare to traditional methods such as Value-at-

Risk (VaR). Improved techniques are potentially important from a risk management 

standpoint because they provide an opportunity for financial institutions and investment 

firms to better manage various risks. 

Historical experience has shown abundant evidence of the potential risks, and these 

may be illustrated with the list of large-scale financial crises. For example, extensive U.S. 

bank failures occurred later in the Great Depression of 1929 and did harm the entire 

economy. In the summer of 1997, the Asian financial crisis broke out. In August 1998, 

the Russian government defaulted on their debt, and Russian ruble faced difficulties. The 

dot-com bubble burst in 2000 and the trouble extended into 2001. In the summer of 2007, 

big losses on U.S. subprime mortgage loans sparked financial stress, which was 

widespread across other sectors.  

Faced with the possibility of large financial panics and smaller adverse events, 

every market participant is exposed to persistent and potential risks of loss associated 

with unexpected changes in asset values. From the standpoint of risk management, better 

measures of risk are strongly required to avoid substantial losses. The most widely used 

risk model is VaR. In words, VaR is defined as the maximum value that may be lost over 

a certain period (e.g., one month) with a given probability or confidence level (a technical 
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definition is provided later). The measure is commonly used to determine how much 

capital should be set aside to control the risk facing financial institutions or investment 

firms at the stated confidence level. The VaR measure has three main drawbacks. First, 

VaR is generally not subadditive in the sense that the risk of a combined portfolio may be 

larger than the sum of the individual risk portfolios. Non-subadditivity of VaR may lead 

to bias when assessing the value of diversification of a portfolio. Second, VaR is not 

convex, which may hamper the search for risk optimized portfolios. Third, the most 

common VaR applications are based on the normality assumption of asset returns, which 

is not appropriate for most assets and can lead to understated risk estimates.    

Due to the presence of the drawbacks contained in VaR, researchers have 

developed Conditional Value-at-Risk (CVaR), which is defined as the expected losses 

that are strictly larger than VaR (a formal definition is provided later). The CVaR 

measure may more appropriately represent the potential losses associated with holding 

two or more underlying assets because it is subadditive. The improved risk measure may 

be useful to enhance financial institutions’ risk management operations. Here the 

meaning of “improved” is based on an axiomatic approach that characterizes a coherent 

risk measure. Unlike VaR, CVaR satisfies the axioms and is a coherent risk measure. It 

provides potentially more valid estimates of the capital requirement for corporate and 

financial institutions relative to VaR.    

Efforts to build probability models that capture the behaviors of extreme risk 

factors have been made over a long period of time. The extreme events such as financial 

panics are rare and thus it is hard to draw reliable inferences based only on historical 
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data. Conceptually, the extreme events are represented by the tail areas in the return. For 

example, the fat-tailed character of the distribution implies that the extremely rare events 

occur with higher probability than under the normal distribution. As a result, the normal 

distribution model of risk might understate the true risk.  

To deal with those problems, researchers developed Extreme Value Theory (EVT) 

as described by Embrechts, Klüppelberg and Mikosch (1997). EVT is used to model the 

extreme quantiles or tails of the probability distribution for some random variable. As an 

application of the proposed methods in this paper, hedge fund returns are used to 

compare the relative performance of VaR and CVaR for assessing forward-looking risk. 

The estimated risk measures are based on the Generalized Pareto (GP) model, which is a 

prominent EVT tool. For instance, given an upper threshold, we fit the observed extreme 

values of asset returns over the threshold to the distribution, which is called peak-over-

threshold (POT) approach. Then VaR is estimated from the fitted GP model, and CVaR is 

calculated by the expected value of losses over VaR.  

There are several reasons that we focus on the hedge fund industry for this 

application. Since the 1990s, the hedge fund industry has grown rapidly and this is partly 

due to financial globalization. The primary motivation is to find an opportunity for higher 

profits by moving beyond traditional investment vehicles. Hedge funds are limited to 

wealthy individuals and institutional investors who meet a minimum standard of wealth 

(e.g., 5 million dollars). Due to the impressive profits, the performance fee charged by 

hedge fund managers is relatively high and may be more than 20 percent, which is in 

addition to a management fee of 2 percent of the net asset value. The outstanding 
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performance (i.e., commonly double-digit annual returns) of hedge funds stems from 

their use of long/short
1

 trading strategies and investment in illiquid assets. While 

traditional investment funds gain value from asset appreciation, hedge fund investments 

may be based on long or short positions and may gain value from either rises or declines 

in asset prices.  

Traditionally, a long investor will profit if the price of the financial instruments 

increases and a short investor will profit from a decrease in price. To take advantage of 

an expected lower price in the future, hedge fund managers can borrow shares from their 

brokerage firms or banks and short sell them at the current price. At some point in the 

future, the fund managers must return the shares and the interest to the brokerage firms or 

banks. If the price declines, the managers will take a profit. However, they will take a 

loss if the price rises. Thus, hedge funds can generate higher returns than traditional long-

only investment funds by taking advantage of both asset value declines and increases. At 

this point, it is important to note that the use of the term “hedge” to describe these funds 

may be distinct from the practice of hedging risks with forward or futures contracts. 

Although hedge funds can use traditional hedging strategies to reduce risk, this activity is 

not their main objective.   

More broadly, the difference between a traditional long-only investing strategy and 

a hedge fund strategy is that hedge funds can use flexible tools such as short-selling and 

                                                 

1 An investor is referred to as taking a short position if he or she sells futures contracts and a long 

position if he or she purchases futures contracts. 
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derivatives to reduce risk and generate returns. For example, the equity long/short 

strategy engages in short positions to hedge market exposure. This means that hedge 

funds have more diverse tools relative to long-only investing. However, hedge fund 

managers may take on more risk by using leverage, which may result in the expansion of 

risk and return.  

Hedge funds borrow in order to increase the size of the investment portfolio and 

gain better performance when the underlying asset value rises. The practice of borrowing 

is called leverage. For example, borrowing to buy a stock is called a margin loan. In 

general hedge fund leverage is known as being above investor capital. Unlike mutual 

funds that operate under the Securities and Exchange Commission (SEC) regulations, 

hedge funds have great exemptions from the usual regulations. Although short selling is 

theoretically useful because it increases market efficiency (Renshaw 1977), it can cause 

financial distress. Some hedge fund strategies simultaneously buy and sell a security or 

other financial instruments in two different markets to profit from the price anomalies in 

the two different markets, which is called arbitrage. For example, in bond arbitrage, 

hedge funds buy illiquid bonds that may be mispriced and capture arbitrage profits by 

short selling derivatives based on more liquid bonds that are accurately priced.  

Figure 1-1 shows the leverage ratios of hedge funds over time. The leverage ratios 

are calculated as the ratio of average gross leverage plus average assets under 

management (AUM) to average assets under management. According to this result, the 

weighted average hedge fund has constant leverage ratios of 2.5 times over the average 

assets under management. The ratio of three to one leverage means that a hedge fund 
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manager controls $3 million in the investment portfolio with $1 million in capital. As the 

ratio increases, an increase in asset values leads to an expanded gain. However, in the 

opposite case, the losses would be severely magnified. We can see the gradual increasing 

pattern since 1999, and the leverage ratio reached three times over the AUM in 2007.  

Figure 1-1 Hedge Funds’ Leverage Ratio with CISDM database 

 

Along with Figure 1-1, it is important to take a look at the growth of assets and 

hedge fund leverage from 1990 and 2008, as cited from Lo (p.15, 2009). Figure 1-2 

shows the nearly monotone increase in leverage since 2002. The vertical bars in light 

color denote market positions containing estimated assets in hedge funds. There is a 

gradual rise in assets and leverage up until 2007. Note the quick decline in 2008 after the 

financial crisis started in mid-2007. Facing large investment losses and sizable 

redemptions by investors, hedge funds were forced to deleverage the relevant assets.  

 

 

0

0.5

1

1.5

2

2.5

3

3.5

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

leverage_ratio 



7 

 

Figure 1-2 Growth of assets and hedge fund leverage with HFR dataset 

 
Note: The graph above is cited from p.15 in Lo (2009).  

 

The aggressive investment practices of hedge funds bring up big concerns because 

of their impacts on the global financial system which may offset their crucial role in 

liquidity supply and price discovery. There are debates about sensible regulations for 

hedge funds due to the spillover effects to other sectors. Some people insist that hedge 

funds be regulated due to concerns about their opaqueness. On the other hand, advocates 

assert that hedge funds make financial markets more efficient (Ackerman, McEnally and 

Ravenscraft, 1999; Danielsson and Zigrand, 2007). At this time when the U.S. financial 

crisis of 2007-2009 recedes, it seems that there is no general agreement on regulations of 

hedge funds.  

It is essential to understand the source of the returns embedded in each hedge fund 

strategy to improve the risk management of the hedge funds. Hedge fund returns have 

two main components. The first part can come from diversified risk exposures such as 

credit risk, liquidity risk, exchange rate risk, or event risk. Hedge funds that have 
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different risk profiles are compensated for the risks in the form of risk premiums. For 

example, a merger arbitrage manager can obtain an event (e.g., merger and acquisition) 

risk premium since there is a possibility that a merger would not occur after the merger’s 

announcement. The second component is the manager’s ability to exploit the excess 

market return caused by market inefficiencies such as price anomalies which lead to 

arbitrage opportunities. For example, currency based macro strategies would borrow a 

currency with a low interest rate and then purchase currencies with a high interest rate 

(i.e., carry trade). The strategy works fine with good market conditions but it causes 

trouble when exchange rates shift.  

Hedge fund investors or managers consider risk management seriously. As shown 

in Lo (2008, p.238), considering risk management with a financial gain through an 

investment strategy at the same time might be profitable. For a simple illustration, he 

assumes that there is a fund that provides an annual expected return  , - of 10% and an 

annual volatility of 75%. As a risk management practice, suppose a fund manager can 

avoid losses below -20%. His new return is  

       ,      -      (1-1) 

Based on the log-normality assumption of returns, the expected value of    is 20.9% by 

truncating the left tail of the return distribution (see Table 9.1, p.240). The resulting 

expected return doubles. It is very crucial to have the ability to manage risks in a hedge 

fund operation. 

There are common risks embedded in hedge fund strategies as described by the 

U.S. Securities and Exchange Commission (2003). According to the classification, the 
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risk can be divided into five branches: market, credit, leverage, liquidity, and operational 

risk.  Here we focus on some common risks to several hedge fund strategies. First, hedge 

fund managers are exposed to leverage risk. They need to borrow some money from their 

partners or banks to increase their performance. When investments go bad, big losses 

may occur. Furthermore, those who use leverage will take on the risk that one has to pay 

back when the lender requests the loan. From Figure 1-2, we can observe a sharp decline 

in assets and leverage in 2008 right after the subprime crisis occurred in the mid-2007.  

Second, there is liquidity risk. When an economic disturbance occurs, there may be 

many investors who wish to exit a hedge fund. Faced with this situation, hedge funds 

may be forced to sell positions at prices lower than their real value. Subprime mortgages 

and related mortgage-backed securities suffered large losses during 2007. As a result, one 

of the five largest investment bank in the United States, Lehman Brothers, announced 

bankruptcy on September 14, 2008. This triggered a liquidity risk in the hedge fund 

sector because their prime brokers were reluctant to fund these positions.  

Third, the failure of Long Term Capital Management (LTCM) in 1998 is often 

described as an example of credit risk. A default by Russia on its debt cast serious doubt 

on the quality of the fund. LTCM responded by going long in illiquid assets (i.e., bonds) 

and short in the corresponding liquid bonds. After the Russian default, the spread 

between the two underlying assets widened severely. LTCM was highly leveraged and 

suffered from huge losses after receiving margin calls on its positions. Unfortunately, 

LTCM was not able to meet those calls. Note that even though the liquidity and the credit 

risk are separate exposures, they are interconnected as in the case of the LTCM collapse.  
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Fourth, hedge fund managers may be exposed to counter party risk. In the financial 

affair of LTCM, Bear Sterns, LTCM’s prime brokerage firm, faced a large margin call as 

the value of the portfolios deteriorated. It was at risk if LTCM did not meet further 

margin calls.  

Finally, specific event risks are the possibility that individual events that have not 

happened before would occur. The use of derivative securities such as options makes it 

possible to trade volatility. For example, when the hedge fund managers do not know 

how the underlying stock price changes up or down, the short strangle strategy may be 

pursued by some hedge fund managers. The strangle strategy in options trading is the 

simultaneous selling of an out-of-the-money (OTM) put and an out-of-the-money call 

with the same expiration but with different strike prices. It can be used when we expect 

the market volatility to stay in a bounded range before expiration. In Figure 1-3, the blue 

solid line denotes the profits of a short strangle strategy. The put option is said to be out-

of-the-money (OTM) when its strike price is below the current stock price and a call 

option is said to be OTM when its strike price is above the current stock price. Writing 

(or selling) an OTM call option can be profitable when the underlying stock at expiration 

is below a call’s strike price. Similarly writing an OTM put option can be profitable when 

the underlying stock at expiration is above a put’s strike price. Hence, only if the 

underlying stock stays in between the two strike prices, we can profit. In the case of high 

volatility, the stock can rise or decline quite far from the option strike prices, and we need 

to close the short strangle position by buying the in-the-money option. However, it may 

be very expensive to buy back, and we may be exposed to unlimited risk. The hedge fund 
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managers can use this short strangle strategy, but when the market is volatile, large loss 

can occur.   

Figure 1-3 Short Strangle 

 

 

 

 

 

  

Many studies such as Brooks and Kat (2002) and Geman and Kharoubi (2003) find 

that hedge fund returns are not normally distributed. Most hedge fund indices show not 

only high negative skewness, which is a measure for the asymmetry around the mean, but 

also high kurtosis, which is a measure of tail thickness. The latter implies that there are 

more observations on the tails than a normal distribution. Thus, both statistics indicate 

that those returns are not normally distributed.  

The purpose of this paper is to evaluate two recent innovations in the financial 

economics literature that may help hedge fund investors and managers to properly assess 

the risks they might confront. We will use CVaR risk measure and EVT to estimate the 

risk of hedge fund returns under the constituent strategies. The study will directly 

examine competing claims about the relative importance of VaR flaws and probability 

model specification errors in risk measurement.  

Profit 

Loss 

OTM put OTM Call Stock Price 
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The paper is organized as follows: The next section provides a detailed literature 

review. The subsequent three sections briefly discuss risk measures and then those risk 

measures apply to two different parametric specifications on extreme values. The sixth 

section describes the data and presents empirical results from various methods. Finally, 

concluding remarks are presented. 

1.2 Literature Review 

Value-at-Risk (VaR) was developed by JP Morgan. In October 1994, J.P. Morgan 

and Reuters (1996) made its RiskMetrics freely available on the internet, which 

contributes to the wide use of VaR. There are a few other significant merits. VaR can be 

applied to any asset class, including equities, bonds and derivatives. Also, VaR provides 

a means to aggregate the component risks of a given trading desk. Furthermore, VaR is 

expressed by potential lost money, which is easy to interpret.  

Despite these advantages, there are criticisms as well. Taleb (1997) claims that the 

method may not accurately measure tail probabilities. While arguing that forecasts based 

only on past observations is naïve, he writes “Nothing predictable can be truly harmful 

and nothing truly harmful can be predictable.” Ju and Pearson (1999) show that the use of 

VaR in controlling risks at the level of individual traders or trading desks leads to large 

biases.  

Due to the vulnerability of the financial system stemming from potential financial 

crises, the international banking forum (i.e., Bank for International Settlements (BIS)) has 

built guidelines and standards for banking supervisory issues. The committee strengthens 
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the 2001 Basel II capital framework, which is based mainly on VaR.  However, there are 

some arguments by Danielsson, Embrechts, et al. (2001) against contents suggested by 

the Basel II proposal. They point out that VaR has limitations as a risk measure and the 

statistical model can generate inconsistent and biased forecasts of risk. These criticisms 

highlight the significance of a better understanding of extreme risks in order to reduce 

them.  

In terms of risk measurement, a seminal paper by Artzner, et al. (1999) is a turning 

point. Since this work, the concept of risk measures becomes refined and stands on more 

solid ground. There are four axioms that risk measures must satisfy to be called coherent 

measures. The axioms of coherence are translation invariance, subadditivity, positive 

homogeneity, and monotonicity. According to the proposed standards, the widely used 

VaR turns out not to be a coherent risk measure because it violates subadditivity. In 

contrast, CVaR satisfies all properties required for coherency.   

The application of EVT in the finance and insurance literature begins from 

Embrechts, Klüppelberg and Mikosch (1997) and Reiss and Thomas (1997). The two 

books explain the theoretical background and show how the EVT methods can be used to 

estimate the risk measures in applications. For example, Longin (1996) uses the maxima 

of daily returns for U.S. stock indices, which is modeled with the Fréchet distribution. 

The Fréchet distribution is one of the standard generalized extreme value (GEV) 

distributions.  

Danielsson and Vries (2000) analyze the extreme returns of the S&P 500 index 

using unconditional extreme value theory along with the Generalized Autoregressive 
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Conditional Heteroskedastic (GARCH) model. Use of the unconditional
2
 distribution of 

asset returns is criticized by McNeil and Frey (2000), who conclude that the method 

based on the conditional return distribution provides better estimates of VaR and CVaR 

than unconditional EVT. However, in cases where the conditional distributions taking 

into account all values such as the GARCH model is employed, there is still the 

possibility for large unexpected events to be ignored as in Longin (2000). Danielsson and 

Vries (2000) argue that for the portfolio constructed from a number of assets, the huge 

conditional variance matrices can make the conditional approach infeasible. They suggest 

that there are cases where an unconditional EVT method is suited for some financial low-

frequency (i.e., daily or weekly etc.) data. In contrast, they propose that the conditional 

volatility models may perform better over short horizons, such as intra-day data. 

Christoffersen and Diebold (2000) present findings that agree with Danielsson and Vries 

(2000).  

Regarding applications to hedge fund returns, VaR has been used with EVT to 

control the market risk associated with hedge funds. Gupta and Liang (2005) use VaR to 

determine the equity capital requirement for hedge funds based on EVT. Lhabitant (2003) 

estimates VaR and CVaR using two funds of hedge funds on a monthly basis with an 

                                                 

2 The probability that an event will occur can be characterized without any information obtained 

from past and related events. On the other hand, the conditional approach utilizes past events to model the 

distribution of future outcomes.  
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EVT model. Blum, Dacorogna and Jaeger (2004) calculate VaR to capture the tail risk 

measure from a Generalized Pareto (GP) model.  

In this chapter, we rely on the unconditional volatility approach to compute the 

standard deviation required for VaR and CVaR. The data for this application is low-

frequency (i.e., weekly or monthly) hedge fund returns. With regard to applications to 

risk management, McNeil and Frey (2000) show that the GP distribution of EVT works 

better for CVaR than the Gaussian model. In the same vein, Fernandez (2003) verifies 

that EVT outperforms a GARCH model with normal innovations using the Chilean daily 

stock index conditional on restriction of the shape parameter (e.g.,        ). However, 

these findings depend on the data under study and may not be generalized.    

Hedge fund operations are differentiated by the investment vehicles that they can 

provide to investors. Boudt, Peterson and Croux (2008/2009) document that modified 

expected shortfall (a variant of CVaR) based on portfolios that outperform the fund-of-

fund index. Fung and Hsieh (2001) show that hedge funds differ from mutual funds, 

which usually keep long-only buy-and-hold strategy. Agarwal and Naik (2000) report 

that the hedge fund strategies outperform the traditionally diversified investment method 

by more than 6 percent. It suggests that hedge funds provide better opportunities for 

diversification by their low correlation with different indices and even different asset 

returns, such as stocks and bonds.  

Some studies deal with hedge fund characteristics and management styles. 

Compared to the performance of mutual funds, hedge fund returns generate less 

correlation with those of standard asset classes (Fung and Hsieh 1997). Specifically while 
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hedge fund returns have low and occasionally negative correlation with other asset 

returns (e.g., stock market index), mutual fund returns are highly and positively 

correlated with asset class returns. In relation to the impact on crises, Fung and Hsieh 

(2000) conclude that hedge funds seem not to have had a major role.  

Attempts to estimate historical returns for hedge funds are recognized in the 

literature to have several biases such as survivorship bias or backfill bias.  Hedge fund 

managers do not disclose their performance to the public. They have an incentive to 

report performance to the data vendors only when they have relatively good results. Thus, 

persistently successful funds tend to be contained, causing survivorship bias. There is 

also instant history bias. In the case where a new fund manager starts reporting, it is more 

likely for recent and good performance record to be included in the database. 

Accordingly, they tend to highly exaggerate the returns. This observation is backed by 

several studies including Ackerman, McEnally and Ravenscraft (1999), Brown, 

Goetzmann and Ibbotson (1999), and Schneeweis, Sputgin and McCarthy (1996). 

Regarding the distributional characteristics of hedge fund returns, several studies 

(Brooks and Kat 2002, Bacmann and Gawron 2005, Agarwal and Naik 2004) find that 

hedge fund index returns are often not normally distributed as skewness and kurtosis are 

significantly identified and are significantly correlated with each other. Amin and Kat 

(2003) find that skewness decreases and kurtosis rises with portfolios containing hedge 

funds. Due to the non-normality of hedge funds returns, Gupta and Liang (2005) cast 

doubt on the validity of the normal VaR, which is usually used to evaluate the validity of 

the capital adequacy of hedge fund operations (Jorion 2000). An interesting point is that 



17 

 

despite the claim that hedge funds are uncorrelated with market indices, some studies 

(Brooks and Kat 2002, and Agarwal and Naik 2004) show the existence of high 

correlation with the equity indices.  

1.3 Risk Measures 

In general, risk is explained by its exposure and uncertainty (Holton 2004). In 

financial management, exposure is characterized by financial loss and uncertainty that 

occurs because we are not aware of future events. So uncertainty can be described by a 

probability distribution of future values (i.e., prices or returns) of the financial assets, 

which are represented by random variables. Risk, which is subjective, is related to 

uncertainty
3
 but they are not identical (Rachev, Stoyanov and Fabozzi 2008). A classical 

uncertainty measure is the standard deviation which is the square root of the variance. 

Despite such difficulties we can attempt to formalize it by relying on probabilistic models 

denoted by the portfolio loss distribution. To quantify a risk of a financial position that is 

regarded as a random variable, the risk measure is defined as a mapping of portfolio 

losses into real numbers. Let   be a random variable on the probability space (     ). In 

other words, risk measures are real-valued functions  

 ( )          (1-2) 

defined on  , the random loss from financial positions.  

                                                 

3 Uncertainty stems from the inability to predict the future values of assets of interest. Therefore it 

can be formed by a probability distribution of future prices or returns.  
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1.3.1 Standard Deviation 

The standard deviation is used to quantify the amount of volatility. In a statistical 

term, the standard deviation is a measure of dispersion around the mean. As the standard 

deviation gets higher, the volatility becomes larger, and vice versa. The standard 

deviation can be used to measure the risk of hedge fund returns over a specified time 

period. However, it is very sensitive to extreme values, which may be more likely when 

hedge fund returns are not normally distributed. When we incorrectly use the normal 

distribution, we can underestimate the possibility of large losses.  

Figure 1-4 Volatility with Selected Hedge Fund and S&P500 Returns 

 

In Figure 1-4, we compute the time-varying volatility. The lowest curve is obtained 

from the returns of fixed arbitrage strategy. The next two lines correspond to fund of fund 

(FOF) index and equal weighted hedge fund portfolio returns. The fourth curve from the 
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bottom represents the standard deviation of an equity long/short returns. In contrast to the 

hedge fund returns, the volatility of S&P 500 returns show a different pattern. It stays 

above the contrasting hedge funds indices’ volatilities. It increases steadily over the next 

eleven years to peak in August, 2003. From then until July, 2007 the values fall 

consistently. The implications are that through the diversification the hedge fund 

managers seem to achieve superior returns and relatively lower volatility.    

1.3.2 Value at Risk 

To define VaR we need three components: a cumulative distribution function, a 

fixed time horizon and a given confidence level. Let   be the random variable (the loss) 

of risky asset returns.  By convention,   is a random variable corresponding to loss and 

negative values of   corresponds to profits. We assume that    represents the cumulative 

distribution function for the loss random variable. Given a confidence level   where 

  (   ), VaR at the specified horizon time   is defined as 

    ( )     *    ( )   +.   (1-3) 

In words, it means that VaR is the smallest number   such that the probability that 

the loss   exceeds   is no larger than    . In probabilistic terms, VaR is simply an 

upper   quantile of the loss distribution. For example, the VaR for        indicates 

that there is a one percent probability that losses exceed VaR in the given time interval.   

1.3.3 Conditional Value at Risk 

To cope with the well-known drawbacks of VaR such as non-subadditivity and 

non-convexity, CVaR was proposed by Artzner, et al. (1999) and satisfies the four 
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coherence properties: translation invariance, subadditivity, positive homogeneity, and 

monotonicity. Now we formally introduce those axioms in more detail based on Equation 

1-2. Here   denotes the loss of a position.  

Property 1 (translation invariance) states that for every possible loss, 

 (   )   ( )         (1-4) 

The additional loss   (i.e., a constant) should be taken into account by the same quantity 

when we update the existing risk measure. Property 2 (subadditivity) is summarized by 

the following equation. 

 (     )   (  )   (  )     (1-5) 

This tells us that the risk of the combined portfolio is less than or equal to the sum of the 

individual risks. However, the idea behind this property is that risk may be reduced by 

diversification. When this property is violated, for example, a financial organization 

would have an incentive to have various small-sized subsidiaries to reduce regulatory 

capital requirements.  Property 3 (positive homogeneity) is  

 (  )    ( ), for         (1-6) 

This implies that the risk of a financial position is proportional to its size. Note that both 

subadditivity and positive homogeneity imply that the risk measure is convex. Property 4 

(monotonicity) means that positions exposed to higher losses need more capital 

requirements. For    , 

 ( )   ( )      (1-7) 
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where   and   stand for potential losses.  

CVaR is defined as follows: 

      ( )   ,        ( )-   (1-8) 

The CVaR risk measure is the expected size of a loss that exceeds the VaR level. For a 

given loss distribution the CVaR is worse than or equal to VaR at the specified quantile. 

By the first and fourth properties, the standard deviation is ruled out as a coherent 

measure.  

1.4 Normal Distribution and Risk Measures 

If the mean ( ) and the standard deviation ( ) in the normal loss distribution are 

known, the VaR at a given confidence level,  , (say       ) is simply obtained by  

      ( )       (1-9) 

where   denotes the standard normal distribution function and    ( )  is the 

  quantile of the standard normal distribution.  We assume    . For CVaR,  

      ,        -      4
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           (1-10)  

where   ( ) is the   quantile of the standard normal distribution. The last equality in 

Equation 1-10 can be obtained by applying integration by parts to  (
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where the second equation from the right is based on the property of the normal 

distribution, ∫ ( )     ( )  ∫   ( )  . In practice, we need to calculate the mean of 

the truncated distribution,       . Following Maddala (1983, p.365), the mean of the 

truncated distribution is given by 

 (      )  
 (    )

   (    )
     (1-12) 

1.5 Extreme Value Theory and Risk Measures 

In the EVT literature, there have been efforts to link real data about extremal events 

to probability models. There are two parametric approaches: generalized extreme value 

(GEV) and generalized Pareto (GP). The former is central for analysis of maxima or 

minima while the latter deals with exceedances over a specified threshold. The GP model 

is the primary topic of this paper. The GP distribution was introduced by Pickands 

(1975).  

To estimate the parameters of the GP model, the commonly used methods are the 

method of moments (MOM) and maximum likelihood (ML) techniques. Monte Carlo 

experiments conducted in Ashkar and Tatsambon (2007) show that the maximum 

likelihood method is preferable in terms of reducing the inconsistency rate, which is the 

percentage of times that each method produces an estimate of the GP upper bound that is 
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inconsistent with the simulated data. As an alternative method, Hosking and Wallis 

(1987) use the MOM for estimating parameters of the GP distribution. It turns out that 

both estimators are consistent and efficient.   

The GEV model depends on the shape parameter. When the parameter is greater 

than zero the distribution is a Fréchet distribution. Longin (2000) and McNeil (1997) use 

estimation techniques based on limit theorems for block maxima. However, there is a 

tradeoff between the number and size of the blocks. As the size of the blocks increases, 

we can obtain more accurate estimation results, which mean a low bias in the parameter 

estimates. When many blocks are involved, the number of observations in each block 

given the fixed data points shrink. It leads to lower variance of the parameter estimates.   

In general there are two different approaches to identify extreme values. Rather 

than using block maxima method based on a pre-specified period, we model the tails of 

the loss distribution using the peaks over the threshold (POT) method which focuses on 

the realizations exceeding an upper tail threshold. Let   be an upper tail threshold. 

Suppose that   ( )  is the distribution function of exceedances of   above a certain 

threshold  . Let       be the excess, and the conditional excess distribution function 

is defined by 

  ( )   (         ),      (1-13) 

where          and      is the right end point. Using the conditional 

probability property,    can be rewritten as  

  ( )  
 (   )  ( )

   ( )
 

 ( )  ( )

   ( )
   (1-14) 
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The purpose of EVT is to model the probability of those exceedances beyond a given 

threshold.  

Let      be a Generalized Pareto (GP) distribution with the shape parameter   and 

the scale parameter  . As   gets large, the distribution of exceedances is approximated by 

the Generalized Pareto distribution:  

  ( )      ( )  {
  .  
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     (1-15) 

The shape parameter ( ) may take real values, whereas the scale ( ) is restricted to 

a positive value. The shape parameter is a good indicator of the extent of heaviness in the 

tail. A negative value implies very thin tailed distributions with less probability assigned 

to extreme outcomes than the normal distribution. A zero value means it has tail weight 

comparable to a normal distribution. Any positive value represents a heavy tailed 

character for the tail area. Typically, the shape parameter is greater than or equal to zero 

for financial return data.  

The parameters of the GP model can be estimated in various ways. We rely on the 

method of moments (MOM) following Hosking and Wallis (1987). Ashkar and 

Tatsambon (2007) provide simulation results for estimating GP quantiles with a small 

sample size (e.g.,    ) and show that there are no significant differences between the 

various estimation methods. For monthly hedge fund returns, we take exceedances that 
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are in the top 20 percent of observations, which amounts to 12 data points. Furthermore, 

the estimated shape parameters over 122 windows have averages of 0.198 and 0.116 for 

the equal weighted portfolio and the FOF index, respectively. These results are consistent 

with the recommendations provided by Hosking and Wallis (1987) that moment 

estimators are preferable for     and   near    In contrast, maximum likelihood 

estimation can be recommended for very large samples when      .  

When    , it may be shown that the moments of the GP distribution are  

 (  )    for        (Embrechts et al., 1997, p.568). When        , the mean 

and the variance of the GP distribution is defined as 

 ( )  
 

   
 , and     ( )  

  

(   ) (    )
   (1-16) 

Following Hosking and Wallis (1987), if the moments of the generalized Pareto 

distribution exist
4
, the equations for estimating parameters of the GP distribution using 

the method of moment are  

 ̂  
 

 
.

 ̅

    /       (1-17) 

 ̂  
 

 
 ̅ .

 ̅

    /      (1-18) 

where  ̅ and    are the sample mean and variance. For the hedge fund applications, those 

exceedances in every window have values which are larger than -0.5 as estimates of the 

                                                 

4 The  th moments of   exists when       . The mean exists if      and the variance exists if 

      . The moment equation is defined as  (      )    (    ) if       . 
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shape parameters, so that the first and second moments of the GP distribution exist. In the 

case where        , the shape and scale parameter estimators are asymptotically 

normal. When    , the MOM and MLE methods are both asymptotically efficient.  

We compute the parameter estimates over a rolling window of a fixed length. In 

this case parameters in the model are not constant over time. The method proceeds as 

follows: First the historical data are split into two parts where one part is reserved for 

prediction. Then the model is fit under the fixed length of sub-samples and a one-step 

ahead prediction is made. Within the sample period, the window rolls ahead and produces 

the estimation results.   

As pointed out by Castillo and Hadi (1997) and Dupuis (1996), although the MOM 

estimates exist, there could be a potential problem if the estimated parameters do not fall 

inside the feasible range. The range of the exceedances (e.g.,  ) that are consistent with 

the MOM estimates is     for    , and      ̂  ̂⁄  for    . Therefore, we must 

check whether       ̂  ̂⁄  for    , where      is the largest order statistic or 

observation in a sample size of  . For the equal weighted hedge fund returns, most 

estimates from the rolling windows satisfy the conditions for consistency of the MOM 

estimates. In only 10 rolling windows, the conditions were violated in the sense that 

      ̂  ̂⁄  for    . In contrast, for the FOF returns, all rolling windows satisfy the 

associated conditions without exception.  

Among the 10 rolling windows with exceedances that are not consistent with the 

MOM estimates for the equal weighted hedge fund returns, eight outcomes occur in 

untroubled times. In contrast, the two windows on November and December 1997 are in 
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the middle of the Asian financial crisis, and the ratio of the scale to the shape estimates 

(i.e., 0.0158) is less than the largest value (i.e., 0.0165) in the associated windows. In this 

case, the MOM estimates are not meaningful. However, it is important to note that 

although the MOM estimates are not consistent with the sample values in this case, the 

largest order statistic exceeds the estimated ratio by some small amount, which may be 

caused by sampling errors.   

Given the estimated GP parameters,   ( ) is approximated by  

  ( )  (   ( ))  ( )   ( ),      (1-19) 

where       for a sufficiently high threshold  . From a practical standpoint, it is 

hard to determine an appropriate threshold, and several authors deal with the issue on the 

selection of the threshold (e.g., Embrechts, Klüppelberg and Mikosch 1997). However, 

there is not a clear answer for this issue, and a graphical tool may be used as in Gilli and 

Këllezi (2006). In our work, we used the largest 20 percent of the subsample for every 

rolling window as the threshold level following Harmantzis, Miao and Chien (2006). 

In equation (1-19) above,   ( )  is replaced by   ̂  ̂( )  and  ( )  can be 

approximated non-parametically as (    )   where   is the total sample size and    

is the number of exceedances over the threshold  . We get the estimate of  ( )  as 

follows: 

 ̂( )    
  

 
4  

 ̂

 ̂
(   )5

    ̂

   (1-20) 

where  ̂ and  ̂ are the MOM estimates of the corresponding parameters.  
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To calculate estimates of VaR and CVaR, the above equation for  ̂( ) may be 

inverted to get a quantile of the underlying distribution because         ( ), where 

    is the general inverse function of  . For    ( ), solving  ̂( ) for   yields  

   ̂    
 ̂

 ̂
4.

 

  
(   )/

  ̂
  5    (1-21)  

Let us rewrite CVaR as  

       ,        -        ,             -,  (1-22) 

where the second term is the average loss above the threshold     . Recall that when the 

exceedances over a threshold follows a GP distribution, the mean excess function,  ( ), is 

denoted by 

 ( )   ,       -  
    

   
,    (1-23) 

where     and    . (McNeil, Frey, and Embrechts, 2005) The mean excess function 

is identical to the second term on the right hand side of Equation (1-22). As a result, for 

         and   representing the excesses   over   we can get the expression for 

estimated CVaR. 

    ̂     ̂  
 ̂  ̂(   ̂   )

   ̂
 

   ̂ 

   ̂
 

 ̂  ̂ 

   ̂
  (1-24) 

1.6 Application 

The data used in this study are hedge fund indices provided by the Center for 

International Securities and Derivatives Markets (CISDM) for the monthly returns and 

Hedge Fund Research Inc. (HFR) for the weekly returns. The CISDM hedge fund indices 
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are median performance indices of the fund strategies in the database. We select 10 major 

hedge fund strategy indices as well as the fund-of-fund (FOF) index that reflects the 

performance of all hedge funds reporting to the database. We construct an equal-

weighted hedge fund return that is composed of the 10 strategies. In Table 1-1, the 

different hedge funds indices used in this study are listed.  

Table 1-1 CISDM Hedge Fund Classifications and Definitions 

Hedge Fund Style Definition 

Distressed Securities Invest in companies in financial distresses and bankruptcy 

Emerging Markets Invest in equity or fixed income in emerging markets 

Equity Long/Short Investing on both the long and short sides of the market 

Equity Market Neutral Trade long equity positions and an approximately equal dollar-

amount of offsetting short positions in order to achieve an 

approximately zero net equity market exposure 

Event Driven Strategy Capture price movements caused by a merger, corporate 

restructuring, reorganization, and bankruptcy 

Fixed Income MBS Attempts to take advantage of mispricing opportunities among 

different types of mortgage backed fixed income securities while 

neutralizing exposure to interest rate and/or credit risk  

Fixed Income Arbitrage Benefit from price anomalies between related interest rate securities 

while neutralizing exposure to interest rate risk 

Global Macro Employs long and short strategies in anywhere a value opportunity 

exists. Manages use leverage and derivatives to enhance positions 

Merger Arbitrage Capture the price spread between current market prices of securities 

and their value upon successful completion of a takeover, mergers, 

spin-off  or similar transaction 

Sector Specializing in securities from particular industries or economic 

sectors 

FOF index Reflects the median performance of all hedge fund of funds 

managers 

 

Returns are constructed by the instantaneous changes in the index values,         

      , where    denotes the value at time  . This is called the continuously compounded 

return or log return. We include the FOF index because it is less sensitive to the various 

biases inherent in the individual hedge fund strategies. Fung and Hsieh (2000) argue that 
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the FOF returns more accurately represent overall returns on hedge funds than a hedge fund 

index because a collection of diversified hedge funds is more likely to survive than the 

individual hedge fund. Thus, the FOF may be more appropriate to reflect an investor’s losses.  

Table 1-2 Descriptive Statistics of Monthly hedge fund returns by strategy class 

Variable Mean Std.dev   Skewness Kurtosis* ADtest** 

Panel A: CISDM Hedge Fund Indices: Monthly Returns 

Distressed Securities 0.0101 0.0126 -1.2813 7.6614 1.9997 (0.0000) 

Emerging Markets 0.0097 0.0348 -2.7491 19.7382 4.0667 (0.0000) 

Equity Long/Short 0.0105 0.0172 -0.1528 2.5962 1.1302 (0.0058) 

Equity Market Neutral 0.0067 0.0059 -0.0092 0.7495 0.4991 (0.2098) 

Event Driven Strategy 0.0106 0.0133 -1.3146 6.9203 1.2989 (0.0022) 

Fixed Income MBS 0.0088 0.0062 2.2472 16.1653 2.6272 (0.0000) 

Fixed Income Arbitrage 0.0072 0.0043 -1.5073 8.0541 1.9002 (0.0000) 

Global Macro 0.0077 0.0117 0.6037 2.0096 0.9848 (0.0134) 

Merger Arbitrage 0.0074 0.0075 -1.0025 3.2003 1.2767 (0.0025) 

Sector 0.0128 0.0287 -0.0553 6.3568 1.8887 (0.0000) 

FOF index 

EW Portfolio 

0.0075 

0.0092 

0.0111 

0.0114 

-0.1727 

-1.4285 

2.1814 

9.2145 

1.2379 (0.0031) 

1.2454 (0.0032) 

Panel B: HFRX Global Hedge Fund Index: Weekly Returns 

HFR index         0.0512       0.7221        -2.3519      12.9135    11.3847(0.0000) 

Note: Data source: CISDM for the monthly returns and HFR for the weekly returns. *Excess 

kurtosis relative to a normal distribution. **Anderson-Darling test for normality. P-values appear in 

parentheses by AD test statistics. Panel A in the table presents descriptive statistics of monthly returns of 

10 hedge fund indexes, the fund of fund index and an equally weighted portfolio comprising the given 10 

indexes from June 1992 to July 2007. Panel B reports descriptive statistics of weekly returns of constituent 

hedge fund indexes with 405 observations from 4/11/2003 to 12/31/2010.   

 

Table 1-2 presents the descriptive statistics for the monthly and weekly returns of 

the indices used in the study. The results in the table show that the empirical distributions 

are a bit negatively skewed except for two styles, Fixed Income MBS and Global Macro, 

which means that data are left skewed. Each hedge fund index exhibits a fat tail since 

excess kurtosis is greater than zero. The positive excess Kurtosis (Leptokurtic) has a 

higher peak and heavier tails than the normal distribution. Ignoring kurtosis tends to 
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understate the risk of the variables with heavy tails. The AD test for normality evaluates 

departures from the normal distribution. The AD test statistics for all cases except for 

Equity Market Neutral yield p-values smaller than 0.05 (i.e., at the 5% significance level) 

which are significant. Therefore, the AD tests generally reject the null hypothesis of 

normality. 

The preceding results implicitly require the unconditional moments of the data to 

exist. For our purposes, we assume those processes under consideration are ergodic for 

the first four moments. For example, a process is said to be ergodic (p.46-47, Hamilton 

1994) for the mean if the autocovariance    goes to zero as   increases  

∑ |  |
 
            (1-25) 

A process is said to be ergodic for the second moments if  

 

   
∑ (    )(      ) 

     

 
    for all      (1-26)  

where   is a sample of size,    is some random variable, and   is a constant. As a special 

case, when a Gaussian process is stationary, the condition in Equation (1-26) ensures 

ergodicity for all moments. By assuming that the third and fourth moments are ergodic, 

we can use those summary statistics reported in Table 1-2. If the population moments are 

infinite or undefined, the sample moments still provide useful information.  

A moving window of fixed length (e.g., 60 months or 200 weeks) can be used to 

estimate the model’s stability. For each month or week, the prediction is updated by 

adding one observation forward and dropping the first observation. So we can keep the 
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number of observations in each window the same while updating the sample as new data 

becomes available.   

For the monthly returns, we have 182 monthly data points that range from June 

1992 to July 2007, which are used to estimate the rolling one-month VaR and CVaR. For 

the weekly returns, only Net Asset Value (NAV) is available in this case. The NAV data 

can be used as a proxy to determine the price at which investors enter or exit a hedge 

fund. The weekly data is collected from Bloomberg, and the HFRX Global hedge fund 

index
5
 is used for the weekly returns. The data ranges from April 11, 2003 to December 

31, 2010, which is 405 observations. The HFRX global hedge fund index is designed to 

be representative of the overall composition of the hedge fund universe. It consists of 

eligible hedge fund strategies, including convertible arbitrage, distressed securities, 

equity hedge, equity market neutral, event driven, macro, merger arbitrage, and relative 

value arbitrage. The fixed length for every moving window is 200 weeks, which is 

equivalent to about four years.  

Figure 1-5 plots the observed (n=182) monthly returns of an equally-weighted 

hedge fund portfolio comprising 10 hedge fund strategies and a FOF index. Both returns 

move in a similar way and appear to exhibit dependence in the volatility. The changing 

environment is closely related to the hedge fund performance. The return series are 

affected by the financial crises in the past. For example, the negative returns around 1994 

                                                 

5 The index NAV is 1000 at inception.  



33 

 

may be due to the collapse of the Mexican financial markets. Thereafter, there is the 1997 

Asian crisis followed by the Russian crisis in August 1998. 

During such economic turmoils, hedge funds may suffer big losses from the 

unusual market events. One of the most tragic outcomes was the collapse of Long Term 

Capital Management (LCTM) in 1998, and the sharp drops in returns happen in June 

1998. When the US stock market experienced the Dot-Com crash in January 2001, the 

hedge fund returns plummet, as well.   

Figure 1-5 Monthly returns of equally-weighted hedge fund and Fund of Fund index 

 

The returns for the weekly data are plotted in Figure 1-6, and several negative 

returns are realized in 2006 and 2007. Over the period, housing prices start falling and 

they may affect hedge funds’ performance if the hedge funds are involved with subprime 

mortgages-backed securities. Also, the investment bank Lehman Brothers, which is one 

of the largest U.S. firms in the industry, declared bankruptcy on September 15, 2008 due 

to large losses on mortgage-backed securities.  
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Figure 1-6 Weekly returns of HFRX Global hedge fund index 

 

In Figure 1-7, the histograms of the Equally-Weighted monthly hedge fund 

portfolio, the FOF index, and the weekly hedge fund returns are presented. They are 

useful for visualizing how the data are distributed. All three histograms indicate that the 

data are perhaps not normally distributed because the distributions are peaked in the 

center and there are a few extreme data points on the left of the distribution, which might 

suggest fat tails on at least the left-hand side.    

Figure 1-7 Histograms of Equally-Weighted, FOF and Weekly Returns  
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1.6.1 Estimation Results for Monthly Returns 

In this section, the time varying estimates of the risk measures are reported. For the 

monthly returns, 60 observations are selected as the fixed window length. For visual 

illustration, we take absolute values of the original risk measures and scale them. The 

results from both the equal- weighted hedge fund portfolio and the FOF index are shown 

in Figure 1-8 and Figure 1-9. The upper panel in both figures is associated with the equal-

weighted hedge fund portfolio, and the lower panel is the FOF index. The estimates based 

on the normal distribution assumption are in Figure 1-8 and the outcome under the EVT-

GP model is presented in Figure 1-9. For every graph in both figures, the CVaR measures 

are above the VaR estimates, which are expected since the CVaR measure is the average 

of exceedances above VaR.  

Figure 1-8 Normal distribution based time varying risk measures 
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Figure 1-9 EVT-GP based time varying risk measures 

 

Under the normality assumption about exceedances, the estimates of the risk 

measures demonstrate persistent risk until July 31, 1998, when the estimates suddenly 

increase and then remain at the same level until July 31, 2003. After that period, the 

estimates for risk measures return to the original level. The results for both return series 

under the normality assumption only capture one standout event, the collapse of Long 

Term Capital Management that occurred in June 1998. In other words, this approach fails 

to capture several economic distresses that happened at different points in time.  

In contrast, the time varying risk measures based on the EVT-GP model capture the 

bad performance that scatters at several points in time. For the first 15 periods, the 

estimated risk measures show the Asian crisis in 1997 and the LTCM debacle and 

Russian default in 1998. Then there are two incidents where the risk estimates are high in 

June 2004 and May 2006. Whereas it is not possible to detect the sharp increase in risk 
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under the normality assumption, the EVT based dynamic risk measures are more 

sensitive to events in the observed sample.  

1.6.2 Estimation Results for Weekly Returns 

In Figure 1-10, the upper panel shows the estimates of VaR and CVaR based on the 

normal distribution. The lower panel represents the estimates based on the GP model. 

Both risk measures move together while the estimate of CVaR is consistently above VaR 

estimate, as expected. Over time those estimates are steadily increasing in both panels. 

However, the pattern is a little bit different. For the normal distribution case, the 

estimated risk measures exhibit three break points in time. For example, the third break 

around September 2008 reflects the collapse of Lehman Brothers. The GP based results 

show a slightly different time varying pattern in the estimates of VaR and CVaR. For the 

first few time periods, the short and quick decreases in the risk measure estimates are 

followed by a persistently increasing pattern over time that peaks in September 2008.  

Figure 1-10 Time varying risk measures with the weekly returns 
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1.7 Conclusion 

Financial risk management relies mainly on the ability to accurately compute the 

magnitudes and probabilities of large losses due to extreme events, including various 

economic distresses. In the literature, it is well known that traditional parametric and non-

parametric methodologies have limitations to capture such extreme events. In this paper, 

we have illustrated the methods of extreme value theory by modeling the tail behavior of 

a loss distribution while considering tail related risk measures such as VaR and CVaR.  

The results show that the improved EVT-GP risk model more easily identifies the past 

global financial crises than the normal model. Although VaR is still widely used under 

the normal assumption, new tools such as the EVT/CVaR may become more important as 

investment firms look for better ways to gauge and manage the market risk. 
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2 Optimal Hedging under Copula Models with High 

Frequency Data 

2.1 Introduction 

 

The purpose of this chapter is to manage financial risks with the improved risk 

measures based on models of high frequency (e.g., intra-day) foreign exchange rates. 

Furthermore, we use copula-based probability models to capture the dependence structure 

and the univariate marginal properties of high frequency spot and futures returns. 

Alternative econometric models containing GARCH-based copula model are employed 

to determine the optimal hedge ratios for currency futures positions used to hedge against 

the variability of spot exchange rates. The models under consideration are compared by 

the extent to which the variance of the hedge portfolio return is reduced.  

An exchange rate is the price of one currency in terms of another currency. As one 

currency depreciates, it drops in value and the other currency appreciates (i.e., rises in 

value). Floating exchange rates between currencies can fluctuate frequently and often 

substantially. From U.S.-based exporters’ or investors’ perspectives, foreign exchange 

risk is the exposure to potential losses due to appreciation of the U.S. dollar against the 

foreign currency. Foreign exchange fluctuations may also affect multinational firms’ 

earnings and investors’ profits. Unfavorable foreign exchange rates (i.e., a strong dollar) 

can affect foreign sales and investment in a negative way. As foreign currencies 

depreciate, U.S. exports are likely falling as U.S. firms raise prices to compensate for the 
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currency’s decline in value. In contrast, a weaker dollar (i.e., dollar depreciation) has a 

positive impact on export sales and investment from overseas. The primary source of 

concern lies in the unpredictability of the foreign exchange rates. 

Figure 2-1 Trade Weighted Exchange Index: Broad 

 
Data Source: FRED, Federal Reserve Economic Data, Federal Reserve Bank of St. Louis: Trade Weighted 

Exchange Index: Broad [TWEXB]; Note: Observations range from 1995-01-04 to 2011-02-23. This figure 

shows a weighted average of the foreign exchange value of the U.S. dollar against the currencies of a broad 

group of major U.S. trading partners, which includes the Euro Area, Canada, Japan, Mexico, China, United 

Kingdom, Taiwan, Korea, Singapore, Hong Kong, Malaysia, Brazil, Switzerland, Thailand, Philippines, 

Australia, Indonesia, India, Israel, Saudi Arabia, Russia, Sweden, Argentina, Venezuela, Chile and 

Colombia.  

 

Figure 2-1 shows the U.S. dollar values against a trade weighted basket of other 

currencies, which include most of the major trader partners over the last 16 years. From 

March, 1995 until the end of 2001, the dollar values have kept steadily increasing and 

reached a peak in early 2002. Then the dollar followed a consistently falling trend until 

mid-2008. When the financial collapse occurred, the period between mid-2008 and the 
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start of 2009 showed a rapid rise, followed by a steep fall until early 2010. Then it 

seemed that the U.S. dollar values fluctuated in the face of a decreasing trend.  

Those agents who are interested in reducing risk must bear a lower expected return 

on the underlying asset due to the trade-off between risk and return (i.e., negative of 

loss). Due to unpredictable changes in the exchange rates, hedging foreign exchange risk 

is of great importance because it will influence financial performance. In a simple 

framework we can demonstrate the relationship between a change in the exchange rate 

and a change in the value of an asset. 

                 (2-1) 

where    is the change in the value of an asset,    is unexpected change in the exchange 

rate,   is intercept, and   is the unexplained errors that are not captured by the variable in 

Equation 2-1. Assuming that   and   are on average zeros, 

  
  

  
       (2-2) 

Here   can be regarded as foreign exchange exposure, which is the sensitivity of the 

domestic currency value of an asset to an unexpected change in the exchange rate.  

U.S. exporters or investors can use currency futures or swap contracts to hedge 

against foreign exchange risk. If an investor anticipates receiving a cash flow 

denominated in a foreign currency, the dollar value of the foreign payment depends on 

the exchange rate at the time payment is made. For example, suppose a U.S. based 

investor will receive €125,000 on September 1. The current exchange rate implied by the 

futures contract is $1.4/€. The investor can lock in the exchange rate by selling €125,000 
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worth of futures contracts expiring in September. By doing so, the investor locks in an 

effective exchange rate at $1.4/€ regardless of changes in the actual exchange rate prior 

to the payment date.  

It is very important to see how the futures prices are determined in order to better 

understanding the futures hedge. The following discussion is based on a U.S. investor’s 

point of view. Since we are dealing with futures contracts on currencies, the underlying 

asset is a certain number of units of the foreign currency (i.e., the payment). Let    be the 

current spot exchange rate in dollars per foreign currency and let    be the futures 

exchange rate in dollars per foreign currency.   is the time to maturity. We define   as 

the U.S. dollar risk-free interest rate and    as the value of the foreign risk-free interest 

rate. Using this notation, we can derive the price of futures contracts on currencies by 

equalizing two dollar denominated quantities at maturity. Suppose we have 1,000 units of 

foreign currency at time zero. We can invest it for   periods at the foreign risk-free 

interest rate,   , and can take a short position expecting to sell it at time  . The resulting 

quantity in dollar terms is             under interest rates with continuous 

compounding. The other quantity in dollars is         
   in a scenario where we first 

exchange 1,000 units of foreign currency for dollars and can invest it for   periods at 

interest rate  . If both values are equal at time   we end up with the following equation: 

      
(    )      (2-3) 

Equation 2-3 is called interest rate parity. If the parity relationship does not hold, 

there is room for arbitrageurs to profit. For example, if       
(    ) , arbitrageurs can 
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profit by buying the underlying spot exchange rates and shorting futures contracts. As 

arbitrageurs sell the futures contracts, the trading drives its price down. If    

   
(    ) , they can profit by selling the underlying spot exchange rates and going long 

in futures contracts. The long arbitrage trade in the futures market drives the futures price 

up. So, the spot and futures prices should satisfy the relationship during the delivery 

period. However, the spot price may not converge to the futures price in the absence of 

arbitrage.  

Table 2.1 shows currency futures quotes on Friday March 4, 2011. We can observe 

that futures prices for the Japanese Yen and Swiss franc increase with maturity in Table 

2.1. Equation 2-3 refers to spot/futures relationship over time, but the data in the table are 

only futures rates. March futures are close to expiry, but these are not equal to spot rates.  

Table 2.1 Foreign Exchange Futures Quotes 

 
Source: Thomson Reuters. This is Currency Futures quotes from the Wall Street Journal on Friday, March 

4, 2011. Columns indicate month, open, high, low, settle, change, and open interest.  
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As Hull (2006, p.115) points out, a foreign currency can be thought of as an asset. 

Since the value of interest paid in a foreign currency depends on the value of the foreign 

currency, the positive value of the interest rate of the foreign currency generates the yield 

of a foreign currency.  

Hedging with futures requires a futures contract that is highly correlated with the 

underlying asset being hedged. Since the two positions tend to move in the same 

directions, higher correlation between the two positions will more effectively offset each 

other and the hedge will perform better. For instance, if you want to hedge some UK 

pounds you expect to receive, you would short pound futures in the same quantity. Also, 

you need to choose a futures contract that has a delivery or expiry date close to or shortly 

after the spot pound transaction.     

The ratio of the number of units in a hedging instrument to the number of units 

being hedged is called the hedge ratio.  Under some risk measure that represents the 

volatility of portfolio returns, the optimal hedge ratio is easily calculated by minimizing 

the risk measure for the associated portfolio.  

The study of the hedging process requires two practical considerations. First, we 

must decide which model is appropriate for construction of the hedge portfolios. Second, 

we must determine whether we are interested in a static hedging strategy or a dynamic 

method.  With high-frequency foreign exchange rates and corresponding futures 

contracts, we attempt to see how to improve the hedging effectiveness in the various 

hedging models in this paper.  
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The normality assumption for the asset returns plays a major role in calculating the 

optimal hedge ratio. However, the estimated distributions of financial asset returns appear 

to be non-Gaussian as first noted by Mandelbrot (1963). He stressed that the normal 

distribution cannot reflect the movement of asset returns observing heavy tailed 

characteristics. To specify a model for the empirical distributions of asset returns, the 

following two facts are important. First, the empirical distributions tend to have high 

peaked and heavy tailed properties relative to the normal distribution. Those things are 

also observed in high-frequency data. Second, asset returns are time dependent in a 

nonlinear fashion. In the linear sense, there is no significant autocorrelation of the price 

changes, which is often used to support the efficient market hypothesis (Fama 1963) that 

implies the asset returns are impossible to predict from available information.   

In cases where the marginal distributions of asset returns are not normally 

distributed, it may be hard to define a joint distribution of spot and futures returns for 

hedging purposes. In particular, when the associated returns are correlated in nonlinear 

form, it is not quite possible to derive a multivariate distribution. Faced with such 

difficulties, the copula method is a useful way to obtain a candidate joint distribution. The 

copula of a distribution is defined as the joint distribution function of fixed marginal 

distributions. This is supported by the Sklar theorem that proves all multivariate 

distribution functions have copulas and copulas can be derived from multivariate 

distributions with continuous marginals (Nelsen 1999). One advantage of the copula 

method is that a copula function can capture dependence structures without regard for the 
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form of the marginal distributions. Also, other correlation measures than linear 

correlation can be incorporated within the copula approach.  

One common way to model volatility
6
 of the underlying asset returns are the 

autoregressive conditional heteroskedastic (ARCH) models proposed by Engle (1982). 

The ARCH model is extended by the generalized ARCH (GARCH) model of Bollerslev 

(1986). These studies develop methods to deal with the univariate volatility of the asset 

returns. We need to extend our discussion to the multivariate case in order to capture the 

dynamic relationships between volatility processes of two or more asset returns. The 

important factor in the multivariate distribution is the dependence structure. The 

dependence modeling may have significant consequences in various financial 

applications. The constant conditional correlation (CCC) GARCH model is proposed by 

Bollerslev (1990) to capture the dynamic behavior of correlations. In turn models of the 

time varying or dynamic conditional correlations (DCC) are proposed by Engle and 

Shephard (2001) and Tse and Tsui (2002).  

The multivariate GARCH model has several disadvantages. First, as more asset 

returns are involved, the number of parameters to be estimated increases. Second, it 

assumes that the conditional distribution of returns is Gaussian. If that is not the case, the 

extension to the multivariate case may be difficult or infeasible. However, copula 

functions can alleviate those difficulties. By combining copula functions with GARCH 

models, we can not only keep distributional limitations flexible but also take into account 

                                                 

6 It means the conditional standard deviation of the return. 
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the time varying feature in the parameters of the dependence structure of the relevant 

marginal distributions.  

In the present paper, we are interested in evaluating various competing dynamic 

hedging methods containing the constant conditional correlation (CCC) GARCH model, 

the dynamic conditional correlation (DCC) GARCH model, and the copula-based 

GARCH model. The GARCH process represents the dynamics of asset returns by 

updating past information. A variety of copulas will be employed to link the spot and 

futures returns. With the copula-GARCH framework, the innovations in the mean 

equations are described by Student-t distributions, which are the marginal distributions. 

Five different copula (i.e., Gaussian Student-t, Frank, Clayton, and Gumbel) functions are 

used to allow for the dependence structure between a pair of the spot and futures returns. 

Furthermore, the time varying process for the dependence structure would be modeled so 

that the parameters to be estimated evolve over time.  

We apply such models to high frequency data on foreign exchange spot and futures 

returns. Earlier studies of hedging models rely heavily on less frequent data such as daily, 

weekly or monthly, but recent studies tend to use intra-day (e.g., a minute by minute) 

data for high frequency models. Among the different asset types, we examine the 

statistical properties of the foreign exchange rates and the corresponding futures 

contracts. We also evaluate the hedging effectiveness of the candidate models. 

The paper is organized as follows: The next section provides a detailed literature 

review. The subsequent sections briefly discuss copula models and then hedging models 

employed in this study of high frequency foreign exchange spot and futures data. The last 



54 

 

section describes the data and presents empirical results from various methods. Finally, 

concluding remarks are presented. 

2.2 Literature Review 

Hedging is an activity using financial instruments such as derivative contracts (e.g., 

futures
7
, forwards and swaps) to reduce the risk from the volatility of price changes. 

Whereas a forward contract agrees to buy or sell the underlying asset on a specified 

future date for a predetermined price, a spot contract is an agreement to buy or sell an 

asset today for immediate delivery. As a means of hedging owned assets against potential 

losses, one can use a short futures hedge. In this case, the key to this situation is how 

many futures contracts an investor sells to provide adequate risk protection. The optimal 

hedge ratio is the number of futures contracts relative to the size of the cash position.  

The fundamental benchmark for the optimal hedge ratio is calculated based on the 

OLS method (Cecchetti, Cumby, and Figlewski 1988; Baillie and Myers 1991) and is the 

conditional covariance between the spot and futures returns divided by the conditional 

variance of the futures returns. This method is equivalent to one that minimizes the 

variance of the asset portfolio held by the investor, which is known as the minimum 

variance hedge ratio. Despite many drawbacks such as serial correlation (Herbst, Kare, 

and Caples 1989) and heteroskedasticity (Park and Bera 1987), the OLS-based method is 

commonly used in the literature. The former article tries to fix the autocorrelation 

                                                 

7  A futures contract is an agreement to buy or sell an underlying asset (e.g., commodities, 

currencies, and securities) at predetermined prices on a specified date in the future. 
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disturbance problem. Park and Bera (1987) documents that an ARCH process captures 

the nonlinearities between the cash and futures prices better than the OLS-based method. 

The optimal hedge ratio is based on two fundamental assumptions, normality of 

returns and a quadratic utility function over preferences.  In the case of non-normality of 

returns, the skewness and kurtosis measure should be taken into account to measure 

hedge ratios. In doing so, Alexander and Baptista (2004) develop two alternative hedging 

methods, minimum-VaR and minimum-CVaR. Harris and Shen (2006) apply those 

methods to currency portfolios.  

Regarding empirical estimation of the hedge ratios, the past literature has 

accomplished impressive developments in a variety of ways. First, the focus moves from 

a constant hedge ratio to a dynamic time-varying estimate of the hedge ratio (Myers 

1991). Second, it is known that cointegration between the spot and futures prices affects 

the properties of OLS. Ghosh (1995) and Kroner and Sultan (1993) estimate the optimal 

hedge ratio with foreign currency futures on the daily frequency basis. Both studies state 

that the misspecification of the traditional method leads to underestimating the optimal 

hedge ratio. Their analyses are based on an error correction representation because the 

spot and futures prices
8
 are cointegrated. Third, there are various types of generalized 

autoregressive conditional heteroscedasticity (GARCH) processes developed to capture 

                                                 

8 It takes the form of the natural logarithms of prices. 
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and explain the conditional volatility of the returns
9
 series in Brooks, Henry, and Persand 

(2002). The GARCH models proposed by Engle (1982) and Bollerslev (1986), are 

particularly useful to estimate the relevant parameters of the time dependent conditional 

variance models. 

For the purpose of estimating the optimal hedge ratio, there are multiple ARCH and 

GARCH models that may be used. Cecchetti, Cumby, and Figlewski (1988) obtain an 

optimal futures hedge ratio using an ARCH model. Baillie and Myers (1991) show that 

the dynamic strategy based on the GARCH model performed better when describing both 

returns as a martingale process. Kroner and Sultan (1993) draw similar conclusion with 

currency spot and futures returns. Floros and Vougas (2004) document that the bivariate 

GARCH model provides better hedging performance relative to the alternative methods 

using the Greek spot and futures market data. With the Datastream benchmark BTP 10-

year index and two types of futures prices (i.e., German Bund Futures and the Eurolira 

Futures price series), Rossi and Zucca (2002) confirm that the multivariate GARCH 

model-based hedging strategy can improve over the other traditional hedging strategies. 

Park and Switzer (1995) present comparable results based on two pairs of datasets the 

S&P500 spot and index futures and the Toronto 35 spot and futures.  

Interestingly, some studies (e.g., Bystrom 2003 and Holms 1996) show that the 

constant OLS hedge ratio outperforms the GARCH hedging strategies in terms of 

                                                 

9 The continuously compounded return can be computed by taking the first difference of the natural 

logarithms of prices. 
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variance reduction. For the former study, the Nordic electricity spot and futures contracts 

are used. The constant correlation bivariate GARCH and the multivariate orthogonal 

GARCH are employed for out-of-sample evaluation. Holms (1996) relies on a univariate 

GARCH(1,1) framework with the FTSE-100 stock index futures as a hedging instrument. 

He finds that the OLS hedge ratios vary over time and it is preferred to GARCH hedging 

strategy. Lien, Tse, and Tsui (2002) reach the same conclusion that the constant hedge 

ratio performs better than the constant conditional correlation GARCH model based 

strategy. The study mainly focuses on the out-of-sample forecasts based in ten different 

futures contracts. We need to be cautious when interpreting these counter-intuitive 

results. Under the situation where the model misspecification is uncertain, the superiority 

of the OLS- based hedging strategy may mean that OLS provides the best fitting 

misspecified model.  

Prior to Engle (2002), most studies used the constant conditional correlation (CCC) 

GARCH (Bollerslev 1990), with a multivariate heteroskedastic model to capture the 

relationship between several exchange rates. Engle (2002) proposes the time-varying (or 

dynamic) conditional correlation (DCC) model with a flexible correlation structure. As he 

points out, the motivation is based on the optimal hedge ratio formula, which includes the 

estimate of the correlation between the hedge portfolio returns. Engle and Sheppard 

(2001) and Tse and Tsui (2002) develop time-varying models based on the GARCH 

framework. The use of the DCC GARCH model helps examine the short-term dynamics 

of the return series that may be related to a long-term pattern.  
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Along with the dynamic conditional correlation (DCC) GARCH, we need to place 

emphasis on the characteristics of the joint distribution of the hedge portfolio returns. If 

non-normal properties such as skewness, kurtosis, and dependence structure (e.g., 

between the spot and futures returns) are present, we can incorporate a copula model into 

the DCC GARCH process. Hsu, Tseng, and Wang (2008) shows that the copula-based 

GARCH model improves the performance in terms of the reduction of variance relative 

to other comparing models.  

The copula approach is popular in finance mainly because it can describe the 

excess volatility and idiosyncratic behavior of financial asset values or returns. The 

properties of copula functions are well summarized by Nelsen (1999). Copulas can be 

interpreted as joint distributions represented from given or fixed marginal distributions. 

The copula approach conceptually separates marginal behaviors from the dependence 

structure. A crucial property is that the copula-based dependence measure is invariant to 

any increasing transformation of the original data. Therefore, the copula method may be 

used to model nonlinearity among multiple time series. One advantage of using copula 

model is to separate marginal distributions from the type of the copula model. Since 

Embrechts, McNeil, and Straumann (2002) and Cherubini, Luciano, and Vecchiato 

(2004), many applications in finance and economics are produced.  

Using this method, the problem of estimating the parameters of parametric copula 

functions can be accomplished with several standard procedures. First, the parameters of 

the copula model may be estimated with the generalized method of moments (GMM). 

Prokhorov and Schmidt (2009) show that when the copula model is misspecified but 
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robust, the GMM estimator outperforms the pseudo ML estimator. Second, we can use 

the two-step ML method. In the first step of the inference functions for margins (IFM) 

approach, we choose a parametric marginal model and fit it to data. Then, we maximize 

the full likelihood function over the dependence parameter. This method is used by Joe 

(1997). Under a conditional likelihood model, the two-step method is used by Jondeau 

and Rockinger (2006) and Patton (2006). Third, we can use a non-parametric approach, 

where the marginal distribution must be derived with an empirical or kernel density 

estimator (Genest and Rivest 1993).  

Hull and White (1998) use the normal copula to calculate the Value-at-Risk 

measure. Chen at al. (2004) report that normality of U.S. equity returns is not rejected 

under a GARCH model, and a normal copula model is not rejected for exchange rate 

data. Breymann et al. (2003) show the superiority of the Student’s t-copula when 

modelling the dependence structure of high-frequency data.  

The copula-GARCH approach has been employed by many researchers to evaluate 

hedging (Bertram, Taylor and Wang 2007, Jondeau and Rockinger 2006, Hsu, Tseng, and 

Wang 2008). The basic strategy in these studies is to use the GARCH framework to 

model the dynamics of financial returns. However, under the normality assumption for 

the GARCH model, its application may be restrictive in situations where the actual 

financial data are not likely to be normally distributed. The use of the joint distribution 

through copula functions may be better because the copula method can conveniently 

represent the dependence structure among the random variables.   
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Among the statistical characteristics of high frequency data, negative 

autocorrelation is observed in Goodhart (1989) and Goodhart and Giugale (1993). 

However, a different pricing algorithm yields positive first-order autocorrelation 

(Bollerslev and Domowitz 1993, p.1432). There are a few explanations in the literature 

for the causes of negative autocorrelation in minute by minute data. For example, traders’ 

heterogeneous responses to prices may cause it because small and large firms may have 

different attitudes towards risk, information, and operating hours involved with more 

geographically dispersed markets (Bollerslev and Domowitz 1993). Goodhart and 

Giugale (1993) assert that the rising liquidity associated with one more market-maker 

improves the allocation of inventories, which may lead to negative autocorrelation.  A 

second explanation from Bollerslev and Domowitz (1993) is that negative autocorrelation 

may be caused by the non-synchronous construction of the price series at the end of the 

interval.   

As shown in Bollerslev and Domowitz (1991), it is possible that dependence in the 

bid-ask spread leads to serial correlation in the conditional variance of returns in high 

frequency data. Bollerslev and Domowitz (1993) report that such a relationship may be 

found through the GARCH error structure of the model. They attribute the source of the 

conditional variance to the number of incoming quotes, unlike the traditional proxies for 

the information arrival, volume or the number of transactions. Using intraday data on 

currency futures contracts, Laux and Ng (1993) find that when they use the expected 

number of price changes as a proxy for information arrival process, it has explanatory 

power for conditional volatility.  
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Intraday seasonality
10

 can be related to the fat-tailedness of the returns. Ballocchi et 

al., (2001) provide evidence of seasonal volatility as a function of the time left to expiry 

for Eurofutures contracts. For the foreign exchange market, Müller et al. (1990) reveal 

that there is seasonal volatility in price changes during business hours. Since the 

existence of seasonal volatility can induce volatility model estimators to be biased, we 

need to filter out the periodic component of the volatility. 

From the volatility estimation perspective, when the seasonal patterns of volatility 

processes are accounted for, it turns out that the GARCH model may not capture the 

heterogeneous structure of the foreign exchange market. According to Guillaume et al. 

(1995), the GARCH model fails to explain both geographical and temporal heterogeneity 

of returns. In other words, there are other unexplained components which generate long-

term and consistent patterns in the time series. As Andersen and Bollerslev (1997) point 

out, one can get misleading inference about the intraday volatility patterns as a result of 

strong periodic structure of the high frequency data.    

For modeling intraday seasonality, earlier studies propose either a polynomial 

activity function based on geographical characteristics (Dacorogna et al., 1993) or a 

method with a Fourier form as a nonlinear regression model (Andersen and Bollerslev 

1997). Gencay et al., (2001) propose a simple method for eliminating intraday seasonality 

using a wavelet multi-scaling approach. Depending on the wavelet transform, it partitions 

the time frequency data into low and high-frequency components. The use of the filtering 

                                                 

10 A time series may be described as seasonal if it exhibits a periodic pattern.  
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method is more beneficial in that the persistence of volatility in further lags is much 

smaller relative to other studies. 

A key empirical question is what type of distribution is proper to describe the data. 

Some researchers have found that the empirical distribution of intraday foreign exchange 

rates is symmetric and fat-tailed (Guillaume et al., 1997). In contrast, Wasserfallen and 

Zimmermann (1985) reject the symmetry hypothesis, even though as the time interval 

extends, the size of skewness decreases. More interestingly, as time interval increases, the 

measure of the excess kurtosis decreases.  

2.3 Wavelet Transform
11

 

In the last two decades, the wavelet methodology has drawn considerable attention 

in the time series literature. The wavelet and other transformations are used to get 

additional information that is not readily available in the original series. The most popular 

transform to date is the Fourier transform, which is a function of time. We can analyze a 

signal or a series in the time domain for its frequency content. Sines and cosines are used 

as the basis functions, which are elements of Fourier synthesis. Namely, a given time 

series can be represented as a Fourier series with sine and cosine terms. In general, the 

frequency is related to the change in rate of a process. If it changes rapidly, it is said to be 

of high frequency, whereas if it changes slowly, it is of low frequency. In case of no 

change in the variable, we say it is zero frequency. The frequency spectrum generated by 

                                                 

11 The contents in this section are based on the discussions in Chapters 1, 4 and 5 of Percival and 

Walden (2000) and in Chapter 4 of Gençay et al (2002).  
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the Fourier transform is useful for identifying the frequencies in a time series. It is well 

known that there is a trade-off between the time and frequency domain. This feature is 

revealed at the extreme cases. Given a sample in the time domain, when we expand the 

time series to be infinitely long by padding it with zeros (i.e., making the time period 

longer) the frequency domain samples are so close that they can produce a narrow spike 

in the frequency domain. Similarly, if the period of a sample in the time domain gets so 

short that it becomes an impulse, the frequency spectrum would be expressed as a flat 

line in the frequency domain. The Fourier analysis is attractive when the data in question 

are a stationary time series. The Fourier transform can be applied to spectral analysis, 

which is one of most widely used methods in data analysis.  

In the presence of non-stationary features of time series such as drifts, trends, and 

sudden changes, Fourier analysis of the frequency domain may not be suitable and is 

replaced by the wavelet approach. It works in both the time and frequency domains 

whereas the Fourier transform only generates a frequency representation of a series. In a 

Fourier transform, there is no way to tell us when in time the frequency portions exist. 

The wavelet transform provides us with good time resolution and poor frequency 

resolution at high frequencies while at low frequencies it gives good frequency resolution 

and poor time resolution. 

Formally, a wavelet is defined as a real valued function,  ( ), over the real line, 

(    ), which satisfies two basic properties: the integral of the real-valued function is 

zero and the square of it integrates to unity.  

∫  ( )  
 

  
         (2-4)  
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and 

∫   ( )  
 

  
        (2-5)  

Equation 2-4 implies that there are some negative and positive values generating waves. 

Equation 2-5 is called the unit energy property. If Equation 2-5 holds, there are finite 

intervals,,    -, that must exist for any   (   ), such that  

∫   ( )  
 

  
          (2-6)  

For very small  ,  ( ) is negligible outside of the interval ,    -. In contrast, nonzero 

activity takes place in the restricted interval. Hence both Equation 2-4 and 2-5 produce a 

small wave, i.e., a wavelet.  

For a simple illustration, we consider the Haar wavelet function, which is regarded 

as the first wavelet function (Haar 1910) that follows: 

 ( )  
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Figure 2-2 The Haar Wavelet Function 

 

 

 

 

 

 

(a)                                                                        (b) 

Note: The graph (a) denotes the Haar wavelet in Equation 2-7. The Haar wavelet function with    , and 

    is plotted in (b).  

 

The resulting Haar wavelet function is plotted in Figure 2-2. We can easily check if the 

above Haar wavelet function satisfies Equation 2-4 and 2-5. For example, in (a),  √ ⁄  

(  √ ⁄ )    and ( √ ⁄ )
 
 (  √ ⁄ )

 
  .  

It is very important to know a key concept related to wavelet analysis. Wavelets tell 

us how weighted local averages vary from one time period to the next. Let  ( ) be a real 

valued function. The average value of  ( ) over the interval ,   - can be given by 

 

   
∫  ( )  

 

 
      (2-8)  

where     and  ( ) is well defined. By looking into Equation 2-8 in more detail, we 

can set up average values at different scales and times. Let   and   be     and (  

 )  , respectively. The former is the length of the interval, which is referred to as scale, 

and the latter is a midpoint of the interval, which is the center time when we consider a 
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time series. We can define the average value of the series  ( ) over a scale of   centered 

at time   by 

 (   )  
 

 
∫  ( )  

  
 

 

  
 

 

     (2-9)  

Based on Equation 2-9, we can evaluate how much  (   ) changes from one time 

period to another in an adjacent non-overlapping way. Let  (   )  be the difference 

associated with different times between the two averages.  

 (   )   .    
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∫  ( )  

   

 
 

 

 
∫  ( )  

 

   
     (2-10)  

Here   denotes a homogeneous time interval given a width of length  , i.e., a scale. For 

example, consider a 5-minute Australian spot rate at 7:25 AM on January 2004. The 

value at time     would be recorded at 7:30 AM on January 2004. The change in scale 

is different from the change in time. Through temporal aggregation, we can increase the 

scale,  , up to one day or even more. At this point we can discuss the effect of changes in 

the daily averages. Note that it is possible to take changes in averages over various scales. 

Thus, wavelet analysis is based on two dimensional aspects such as change in time and as 

well change in scale.  

 Since the intervals of two integrals do not overlap in Equation 2-10, we can easily 

combine them into a single integral  

 (   )  ∫     ( ) ( )  
 

  
     (2-11)  
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where  

    ( )  {

  
 ⁄          

 
 ⁄          

           

     (2-12)  

By changing the scale   and time   parameters, we can extract similar information from a 

time series. If we apply this to the Haar wavelet function, its general form is written as 

    
( )

 

{
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⁄          

 
√  

⁄          

           

    (2-13) 

In the case of    , and    , the shifted and rescaled version of the Haar wavelet 

    
( )

( ) is plotted as in (b) of Figure 2-2. According to a different level of scale  , we can 

see how averages of  ( ) are changing from one time period of length   to the next.  

There are many other basic wavelet functions. The Haar wavelet functions in 

Figure 2-2 are continuous wavelet transforms because the scale and location (i.e., time) 

are real values, not integers. In this paper, we focus on the discrete wavelet transform 

(DWT) based on a time series over discrete times. To enhance the understanding of 

maximal overlap discrete wavelet transform (MODWT), we need to have fundamental 

knowledge of DWT.  

Let *  + be a time series for          . So the number of elements in the 

series is  . The discrete wavelet transform of *  + is conducted by computing  

          (2-14)  
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where   is a vector of length     , including the  -th DWT coefficient, and   is an 

    real valued matrix. In the DWT the length of *  + is restricted to be a power of 

two. In contrast, the restriction is relaxed in the MODWT. The DWT coefficients,  , can 

be decomposed into 
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     (2-15)  

where    has dimension       ;    is    ;    is       , and            are 

scalars. If we expand the components of the vector,  , the structure of the DWT 

coefficients is  

  
  [   

      
      ((   )  ) 

  ]      

  
  [ (   ) 

    ((   )  ) 
      ((    )  ) 

  ]     

          

  
  [ (   ) 

  ]          

  
  [ (   ) 

  ]                (2-16)  

where the superscript,  , denotes transpose and      means a column vector containing 

elements of the  -th row of the     matrix,  . Note that    
  are closely related to 

   
 . The rows are circularly shifted versions of each other according to the designated 

rule. The     coefficients in   through    are called wavelet coefficients and the  -th 
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coefficient,   , in   is called a scaling coefficient. By combining all coefficients in 

Equation 2-16, we can consider the wavelet synthesis of  : 

       ∑   
   

 
      

       (2-17)  

 Let us define      
    for         which is the    vector, and      

    

which is the    vector. We can express the time series   as the sum of a constant 

vector    and other vectors   ,         such as  

      ∑   
 
           (2-18)  

where    is the  -th level wavelet detail and    is called the smooth. This is a multi-

resolution analysis (MRA) of the time series,  .   

A more precise definition of the DWT is given by introducing the wavelet and 

scaling filters in order to factor out   in Equation 2-14 through the pyramid algorithm. 

Let us define *            + as a real valued wavelet filter, where   is the width of 

the filter and must be an even integer in the DWT in order to meet the orthogonality to 

even shifts. Here the orthogonality condition means that the inner product of the relevant 

components equals zero. Since    is a wavelet filter, it satisfies the basic properties in 

Equations 2-4 and 2-5. Furthermore, the orthogonal to the even shifts condition must be 

met.   

∑   
   
     ;       

∑   
    

     ;       

                 ∑        
   
                            (2-19) 
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The last two equations comprise the orthonormality condition of the wavelet filter. To 

illustrate the wavelet filter we can refer to Haar (   ), in which    
 

√ 
 and    

 
 

√ 
. To check the basic properties, we can make sure that         and   

    
   . 

And the value of        is equal to zero because the component,     , is zero.  

Through a simple example, we can see how it works. Assume that the filter width is 

    and        . The corresponding wavelet is called Haar DWT. Recalling    

has the dimension of       ,    takes the form:  
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Those nonzero values usually are not unique, and here we choose    
 

√ 
, and    

  

√ 
. 

We can obtain    and    by solving the following equations:         and   
    

  

 . The rows are orthogonal to each other in the matrix,  , above. For instance, pick the 

first two rows and then calculate their inner product. We can see the result is zero. In 

addition, the orthonormality can be confirmed by showing     
    

 

, where   

 

 is an 

 

 
 

 

 
 identity matrix. As we know the formulation of   , the first level wavelet 
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coefficient,   , reduces to a 
 

 
   vector through    . It is called the down-sample by a 

factor of two.   

Note that we need to circularly shift the first row in   by 2 to get the second row. 

In this case we have a shifting matrix,  , 
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Note that         and      . We can get the second row by multiplying the first 

row in    by   . In this manner, the subsequent rows in    can be generated.  

 Similarly, we can construct the 
 

 
   matrix,   , on a scale of two. To determine 

the values of the wavelet filters, we must solve the following two equations:       

        and   
    

    
    

   . By symmetry in the sense        and 
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      , we can get solutions for those two unknowns,       
 

 
.  In our example, 

   is the      matrix given by 



































2

1

2

1

2

1

2

1
000000000000

0000
2

1

2

1

2

1

2

1
00000000

00000000
2

1

2

1

2

1

2

1
0000

000000000000
2

1

2

1

2

1

2

1

 

As with the    matrix, the basic properties of wavelets are satisfied in the    matrix. 

We can get the second row in    by multiplying the first row in    by   .  In this 

fashion, for the scale of three,    consists of the      matrix and in the case of a scale 

of four, the last level wavelet coefficients,    is the      row vector.  

The scaling filter (sometimes called the father wavelet) is closely related to the 

wavelet filter (or mother wavelet). In words, we can create the scaling filter *  + by 

reversing the wavelet filter *  + and then changing the sign of coefficients with even 

indices. For example, for the first level, the Haar scaling filter is       
 

√ 
, whereas 

the corresponding Haar wavelet filter is    
 

√ 
, and     

 

√ 
. The scaling filters share 

the same properties as those in the wavelet filters. Although it is possible to discuss the 

scaling filter according to each of scales, as long as our interest is in the MRA, we need 

to focus on the scaling coefficients for the last level,     in this example. In our simple 

example, the scaling vector,   , is given by  
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








4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1
 

To summarize the DWT, it is said that the wavelet transform is localized in both 

time and frequency because a vector of wavelet coefficients resulting from the wavelet 

basis (or mother) function is associated with a particular scale and with a particular set of 

times. With regard to the usefulness of wavelets, they provide a localized analysis of a 

function in terms of changes in averages over various scales. The function describing 

changes in average values can be composed of two arguments, scale and time. By varying 

scale, we can estimate how averages of a series over various scales are changing from 

one period to the next. The collection of changes in the average values is called a wavelet 

transform. 

The wavelet transform is a successive process following the pyramid algorithm. 

Suppose we process a time series using high-pass
12

 and low-pass filters. Each of the 

filters can be decomposed into two parts; one is the gain function and the other is the 

phase
13

 function, which is the phase angle of a filter. They filter out either high frequency 

or low frequency components. The pyramid algorithm is repeated until some frequency is 

removed from the series. The pyramid algorithm works as follows: we take the scaling 

coefficients from the first decomposition and pass it through low-pass (associated with 

                                                 

12 When the magnitude of the gain is small at low frequencies and large at higher frequencies, the 

filter is said to be a high-pass filter. It is useful to capture the high-frequency dynamics of the input series. 

13 When the phase of a filter is not zero, there would be a change in the phase of the original series, 

which leads to misspecification of turning points in the original series. 
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the scaling function) and high-pass filters. We do this until the process reaches a pre-

specified level.  

In Figure 2-3 we describe an algorithm for computing the  -th level Maximal 

Overlap Discrete Wavelet Transform (MODWT) wavelet and scaling coefficients,  ̃ ,  ̃  

based on the scaling coefficients,  ̃   of level    . Figure 2-3 shows a flow chart 

decomposing   into the MODWT wavelet and scaling coefficients   ̃  and  ̃  and then 

decomposing  ̃  into  ̃  and  ̃  by the pyramid algorithm. For an arbitrary sample size 

 , the elements of  ̃ ,  ̃  and  ̃    are obtained by circularly filtering *  + with each 

corresponding periodized filters { ̃   
 }, { ̃   

 } and { ̃     
 }, which are * ̃ +, * ̃ + and * ̃   + 

periorized to length  . Here * ̃ + and * ̃ + are defined as a MODWT wavelet filter and a 

MODWT scaling filter, respectively. The transfer functions for * ̃ + and * ̃ + are given by 

 ̃( ) and  ̃( ). Each MODWT coefficient is associated with a particular portion of the 

original time series and hence can be associated with a time in the original series.      

Figure 2-3 Flow diagram decomposing of   into wavelet and scaling coefficients 

 

The process of figuring out the time that each coefficient should be assigned 

involves a study of the phase function for the filter that can be used to obtain the 
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coefficient from the original time series. Note that the associated squared gain functions 

for * ̃ + is real-valued and nonnegative and therefore its phase function is zero for all 

frequencies, which results in zero phase for the circularly wavelet filter. In order to 

establish the MODWT-based multi-resolution analysis (MRA) we need to define  ̃  and 

 ̃ . We can rewrite the original series   as an additive decomposition,   ∑  ̃ 
 
     ̃ , 

in terms of the sum of a constant  -dimensional smooth vector  ̃  and   wavelet details 

 ̃ ,        . Like the case of MODWT, the filters used to generate  ̃  and  ̃  hold the 

zero phase properties. This is very crucial in that the original series aligns with that in an 

additive MODWT MRA. In other words, an MRA ensures that all the characteristics in 

the original series are accounted for either in one of the details or in the smooth.  

With this approach, high frequencies are better resolved in time and lower 

frequencies are better resolved in frequency. This means that a certain high frequency 

component can be located better in time than a lower frequency component. On the other 

hand, a low frequency component can be located better in frequency compared to a high 

frequency component. Regarding our work, one of the important technical points is to 

determine the value of the integer  , the level of scales. It depends on the period of 

oscilliation. Oscillation with a period length of about 80 occurs in our returns for spot and 

futures rates according to the autocorrelation function (ACF) of the absolute returns 

series, equivalent to almost one single day transaction. Since       ,   might be 6 since 

the wavelet detail  ̃  captures frequencies             , where   represents 
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frequency. The oscillation that we are interesting in is where we want it to be (i.e., in the 

wavelet coefficients/details or the scaling coefficients/smooth). 

Through the wavelet transform, we may remove the characteristics of the intra-day 

persistent components. The resulting filtered return series turn out to be stationary with 

long memory characteristics. However, as stated in the literature, there are gradually 

increasing patterns in the correlation of a pair of spot and futures returns over aggregated 

time intervals. While accomplishing temporal aggregation over time, we use another 

linear filter (i.e., exponentially weighted moving average) on the time domain. Rather 

than putting equal weights on every value such as a simple moving average, the 

exponentially weighted moving average (EWMA) can be used for our data. The latter 

applies the weights that decrease exponentially at distant lags. It is a kind of low pass 

filter that eliminates high frequency components in the series. More weights under 

EWMA are put on recent observations relative to a simple moving average. In the same 

manner, less weight should be put on the distant observations. It is more suitable because 

it produces a more stable and smoother frequency spectrum than the contrasting simple 

moving average. The value of the weight tells us the cut-off frequency to be applied. The 

time-stamp of the data is a short, intra-day interval, so that we need to hold the value of 

the parameter lower, say 0.1 or 0.2 in the application of EWMA.  
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2.4 Hedging Model Specifications 

2.4.1 Minimum Variance Hedging Model 

The model is based on a linear regression of changes in spot prices against changes 

in futures prices. The return on the hedge portfolio can be obtained from relations 

between one unit of the spot position and   units of the futures contract as follows:   

                (2-20)  

where    and    represent the returns on a spot position and a futures position 

respectively, and    is the return on the hedged portfolio. The variance of the hedged 

portfolio return may be written as  

  
    

      
            (2-21) 

where   
 ,   

 , and   
  represent the variances of the hedge portfolio, the spot and futures 

positions respectively, and     denotes the covariance between the spot and futures 

position. Then the optimal hedge ratio,  

   
   

  
       (2-22) 

is obtained from minimizing Equation 2-21. The resulting hedge ratio is the optimal 

number of futures contracts needed to hedge one unit of the spot position. In practice, this 

hedge ratio is computed as the OLS estimate in the regression of the spot return on the 

futures return. When the hedge ratio is above one, a hedger would be in speculation 

position. By contrast, when the ratio is negative, because the assets are negatively 

correlated, the futures position adds to the spot position, and the portfolio is not hedged.  
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When the associated variance and covariance are time invariant, the optimal hedge 

ratio is valid. However, if the variance and covariance of returns are not constant over 

time, the preceding hedging method is no longer appropriate. In order to improve the 

model specification, we can use the conditional probability of one variable given another 

random variable and past realized information. That is one way to update the probabilities 

in order to allow for new information. In the optimal hedge ratio equation, the conditional 

variance and covariance can be used to evaluate the time varying hedge ratios. 

There is another way to compute the hedge ratio within the mean-variance 

framework. In this study, we use the Sharpe hedge ratio as an alternative to the minimum 

variance hedge ratio. Both the expected return and risk on the hedged portfolio are 

considered in the objective function. The Sharpe hedge ratio based on the risk-return 

tradeoff was proposed by Howard and D’Antonio (1984). Its objective function is 

constructed by the ratio of the hedged portfolio’s excess return to the volatility: 

     

 (  )   

  
      (2-23) 

where    represents the return on the hedged portfolio,    denotes the square root of the 

variance of the return on the hedged portfolio,    is the number of units of a short futures 

position and    is the risk-free interest rate. Note that the expected excess return can be 

maximized and/or the risk expressed as volatility on the denominator may be minimized 

in order to maximize the given objective function. Following Chen, Lee, and Shrestha 

(2008), the Sharpe hedge ratio can be obtained as 

         
(    ⁄ )[(    ⁄ )( (  ) ( (  )   )⁄ )  ]

[  (    ⁄ )( (  ) ( (  )   )⁄ )]
   (2-24) 
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where    and    are log returns on the spot and futures positions, respectively,   is the 

correlation between    and   , and     and    are the standard deviations of    and   , 

respectively. Note that if  (  )   , the Sharpe hedge ratio reduces to the minimum 

variance hedge ratio.   

When spot and futures prices are moving together, it is likely that there is a long 

run relationship. In this case an error correction term must be represented as shown later.  

The ignorance of the cointegration relationship among the two prices can affect the 

optimal hedge ratio and tend to generate a smaller hedge ratio. Ghosh (1993) shows that 

the consideration of the cointegration relationship produces improvements in estimation. 

However, Lien (2004) and Moosa (2003) document that the impact of ignoring 

cointegration on hedging effectiveness is not so large.  

2.4.2 Constant Conditional Correlation GARCH model 

We model the mean and the volatility of asset returns with extensions of the 

autoregressive conditional heteroscedastic (ARCH) of Engle (1982) and the generalized 

ARCH (GARCH) model of Bollerslev (1986). The basic idea behind volatility modeling 

is that the error terms in question are not serially correlated with each other over time but 

are dependent. Here dependence is in non-linear form because of the use of second 

moments. In a simple univariate GARCH(1,1) model, the current conditional volatility is 

explained by a constant term, which is the long-term steady state variance, the square of 

one lagged innovations and the past volatility term. We can describe the mean equation 

of a univariate time series    by the process 

    (       )         (2-25)  
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where      is the information set available at time    , and    is the innovations or 

disturbances. The conditional variance equation of the GARCH (1,1) model is given by 

        

  
         

       
     (2-26) 

where    is an independent and identically distributed process with zero mean and unit 

variance and   
  is the conditional variance. We have to impose some constraints on the 

parameters in order to achieve stationarity of the conditional variance such as  (  )   , 

   (  )   (     )⁄ , and      .  

According to the classification of multivariate GARCH models in Bauwens, 

Laurent, and Rombouts (2006), our focus goes to the third category, nonlinear 

combinations of univariate GARCH models in order to construct multivariate GARCH 

models. The constant and dynamic conditional correlation models and the copula-based 

GARCH models fall in this category. These GARCH specifications highlight the 

dynamics of the correlations rather than the dynamics of the covariances. For bivariate 

GARCH models the main component of the model specification links two individual 

conditional variances and the conditional correlation matrix in the CCC and DCC 

GARCH models and the dependence measures in the copula models.      

Using the bivariate error correction model proposed by Kroner and Sultan (1993), 

we can construct the following model: Let    and    be the log returns of the spot and 

futures, respectively.      and      represent the spot and futures log prices.  

        (          )    ( )    
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                                       (          )    ( )                      (2-27) 

where    for       is the conditional mean of    and    and  stands for lag operator 

used for moving average (MA) process. In our work, MA(1) or/and MA(2) error models 

can be used. The estimated cointegrating parameter between the individual level series is 

denoted by  , which is usually a normalized outcome, and            is the error 

correction term,     for       is the innovation of the respective asset return at time  . 

The bivariate innovation term can be formulated as follows: 

 0
    

    
1        (    ),    6

    
      

         
 7    (2-28) 

where it is assumed that the innovations follow the bivariate normal distribution with 

zero mean and the conditional covariance matrix,    of the innovations given the past 

information     . For each of the mean equations, we choose a more parsimonious 

model than the VAR in levels in that the number of parameters in the error correction 

models to facilitate forecasting. The volatility equations for both series are useful for 

modeling the time evolution of the conditional variances of the asset returns. Specifically, 

the model for the conditional variances is written as  

    
             

          
  

    
             

          
       (2-29) 

where      
  are the squared innovations at time     and      

  are the conditional 

variances for each of the log returns at time    .  
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The log-return data series for the GARCH models must be stationary or at most 

weakly defendent. Otherwise, we cannot apply the standard asymptotic properties of the 

parameter estimators. For instance, when we try to test the null hypothesis that a 

regression parameter is equal to zero in a nonstationary model, the usual t-statistics are 

not valid. A well-known example of the non-stationarity is the random walk model, and 

the simplest form is AR(1) with the coefficient of the lagged variable being unity. Unlike 

stationary series, the shocks in a nonstationary series would persist and never die away. 

One conventional way to treat non-stationarity is to use first differences of the original 

data.  

With regard to the hedge ratio, we attempt to update it while capturing the 

evolution of the conditional variance. The dynamic hedge ratio at current time   can be 

calculated by the ratio of conditional covariance at time   between the spot and futures 

returns to the conditional variance of futures returns at time   (i.e., the hedge ratio is 
     

    
 ). 

As shown, both the numerator and denominator in the hedge ratio are contemporaneous. 

Furthermore, under the assumption about the innovations, even when there are lagged 

dependent variables on the right-hand sides, we can obtain consistent estimators for the 

parameters in the volatility equations. Alternatively, it is possible to update the Sharpe 

hedge ratio such as Equation 2-24 over a period of time.  

Two non-stationary time series are said to be cointegrated if they are integrated of 

the same order and some linear combination is a stationary series. If the series are 

cointegrated, they have at least one long-run relationship. Even though two cointegrated 

series may diverge over short periods of time, they tend to move together over the long 
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run. For mean equations in GARCH models, we need to estimate the cointegrating 

parameter   in the error correction term. The coefficient of the error correction term 

describes how quickly the associated variables adjust back to the long-run equilibrium 

when they are away from it. By using the error correction model, we can capture both 

short-run and long-run dynamics in the relationship.  

When two random variables are  ( )14 and cointegrated, the relation can be written 

as  

                 (2-30) 

where   is a cointegrating parameter and    has zero mean and is  ( ). The error term, 

  , may contain serial correlation. However, this fact does not hurt consistency of the 

OLS estimator of  , which is super-consistent
15

 (Davidson and Mackinnon 1993, 718-

719). The resulting OLS estimator of   does not follow the standard asymptotic normal 

distribution and the t-statistic is not a Student-t random variable. Consequently, 

specialized tests for cointegration are required for nonstationary data.  

Although most economic variables are likely to be nonstationary, it is crucial to see 

if a series is  ( ) using a test for a unit root against  ( ). When a simple AR(1) model is 

used for the Dickey-Fuller (DF) test for a unit root, we can evaluate the null hypothesis 

                                                 

14  ( ) is said to be integrated of order  . To make a time series stationary, we must difference it   

times. For example, if             is stationary, then the series is said to be integrated of order 1, 

denoted by  ( ).   ( ) implies a stationary series.  

15 It follows that  ̂     (   ).  
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by using the asymptotic critical values for the   statistic rather than the usual Student-t 

critical values. The reason is that the test statistic under the null hypothesis does not have 

an asymptotic standard normal distribution as the sample size goes to infinity. Different 

asymptotic distributions of the test statistic are proposed for the purpose.     

To test for cointegration, there are several methods used in the literature, including 

the Engle-Granger method (Engle and Granger 1987) and the Johansen procedure 

(Johansen and Juselius 1990). Those tests enable us to see if it is possible to detect a 

long-run relationship between non-stationary variables. The former is a two-step method. 

First, we regress one variable on another and obtain the OLS residuals. Second, we check 

if the residuals are stationary by using an augmented Dickey-Fuller (ADF) test, which is 

used when autocorrelation in the errors is detected. The evaluation must be made with 

caution. The ADF critical values for the cointegration test are different than the usual 

values. When we reject the null hypothesis about the unit root, we might conclude that 

the associated variables are cointegrated of order of one.  

Another way to conduct testing for cointegration is the Johansen approach. It can 

be often used to test more than one cointegrating relationship. This method has no-

cointegration (i.e., a unit root) as the null hypothesis. To carry out the Johansen test, we 

first form the Vector Autoregressive (VAR) model with the order   of the model. Then 

two sets of OLS residuals based on two different dependent variables such as     and 

     are constructed. By using correlation relations we can form the associated test 

statistic. Finally, under the null that there are   or fewer cointegrating vectors, the test 

statistic based on either the trace or eigenvalue methods will be conducted.  
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2.4.3 Dynamic Conditional Correlation GARCH Model 

In practice, the assumption of constant conditional correlations may be too 

restrictive. We can allow the conditional correlation matrix to be time-varying. The 

dynamic correlation model (Engle 2002) is 

              (2-31) 

where        (    )  and    is the conditional correlation matrix. Due to the 

consecutive inversion in   , the model is computationally intensive. A dynamic 

correlation process can be written as 

   (     )                     (2-32) 

where   is a positive and   a non-negative scalar such that      ,    is the 

unconditional correlation matrix of the standardized residuals,        ⁄ . Then    may 

be obtained by rescaling    as follows:  

       (    )
  

      (    )
  

    (2-33) 

where     6
    

      

         
 7 and     (    )  [

     

     
].  

To estimate the dynamic correlations, we first need to derive  

6
    

      

         
 7  (     ) [

    

    
]   0

      

      
1 0

      

      
1
 

  6
      

        

             
 7  

where                    ⁄  and     is the unconditional correlation of        and       .  

Then we can get the conditional correlations as  
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                   [
      

      
]  [

               

               
] 

Under the structure on the conditional correlations above, its positive definiteness is met 

at all time periods. As Bauwens, Laurent, and Rombouts (2006) point out as a drawback, 

the conditional correlations would have the same dynamics because the parameters in the 

correlation evolution equation are scalars. The dynamic hedge ratio based on a DCC 

GARCH model can be obtained as the ratio of the time-varying variance components as 

in the CCC GARCH model,  
     

    
 . Furthermore, the Sharpe hedge ratio can be updated 

over time with different GARCH model-dependent time-varying correlation coefficients. 

2.5 Copula Models 

Consider the joint cumulative distribution function  (   )    ,       - of 

a pair of random variables   and   and their marginal distribution functions   ( )  

   ,   - and   ( )     ,   -. We define the generalized inverse of a distribution 

function as    ( )     *   ( )         +. A copula is defined as a function   

from    to   ,   - satisfying the following two properties;  

(1) For every     in  ,  

 (   )     (   ) and  (   )    and  (   )       (2-34) 

(2) For every             in   such that       and      ,  

 (     )   (     )   (     )   (     )   .   (2-35) 
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For the first property, a copula is the mass of the rectangle ,   -  ,   - in  . The 

second property, namely 2-increasing
16

, says that the assigned mass by   must be 

nonnegative (Nelsen 1999, p.8). For illustration purposes, let us introduce a product 

copula, which has the form 

 (     )      ,     (2-36) 

where    and     denotes values in the unit interval. The joint distribution corresponds to 

the product of two independent marginals, so it is also known as the independence 

copula.  

It is important to ask if a copula satisfies all of the properties mentioned above. 

Let’s verify the properties with the product copula. For the first property, it obvious 

because  (    )   (    )    and  (    )    ,  (    )    . The next property 

we should check is that the volume (or mass) of the rectangle must be non-negative. The 

 (   ) can be interpreted as a mapping from a rectangle ,   -  ,   - to a number in  . 

In our illustration,  

 (     )   (     )   (     )   (     ) 

                     

   (     )    (     ) 

 (     )(     )         (2-37) 

                                                 

16It refers to the non-decreasing function of rectangles, not the non-decreasing function of each argument. 

So some people refer to a 2-increasing function as quasi-monotone. 
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under the constraints       and      . Thus, the product copula satisfies those 

properties.  

For every copula   and every (   ) in   , the following inequality known as the 

Fréchet-Hoeffding bound holds  

    (       )   (   )      (   )    (2-38) 

where     (       ) is the Fréchet-Hoeffding lower bound copula and     (   ) is 

the Fréchet-Hoeffding upper bound copula. In Figure 2-4, we present the contour 

diagrams (i.e., level curves) of the Fréchet-Hoeffding lower bound, product, and Fréchet-

Hoeffding upper bound copulas.  

A link between the joint distribution functions and copulas is provided by Sklar's 

theorem. Joint distribution functions can be decomposed into the corresponding marginal 

distribution functions and a copula. Given continuous marginal distribution functions, a 

joint distribution function  (   ) exists such that 

 (   )   ( ( )  ( )).     (2-39) 

It can be verified by the probability integral transformation that given a copula   and the 

associated marginal distributions, we can construct multivariate distributions with 

continuous margins.  
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Figure 2-4 Contour diagrams for the lower bound, product, upper bound copulas  

  

There are additional properties derived from copulas that are attributable to the 

separation of the marginal behaviors from the dependence structure. It can be verified by 

Sklar’s theorem and Equation 2-39 that if the univariate random variables are 

independent, then the dependence structure is described by Equation 2-36. If one random 

variable is an increasing function of another (i.e., comonotonic or perfectly positively 

dependent), then their copula is the Fréchet-Hoeffding upper bound copula. Similarly, if 

one random variable is a decreasing function of another (i.e., countermonotonic or 

perfectly negatively dependent), then their copula is the Fréchet-Hoeffding lower bound 

copula. Finally copulas are invariant with respect to increasing marginal transformations. 

For example, when the Gaussian copula
17

 is used to link two standard normal marginals 

(e.g.,    ), the same copula can be used to describe the increasing transforms, for 

instance,       ( ) and       ( ).  

                                                 

17 The Gaussian copula can be calculated from the bivariate normal distribution via Sklar’s theorem. 

Given that the marginal distributions and the bivariate normal joint distribution are considered, the 

correlation coefficient allows us to construct the Gaussian copula. It will be defined later.  
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The probability density function  (   ) related to a copula  (   ) is defined as  

 (   )  
   (   )

    
.      (2-40) 

For continuous random variables, the copula density consists of the density of the joint 

distribution and the marginal density distribution functions. Based on the probability 

integral transforms of the random variables, it can be derived as 

 (   )   (  
  ( )   

  ( ))     [
     ⁄      ⁄

     ⁄      ⁄
] 

 
 .  

  ( )   
  ( )/

  .  
  ( )/   .  

  ( )/
,           (2-41) 

where   is the density of the joint distribution,   , are the marginal densities,   

  
  (  ), and     

  (  ). Note that the copula density equals one when the original 

random variables,        , are independent. Furthermore, by Sklar’s theorem the 

following relationship holds 

    (  
  ( )   

  ( ))   (   )    (  
  ( ))    (  

  ( ))    (2-42) 

This representation of the copula density is useful for the estimation procedures for 

copulas. In this paper we limit our interest to parametric classes of bivariate copulas to fit 

pairs of foreign exchange spot and futures returns. Every copula model is characterized 

by a single dependence parameter or a vector of parameters.  

2.5.1 Measures of Concordance 

There are various ways to measure dependence or association between random 

variables. The random variables   and   are dependent if  (   )    ( )  ( ) (i.e., not 
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independent). In the literature, various measures of dependence are closely related to 

copula dependence parameters. The most widely used measure is Pearson’s linear 

correlation measure. In this section, Kendall’s tau and Spearman’s rho are introduced as 

tools to measure concordance. A pair of random variables are said to be concordant if 

large values of one random variable are associated with large values of the other. 

Conversely, the variables are said to be discordant if large values of one random variable 

are associated with small values of the other random variable.  

Following Nelsen (1999), Kendall’s tau for continuous random variables is given 

by the probability of concordance minus the probability of discordance such as 

       ,(     )(     )   -    ,(     )(     )   -  (2-43) 

If (     ) (     ) and (     ) are independent and identically distributed, Spearman’s 

rho is defined to be proportional to the probability of concordance minus the probability 

of discordance for the two vectors, (     )     (     ). Spearman’s rho is given by  

      (  ,(     )(     )   -    ,(     )(     )   -)  (2-44) 

Both Kendall’s tau and Spearman’s rho are rank based correlation measures and have the 

property of scale invariance with increasing transformations.  

Both rank correlation measures can be represented in accordance with copulas. 

Given continuous random variables   and   whose copula is  , Kendall’s tau is 

described as  

    ∬  (   )  (   )
  

      (2-45) 
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Note that the integral part in Equation 2-45 denotes the expectation of the copula function 

 (   ). Similarly, Spearman’s rho can be expressed with copula functions 

     ∬  (   )    
  

      (2-46) 

Note that Spearman’s rho can be written as Pearson’s correlation of the marginal 

distributions   ( ) and   ( ) as 

    (  ( )   ( ))     (2-47) 

Both Kendall’s tau and Spearman’s rho are bounded on the interval ,    - and they are 

useful regardless of the functional form of the marginal distributions. For continuous 

random variables, those concordance measures are interchangeable with the underlying 

copulas.   

2.5.2 Elliptical Copula Models 

Elliptical distributions of the 2-dimensional random vector (   ) can be defined by 

parameters     and   where   is a vector of constants (or location vector),   is a         

positive definite symmetric matrix (or dispersion matrix) such that the characteristic 

function of      is expressed as a function of the quadratic form       i.e.,      ( )  

 (    )  where    is the characteristic generator of the distribution. The Gaussian copula 

and Student-t copula are examples of elliptical copulas.  

The functional form of copulas does not always exist in explicit or closed form. 

However, the bivariate Gaussian and Student-t copula have explicit forms. The bivariate 

Gaussian copula is defined as follows: 

 



93 

 

  (   )    ( 
  ( )    ( )),       

      

  (   )  ∫ ∫
 

  √    
   .

          

 (    )
/     

   ( )

  

   ( )

  
  (2-48)  

where    is the joint distribution function of the standard bivariate normal distribution 

with linear correlation coefficient  . For illustration, it is meaningful to check if the 

Gaussian copula is actually a copula. First,   (   )    is obvious because the limiting 

integral over intervals of length zero is zero due to    ( )    . The same argument 

will apply to   (   )   . In addition, since    ( )   ,   (   ) is determined by 

the other marginal distribution of a standard uniform random variable. So   (   )   . 

By the same token,   (   )    is satisfied. Finally, as with Equation 2-35, the last 

property is verified since the joint density is positive due to the exponential function. 

Therefore, the Gaussian copula satisfies the required properties.  

The Student-t copula is defined as   

         (  
  ( )   

  ( )),        

   ∫ ∫
 

  √    

  
  ( )

  
.  
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   (2-49) 

where      is the bivariate Student-t distribution function with degrees of freedom 

parameter  ,   is the linear correlation coefficient,    is the marginal Student-t 

distribution with degrees of freedom  ,      
  ( ), and     

  ( ).  

The density of the Gaussian copula is  

  (   )  
 

√    
   .

     

 
 

          

 (    )
/      (2-50) 
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where      ( ) ,      ( ) . As for the Gaussian copula, Kendall’s tau and 

Spearman’s rho can be written as a function of Pearson’s correlation,  , as follows; 

 (  )  
 

 
       ( )      (2-51) 

  ( 
 )  

 

 
       (   )     (2-52) 

The density of the Student-t copula is given by 

      (   )  
 

√    

 .
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(  .

          

 (    )
/
 (   )  

)                     (2-53) 

where     
  ( ), and     

  ( ), where   
  ( ) denotes the inverse cumulative density 

function of a Student-t random variable with   degrees of freedom, and  (   ) is the 

probability density function of a Student-t random variable with   degrees of freedom.  

The comovement of the marginal distributions can be indicated by tail dependence. 

We can often observe that some relevant variables are more likely to move together. The 

copula functions are used for describing heavy tailed features and tail dependence. The 

Gaussian copula does not have tail dependence whereas the Student-t copula has more 

observations in the tails than the Gaussian one. We need to bear in mind that other 

marginal distributions may produce the different joint behaviour even for the same copula 

functions.  

2.5.3 Archimedean Copulas 

Archimedean copulas are widely used in practice due to their analytical tractability 

and were proposed by Schweizer and Sklar (1961). The classes of Archimedean copulas 

also have a convenient parametric representation. Following Nelsen (1999), given the 
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generator of a function  ,  , which is a continuous strictly decreasing convex function 

from ,   - to ,   - such that  ( )   , an Archimedean copula is a function   from 

,   -  to ,   -  written as  (   )   ,  -( ( )   ( )) ,  where  ,  -  represents the 

pseudo-inverse
18

 of  . If  ( )   , then the pseudo-inverse becomes an ordinary 

inverse function, which is said to be strict. In this case, the closed form of the copula 

function can be easily achieved. Archimedean copulas have three important properties. 

First, they are symmetric in a sense that  (   )   (   ). Next, they are associative, 

 ( (   )  )   (   (   )) . Third, Archimedean copulas can be directly derived 

from Kendall's rank correlation given by  

      ∫
 ( )

  ( )
  

 

 
      (2-54) 

The density function of Archimedean copulas is  

 (   )  
    ( (   ))  ( )  ( )

(  ( (   )))
      (2-55) 

where a generator is assumed to be twice continuously differentiable.  

2.5.3.1  Frank Copula 

The bivariate Frank copula is defined by the generator, 

  ( )     .
   (   )

   (  )
/ with    .    (2-56) 

                                                 

18 The pseudo-inverse of    is defined as a function   ,  - such that:   

 ,  -( )  {
   ( )      ( )

   ( )     
. 
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The resulting Frank copula is  

  
  (   )   

 

 
  .  

(   (   )  )(   (   )  )

   (  )  
/  (2-57) 

This copula is neither lower tail nor upper tail dependent. Its copula density is  

  
  (   )  

 (      (  ))    (  (   ))

,(     (  ))        (   ))(      (   ))- 
  (2-58) 

Kendall's tau,  (  
  )  and Spearman's rho,   (  

  )  can be calculated for the Frank 

copula directly from the generator  

 (  
  )     
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     (2-59) 
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  is the Debye function. Furthermore, the Frank 

copula is comprehensive. A family of copulas which includes the Fréchet-Hoeffding 

lower bound, product, and Fréchet-Hoeffding upper bound copulas is called 

comprehensive.  

2.5.3.2 Clayton Copula 

When   ( )  
 

 
(     ) for   ,    ) * + we obtain the bivariate Clayton 

copula as  

 

  
  (   )     .(         )

    
  /    (2-61) 
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In the limit as    , the copula leads to the independence copula. As     , we obtain 

the comonotonicity copula. The Clayton copula produces dependence in the lower tail  

but not in the upper tail. The Clayton copula density is  

  
  (   )  (   )(  )    (         )

     ⁄
  (2-62) 

Kendall's tau for the Clayton copula can be calculated by  (   )⁄ . However, the 

Spearman's rho is not available in this case, but the Clayton copula is comprehensive.  

2.5.3.3 Gumbel Copula 

The relevant generator is  ( )   tln with   ,   ) , and the bivariate 

Gumbel copula is  

  
  (   )     2 [(    ( ))  (    ( )) ]

   
3   (2-63) 

If     , we get the independence copula, and the copula becomes the comonotonicity 

copula as   approaches infinity. The Gumbel copula density is defined by  

  
  (   )  

  
  (   ),(    )(    )-   

  [(    )  (    ) ]
     2[(    )  (    ) ]

   
    3      (2-64) 

Kendall's tau is given by    (
 

 
). The Gumbel copula is not comprehensive.  

2.5.4 Statistical Inference for Copulas 

Copula methods are used extensively in finance. Patton (2006) uses copulas to 

model the asymmetric dependence on the foreign exchange rate markets. Jondeau and 

Rockinger (2006) show the dynamic dependence of the stock market returns using both 

the conditional and dynamic copula models. A recent survey on applications of copulas in 
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finance and economics can be found in Patton (2009). The conversion of Sklar's theorem 

allows us to construct multivariate joint distributions with a copula and arbitrary 

marginals. In the case of the Gaussian copula, the marginal distributions are not 

necessarily standard normal. For example Li (2001) uses exponential marginals to 

calculate marginal credit default probabilities up to time   in the future. The bivariate 

conditional density function of the standardized residuals from the filtered spot and 

futures rates is 

  (              )    .  (         )   (         )/    (         )    (         ) 

 (2-65) 

where   (              ) is the bivariate conditional density function of two standardized 

residuals,     (         ) is the conditional density of the standardized residuals of the 

spot returns, and     (         ) is the conditional density of standardized residuals of the 

futures returns.  

The contribution to the log-likelihood for the observations at time   is given by  

∑    (                )

 

   

  

∑     (             )
 
    ∑       (            )

 
    ∑       (            )

 
     

    (2-66)  

where    *        +  are the parameter vectors that correspond to the functions in the 

log-likelihood function. We can estimate the parameters in question using the maximum 

likelihood (ML) method, but there are several methods for estimating a set of parameters 
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for both the marginals and the copula. We do not use the direct maximum likelihood 

method in our analysis because it could be very computationally intensive. As an 

alternative, we focus on the inference for the marginals (or IFM) method proposed by Joe 

and Xu (1996). In the first stage, the parameters of the marginal distributions,    are 

estimated. Let {         }   

 
be the bivariate sample data and     ,       is the univariate 

density function. The ML estimators are obtained by maximizing the log-likelihood 

function of the marginals:  

  ̂          
∑ [      (        )        (        )] 

    (2-67) 

where   ̂  is a vector of estimated parameters at the first stage. In the second stage, the 

copula parameters are estimated by the ML method, as well. Let   and   be the copula 

density and the marginal cumulative distribution function, respectively. Given  ̂  the 

copula parameters are estimated by maximizing the following log-likelihood function 

with respect to  ̂ , 

  ̂        
  

∑ (   (  (    )   (    ))     ̂ ) 
     (2-68) 

where   ̂   is a vector of the copula parameters. Notice that the estimates of the copula 

parameters depend heavily on the estimates of the marginal distributions. It is very 

important to decide on the most appropriate parametric forms of the marginal 

distributions. For example, we can fit the data with a Student-t distribution which is 

symmetric and may capture high kurtosis. Regarding the IFM asymptotic properties, Joe 

(1997) shows that the IFM estimator is asymptotically normal under some regularity 

conditions  
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√ ( ̂      )   (     (  ))      (2-69) 

where    (  ) is the Godambe information matrix and    is the true parameter value.  

2.5.5 The Copula-based GARCH Models 

In this section, the marginal distributions for the spot and futures returns are 

specified as Student-t distributions to capture heavy tailed characteristics. Based on the 

error correction model for the mean equations as with Equation 2-27, the conditional 

volatility for the spot and futures returns is described as GARCH(1,1) with innovations 

that follow Student-t distributions. The specified marginals are regarded as being 

symmetric, fat-tailed, and non-normal.  

2.5.5.1 Models for Marginal Distitributions 

Most financial returns are known to be heteroskedastic and often autocorrelated, so 

the standardized residuals can be computed from the GARCH model with a Student t-

distribution to resolve the heteroskedasticity problem. Then the standardized residuals are 

transformed into uniform variables by the probability integral transform, and the copula 

parameters are estimated in the second step. Under the previous error correction model, 

the bivariate innovations are assumed to follow a Student t-distribution: 

0
    

    
1       [

        

        
], where     ~ Student-t (     )       (2-70) 

Except for the parameters in the mean equations, there are four model parameters,  

   (           )  in the single GARCH model with an extra parameter for the tail-

fatness. As shown in the descriptive statistics, the return series in question exhibits strong 
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positive kurtosis. In order to capture such characteristics of the marginal behavior it is 

feasible to use Student-t distributions. The specification of the density for the innovations 

can be used to characterize the heavy tailed and non-normal features of spot and futures 

returns. Judging from the plots of the data, it appears that the data may be well described 

by a Student-t distribution in that they show symmetry about zero and a lot of data points 

are located in both tails (i.e., heavy tailed). 

2.5.5.2 Conditional Copula function 

Let us define the conditional cumulative distribution functions of the standardized 

residuals,      and      as     (         ) and    (         ), respectively. Let    be the 

joint conditional distribution functions of      and     . By Sklar’s theorem, we can 

construct the following equation: 

  (              )    (    (    |    )     (         ))    (2-71) 

According to Equation 2-65, the bivariate conditional density functions of      and      are 

given by 

  (              )    (    (    |    )     (         )     ) 

     (         )      (         )    (2-72) 

where    is the copula density function,      is the conditional density of     , and      is 

the conditional density of     .  

2.5.5.3 Dynamics for Dependence Structure 

With an aim to capture both persistence and time variation in the conditional copula 
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through the dependence structure, Patton (2006) uses the logistic transformation based on 

a restricted ARMA(1,10)-type process. The correlation is updated by the past dependence 

and the previous average difference of the probability integral transforms of the two time 

series. However, as pointed out in Bartram et al., (2007) the logistic transformation 

would unnecessarily restrict the volatility of the dependence around its limiting values. 

To specify the persistence in dependency, Jondeau and Rockinger (2006) employ two 

different methods such as the time-varying correlation (TVC) model proposed by Tse and 

Tsui (2002) and the Markov-switching model. They attempt to compute short-run 

correlation over one week of data in the TVC model. In practice, a correlation measure 

and a pre-specified length for the time variation term in the dependence equation should 

be investigated with more care. In the spirit of Patton (2006) and Bartram et al. (2007), 

we can build the parsimonious dependence process as follows: 

       
 

  
∑            

  
            (2-73) 

The dynamics in the dependence relationship depend on the previous dependence 

     to capture persistence, and past absolute differences (i.e., a variant of ARMA 

(1,10)),             to capture variation in the dependence process. The past absolute 

value term represents the difference between the cumulative probabilities since    and    

are uniform variates from the marginal cumulative distribution functions. Note that the 

parameter   captures persistence and   denotes the past short-term correlation between 

the margins. In the cases of the Normal and Student-t copulas, we use the logistic 

transformation of the linear correlation evolution in Equation 2-73 to keep them in the 

range (0, 1).  
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2.5.5.4 Estimation 

For the various copula models, we first generate the standardized residuals from the 

fitted GARCH(1,1) model based on the error correction model. Second, we need to 

transform the standardized residuals into uniform variables using the Student-t 

distribution function under the probability integral transform. Third, in the case of the 

Gaussian copula, we use the inverse of the standard normal distribution to transform the 

resulting uniform variables. For the Student-t copula we use the inverse of the Student-t 

distribution. Fourth, following the pre-specified updating rule of the dependence 

structure, we maximize the log-likelihood function over the set of all possible correlation 

matrices. The expression for the log-likelihood is: 

   ( )   
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 (     )  
 
        (2-74) 

where   denotes parameters,   is the correlation matrix and    (   (  )  
  (  )) . 

In the Student-t copula model, the log-likelihood function for the sample data is:   
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                 (2-75) 

where     is the column vector of       row of        ( ).  

We need to construct the conditional variances in Equation 2-70 in order to 

compute the dynamic hedge ratios based on the various copula-based GARCH models 

after obtaining the copula parameters along with the GARCH model parameters. By 
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using Equation 2-65, we construct the off-diagonal element,      , in the conditional 

variance matrix as  

              ∬         
 

  
  (              )       (2-76) 

Given the conditional variance matrix, we can calculate the optimal hedge ratio by the 

ratio of the off-diagonal element to the diagonal element for the futures returns, 
     

    
 . 

Alternatively, we can use the Sharpe hedge ratio. In order to calculate the Sharpe hedge 

ratio we use Equation 2-24. We can replace the correlation coefficient with an estimated 

value obtained by computing the approximated double integral component in Equation 2-

76.  

2.6 Empirical Results 

2.6.1 The data 

The financial data for this study consist of the currency exchange rates and the 

corresponding futures contract
19

 prices. Futures contracts
20

 cover the major currencies, 

including the Australian dollar, the Swiss franc, the euro, the British pound, and the 

Japanese yen. The spot foreign exchange rates have round-the-clock observations, which 

                                                 

19 The spot foreign exchange market is the world's largest market, with over one trillion U.S. dollars 

traded per day. The foreign exchange futures market is only 1/100th as large as the spot market.  

20 The contract has a quarterly expiration cycle in March, June, September, and December. Futures 

expire on the third Wendesday of the expiring contract month. For example, the September futures contract 

will expire on the 3rd Friday in September.  
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last throughout the entire 24 hours of the day on an electronic platform. Due to the slower 

trading patterns over the weekends, all raw observations from Fridays 22:00 Greenwich 

Mean Time (GMT) through Sunday 22:00 GMT are excluded. The corresponding futures 

contracts traded on the Chicago Mercantile Exchange (CME) are used. In all cases, there 

is no continuous series of futures prices because each individual contract in the futures 

market has a pre-determined life-span. As one contract expires, others with later 

expiration dates continue to trade, and the cycle continues. In general, the different 

contracts in a futures market are not homogeneous. When one contract is replaced in the 

series by another, the difference in price between the two will produce a gap due to 

different expiration dates. To construct continuous futures contracts, we resort to the 

back-adjusted continuous contract. We measure every gap and adjust all previous prices 

up or down according to whether the gap happens to be positive or negative. Working 

backwards, this eliminates the gaps. Back-adjusted contracts display price movements in 

a future market that are due to trading activity. When a futures exchange has a holiday 

and its trading floor is closed, the exchange does not declare settlement prices for the day 

in question and no data is supplied. We also account for the gaps associated with trading 

holidays.  

The primary data are 5-minute time interval prices obtained from a private data 

vendor, ForexTickData.com. The entire sampling period is from January 2, 2004 to April 

23, 2009. The futures data are both pit and/or electronic prices during the day trading 

session. Note that the further you go back in history the electronic overlap disappears and 

we just have pit trading. There is 24 hour GLOBEX exchange trading, but this data is 
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almost useless because there is limited liquidity or activity and thus the data quality is 

poor. We convert the spot exchange rate series to the Central Standard Time (CST) zone 

and take into account daylight saving time. In order to synchronize the data, we align 

both spot and futures series to the nearest date and time. Futures prices are always quoted 

as the number of U.S. dollars (USD) per unit of the foreign currency. For the spot prices, 

the quoted currency is per USD. For example, the EUR/USD exchange rate in a quotation 

is 1.4320, which means 1.4320 USD per EUR. Quotes using a country's home currency 

as the unit currency (e.g., EUR 1.00 = USD 1.35991 in the euro zone) are known as 

indirect quotation or quantity quotation and are used in British newspapers and are also 

common in Australia, New Zealand and the Euro zone. 

Missing data points can exist in the data set, and if the missing values are not 

properly handled, they can generate unexpected outcomes such as incorrect sums and 

means. The existence of outliers
21

 can cause big trouble because they may induce 

substantial distortions in parameter estimation and lead to model misspecification. We 

need to look at the distribution of the data on a graph and decide where the outliers are, 

and we can delete observations shown as either higher or lower than what we think is 

reasonable.  

For the futures series, we discard some missing values, including those due to 

temporary closures in the exchange, which contain more than 6 missing values in a row. 

                                                 

21 In Barnett and Lewis (1994), it is defined as "an observation (or subset of observations) which 

appears to be inconsistent with the remainder of that set of data", on page 7. 
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If there are no more than 6 missing observations, we impute the missing values through 

cubic spline curves
22

 to the non-missing values of variables rather than changing the 

missing values to zero. For spot exchange rates, there are duplicate values in subsequent 

rows. We regard those observations as missing values and treat them in the same way we 

used for the data.  

In the time series literature, there are three types of outliers: additive, innovation, 

and level shifts. An additive outlier at some time point,   , corresponds to a shock 

indicator,     such that       and       otherwise. The effect is limited to the time 

period   . Similarly an innovation outlier is about the estimated residual. Unlike the 

additive outliers, an innovation outlier can influence the subsequent observations in a 

general ARMA model context. A level shift at a specific time   , has a shock indicator 

   such that       for      and       for     . In this case, the first differenced 

series has an additive outlier at time   . Due to the characteristics of outliers, we need to 

take into account those outliers in the modeling process combining outlier detection and 

residual analysis. Tukey (1977) suggests that any values greater than the 75th percentile 

plus 1.5 times the interquartile (IQR) distance or less than the 25th percentile minus 1.5 

times the interquartile (i.e., inner fences) distance can be viewed as outliers. There are a 

lot of observations even beyond these outer bounds in our sample. However, original 

                                                 

22 The cubic spline interpolation is used to draw smooth curves through a number of points. This 

spline consists of weights attached to a flat surface at the points to be connected. The weights are the 

coefficients on the cubic polynomials used to interpolate the data in a smooth way. 
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observations that pass through wavelet filter are treated and transformed so that we may 

not able to remove extremal data points in the whole sample.  

Prices are computed as the average of the bid and ask prices. They are estimates for 

the transaction prices. In high-frequency data, it is very common to have transmission 

delays because every market maker cannot move at the same time (Goodhart et al., 

1995). We need to model an effective price which is close to the transaction price. As 

before, we adopt the averages of bid and ask price as an effective price algorithm.  

Returns on both instruments are calculated as logarithmic returns or continuous 

compounding returns, which can be obtained as the compounding period gets too small
23

. 

The return is preferred to the price because the distribution of returns is generally more 

symmetric over time and the return series is more likely to be stationary.  

Mathematically, the log return is defined as 

       (  (  )     (    ))    (2-77) 

where      is the price observed at time   and      is the price at time    . For our data,  

   represents a five-minute interval return at time  . For the spot exchange rate, the bar 

time stamp represents the beginning of the associated 5-minute time interval. On the 

other hand, the futures data bar time is stamped as the end of the 5-minute time interval. 

We use the modified representation for the intra-daily returns to incorporate the following 

idea: the disturbances (or innovations) are assumed to be serially uncorrelated, whereas 

                                                 

23 A price for today would be evolved exponentially such as       
 , where    denotes the price 

for tomorrow and    is the log return. 
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they do not seem to be independent due to the intrinsic autocorrelation captured by the 

repetitive periodicity in the volatility of the return series. The observations above cause 

the absolute returns to be dependent as shown in the ACF plots. Algebraically, the returns 

can be formalized, as in Andersen and Bollerslev (1997), by   

                      (2-78) 

where    is the conditional mean of the raw returns (  ),    is the long-term volatility,    

is the intra-daily seasonal volatility, and    is the independent and identically distributed 

innovations. By squaring both sides of Equation 2-78, taking the natural logarithm, and 

then dividing both sides by two, we can get the following equation:  

                               (2-79) 

In the literature, researchers have found that the autocorrelations of logarithmic 

absolute returns,        based on 5-minute spot exchange rates decay at a hyperbolic rate 

rather than an exponential rate, as shown in Andersen et al., (2001) and Gençay et al., 

(2001). As a volatility measure, we retain the absolute value of the returns rather than the 

squared value because the absolute returns may better capture the autocorrelation and the 

seasonality of the data following Müller et al., (1997), Granger and Ding (1996), and 

Guillaume et al., (1997). One of most common stylized facts in high-frequency financial 

time series data are volatility clustering, which means that highly volatile periods are next 

to each other. This is associated with a long memory process in levels (i.e., returns). 

Another common feature of volatility includes intra-daily seasonalities (or periodicities). 

It is common to see intra-daily seasonalities on the daily basis, reflecting that the seasonal 
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pattern repeats day after day with market opening and closing (Goodhart and O'Hara 

1997). The presence of seasonalities may reduce the underlying low-frequency dynamics. 

Such seasonalities can pull down the sample autocorrelation so that it seems not to 

exhibit any persistence.  

There are several approaches to deal with seasonality and non-linearities. First, 

seasonal dummies can be used to capture seasonality. When the seasonal pattern is 

deterministic, the seasonality can be described by seasonal dummy variables (Baillie and 

Bollerslev 1990). Second, as shown in Dacorogna et al. (1993), a new time scale (called 

theta time) other than physical time is introduced to analyze the seasonal volatility 

pattern. Third, spectral analysis based on cyclical frequences can also be used to extract 

the seasonality in volatility such as Andersen and Bollerslev (1997). However, when a 

time series is not stationary due to the complicated components such as trends and 

volatility clustering, the Fourier analysis is not appealing.  

More recently, Gençay et al., (2001) propose a wavelet multi-scaling model to filter 

out the underlying seasonality in volatility from the data. An important advantage of the 

wavelet transform over the Fourier transform is that the wavelet functions are localized in 

space. For example, observations in a certain interval may have a high peak. A Fourier 

series may not capture this feature on the range because its basis functions are the sine 

and cosine functions. However, the wavelet functions are good at representing such 

localized properties by choosing the most suitable basis functions among an infinite 

number of candidates. 
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With regard to the foreign exchange (FX) rates, their data frequency can vary from 

very few quotes to hundreds of quotes per hour. A dramatic decrease in correlation as 

data frequency enters the intra-hour level for both stocks (Epps 1979) and foreign 

exchange returns (Guillaume et al. 1997) is referred to as the Epps effect. The results 

reported in Dacorogna et al. (2001) show that a pair of currencies that are highly 

correlated in the long term (buy and hold) become less correlated in the intra-hour data 

frequency data. They find that the Epps effect disappears as the frequency approaches 10 

minutes to 20 hours by relying on a particular pair of currencies among the same 

instruments. Table 10.5 on page 291 in chapter 10 of Dacorogna et al. (2001) includes the 

stabilization interval, which is the threshold after which the Epps effect vanishes. As one 

possible explanation, Müller et al., (1997) focus on the behavior of heterogeneous agents. 

For the short-term agents, they put more emphasis on an individual instrument or asset 

than a multivariate set of instruments. Less responsive agents will take some time to 

generate more stable correlation. The consideration would be applied to the case between 

the financial instruments and the derivatives of the instruments.  

Unlike the prediction from the findings above, correlation behavior between a pair 

of filtered spot and futures returns at different time intervals do not stay high. The 

addition of successive changes of a return series is called temporal aggregation in the 

series over time. From the shortest time intervals (i.e., 5-minute) to the day-length 

intervals, the correlation coefficients between a pair of the spot and futures returns for 

each of the foreign exchange rates are close to about 0.1 through temporal aggregation, 

e.g., 1 hour and 30 minutes while there are fluctuations in narrow temporal ranges about 
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zero. The reason that we can observe the outcome above is that the return series 

employed in the calculations are the filtered returns through the wavelet transform, which 

is adopted to remove noises that appeared in the original return series. The process of de-

noising the original returns may lead to different results for the correlation coefficients. 

Fortunately, in the case that we use the filtered returns based on the absolute value of the 

original returns, the correlation behavior is quite consistent and shows a gradual 

increasing trend as measured by both the Pearson and Spearman measures. On the basis 

of those outcomes, we can obtain an appropriate time series through aggregation such as 

a 2-hour or 3-hour interval series. This is reasonable in the sense that we not only take 

into account the Epps effects but also have meaningful correlation coefficients.  

As a preliminary statistical test for the existence of an intraday price returns spike, 

the equality of mean returns across intraday trading intervals for each weekday was tested 

by applying an F-statistic. Using the NPAR1WAY procedure in SAS, we perform tests 

for location and scale differences across a one-way classification. It is based on the 

empirical distribution function and uses the Kruskal-Wallis test. In a simple case as 

above, a dummy variable is created that takes on the value one for the opening 

observations for the trading days and the value zero for the other observations. The 

overall  -test based on the GLM procedure in SAS is significant (       , and 

              ), indicating strong evidence that the mean for the two levels is 

different at a significance level of 5%. The results indicate significant differences in mean 

returns at the opening of trading. On the other hand when we break the sample down into 

each of the weekdays, some days show insignificant differences in mean returns. 
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Nevertheless, it turns out that it is useful to adjust the gap between the opening of trading 

in a particular day and the last trading from the previous day. So every opening 

transaction is divided by the time gap. For the intra-daily day of the week effect, it turns 

out that returns on the futures contracts for the currencies on Mondays will not follow the 

prevailing trend from the previous Friday.  

In Table 2-1, we display summary statistics for the filtered return series and present 

the results of applying the ADF and ARCH tests. Our data are pairs of spot and futures 

returns. That is, the underlying asset in the futures currency contracts is a certain number 

of units of the foreign currency. The number of observations reaches at least 93,226. The 

returns on each variable are skewed and show large excess kurtosis. Six of the total series 

have negative skewness, indicating that they have long tails to the left of the mean. The 

large positive values for excess kurtosis tell us that the returns near the mean on all cases 

have higher peaks and heavier tails than the normal distribution. As a result, all cases in 

question are found to be non-normally distributed. The test results of the Jarque-Bera 

statistics back up the non-normality as the statistics are large enough to reject the null 

hypothesis of normality.  

The joint tests confirm that all returns in question have no significant serial 

correlations because the p-values for these test statistics are close to one. The sample 

Autocorrelation Functions (ACFs) are all within their two standard error limits, indicating 

that they are not significantly different from zero at the 5% level. 
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Table 2-1 Summary Statistics 

Series Nobs Mean Stdev Skew Kurt J-B Q(15) ADF ARCH(5) 

AUDs 4985 -0.0033 0.049 -1.53 14.1 <0.00 <0.00 <0.01 <0.00 

AUDf 4985 0.0053 0.072 -1.17 8.8 <0.00 <0.00 <0.01 <0.00 

AUDs_unf 4985 -0.0031 0.052 -1.19 15.4 <0.00 <0.00 <0.01 <0.00 

AUDf_unf 4985 0.0035 0.075 -1.42 10.5 <0.00 <0.00 <0.01 <0.00 

The last two rows are based on the unfiltered data sets in a sense that the wavelet transforms are not used. 

J-B is the Jarque-Bera test for normality. The numbers in J-B represent the p-values. Q(15) is the Ljung-

Box statistic  for the serial correlations up to the 15th-order. P-values are reported for Q(15) column. ADF 

is the Augmented Dickey-Fuller unit root test. ARCH is the LM test for up to the fifth-order ARCH effects. 

Kurtosis refers to the excess kurtosis, the value 0 for a normal distribution. 

 

When a shock in innovations persists over a long period of time, such economic 

data are regarded as having a long memory (or long range dependence) property. The 

presence of long memory in asset returns is contrary to the market efficiency hypothesis 

that future returns are hard to predict conditional on past information. The long memory 

process can be denoted by a fractional degree of integration which remains between 0 and 

1 and exhibits hyperbolically decaying autocorrelations. With relevance to the slow decay 

of the correlations, it is intrinsically an asymptotic behavior. A stationary time series *  + 

is said to be a long memory process if the autocovariance function at lag   of the process 

is:  

∑   ( )  
           (2-80) 

where  ( )  〈       〉 is the autocovariance function. Another widely used definition on 

the spectral domain is 

 ( )         as        (2-81) 
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where  ( ) is the spectral density function for   in a neighborhood of zero and   is a 

slowly varying function, but here it is assumed to be a positive constant. So, as    , 

 ( ) tends to   when    , and to zero when    . If      *  + is said to be short 

memory. In this case,  ( ) will be positive and finite. All stationary invertible ARMA 

processes are short memory. When    , we have a model based on first differences, 

(   )      which would apply the filter, (      )(     )  |      |
 

 to its 

spectrum density,  ( ) . Granger and Joyeux (1980) and Hosking (1981) introduce 

models of fractional differencing. From the theoretic perspective, the fractional 

     (     ) model is defined for the process *  + as 

 ( )      ( )        (2-82) 

where   is the backward shift operator and *  + is zero mean white noise,   (        ) 

and  ( ) and  ( ) are polynomials of orders  ,  in an     (   ) process. If    , 

the process *  + is stationary, which reduces to an     (   ) process. From Equation 

2-82, we can see that fractional      (     )  in the      difference     is 

    (   ). Fractional differencing may be obtained from the binomial expansion (e.g., 

Granger and Joyeux (1980) and Hosking (1981)) of the operator   : 

     (   )    ∑ .
 
 
/

 

   

(  )    

          
 

 
 (   )     

 

 
 (   )(   )            (2-83) 

There are several estimation methods for long memory models. It is possible to 

implement the estimation in either the time domain or frequency domain. The examples 
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of the former are a Fractional Dickey-Fuller test (Donaldo et al., 2002) or an R/S test (Lo 

1991). The R/S method is criticized by Beran (1994) because it does not yield correct 

statistical inference which is not efficient. As one of the examples of the latter there is 

Whittle estimation, which is based on the calculation of the periodogram using an 

approximate maximum likelihood method. Another approach is proposed by Geweke and 

Porter-Hudak (1983) that estimates the long memory parameter,   from the spectrum 

behavior using OLS. This method for estimating the long memory parameter is used 

extensively due to computational simplicity. The estimator is regarded as being semi-

parametric because it does not assume a full parametric model for the short-term structure 

of the innovation (or error), and the bandwidth parameter must should be chosen. The 

relevant periodogram ordinates,      is originally proposed by Geweke and Porter-Hudak 

(1983), where   is the number of sample observation.  

In practice, researchers have found that the estimate of the long memory parameter 

is sensitive to the frequency of observation. In the case of implementing the GPH 

estimator for the long memory parameter,  , there is a controversial issue about how to 

determine the spectral bandwidth in the semi-parametric frequency-domain estimation. 

Hurvich et al., (1998) show that the GPH estimator of the long memory parameter is 

consistent under the Gaussian assumption and is asymptotically normal
24

 as   gets big. 

The approach works out under the minimum mean squared error criterion. The fact 

                                                 

24
The asymptotic normality is written as √ ( ̂   )   .   

 

  ⁄ /  where    is the number of Fourier 

frequencies, called bandwidth.  

 
 



117 

 

implies that since the asymptotic variance depends only on  , the bandwidth choice is 

critical to the asymptotic behavior of the estimator. They propose that the optimal 

bandwidth is     .  

For our work, we set up mean equations in a simple and classical form. For 

instance, a mean equation for the filtered spot series has an intercept and an error 

correction term. In representing volatility process, we rely on a GARCH-based model. 

Given that volatility of various financial data is known as being persistent as in Andersen 

and Bolleslev (1997), Ding, Granger, and Engle (1993) and Baillie, Bollerslev, and 

Mikkelsen (1996), the use of the fractionally integrated GARCH (FIGARCH) model may 

be helpful with capturing the slow decay of volatility which is measured by absolute or 

squared returns. In the standard GARCH model, the volatility is supposed to decay at an 

exponential rate. By contrast, it decays at a slower rate in the FIGARCH model. The 

consideration of FIGARCH was introduced by Baillie, Bollerslev, and Mikkelsen (1996) 

and applied by Brunetti and Gilbert (2000) to the bivariate case. Since the data used in 

this study shows long-memory in volatility, we need to get fractionally integrated series 

on the absolute values of residuals from mean equations.  

A representation of the FIGARCH process suggested by Baillie, Bollerslev, and 

Mikkelsen (1996) can be written as 

(   ( ))  
    (   ( )   ( )(   ) )  

    (2-84) 

where   ( )     ( )   ( ) and  ( ),  ( ) are lag polynomials in the lag operator, 

and (   )  is a fractional filter. Note that when    , Equation 2-84 reduces to a 
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GARCH model, and when    , it becomes an integrated GARCH (IGARCH) model. 

This representation can lead to infinite ARCH form such as  

  
  

 

   ( )
  ( )  

       (2-85) 

where   ( )  0  
 ( )(   ) 

   ( )
1. In practice, it is important to note that the conditional 

variance should be positive at all times. The sufficient conditions for the non-negativity 

in Equation 2-85 is  ( )             . Following Bollerslev and Mikkelsen 

(1996), the positive definiteness in the FIGARCH(1,d,1) can be achieved under the 

sufficient conditions 

      
 

 
(    )        

  0   
 

 
(    )1    (        )         (2-86) 

The FIGARCH process can be stationary when       . From the theoretic 

perspective, in the FIGARCH framework, the variance of the unconditional distribution 

of the error process, *  + is infinite. In empirical works, to overcome the problem, as 

suggested in Baillie, Bollerslev, and Mikkelsen (1996) a truncation of sample 

observations is used under some regularity conditions. They choose 1,000 observations as 

the pre-sample values.   

2.6.2 Comparison to Hedge Effectiveness 

Different approaches to estimating the optimal hedge ratio (i.e.,   ) are investigated 

and evaluated according to how much each method reduces the variance of the hedge  

portfolio return relative to the OLS-based hedge ratio. A hedge portfolio is the linear 
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combination of the spot and futures returns, by replacing   with    from Equation 2-20. 

The hedging performance is first evaluated for the in-sample case based on the entire set 

of data. Then the out-of-sample hedging effectiveness for a 120-minute time horizon may 

be investigated. First, the conditional variance matrix is estimated for the various model 

specifications. Second, these conditional variance forecasts are used to compute the 

optimal hedge ratios following Equation 2-22. Third, we compute the variance of the 

hedge portfolio return and compare it to the variance of the hedge portfolio formed by the 

OLS based hedge ratio which is known as the minimum variance hedge ratio. As an 

alternative to the minimum variance hedge ratio, the Sharpe hedge ratio based on 

Equation 2-24 can be calculated and compared.   

With the optimal hedge ratio,   , the variance of the hedge portfolio return for the 

in-sample case is calculated from  

        
          (2-87) 

where   
  denotes the static hedge ratio. On the other hand, for the out-of-sample 

forecasts, the variance of the hedge portfolio return is calculated from  

          
          (2-88) 

where     
  represents the optimal dynamic hedge ratio conditional on the information set 

available at time    . Based on these considerations, the variance reduction relative to 

the OLS-based method can be computed in percentage terms by the following formula  

  
   (    )    (            )

   (    )
      (2-89) 
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where   stands for hedging effectiveness,    ( )  denotes the variance of the hedge 

portfolio,      is the hedge portfolio of the OLS-based optimal hedge ratio, and 

             is the hedge portfolio of an alternative optimal hedge ratio. The same hedging 

effectiveness criterion as Equation 2-89 will be applied to the Sharpe hedge ratio 

framework. 

2.6.3 Analysis of Foreign Exchange Returns 

The detailed information about some summary statistics for returns over the 

temporally aggregated periods is displayed in Table 2-1. For the Australian dollar, the 

resulting time interval is 2 hours. Figure 2-5 plots the sample autocorrelations for the 

returns and absolute returns for two representative AUD spot and futures. It is important 

to note that absolute returns for both AUD spot and futures exhibit strong daily 

seasonality in their sample autocorrelations, where it is frequently observed in intra-day 

high frequency data.  

Figure 2-5 Autocorrelations of AUD spot and futures returns 
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When intra-day seasonality is displayed in absolute returns, it is called seasonality 

in volatility. For both spot and futures raw returns, they are presented by the strong 

periodicity at the daily frequency, at the lag of 80. It is well known that the seasonality is 

described by the U-shape. The volatility of the opening is high and is followed by a 

gradual decrease, reaching the lowest level at half a trading day (i.e., 40 lags) and then an 

increase in volatility before closing. It is very important to get rid of the intra-day 

seasonal volatility. In the literature, some studies have shown that the existence of the 

seasonality would cause trouble in both estimating volatility models and building up 

models (i.e., misspecification issue) presented by Guillaume et al, (1995) and Andersen 

and Bollerslev (1997). In particular, Andersen and Bollerslev (1997) document that the 

intra-day periodicity is closely related to the conditional volatility. Without taking good 

care of those intraday periodicities in absolute returns, it may mislead the long-run 

pattern and it is likely to exaggerate the volatility and may be followed by distortion of 

the hedge ratios. To treat those intrinsic properties in the return volatilities, we use the 

wavelet transform to filter out the daily seasonality (see the section 2.3 for the details of 

the wavelet transform). Figure 2-6 shows the sample autocorrelations for absolute returns 

from the filtered return series. As shown in Figure 2-6, the wavelet filter is very effective 

in removing the daily seasonality preserved in absolute returns.  
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Figure 2-6 Autocorrelations of AUD spot and futures filtered returns 

   

The sample autocorrelations for the returns are largely within the reference line 

although for some lagged values, the autocorrelations are occasionally out of bound. Note 

that the autocorrelations of the absolute returns show marked persistence, where it is not 

the case of the usual exponential decay. This is well known as a long memory process 

with hyperbolic decay. It means that the autocorrelation function decays slowly to zero at 

a hyperbolic rate as the lag increases. When   is the order of fractional integration, the 

long memory parameters of volatility measures for the AUD spot and futures series are 

estimated as  ̂ = 0.188 and  ̂ = 0.179 using Geweke and Porter-Hudak’s semi-

parametric method. Based on this result, we take the fractional differences of the two 

series. However, there is no difference between before- and after-treatment for visual 
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inspection. That is, the autocorrelations for the absolute returns are unchanged in 

magnitude as in the Figure 2-7.  

Figure 2-7 Comparison of the autocorrelations for AUD absolute returns 

 

One possible explanation of this result is that a long memory process is found in the 

absolute returns (i.e., a volatility measure) rather than the returns. Even though the series 

are fractionally differenced, it does not have the effect of a long memory process for the 

absolute returns. The fact can be captured by a fractionally integrated GARCH 

(FIGARCH) model, which is known for representing long memory in volatility. In this 

study we do not employ a double long memory model. We focus on the long memory in 

volatility due to the above observation.  

It is very important to note that the study of hedging effectiveness relies heavily on 

the correlation behavior between a pair of financial assets. Since correlation coefficients 
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at high frequency intervals (e.g., 5-minute or 10-minute intervals) are close to zero, for 

the purpose of our investigation the filtered return series should be temporally 

aggregated. To make them smooth, we apply an exponentially weighted moving average 

filter. The linear correlation coefficients calculated for the AUD filtered spot and futures 

over the time interval of returns are displayed in Figure 2-8. For comparison purpose, the 

unfiltered data sets (without the use of the wavelet filter) are considered. 

Figure 2-8 Pearson correlation coefficients for AUD spot and futures returns 

(a) Filtered series 

 
 

(b) Unfiltered series 
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As noted by Epps (1979) and Guillaume et al., (1997), we can see that there is 

decline in correlation coefficient at very high frequencies for both cases. As time interval 

increases, the correlations rise gradually. There is no perfect guideline about the choice of 

the time interval. We choose the 24
th

 point from the first time interval, which is 

equivalent to 2 hours. When we check for a long-run relationship between levels for the 

AUD spot and futures series using the Engle-Granger (1987) method, we find a long-run 

equilibrium relationship in the levels in both the filtered and unfiltered cases.  

For the temporally aggregated data, we examine the sample autocorrelation 

function (ACF) of the filtered return series and the sample partial autocorrelation function 

(PACF) of the squared returns to determine the specification form of the mean equations. 

As shown in Figure 2-9, the two ACFs in the first row reflect some serial correlation. The 

two series mimic a variant of the AR(2) model where its characteristic roots are involved 

with complex numbers. There is a problem with using the AR(2) model. When we 

remove any linear dependence by adopting the AR(2) model, correlation between the 

associated residuals gets smaller so that the resulting hedge ratio turns to a negative 

number. To avoid this outcome, an MA-type error model is used. The two PACFs of the 

squared returns on the bottom show some linear dependence. It appears that there are 

GARCH effects using the PACFs, so the GARCH(1,1) model may be appropriate. In the 

case of the unfiltered series as shown Figure 2-10, all features look similar to those in 

Figure 2-9. Due to the long memory in volatility, the FIGARCH model can be preferred 

in this study.  
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For the specifications of the mean equations, we construct an MA model that 

includes the error correction term (ECT). The treatments in mean equations are 

considered in the same way for both the filtered and unfiltered cases. The use of the ECT 

can be justified by the Engle-Granger cointegration test result. For example, in the case of 

AUD spot and futures levels, the subsequent Augmented Dickey-Fuller (ADF) test 

statistic is -16.9144 (for the unfiltered case, -12.2468), which is big enough in absolute 

value to reject the null hypothesis of no cointegration. Since the autocorrelations over a 

few lags are observed, MA terms can be included. For the AUD spot filtered return 

series, MA(1) can be used and MA(2) is used for the AUD futures series. This means that 

we intentionally allow some serial correlation. The reason that we can do so is that the 

OLS estimator will be consistent as long as       converges in probability to zero, in the 

OLS estimator,  ̂    (   )        

Figure 2-9 Sample ACF of returns and PACF of squared returns (filtered) 
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Figure 2-10 Sample ACF of returns and PACF of squared returns (unfiltered)  

 

 

 

 

 

 

 

Table 2-2 reports the parameter estimates for the mean equations with the filtered 

and unfiltered cases. For either case, the estimation result is not very different in the 

magnitudes of the estimated coefficients and their significances. This outcome may occur 

because the filtered and unfiltered data sets contain a common linear filter, the 

exponentially weighted moving average. The existence of the linear filter does not 

significantly discriminate the difference in the filtered and unfiltered series.  

Table 2-2 Estimates for mean equations with two different cases  

       Note: The maximum likelihood estimates are reported. The numbers in parentheses are 

                   standard errors.  ** denotes significance at 5%.  

 

 MA(1) (Spot) MA(2) (Futures) 

Param Unfiltered Filtered Unfiltered Filtered 

const -0.003**(0.001) -0.003**(0.001)  0.004**(0.001)  0.005**(0.001) 

ma1  0.701**(0.008)  0.699**(0.008)  0.974**(0.013)  0.988**(0.013) 

ma2 NA NA  0.520**(0.010)  0.521**(0.010) 

ect  0.003** (0.001)  0.035**(0.001)  0.001 (0.002)  0.002 (0.002) 

AIC -19108.99 -19607.77 -17825.21 -18377.07 
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Table 2-3 presents the parameter estimates from the CCC-GARCH models for the 

AUD spot and futures filtered and unfiltered returns. Most estimated parameters are 

significant at the 5% level except the correlation parameter and the constants in the 

unfiltered result and the correlation estimate in the filter-based model. The sum over the 

GARCH and ARCH parameters is almost one for both models, which indicates that the 

models are suited with data. Since all gradients for the estimated parameters are 

approaching zeros, the optimization algorithm (Newton method) seems to have attained a 

global maximum point. In light of the hedge ratios, although the significances of the 

parameters are improved in the filtered return-based model, the resultant hedge ratio (i.e., 

0.0074) gets smaller compared to the hedge ratio (i.e., 0.0107) in the unfiltered case. 

According to the Sharpe hedge ratio
25

, the filtered case (i.e., 0.0754) is larger than the 

unfiltered case (i.e., 0.0622). The orders in the magnitudes of the hedge ratios between 

the filtered and unfiltered cases are reversed compared to the minimum variance (for 

short, MV) hedge ratio framework. Hereafter, the mean values of the hedge ratios across 

time are reported.  

As a benchmark, the traditional constant hedge ratio measured by the OLS 

estimator is 0.0925 and 0.0869 for the filtered and unfiltered returns, respectively. Under 

the Sharpe hedge ratio framework, the OLS-based hedge ratio based on the filtered 

                                                 

25 In deriving the Sharpe hedge ratio, the risk-free interest rate is used. In this study, the 3-month 

Treasury bill (secondary market rate) with monthly frequency is chosen. For simplicity, the average (i.e., a 

constant) of the monthly values is calculated. The computed risk-free interest rate is 0.0282.   
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returns is 0.0866 while one for the unfiltered returns is 0.0629. The calculated hedge 

ratios under the Sharpe measure are usually smaller than those in the minimum variance 

measure. The Sharpe measure produces larger hedge ratio than the minimum variance 

framework. It is likely for the OLS-based hedge ratios to be larger than those in other 

GARCH models because the conditional variance in volatility processes crucially relies 

on the unexplained portion of the mean equations (i.e., residuals). As long as the mean 

equations are correctly specified, the hedge ratios based on the conditional variance may 

be smaller in magnitude than the OLS-based hedge ratios. Note that the AIC values are 

not directly comparable across the filtered and unfiltered data sets because the two 

different data sets are used.  

Table 2-3 Estimates for CCC-GARCH(1,1) model with two different cases 

 CCC-GARCH (unfiltered) CCC-GARCH (filtered) 

Param Spot Futures Spot Futures 

a0 0.280 (0.183)  0.240 (0.295)  0.540
**

(0.059)  0.392
**

(0.077) 

a1 0.168
*
(0.087)  0.100

**
(0.044)  0.250

**
(0.020)  0.114

**
(0.012) 

b1 0.815
**

(0.089)  0.890
**

(0.060)  0.732
**

(0.018)  0.876
 **

(0.013) 

cor 0.013 (0.237) 0.009
*
 (0.005) 

AIC -25869.004 -27530.060 

Nobs 4985 4985 

h_ratio 0.0107 0.0074 

Sharpe 0.0622 0.0754 

Note: The maximum likelihood estimates are reported. The numbers in parentheses are standard errors. 
** denotes significance at 5%, and * denotes significance at 10%. The AIC values are calculated as the 

log-likelihood value minus the number of parameters since GAUSS routine is set to minimize the 

negative of the log-likelihood function. Note that the AIC values are not directly comparable across the 

filtered and unfiltered data sets because the two different data sets are used. H_ratio denotes the 

minimum variance hedge ratio and Sharpe represents the Sharpe hedge ratio.  

 

When the constant and time-varying correlation coefficients of the CCC-GARCH 

(or CCC-FIGARCH) models and DCC-GARCH (or DCC-FIGARCH) models that follow 
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are estimated, the optimal hedge ratios can be computed by either  
     

    
    

    

    
 or the 

formula in Equation 2-24 attached by the time subscript for the correlation coefficient. 

Using the derived hedge ratios, we can use the reduction in variance of the hedged 

portfolio to evaluate hedging effectiveness.  

Figure 2-10 display the dynamics of the hedge ratio evolution over time based on 

the CCC-GARCH models for two different data sets. Moreover, two different hedge ratio 

measures are included. The CCC-GARCH model with a constant correlation allows the 

hedge ratio to be time varying due to the evolution of the conditional variance matrix.  

Figure 2-10 Hedge ratio evolution for CCC-GARCH Models 

 

 

 

 

 

 

 

 

 

 

Table 2-4 report the results for the parameter estimates of the bivariate DCC-

GARCH(1,1) models for the two different data sets. Regardless of the data sets, the 

(a) MV hedge ratio (filtered) 

 

(b) MV hedge ratio (unfiltered) 

 

(c) Sharpe hedge ratio (filtered) 

 

(d) Sharpe hedge ratio (unfiltered) 
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associated parameter estimates are statistically significant at the 5% level. Relative to the 

MV hedge ratios based on the CCC-GARCH model, those on the DCC-GARCH model 

become larger. In the case of the Sharpe measure, their magnitudes in hedge ratios reduce 

a little compared to those in the CCC-GARCH model. In terms of the values of the hedge 

ratios, the Sharpe measure produces larger hedge ratio than the minimum variance 

framework for the filtered and unfiltered cases.  

Table 2-4 Estimates for DCC-GARCH(1,1) model with two different cases 

 DCC-GARCH (unfiltered) DCC-GARCH (filtered) 

Param Spot Futures Spot Futures 

a0  0.164
**

(0.030)  0.153
**

(0.037)   0.230
**

(0.026)  0.171
**

(0.042) 

a1  0.148
**

(0.017)  0.095
**

(0.012)   0.236
**

(0.019)  0.112
**

(0.015) 

b1  0.837
**

(0.019)  0.896
**

(0.013)   0.746
**

(0.018)  0.877
**

(0.017) 

alpha 0.116
**

(0.013) 0.121
**

(0.013) 

beta 0.739
**

(0.034) 0.740
**

(0.032) 

AIC -23956.208 -23443.032 

Nobs 4985 4985 

h_ratio 0.0197 0.0120 

Sharpe 0.0613 0.0735 

       Note: The maximum likelihood estimates are reported. The numbers in parentheses are standard errors.  

         ** denotes significance at 5%, and * denotes significance at 10%. The AIC values are calculated as the 

log-likelihood value minus the number of parameters since GAUSS routine is set to minimize the  

         negative of the log-likelihood function.  Note that the AIC values are not directly comparable across  

  the filtered and unfiltered data sets because the two different data sets are used. H_ratio denotes the 

minimum variance hedge ratio and Sharpe represents the Sharpe hedge ratio.  

 

Figure 2-11 presents the time varying hedge ratios for the DCC-GARCH models of 

the filtered and unfiltered data sets. Unlike the CCC-GARCH model, in the DCC-

GARCH, the correlation coefficients are updated over time. For the AUD spot and 

futures series the resulting hedge ratios are 0.0120 and 0.0197 for the filtered and 

unfiltered data, respectively. Compared to the hedge ratios in the CCC-GARCH models, 
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the hedge ratios from the DCC-GARCH models become larger overall for both data sets. 

This result is compatible with the fact that the DCC-GARCH model is designed to 

describe the time varying correlation structure intrinsic to the financial data. If the 

correlations vary with time, the hedge ratios should be updated on the basis of more 

recent information. On the other hand, for the Sharpe measure, the hedge ratios (0.0735 

and 0.0613) based on the DCC-GARCH model get smaller than those from the CCC-

GARCH model.  

Figure 2-11 Hedge ratio evolution for DCC-GARCH Models 

 

 

 

 

 

 

 

 

 

 

 

Since long memory in the volatility process exists, a fractionally integrated 

GARCH (FIGARCH) model can be used for capturing the persistent volatility. In the 

CCC-FIGARCH and DCC-FIGARCH estimation procedures we need to set a truncation 

(a) MV hedge ratio (filtered) 

 

(b) MV hedge ratio (unfiltered) 

 

(c) Sharpe hedge ratio (filtered) 

 

(d) Sharpe hedge ratio (unfiltered) 
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value (i.e., 1000 as suggested by Baillie, Bollerslev, and Mikkelsen (1996)) given the 

infinite ARCH presentation is used in Equation 2-85.   

Table 2-5 reports estimates of the parameters for the bivariate CCC-FIGARCH(1,1) 

models under the two different data sets. Although there are subtle differences in 

magnitudes for the estimated parameters, their signs and statistical significances are 

identical meaning that both models fit well to the data sets. The sufficient conditions for 

the positive definiteness of the conditional variances at every time index such as Equation 

2-86 are met with the estimated parameters.  

Table 2-5 Estimates for CCC-FIGARCH(1,1) model with two different cases  

 CCC-FIGARCH (unfiltered) CCC-FIGARCH (filtered) 

Param Spot Futures Spot Futures 

a0  1.097
**

(0.162)  1.078
**

(0.215)   0.506
**

(0.081)  0.638
**

(0.120) 

b1 -0.408
**

(0.032)  0.233
**

(0.067)  -0.338
**

(0.041)  0.154
*
  (0.087) 

d  0.449
**

(0.026)  0.384
**

(0.036)   0.485
**

(0.029)  0.407
**

(0.036) 

phi -0.754
**

(0.019) -0.112
**

(0.047)  -0.704
**

(0.027) -0.241
**

(0.065) 

cor 0.013 (0.010) 0.010 (0.010) 

AIC -26608.999 -23297.247 

Nobs 4985 4985 

h_ratio 0.0104 0.0084 

Sharpe 0.0621 0.0760 

Note: The maximum likelihood estimates are reported. The numbers in parentheses are standard  errors. 
** denotes significance at 5%, and * denotes significance at 10%. The AIC values are calculated as the 

log-likelihood value minus the number of parameters since GAUSS routine is set to minimize the 

negative of the log-likelihood function.  Note that the AIC values are not directly comparable across 

the filtered and unfiltered data sets because the two different data sets are used. H_ratio denotes the 

minimum variance hedge ratio and Sharpe represents the Sharpe hedge ratio.  

 

The significant estimates of the long memory parameter indicate that there exists long 

memory in volatility. Compared with the CCC-GARCH(1,1) models for the two data 

sets, the CCC-FIGARCH models produce better or similar hedge ratios. The mean values 
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of the hedge ratios are 0.0084 and 0.0104, which are greater than or nearly equal to those 

for the filtered and unfiltered data sets, respectively. For the Sharpe measure, the 

estimated hedge ratio increases over the CCC-GARCH model in the filtered returns. For 

the unfiltered case, the hedge ratio decreases over the CCC-FIGARCH. The Sharpe 

measure produces larger hedge ratios than the MV framework. 

Table 2-6 shows the parameter estimates of the bivariate DCC-FIGARCH(1,1) 

models in two different data sets. Without any exceptions, all parameters are statistically 

significant at the 5% level for both cases.  

Table 2-6 Estimates for DCC-FIGARCH(1,1) model with two different cases  

 DCC-FIGARCH (unfiltered) DCC-FIGARCH (filtered) 

Param Spot Futures Spot Futures 

a0  0.569
**

(0.092)  0.591
**

(0.100)   0.467
**

(0.081)  0.620
**

(0.100) 

b1 -0.434
**

(0.033)  0.248
**

(0.043)  -0.361
**

(0.039)  0.159
**

(0.051) 

d  0.420
**

(0.025)  0.372
**

(0.028)   0.457
**

(0.027)  0.393
**

(0.027) 

phi -0.746
**

(0.020) -0.076
**

(0.029)  -0.695
**

(0.027) -0.214
**

(0.044) 

alpha 0.114
**

(0.012) 0.112
**

(0.012) 

beta 0.748
**

(0.030) 0.761
**

(0.029) 

AIC -23667.317 -23194.111 

Nobs 4985 4985 

h_ratio 0.0177 0.0118 

Sharpe 0.0608 0.0741 

       Note: The maximum likelihood estimates are reported. The numbers in parentheses are standard errors.  

  ** denotes significance at 5%. The AIC values are calculated as the log-likelihood value minus the 

number of parameters since GAUSS routine is set to minimize the negative of the log-likelihood 

function. Note that the AIC values are not directly comparable across the filtered and unfiltered data 

sets because the two different data sets are used. H_ratio denotes the minimum variance hedge ratio 

and Sharpe represents the Sharpe hedge ratio.   

 

The value of   is an estimate of the long memory parameter in volatility. They 

indicate that the volatility measures (i.e., absolute returns in this study) are long memory 



135 

 

and stationary processes since those values are located between zero and one. As in the 

CCC-FIGARCH model, the conditions for the conditional variance matrix to be positive 

are satisfied. The hedge ratios are 0.0118 and 0.0177 for the filtered and unfiltered case, 

respectively. They are similar to those in the DCC-GARCH models. With the Sharpe 

measure, the hedge ratio for the filtered case rises while it drops in the unfiltered case. 

The values are high relative to the MV measure. 

Figures 2-12 and 2-13 represent the time varying hedge ratios based on both the 

CCC- and DCC-FIGARCH(1,1) models. It is very interesting to ask whether the 

proposed model specifications do good jobs to describe the given data sets. The Akaike 

Information Criterion (AIC) may be used to select a parametric model among several 

fitted models. The lower the AIC, better the model. In the GARCH-based models, the 

CCC-GARCH(1,1) model has the lowest AIC value for the filtered data. For the 

unfiltered data set, the CCC-FIGARCH(1,1) would be selected according to the AIC.  
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Figure 2-12 MV Hedge ratio evolution for DCC-FIGARCH Models 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

(a) CCC-FIGARCH (filtered) 

 

(b) CCC-FIGARCH (unfiltered) 

 

(c) DCC-FIGARCH (filtered) 

 

(d) DCC-FIGARCH (unfiltered) 
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Figure 2-13 Sharpe Hedge ratio evolution for DCC-FIGARCH Models 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

(a) CCC-FIGARCH (filtered) 

 

(b) CCC-FIGARCH (unfiltered) 

 

(c) DCC-FIGARCH (filtered) 

 

(d) DCC-FIGARCH (unfiltered) 
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According to the visual inspection of the plots of the filtered and unfiltered returns 

used in the marginal distributions, the Student-t distribution may be used for FIGARCH 

innovations as in Figure 2-14 and 2-15. All histograms show significant positive kurtosis 

(i.e., high peak) and symmetry in the distribution of data, which is also confirmed in the 

quantile plots (or, Q-Q plots). The two right panels of each figure display the presence of 

heavy-tailedness in both sides.  

Figure 2-14 Histograms and Q-Q plots for AUD filtered returns  

 

Figure 2-15 Histograms and Q-Q plots for AUD unfiltered returns 
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With regard to marginal distributions for copula models, Table 2-6 presents the 

estimated parameters for the FIGARCH(1,1) model with the Student-t innovations. The 

estimates for the parameters of the conditional mean equations are contained as well. All 

MA terms for the conditional mean equations are statistically significant, whereas the 

error correction terms are statistically insignificant. The error correction term is regarded 

as an equilibrium error that occurred in the previous period. If the spot return at the 

previous period is above its equilibrium level, the relevant coefficients need to be 

negative to restore equilibrium. Our results for the error correction coefficients are 

compatible with the intuition. By this process, the equilibrium error will be corrected in 

the next period. All parameter estimates for the FIGARCH models are statistically 

significant. The corresponding gradients are extremely small and appear to reflect a 

global maximum point on the log-likelihood function.  

Regarding the statistical inference, we use Quasi Maximum Likelihood (QML) 

estimators, which are robust over potential model misspecification errors in the spirit of 

Bollerslev and Wooldridge (1992). In practice, the estimation procedure can be 

conducted under the normal distribution-based log-likelihood function although the errors 

are described by some non-normal distribution. Since we assume that the innovations that 

pass though the conditional mean questions follow the Student-t distributions, Gaussian 

QML method can be used for inference. In the context of FIGARCH, the asymptotic 

properties are discussed in Baillie, Bollerslev, and Mikkelsen (1996) and Bollerslev, and 

Mikkelsen (1996). Both papers show that the consistency and asymptotic normality of the 

QML estimator are satisfied within the FIGARCH(1,d,0) framework.  Under the Monte 
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Carlo simulation studies such as Baillie, Bollerslev, and Mikkelsen (1996) and Lombardi 

and Gallo (2002), the resulting QML estimates for the FIGARCH(1,d,1) model exhibit 

consistency and asymptotic normality. 

Table 2-7 Estimates for FIGARCH(1,1) with Student-t innovations 

 FIGARCH (unfiltered) FIGARCH (filtered) 

Param Spot Futures Spot Futures 

const  -0.003
**

(0.001) 0.004
**

(0.001)  -0.003
**

(0.001) 0.005
**

(0.001) 

ma1 0.701
**

(0.008) 0.974
**

(0.013)   0.699
**

(0.008) 0.988
**

(0.013) 

ma2 NA 0.520
**

(0.010) NA 0.521
**

(0.010) 

coint  0.003
**

(0.001) 0.001  (0.002) 0.004
**

(0.001) 0.002  (0.002) 

a0  0.695
**

(0.090)  0.637
**

(0.120)   0.570
**

(0.081)  0.594
**

(0.117) 

b1 -0.228
**

(0.034)  0.279
**

(0.006)  -0.231
**

(0.039)  0.213
**

(0.059) 

d  0.657
**

(0.030)  0.500
**

(0.043)   0.632
**

(0.030)  0.489
**

(0.043) 

phi -0.758
**

(0.022) -0.185
**

(0.043)  -0.736
**

(0.025) -0.261
**

(0.045) 

v  6.943
**

(0.468)  7.733
**

(0.716)   8.186
**

(0.656)  9.447
**

(1.020) 

AIC -10884.965 -12581.997 -10710.106 -12385.809 

Nobs 4985 4985 

       Note: The maximum likelihood estimates are reported. The numbers in parentheses are standard errors.  

         ** denotes significance at 5%, and * denotes significance at 10%. The AIC values are calculated as the  

         log-likelihood value minus the number of parameters since GAUSS routine is set to minimize the  

         negative of the log-likelihood function.  Note that the AIC values are not directly comparable across  

         the filtered and unfiltered data sets because the two different data sets are used.   

 

In order to find the dependence structures between the spot and futures exchange 

rates, we use five alternative copula specifications. The results from these estimations are 

presented in Tables 2-8 (filtered case) and 2-9 (unfiltered case). For the copula models, 

with the conditional variances obtained from different copula-based GARCH models, we 

attempt to calculate the off-diagonal element in the conditional variance matrix using the 

formula such as Equation 2-76. The double integral component in the formula can be 

numerically approximated using the bivariate conditional density function in Equation 2-
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72. Then the time varying hedge ratios are calculated by the ratio of the conditional 

covariance to the conditional variance of the futures contract.  

Similarly, for the Sharpe hedge ratio, the correlation coefficient in Equation 2-24 

may be replaced by an approximated double integral component used in the MV hedge 

ratio calculation. Note the resultant bivariate copula density is a scalar although in some 

dynamic copula models the time varying dependence structure is involved with the 

calculation of the copula density itself. Due to the variability of the spot and futures 

returns, we can obtain the time varying hedge ratios.   

Table 2-8 Parameter Estimates for Copula Models (filtered case) 

Parameters Normal 
Static 

Student-t 

Static 

Frank 
Clayton Gumbel 

const 
 2.573

** 

(0.306) 
  

 0.510
**

        

(0.069) 

1.310
**

       

(0.180) 

a 
-8.492

**
       

(0.985) 
  

-1.426
**

      

(0.168) 

-1.265
**

        

(0.180) 

b 
0.477

**
      

(0.243) 
  

-0.042        

(0.094) 

 0.130       

(0.121) 

nu  
 12.65

**
 

(3.699) 
   

rho 
 0.016 

(0.020) 

 0.109
**

 

(0.041)     
  

AIC 205.21 4.599 -0.490 41.67 60.53 

h_ratio 0.071 0.007 0.0067 0.0147 0.0153 

Sharpe 0.117 0.076 0.0751 0.0803 0.0807 

       Note: The numbers in parentheses are standard errors. ** and *represent significance at 5% and 10%.       

        Rho indicates static dependence parameter for the static copula functions. Other parameters are based  

 on the time varying correlation structure. H_ratio denotes the minimum variance hedge ratio  

 and Sharpe represents the Sharpe hedge ratio.  
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As shown in Tables 2-8 and 2-9, the Student-t and the Frank copulas are based on 

static analysis rather than the time varying structure. In the Normal copula for the filtered 

and unfiltered data sets, the autoregressive parameters   are statistically significant. This 

means that some change in the dependence measure may be persistent at the subsequent 

lags. The fact can affect the estimated hedge ratio in a positive way. By contrast, for 

Clayton and Gumbel copulas, the autoregressive parameters are not statistically 

significant at 5% (even 10%) for the filtered and unfiltered cases. The parameter,  , for 

the mean absolute difference between two uniform variables are inversely related to the 

dependence measures as noted by Patton (2006). This implies that recent information on 

returns may negatively impact the next information formation except for the Frank copula 

in both Table 2-8 and Table 2-9.  

Table 2-9 Parameter Estimates for Copula Models (unfiltered case) 

Parameters Normal 
Static 

Student-t 

Static 

Frank 
Clayton Gumbel 

const 
 2.458

** 

(0.310) 
  

 1.197
**

        

(0.250) 

1.384
**

       

(0.193) 

a 
-8.027

**
       

(0.995) 
  

-2.936
**

      

(0.641) 

-1.323
**

        

(0.206) 

b 
0.642

**
      

(0.247) 
  

-0.305        

(0.236) 

0.054       

(0.131) 

nu  
 6.62

**
 

(1.063) 
   

rho 
 0.024 

(0.021) 

     0.178
** 

(0.074) 
  

AIC 250.18 18.89 0.003 76.75 55.74 

h_ratio 0.057 0.005 0.004 0.011 0.010 

Sharpe 0.092 0.059 0.058 0.062 0.062 

       Note: The numbers in parentheses are standard errors. ** represent significance at 5%. Rho indicates  

        static dependence parameter for the static copula functions. Other parameters are based on the time   

 varying correlation structure. H_ratio denotes the minimum variance hedge ratio and Sharpe 

represents the Sharpe hedge ratio.  
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 Through the entire analysis, two different approaches for the optimal hedge ratio 

are chosen as reported in Table 2-8 and Table 2-9. The difference in the two approaches 

consists in the objective function to be optimized. The minimum variance (MV) hedge 

ratio minimizes the variance of the hedged portfolio. The Sharpe hedge ratio (one of the 

mean-variance frameworks) can be obtained by maximizing the ratio of the hedged 

portfolio’s excess return to the volatility. It turns out that the Sharpe hedge ratios are 

usually larger than the MV hedge ratios. That finding is valid and predictable because by 

definition the Sharpe measures are based on the spot and futures returns while most MV 

measures except the OLS-based hedge ratio are based on the standardized innovations 

through various GARCH filters.  

For the purpose of copula model comparison, we can choose the model with the 

smallest AIC over the set of copula models under consideration. We pick the Frank 

copula for either the filtered or unfiltered case since it provides us with the smallest AIC 

value in each case. For both cases, the Student-t copulas seem to fit well to the data sets 

too. 

We evaluate the in-sample hedging effectiveness of the various copula-based 

GARCH models using the criterion of hedging performance presented in Equation 2-89. 

It tells us how the variance of the hedged portfolio based on the estimated hedge ratios 

reduces. The estimated hedge ratios for the relevant models are calculated by the mean 

value of the associated hedge ratios for each copula function. Those hedge ratios and the 

hedging effectiveness for the OLS, CCC, DCC, Normal copula, Clayton copula, Gumbel 

copula, static Frank copula, and static Student-t copulas are reported in Table 2-10.  
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Table 2-10 Comparisons of the Hedging Effectiveness (MV measure) 

Filtered case Unfiltered case 

Models H_ratio variance Reduction (%) H_ratio Variance Reduction (%) 

OLS 0.0925 0.00239  0.0869 0.00264  

CCC-G 

GARCH 

0.0074 0.00243 -1.51 0.0107 0.00267 -1.22 

CCC-FI 0.0084 0.00243 -1.47 0.0104 0.00267 -1.23 

DCC-G 0.0120 0.00243 -1.35 0.0197 0.00267 -0.95 

DCC-FI 0.0118 0.00243 -1.36 0.0177 0.00267 -1.01 

Normal 

Copula 

0.0708 0.00240 -0.99 0.0567 0.00264 -0.19 

Student-t 

Copula 

0.0073 0.00243 -1.51 0.0050 0.00268 -1.40 

Clayton 

Copula 

Gumbel 

Copula 

0.0147 0.00242 -1.26 0.0106 0.00267 -1.22 

Frank 

copula 

0.0067 0.00243 -1.53 0.0042 0.00268 -1.43 

Gumbel 

Copula 

0.0153 0.00242 -1.24 0.0103 0.00267 -1.23 
Note: The benchmark method is OLS hedge ratio for comparison.  The variance reduction is calculated as 

          (var(s-holsf) – var(s-halternativef))/ var(s-holsf). The negative value means that the variance of an   

          alternative hedge ratio-based portfolio increases.  

 

As noticed in Table 2-10, the variance reductions over alternative models compared 

to the OLS hedge ratio are all negatives, which mean that the variance of an alternative 

hedge ratio-based portfolio increases. In contrast, compared to the unhedged variance 

(i.e., 0.002436), for the filtered case, it turns out that all models used in this study show 

better performance. For the unfiltered case, all models listed in Table 2-10 show 

improved performance compared to the unhedged case whose variance is 0.002682. One 

possible explanation for this result of poor performance for some copula models over the 

OLS-based hedge ratios is that when we look into the reported hedge ratios, the extent to 

which they swing relative to the OLS-based hedge ratio is large. Such a big swing in 

hedge ratios may cause the sample variance of the hedged portfolio to be bigger. As a 

result, the reported variance reduction values are negative. Overall decreases in the hedge 

ratios for the different models imply that the alternative models show lower correlation 

coefficient values between the standardized innovations through the volatility models.   
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Table 2-11 Comparisons of the Hedging Effectiveness (Sharpe measure) 

Filtered case Unfiltered case 

Models sharpe variance Reduction(%) sharpe Variance Reduction(%) 

OLS 0.0866 0.002393  0.0629 0.002643  

CCC-G 

GARCH 

0.0754 0.002394 -0.054 0.0622 0.002643 -0.0072 

CCC-FI 0.0760 0.002394 -0.050 0.0621 0.002643 -0.0083 

DCC-G 0.0735 0.002395 -0.069 0.0613 0.002643 -0.0168 

DCC-FI 0.0741 0.002394 -0.064 0.0608 0.002643 -0.0223 

Normal 

Copula 

0.1167 0.002396 -0.117 0.0921 0.002639   0.1165 

Student-t 

Copula 

0.0755 0.002394 -0.054 0.0587 0.002644 -0.0465 

Clayton 

Copula 

Gumbel 

Copula 

0.0803 0.002393 -0.024 0.0624 0.002643 -0.0051 

Frank 

copula 

0.0751 0.002394 -0.056 0.0582 0.002644 -0.0525 

Gumbel 

Copula 

0.0807 0.002393 -0.022 0.0621 0.002643 -0.0083 
Note: The benchmark method is OLS hedge ratio for comparison.  The variance reduction is calculated as 

          (var(s-holsf) – var(s-halternativef))/ var(s-holsf). The negative value means that the variance of an   

          alternative hedge ratio-based portfolio increases. The column sharpe denotes the sharpe hedge ratio.  

 

Table 2-11 reports the estimated hedge ratios based on the Sharpe measure. It is 

important to note that most hedging model specifications do not outperform the OLS-

based hedging strategy except the Normal copula. However, relative to the unhedged 

cases (those variances are 0.002436 and 0.002682, for the filtered and unfiltered case, 

respectively), we can benefit from any of models used in this study in light of the 

variance reduction criterion. Compared to the minimum variance (MV) hedge ratios, the 

Sharpe hedge ratios give us better performance in a sense that they generate overall lower 

variances over all model specifications.  

Figure 2-16 and Figure 2-17 display the dynamics of the estimated MV hedge 

ratios from the various copulas. Each graph displays how the hedge ratios changed over a 

period of time. Every graph shows a similar pattern, where the hedge ratios started 

fluctuating at the points around the observation 4500 on the horizontal axis, equivalent of 
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September and October 2008. In that period of time, there was the bankruptcy of 

Lehman, which led to damaging financial panic in which most financial institutions and 

investment banks suffered large losses. In terms of hedging, when the economy is in 

turmoil, hedgers tend to raise the hedge ratio to protect themselves from a slack and 

downturn market. Every copula model in both Figure 2-16 and Figure 2-17 well explains 

the point that since September and October 2008, the hedgers should use higher hedge 

ratios to reduce the potential risk of a hedge position relative to those before September 

2008.    

The time varying hedge ratios based on the alternative derivation (the Sharpe 

measure) are presented in Figure 2-18 and Figure 2-19. The reason that all graphs in the 

two figures look similar is that their time-varying hedge ratios mainly depend on the 

observations in every time period with the dependence structure fixed. The dependence 

structure is obtained from the approximated double integral component in Equation 2-76.  

In the literature, it is well known that there are positive relations between time 

horizons and hedging effectiveness. For example, as the hedging horizon increases, the 

hedging effectiveness increases as shown in Chen, Lee, and Shrestha (2004). Similarly, 

when the hedging horizon is short (e.g., 2-hour time stamp), the resulting hedging 

effectiveness would decrease. When this point is combined with lower correlation value 

within the high frequency time interval, we can expect that the hedging effectiveness that 

follows would be smaller than otherwise.   

Based on data showing extremely low correlation in magnitude, the proposed 

copula and the dynamic GARCH models reveal poor performance in hedging 
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effectiveness relative to the OLS-based method. Both the filtered and unfiltered cases 

show similar results. This outcome may be expected because the correlation coefficients 

between the spot and futures returns is so small that it can be hard to recognize the well-

known stylized facts in the hedging literature. In addition, the correlation measure is at 

the margin to the degree which the constituent assets do not move together. This causes 

the hedge ratios to be frequently turned over to negative values.  
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Figure 2-16 Dynamics of MV hedge ratios for copula models (filtered case)  
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Figure 2-17 Dynamics of MV hedge ratios for copula models (unfiltered case) 
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Figure 2-18 Dynamics of Sharpe hedge ratios for copula models (filtered case) 
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Figure 2-19 Dynamics of Sharpe hedge ratios for copula models (unfiltered case) 
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2.7 Conclusion 

The purpose of the study is to evaluate the performance of copula models under 

different applications. In order to do that, we choose 2-hour time interval data (i.e., one of 

the intra-day frameworks). High frequency data give us an opportunity of a better 

understanding of how the relevant asset prices move over time within the daily time 

frame. The main objective is to investigate how effectively various statistical models can 

reduce the potential risk of a hedged position.  

In the data handling, we use wavelet analysis to get rid of the noisy components in 

the original data, which are 5-minute time intervals. Due to the need for temporal 

aggregation, we would lose some useful information in the process. To alleviate this 

problem, we set the aggregation to a 2-hour time stamp, where the resulting number of 

observations is 4985. With various statistical models, we calculate various hedge ratios 

according to their models which are followed by comparing hedging effectiveness of 

AUD currency spot and futures contracts. Furthermore we employ two different 

approaches to calculating the optimal hedge ratio. The minimum variance hedge ratio are 

calculated and compared with the Sharpe hedge ratios. 

By the variance reduction criterion for hedging effectiveness, when using some 

sophisticated models such as the dynamic GARCH (or FIGARCH) models, they do not 

produce an improvement in hedging effectiveness compared to the OLS-based MV hedge 

ratio. For the Sharpe measure, only the Normal copula shows some variance reduction of 

the hedged portfolio.  
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3 Copula Model Selection Based on Non-Nested Testing 

3.1 Introduction 

A complete understanding of economic activity is not possible, and there are a 

variety of interpretations of an observed economic phenomenon. In other words, there are 

different models that can represent a particular set of economic data. However, given the 

observed data to be analyzed, we must single out the best model by the use of model 

selection criteria.  

In general, there are nested hypothesis tests and non-nested hypothesis tests for 

model selection. Suppose there are two candidate models. When one model is a special 

case of the other model, the model structure is called nested. A specific example comes 

from the generalized Cobb-Douglas model given by 

                     .
 

 
    /    .

 

 
    /                (3-1) 

In this case by imposing the following constraints,           , we can obtain the 

usual Cobb-Douglas model. The constrained model can be used as the null hypothesis in 

the   test. The null model can be obtained from the full model by imposing some 

restriction on the model parameters. Examples of such tests include the standard Wald, 

Lagrange Multiplier, and likelihood ratio tests of significance. In contrast, there are many 

cases where two or more competing models are not nested. Namely, we cannot derive 

one model from the other model by imposing restrictions. The modern literature for non-

nested hypothesis testing began with Cox (1961, 1962).   
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Note that there is a subtle difference between model selection and non-nested 

hypothesis testing. Following Gourieroux and Monfort (1993) and Pesaran and Weeks 

(2001), model selection would be equally treated in the sense that the true model does not 

belong to either the null or alternative model. In contrast, the candidate non-nested 

hypothesis testing is based on an asymmetric situation where one of the models is 

assumed to be true (say, the null hypothesis) and a testing process is conducted to test the 

null hypothesis against an alternative hypothesis. As a result, in the case of non-nested 

hypothesis testing, rejection of the null hypothesis does not mean acceptance of any one 

of the alternative hypotheses. Occasionally, there would be a situation where all possible 

models are rejected.  

Suppose we conduct a test for finding an appropriate model that is compatible with 

a specific data generating process (i.e., the true conditional probability model that 

follows). For simpler exposition, we deal with linear normal regression models. The 

relevant hypotheses are as follows: 

          ,       (    )     (3-2) 

          ,       (    )      (3-3) 

where   and   are stochastic design matrices with dimensions     , and     , 

respectively and their ranks are   , and   . Suppose we are not able to write   as a linear 

relationship with   and vice versa. In this case the models are non-nested. The parameters 

  and   are   (     )  under    and   (     )  under   . Let     (   )     
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and     (   )     be projection matrices, and we also define          and 

        . 

Under some regularity conditions, a solution,    to the OLS minimization problem 

with respect to   is called a pseudo true value of  . Therefore we can estimate the 

relevant parameters. 

 ̂  (  ̂
 ̂ 

)  4
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5   (3-4)  

where    is the residual vector of model   . The pseudo true value of   is  

  ( )  (
  

   )  4
(   )      

   
 

 
(       ) (       )

5   (3-5) 

where    is  (   )    , and    and     are based on Equations (1.4) and (1.5) on page 

15 in Gourieroux and Monfort (1995a).  

The maximum likelihood estimation methods have nice properties such as 

consistency, asymptotic normality, and efficiency under the strong assumption that the 

model of interest is correctly specified. Even when the model is not well specified, the 

maximum likelihood properties may hold under pseudo-likelihood theory. Assume that 

the true conditional probability model is in the null hypothesis,   . That is, the true 

probability density is   (   )   (      ). By construction, the alternative hypothesis, 

  , can be regarded as a misspecified model. In this situation, to estimate the parameters 

for   , we need to define pseudo-true values for the parameters. If the models under 

consideration are parametric, the pseudo-true values can be uniquely obtained by 
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minimizing a discrepancy measure between the two competing parametric models, 

namely a null model and a misspecified model. As a discrepancy measure, the Kullback-

Leibler Information criterion (KLIC) is commonly used. The KLIC evaluated 

conditionally at     between two densities   and   is given by  

 ( (     )  (      ) )       
.   

 (      )

 (     )
/     (3-6) 

In this case the pseudo maximum likelihood (PML) estimator is based on the log-

likelihood function   ( ) associated with the regression model, Equation (3-2);  

  ( )   
 

 
  (    )  

 

   
(    ) (    )   (3-7) 

  ( )   
 

 
  (    )  

 

   
(    ) (    )   (3-8) 

where    (     )  and    (     ) . If the true distribution belongs to the null 

hypothesis,  ̂  is the usual maximum likelihood estimator of   . The PML estimator of   

is derived by calculating       ( ) where the objective function is the abbreviated 

form equivalent to Equation 3-4 and  ̂  is the PML estimator. As the sample size 

increases, the PML estimator converges in probability to the asymptotic pseudo-true 

value,  (  ) following Gourieroux and Monfort (1995a). 

The likelihood ratio (LR) principle can be used for testing non-nested models. The 

generalized likelihood ratio test based on Equations 3-7 and 3-8 is given by  

       .  ( ̂ )    ( ̂ )/      (3-9) 
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where  ̂  is the usual maximum likelihood estimator and  ̂  is the pseudo maximum 

likelihood estimator. Under the null hypothesis   , as     the test statistic (   )    

converges to  

      
[  (  (  ))    (  )]     (3-10) 

However, the limiting test statistic is usually different from zero. The contribution of the 

Cox test lies in the fact that the appropriately adjusted LR statistic, which will be shown 

later, is asymptotically normally distributed.   

Accordingly, non-nested hypotheses for model selection may be interpreted to 

mean that an individual model may not be obtained from the other models by an 

appropriate restriction or under a limit process. For example, Cox (1961) gave an 

example of tests between the log-normal distribution and the exponential distribution by 

an asymptotic testing method. The standard LR test statistics are centered at zero when 

the two hypotheses are nested. In contrast, when the hypotheses are non-nested, the 

distribution of the test statistic does not have zero expectation. To center the test statistic 

for two non-nested models, the Cox statistic includes two components: the usual 

likelihood ratio statistic and its expected value under the alternative hypothesis over the 

probability distribution function of the null hypothesis. The difference between them 

yields the new centered log-likelihood ratio statistic. 

The copula approach adopted in Chapter Two may be used to model any bivariate 

probability distribution by separately estimating the marginal distributions and the 

dependence structure. In practice, it is important to know which copula is the right one 
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among the competing copula models. We need to have reasonable criteria to choose an 

appropriate copula model fitted to the data. For a simple illustration, we demonstrate a 

graphical method proposed by Genest and Rivest (1993) in Figure 3-1. We use two 

different data series. One comes from the monthly hedge fund returns used in Chapter 

One. The other data set is monthly S&P 500 index returns. Both series range from June 

1992 to July 2007. With the Clayton copula function, we first estimate an empirical 

distribution of the copula. We have to have an empirical estimate of the bivariate 

distribution,   given by 

    ̂(     )  
 {(     )            }

   
     (3-11) 

where the estimate of the bivariate distribution is based on the proportion of observations 

that are less than or equal to (     ). Then the empirical copula,  ( ) of the random 

variate  (   ) can be obtained as 

 ( )  
 *            +

 
     (3-12) 

 Using the relationship between the copula distribution and the generator of 

parametric copulas, we construct estimates of the parametric copulas (e.g., Clayton and 

Gumbel copulas). Every copula parameter can be related to the Kendall’s tau via the 

identity 

     ∫
 ( )

  ( )
  

 

 
     (3-13) 

where the generator  ( ) is a function of the copula parameter  . After obtaining the 

estimated copula parameter, we can get the generator involved with the corresponding 
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copula. Based on a unique generator, the parametric estimate of the copula distribution 

can be obtained as 

  ( )    
 ( )

  (  )
     (3-14) 

where   is the realized value of the bivariate pseudo random variable and  ( ) is the 

generator of a specific copula. For Clayton and Gumbel copulas, their generators are 

respectively,  

  ( )  
 

 
(     )  and   ( )  (    ( ))    (3-15) 

where    denotes the generator of Clayton copula and    is the generator of Gumbel 

copula.  

Figure 3-1 Comparison of the empirical and Parametric copulas  

 

After obtaining the nonparametric and the parametric distributions, we need to 

compare each parametric estimate of the copula distribution to the nonparametric 

distribution. By choosing a copula that is closest to the nonparametric estimate  ( ) in 
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Equation 3-12, we can select an appropriate copula which fits best to the original data. In 

Figure 3-1, from the upper right corner, the lowest curve represents the nonparametric 

(i.e., empirical) distribution, the Gumbel copula distribution is located above the 

nonparametric distribution, and the Clayton copula distribution is on the top. According 

to visual inspection, it seems like the Clayton copula distribution better resembles the 

nonparametric distribution.   

As an alternative to graphical methods, difference measures between the competing 

models can be used for goodness-of-fit tests. In general, the goodness-of-fit approach 

tells us how well the fitted model reflects the data. Examples include the L
2
-norm 

distances and the adjusted R
2
-statistics. Here we compute Kolmogorov-Smirnov test (KS) 

statistics for the same monthly data. The KS test uses the maximized absolute 

discrepancy between the fitted and the hypothesized distribution functions  

       {| ̂( )   ( )|}      (3-16) 

We conduct two cases; one is for the Clayton copula versus the empirical distribution, 

and the other is for the Gumbel copula versus the empirical distribution. The test statistic 

for the former case is 0.114 and the corresponding critical value at the 5 percent 

significance level is 0.137. Therefore, we do not reject the null hypothesis that two 

competing distribution functions are in the same family. In contrast, for the case of the 

Gumbel copula, we reject the null of the identical distributions at the 5% level since the 

test statistic is one and the critical value is 0.137. Therefore, it turns out that the estimate 

of the Clayton copula is closest to the empirical distribution. This result is consistent with 

the graphical comparison of the empirical and parametric copula functions.   
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There are a few drawbacks in applications of the Cox statistic. When the 

hypotheses are non-nested there is no maintained null hypothesis (i.e., union of the null 

and alternative hypothesis is empty). First, it is possible to form another test with a 

distinct outcome by reversing the null and the alternative hypotheses. However, this 

criticism is valid only if the main goal is to select the one correct model. Second, from 

the analytical and practical perspective, there is difficulty in obtaining a consistent 

estimator of the expected log-likelihood ratio statistic in the Cox statistic under the null 

hypothesis. The KLIC related term may be used in the Cox test statistic as an adjustment 

to the standard likelihood ratio statistic to make its mean equal to zero. It may be simple 

to work with and useful for separation between models. A non-nested test procedure for 

copula model selection that is based on the Cox test statistic is one possibility. Due to the 

computational difficulties of non-nested testing methods, Monte Carlo sampling methods 

for computing the Cox test statistic is an alternative choice. 

The paper is organized as follows: The next section provides a detailed literature 

review. The third section briefly discusses the Cox test statistic. Finally, prior discussions 

are summarized.  

3.2 Literature review 

In the literature, there are a few approaches for the goodness-of-fit testing of copula 

models. One can break them down into several categories according to how the major 

components of the test statistics are constructed. In practice, empirical marginals can be 

used and an initial functional form for the copula may be presumed, but the goodness-of-
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fit for copulas may be complicated since the marginal distributions are left unspecified. 

Unlike Breymann, Dias, and Embrechets (2003), Dorbic and Schmid (2007) show that 

the use of empirical marginal distributions makes a difference. However, this makes it 

hard to determine the asymptotic behavior of the relevant estimators (Berg 2009). Due to 

this limitation, the usually p-values for the test statistics must be computed by simulation.  

The goodness-of-fit testing procedure is conducted by comparing the proposed 

empirical process to some parametric copula models. We refer to the empirical copula as 

the rank-based nonparametric copula. In this case, graphical selection procedures based 

on Kendall’s process are usually used. Furthermore, by considering the discrepancy 

between the competing processes such as the   -norm divergence measure, they can be 

applied to goodness-of-fit testing, and examples include the Kolmogorov-Smirnov
26

 

statistic, the Anderson-Darling statistic, the Cramer-von Mises statistic. To select the 

appropriate parametric copula model, the likelihood ratio principle may be used, and 

Chen and Fan (2005, 2006) propose pseudo- likelihood ratio tests.  

The empirical copula goodness-of-fit approach was proposed by Deheuvels (1979), 

and many past studies based on the approach rely on graphical selection procedures to 

find the appropriate model.  Most results in this category follow Genest and Rivest 

(1993) and use the estimate of Kendall’s tau to derive the best model among the class of 

Archimedean copulas because of the one-to-one links between Archimedean copulas and 

                                                 

26 Actually the Kolmogorov-Smirnov statistic is an L1-norm, taking the absolute difference of two 

distribution functions.  



175 

 

Kendall’s tau. Other works include Genest and Favre (2007), Durrleman, Nikeghbali and 

Roncalli (2000), Frees and Valdez (1998), and Wang and Wells (2000). The method has 

a drawback in that it only applies to one-parameter models. Barbe et al. (1996) examine 

the limiting distribution of the empirical process
27

. Under weak regularity conditions on 

the empirical limiting distribution function  , they prove that the empirical process is 

asymptotically Gaussian. Fermanian, Radulovic, and Wegkamp (2004) and Tsukahara 

(2005) show that the empirical copula estimator is consistent and asymptotically 

normally distributed. 

Another analysis based on bivariate survival (Andersen et al. 2005) conducts the 

goodness-of-fit test by comparing the parametric estimate of the copula and an empirical 

copula (nonparametric) estimate. Wang and Wells (2000) propose that one can select a 

copula that provides the smallest value of the given Cramer-von Mises test statistic based 

on the Kendall process. However, Genest et al. (2006) and Genest and Farvre (2007) 

point out that the limiting distribution of the proposed statistic is problematic and it leads 

to the miscalculation of p-values for the test statistic. In Genest et al. (2006), they verify 

that two variants of the statistic proposed in their study can circumvent the limitations.    

For tests of goodness-of-fit for parametric families of copulas, Dorbic and Schmid 

(2005) use a modified version of the chi-square test. In a situation where the marginal 

distributions are unspecified, the proposed chi-square test is used to detect a misspecified 

                                                 

27   ( )  √  *  ( )   ( )+, where   ( ) is the empirical distribution function of the pseudo-

observations.  
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null hypothesis. Junker and May (2005) propose the integrated Anderson-Darling 

statistic
28

 to compare the empirical copula to the parametric copula. Other works 

containing the Anderson-Darling statistics include Breyman, Dias, and Embrechets 

(2003), Malevergne and Sornette (2003), and Berg and Bakken (2005). In the same vein, 

Kole et al. (2007) deal with the selection issues of copulas in risk management using 

several test statistics that are variants of those proposed by Malevergne and Sornette 

(2003).  

Rosenblatt’s transformation is often used to construct the test statistics as in 

Breymann Dias, and Embrechets (2003), and Malevergne and Sornette (2003). First, we 

need to obtain the uniform variables through the probability integral transformation for 

multivariate data. Then, using the inverse Gaussian distribution, one can get the 

transformed univariate observations, which follows a chi-square distribution. In the 

former case, they test whether the null hypothesis of ellipticality for currency returns is 

rejected. They regard a copula model with a minimal Akaike Information Criterion (AIC) 

value as the best fitting model. The proposed method is used to distinguish between a 

Student-t copula and a Gaussian copula. Similar research is done by Dobric and Schmid 

(2007), and the studies find that use of the empirical distribution may generate critical 

values that are misleading. As a remedy, Dobric and Schmid (2007) recommend the 

parametric bootstrap method for obtaining the proper critical values. In certain cases, the 

                                                 

28 They use the integrated Anderson-Darling statistic since it produces a more global goodness-of-fit 

measure than the Anderson-Darling test statistic.  
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null distribution of the test statistics is unknown. The parametric bootstrap method may 

be used to derive the critical values by simulation. In the context of copula models, we 

can first estimate the model specific parameter from the original observations. Second, by 

adapting the estimated parameter to a particular copula model, we can generate uniform 

variables. Third, with the simulated uniform variables, we must estimate the same 

parameter so that we may compute the relevant test statistic. Eventually, we must repeat 

the second and third step several times to obtain desirable critical values.   

The probability integral transform enables multivariate data to be mapped to a 

univariate function. By doing this, the Kolmogorov-Smirnov test statistic is feasible and 

easy to compute. Genest et al. (2009) is a variant of Rosenblatt’s transform procedure and 

forms the Cramer-von-Mises statistic based on the discrepancy between the empirical 

distribution and the independence copula. Instead of using the transformed chi-square 

random variable, they use the transformed pseudo observations which are approximately 

uniformly distributed. One advantage of Rosenblatt’s transform method is that both the 

null and alternative hypotheses are the same as in Berg (2009). Hong and Li (2005) show 

that the tests based on transformed variables perform better than the tests based on the 

original variables. However, there are drawbacks. The transformation is complicated with 

high dimension variables and is model specific. Thus, the testing procedure is not really 

distribution free.  

The smoothing-based goodness-of-fit approach uses kernel methods to derive a 

smoothed estimate of a copula. It does not assume any particular parametric form for the 
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copula. Fermanian (2005) proposes a goodness-of-fit test
29

 for the difference between the 

estimated parametric copula density and the nonparametric kernel copula density. 

However, he notes that the simple goodness-of-fit chi-square test based on the kernel 

estimator of a copula density depends on the assumed copula model and is not 

distribution-free. Using the smoothed copula estimator, he proves that the alternative test 

statistic is asymptotically chi-square under the null hypothesis. However, the kernel 

estimation of the copula density suffers from the “curse of dimensionality”.  As the 

dimension increases, the number of parameters to be estimated grows and the accuracy of 

the test is reduced.  To overcome this problem, Chen et al. (2004) use the probability 

integral transformation to reduce the dimensionality problem, which leads to a 

distribution-free test. It turns out that the proposed test statistic is consistent and 

asymptotically standard normal under some regularity conditions. 

Following Fermanian and Scaillet (2002), Scaillet (2007) constructs a test statistic 

based on the kernel estimator of the copula function and the kernel smoothed estimated 

parametric copula function. The power of the test compares well with Genest et al. 

(2006). Fermanian and Scaillet (2005) use the test statistic proposed by Fermanian (2005) 

and show how to choose between the parametric families of copulas. Panchenko (2005) 

develops a goodness-of-fit test for bivariate and multivariate copulas for the purpose of 

including larger dimensions. This test takes a kernel-based positive definite bilinear form. 

                                                 

29 Unlike the simple chi-square approach, the main approach considers the convolution between the 

kernel and the estimated parametric copula density.  
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Since the asymptotic theory of the squared divergence is not known, he uses a parametric 

bootstrap approach to approximate the p-values for the test.  

Likelihood and pseudo likelihood methods have also been proposed.  

Nikoloulopoulos and Karlis (2008) conduct the goodness-of-fit test with the Kullback-

Leibler discrepancy measure. Chen and Fan (2005, 2006) use the likelihood ratio tests for 

model selection of semiparametric copula
30

 models. These studies extend Vuong (1989) 

to form the null and alternative hypotheses.  Given a benchmark model in the case of the 

non-nested hypothesis, each of the competing models is compared with the true copula 

model. When the two candidate models are non-nested, it is proved that the proposed test 

statistic is asymptotically standard normal. For tests of model selection, Chen and Fan 

(2005) rely on the sequential method in which one first tests if two models are non-nested 

and then conducts the test using the statistic in their Theorem 3 under the null hypothesis. 

However, since the test statistic in the first test is not distribution-free, the authors use a 

bootstrap method. In the same spirit of Chen and Fan (2005), Chen and Fan (2006) apply 

the pseudo likelihood ratio (PLR) test under AIC to a different situation where the 

marginal distributions can be described by temporal dependence. One fascinating result is 

that the limiting distribution of the estimators of the pseudo true copula parameters is 

                                                 

30 For the estimation of a semi-parametric copula, the univariate marginal distributions should first 

be estimated non-parametrically. Given the marginal parameters, we can estimate the copula parameters. It 

is called the inference for the margins (IFM) estimation method, and Joe (1997) shows that IFM is 

consistent and asymptotically normal.   
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independent of the estimation of the dynamic parameters. So the simulation study can be 

easy to conduct.  

Simulation studies are conducted to assess the finite-sample properties of the 

proposed goodness-of-fit tests for various classes of copula models. In practice, we may 

find that unknown parameters must be estimated to construct the associated test statistics. 

To circumvent these methodological issues and form approximate p-values for the test 

statistics, one can follow several earlier works that use a parametric bootstrap approach.  

3.3 Cox Test Statistic 

We are interested in conditional models in the sense that probability distribution of 

a vector of dependent variable,   , is modeled conditional on a set of explanatory 

variables,   . In a time series model,    can include the lagged values of the dependent 

variable. As Pesaran and Weeks (2001, p.281) point out, the comparison of conditional 

models is valid only when the parameters of the marginal model are independent of those 

of the conditional model. For example, in a bivariate case,  

 (     )  
 (     )

  (  )
       (3-17) 

where   ( )  is a marginal model. When we attempt to compare two competing 

conditional models, the respective marginal models should not be involved with the 

conditional models. We are going to deal with cases where conditional models have the 

same conditioning variables. The two competing non-nested models with a parametric 

form can be written by  

      * (            )    +     (3-18) 
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      * (            )    +     (3-19) 

where      denotes all past information available. For notational simplicity, we can use 

 (    )  and  (    )  in place of  (            )  and  (            ) , respectively 

(see Pesaran and Weeks, 2001). In this context, we can regard the null hypothesis,   , as 

the true probability distribution with the true value,   , of the parameter  . The 

alternative hypothesis,   , is based on a mis-specified probability distribution.  

Given the sample (     ) and conditional models,  (    ) and  (    ), we want 

to test    against   . In other words, among the two competing models,    and   , we 

want to know which model is appropriate to fit the data.  The maximum likelihood 

estimators of   and   can be obtained by maximizing the log-likelihood functions under 

   and   :  

 ̂        
   

∑    
    (    )      (3-20) 

 ̂        
   

∑    
    (    )     (3-21) 

We need to assume that the conditional density functions satisfy the regularity conditions 

to guarantee that the ML estimators have asymptotic normal distributions. In other words, 

 ̂ is the usual ML estimator and is a consistent estimator of the true parameter,   . The 

ML estimator for    is a pseudo-ML estimator. As noted earlier, the data sampling 

process may be different from the assigned hypotheses, and the subjects of the pseudo-

ML estimators are pseudo-true values. Under   , the standard likelihood ratio test 

statistic is 
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      [  ( ̂)    ( ̂)]     (3-22) 

where    ( ̂) is the log-likelihood function evaluated at  ̂ for    and   ( ̂) is the log-

likelihood function evaluated at  ̂ for   .  

Prior to measuring the discrepancy between the two hypotheses, we need to 

introduce a closeness measure between two conditional densities, which is the Kullback-

Leibler discrepancy (Kullback and Leibler 1951). In this regard, the usual maximum 

likelihood method is a variant of the Kullback-Leibler discrepancy measure in the sense 

that it tries to find a model that is closest to the empirical function. It would equal zero if 

and only if two density functions are the same. Given the hypotheses defined by Equation 

(3-16) and (3-17), the Kullback-Leibler information criterion (KLIC) can be denoted as 

   (   )  ∫   .
 (    )

 (    )
/

 
 (    )        

   ,   (    )     (    )-     (3-23) 

The KLIC measure is always greater than or equal to zero such that      . Also when 

the dependent variable    is independent of each other, the KLIC measure is additive 

over the sample due to the property of the logarithm function.  

As explained in the introduction, the Cox test statistic is based on the likelihood 

ratio test statistic proposed by Cox (1961, 1962). In the case of nested models, the test 

statistic has asymptotically zero mean value. When the restriction is truly valid for the 

finite sample, the estimated log-likelihood function is not significantly different from one 

in the unrestricted log-likelihood function. As the sample size increases, the discrepancy 
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between the restricted and unrestricted likelihood functions evaluated at the ML 

estimators will converge in probability to zero. However, when the non-nested models 

are present, the likelihood ratio test statistic may diverge asymptotically from zero. 

Furthermore, the test statistic does not follow a Chi-squared distribution. Cox proposes a 

new test statistic to make it converge to zero under the null hypothesis    as the sample 

size increases. Let us assume that the asymptotic true value,   ( ), is known. The Cox test 

statistic can be written as  

    
 

 
.  ( ̂)    ( ̂)/     ( ̂  ̂ )    (3-24) 

where    (    ( ))      ,   (        ( ))     (       )- . By construction, the 

Cox statistic is defined by subtracting a consistent estimator of the asymptotic standard 

(or expected) log-likelihood ratio test statistic under    from the standard log-likelihood 

ratio test statistic. Gourieroux and Monfort (1994, p. 2603) demonstrate that under the 

null hypothesis,   , √     is asymptotically normally distributed with zero mean and a 

variance   
  (see proposition 3.4.1). As a result, the asymptotic distribution of the 

standardized Cox statistic is: 

√ 
   

 ̂ 

 
  (   )       (3-25) 

where  ̂  is a consistent estimator of    under the null,   .   

The Cox test statistic is closely related to the closeness measure. When we measure 

the closeness between two competing models under the null hypothesis,   , the following 

relationship is established (see Pesaran 1987): 
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   ( )     (    ( ))     (3-26) 

where   ( ) is the pseudo-true value of   under the null,   . Similarly, an attempt to 

measure the closeness the other way around can be conducted such as 

   ( )     (    ( ))     (3-27) 

where    ( ) is the pseudo-true value of   under the null,   . Note that the subscripts in 

Equation 3-24 have the reversed order of the Equation 3-25.  

For hypothesis testing of non-nested models, there is no natural null hypothesis, 

and it is possible to switch the role of the null and alternative hypothesis. Due to this fact, 

it is possible to reject all models or to fail to reject all models. However, as long as we 

attempt to know about the strengths or weaknesses of one model relative to other models, 

the use of non-nested models would be valid (Pesaran and Weeks, 2001).   

An interesting variant of the Cox test statistic shows up in the model selection and 

hypothesis testing approach. Vuong (1989) introduces an additional model other than the 

null and the alternative models. In his setting, the null hypothesis is defined by the 

closeness between the true model and one model,    , and the alternative hypothesis is 

the closeness defined by    .   

For application purposes, the Cox test statistic suffers computational difficulties. In 

Equation 3-24, it is hard to obtain a consistent estimator of the expected log-likelihood 

ratio statistic,    ( ̂  ̂ ). Also, it is hard to obtain a consistent estimator of the pseudo-

true value   ( ),  ̂  in Equation 3-24. Finally, the explicit functional form of Equation 3-

22 may not be available. In other words, an analytical derivation of the integral in 
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Equation 3-22 is generally not possible. Therefore, most of model computational problem 

lies with the numerator of Equation 3-23.  

To resolve some of these practical challenges, we can use Monte Carlo (MC) 

sampling methods for computing the Cox test statistic and to evaluate its distributional 

properties. As in Pesaran and Pesaran (1993, particular through proposition 1 and 2), 

√ ( ̂    )  and √ ( ̂    )   are asymptotically normally distributed under the null 

hypothesis,   . As a practical matter, the estimator of the pseudo true value,  ̂ under the 

null hypothesis,   , requires the ML estimator    ̂ from the simulated observations,  , 

according to the null,   . At this point, we assume a true probability density function 

such as  (   ̂). Then, we use the same observations    to calculate the ML estimate of  , 

 ̂ , under   . To produce the estimate of the pseudo true value,  ̂ , the MC method 

comes in play. The estimate is generated by 

  ̂ ( )  
 

 
∑  ̂   

 
        (3-28) 

where  is the number of replications. By the law of large numbers, the estimator in 

Equation 3-26 converges in probability to    as   increases.  

Given  ̂ ( ), the consistent estimator of the Kullback-Leibler closeness measure 

between    and    is given by  

  ( ̂  ̂ )  
 

 
∑ {  (    ̂)    (    ̂ ( ))} 

      (3-29) 

The numerator of the standardized Cox test statistics can be computed as 

   ( ̂  ̂)  
 

 
.  (   ̂)    (   ̂)/    ( ̂  ̂ )   (3-30) 
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By adding the simulation estimator of  ̂  in Equation 3-23, we can construct the Cox test 

statistic based on the MC simulation method, which is asymptotically standard normal 

under the null. For example, when the Cox test statistic is large, we reject the null 

hypothesis, e.g.,   . Similarly we need to conduct another hypothesis test with the role of 

each hypothesis switched. As illustrated in Pesaran and Deaton (1978), it is possible that 

the null hypothesis,   , may not be rejected. In this case, the final decision is that    

should be rejected in favor of   on this evidence.    

3.4 Copula Model Selection 

Let    (       )  be an     continuous random vector at time  . Let’s define 

       and        as information sets generated by past observations and some pre-

determined variables at time  . Given the information set      (             ), the 

dependence structure of    is fully characterized by the true conditional bivariate 

distribution of        , denoted by   
 (      ). Let    

 (      ) be the true conditional 

distribution of         . By the conditional Sklar theorem from Patton (2006), there is a 

unique conditional copula   (      ) ,   -  ,   - such that  

  
 (      )    .   

 (       )    
 (       )/  (3-31) 

for all   (     )    .  

We specify the marginal models based on the following bivariate framework: 

     (     )  √  ( )       (3-32) 



187 

 

where    is a      measurable random vector,   (    )  (   (     )    (     ))
 
 

   ,       -  is the true conditional mean of    given     ; and    ( ) 

     (   ( )    ( )) where    ( )     (     )   ,((       (     ))
 )     -, 

and    ( )     (     )   ,((       (     ))
 )     -  are the true conditional 

variances of     given     , and   (       ) , where    and    do not share common 

elements. The standardized bivariate innovations,    (       )  are independent of 

    , and are identically independently distributed with  (   )    and  (   
 )    for 

     . Let us define the conditional parametric distribution as    
(         ) for       

with a parameter vector   . This generates the marginal models 

   
(           )     

(   
    (      )      )   (3-33) 

Let  (      )  be a copula model, which can be used to approximate the true 

conditional copula   (      ) . When we link the marginal models to the copula 

function, the joint distribution is given by 

  (          )   (   
(           )    

(           )     )   (3-34) 

In this setup the underlying assumption is that the parameter vectors (   )  are not 

affected by the other equation. As a result univariate GARCH models are used to present 

the marginal models. This fact leads to the case where we can separately estimate the 

parameters of the copula models from the analysis of the marginal models. It is possible 

to apply the method to evaluate the bivariate Normal copula model for the dependence 

structure between the EURO spot exchange rate and the corresponding futures rate. The 
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proposed test is constructed under a null hypothesis that the Normal copula model against 

several alternatives such as the Student t-copula, Clayton, Frank, and Gumbel copulas.  

The filtered returns can be obtained from a GARCH (1,1) model with Student-t 

distribution for the innovations. As Chen and Fan (2005, 2006) and Huang and 

Prokhorov (2010) point out, the limiting distribution of the copula parameter can be 

affected by the estimation results for the marginal distributions. More specifically, those 

studies rely on empirical marginal distributions to avoid misspecification of the 

marginals. As long as those marginal are not correctly specified, there is an additional 

adjustment term in the variance matrix of the copula parameter (see Proposition 3.1 in 

Chen and Fan 2006). We follow Patton (2006) and use a fully parametric model for the 

marginal distributions.   

   
(            )     

 (      ), for           (3-35) 

where    
,       is assumed to be Student-t distribution.  

When the modeling of the marginal distribution is complete and the relevant 

parameters are obtained through the maximum likelihood method, the original returns 

should be transformed into identically and independently distributed univariate series. 

Before proceeding to the second step of the copula parameter estimation, we must check 

whether those univariate series are independent and the density functions are correctly 

specified, and the LM test and the Kolmogorov-Smirnov test can be used. Then the 

copula parameters should be estimated by maximizing the copula density based log-

likelihood function.  
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The model selection procedure based on non-nested hypothesis testing for this 

approach requires specific null and alternative hypotheses. For example: 

        (Student t-copula)           

        (Normal copula)      (3-36) 

The Cox test process by changing the alternative copula model to the other candidate 

models may be implemented.  

3.5 Summary 

It is very important to choose the best copula model among various candidates even 

under the assumption that the parameters involved with different copula models are 

consistently and efficiently estimated. The model selection approaches rely mainly on the 

ranking of the outcome produced by the chosen criterion. Problems may rise because the 

resulting values are not supported by statistical considerations (i.e., randomness in 

outcome). To overcome the difficulty, Monte Carlo studies or bootstrap methods are used 

to compute the p-values. In other words, we need to know the distribution of the test 

statistics in a large sample. In this regard, we can deal with the model selection problem 

in the hypothesis testing framework. However, in principle, hypothesis testing may not 

point to a right copula model since it does not produce a deterministic outcome.  

Several methods of choosing a copula model fitted to the original sample are 

discussed. The graphical method such as the QQ-plot method, and the norm-based 

distance measures including the Kolmogorov-Smirnov, Cramer-von Mises, Anderson-

Darling or chi-squares test statistics, and the methods based on the likelihood ratio 
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principle aim to evaluate the competing models. For example, for a given sample we can 

select the model that maximizes (e.g., R-square) or minimizes (e.g., AIC) a chosen 

criterion. Based on the fact that the Clayton copula, the Gumbel copula, and the Normal 

copula can be regarded as non-nested models (Chen and Fan, 2006), there is the incentive 

to use a nonnested hypothesis testing procedure. Among the general approaches (e.g., 

comprehensive or encompassing procedures) to nonnested hypothesis testing, the Cox 

test may be used for the copula model selection. These methods above contribute to the 

literature by recognizing the importance of the copula model selection and developing 

various alternative methods. However there are no clear-cut standards for the model 

selection. Several limitations to various methods addressed above must be considered.  

For graphical selection procedures, they can be used to estimate the degree of fit 

roughly and find, if any, some problem with the fits. One advantage is that the difference 

between competing models is easy to be identified by visual inspection. However, in 

general, it is hard to discriminate small differences in assessing model fits. In the copula 

model selection problem, some parameter space or the derivatives of a copula function to 

obtain the density function may not be defined (e.g., some range or point may be zero or 

out of bound). In that case there is no way to draw the graph. Moreover, sometimes it is 

possible not to discriminate between two different families of copula models on a graph 

(Matteis 2001). The commonly used benchmark model in the graphical method is the 

empirical (or nonparametric) copula estimate. The empirical copula estimator may 

depend on the marginal distribution estimator. As a result, the asymptotic variance of the 

empirical copula is closely related to the asymptotic variance of the marginal distribution 
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estimator. This fact leads to the inability of knowing an explicit form of the asymptotic 

variance of the marginal distribution estimator (Wang and Wells 2000). To overcome the 

difficulty, the bootstrap method can be used to estimate the asymptotic variance.   

Among the norm-based divergence measures, the Cramer-Von Mises and 

Anderson-Darling statistics are based on a quadratic empirical distribution function 

(EDF). The difference between the two measures arises from the weight function. The 

former is a variant of the Kolmogorov-Smirnov test.  The small sample distribution of the 

test is unknown. But the test statistic has the same distribution for the candidate (or a 

theoretical distribution in one sample case) distribution. In other words, it does not 

depend on the predetermined distribution under consideration. This is described as 

distribution free. It is less widely used than the Kolmogorov-Smirnov test. The problem 

with the Cramer-Von Mises statistic is that the test statistic makes it weaken the influence 

of the outliers by assigning equal weight to every observation in the sample. In contrast, 

the Anderson-Darling test puts more weight on the remote observations (i.e., outliers) so 

that it may be sensitive to the outliers. The Anderson-Darling test has the advantage that 

it uses a specific distribution under examination in calculating critical values. The 

disadvantage is that the critical values must be calculated for each distribution. However, 

the tables of critical values are not always available although the test can be applied to 

any distributions. The Kolmogorov-Smirnov statistics has an advantage in that it is a 

distribution free test. However, there is a serious drawback. It has low power, which 

means an increase in the likelihood of a Type II error. Note that the property of 

distribution free in EDF tests can be accounted for the fact that the original observations 
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are transformed into uniform ones by the probability integral transformation. The 

transformed observations seem likely to be ranked following the uniform distribution. As 

a result, the transformed uniformly distributed observations are distribution free. A more 

powerful test is the Chi-square test as in Junker and May (2005). The relevant test 

statistic is based on the absolute frequency of the data through the size of the bandwidth 

parameter, but the grouping criteria are ambiguous. When the bin size gets narrow, it will 

take a risk to lose valuable information. To resolve this problem, kernel density 

estimation can be used to smooth the curve of the density function. With Rosenblatt’s 

approach (i.e., a way for generating pseudo samples (uniform variables) using 

transformation of the original sample observations), one advantage in a goodness-of-fit 

setting is that the null and alternative hypotheses are the same, so it is a distribution free 

test. A disadvantage is the lack of invariance, which means that the transformed uniform 

variable may not be independent in case of non-randomness (Berg 2009). The test 

statistics from the distance measures in this category have their own asymptotic 

distributions. In certain cases, bootstrap method can be used to calculate critical values.   

The likelihood ratio principle for copula model selection can be used. As one of a 

kind, the Akaike information criterion can be used to rank some listed copula models as 

in Dias and Embrechts (2004). As pointed out in Genius and Strazzera (2002), the model 

selection process using the AIC does not take into account the fact that the differences in 

the two log-likelihood values may not be statistically significant. In the same spirit as 

Vuong (1989) based on non-nested hypothesis framework, Chen and Fan (2006) deal 

with the model selection problem based on the method that the selection rule is 
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statistically meaningful. In there the candidate models are discriminated by the KLIC. 

One advantage to this method is that one can reflect the non-Gaussian characteristics 

often observed in actual data. However, although a semiparametric approach such as 

Chen and Fan (2006) may reduce the risk of a serious misspecification, other information 

beyond the observed sample would be ignored.  

Note the differences in forming the null and alternative hypotheses between 

Vuong’s approach and the Cox statistic. In the Cox statistic, the two competing models 

are listed as a null and an alternative hypothesis, either one way or the other way around. 

By contrast, Vuong (1989) sets up the hypotheses by introducing an implicit true model 

and measuring the differences of two different models from the true model. Furthermore, 

the KLIC is used as the part of constructing the test statistic in the Cox procedure while it 

is used to rank the candidate models as a criterion in Vuong (1989).  

The Cox test statistic based on the centered log-likelihood ratio has a few 

drawbacks in applications. First, it is possible to form another test with a distinct outcome 

by reversing the null and the alternative hypotheses because by design hypothesis testing 

does not provide a definite outcome. Second, it is hard to obtain a consistent estimator of 

the expected log-likelihood ratio statistic under the null hypothesis. The KLIC related 

term may be used in the Cox test statistic as an adjustment to the standard likelihood ratio 

statistic to make its mean equal to zero. A non-nested test procedure for copula model 

selection that is based on the Cox test statistic is one possibility. Due to the computational 

difficulties of non-nested testing methods, Monte Carlo sampling methods for computing 
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the Cox test statistic is an alternative choice. Third, the Cox test does tend to over-reject 

the null model under consideration as reported in several studies.  

In summary, in the copula model selection literature, there is not yet clear 

consensus. More study must be taken. In spite of weaknesses in a particular method, the 

literature to the copula model selection has provided some insights to find a right copula 

model between the competing models.    
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