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ABSTRACT 
 
 

 Protection and inventory of current wetlands is important for critical habitats, 

education, recreation, flood control, and storm water filtration.  Over the years, the 

United States has lost over one-half of its wetlands due to natural processes and urban 

development.  Satellite imagery was used to test the possibility of accurately mapping 

existing wetlands located in a subset study site along the confluence of the Missouri 

River and the Blue River in Kansas City, Missouri, following the National Wetlands 

Inventory (NWI) classification scheme.  Testing was performed using hyperspectral 

(Hyperion) and higher spatial resolution multispectral (SPOT 5) imagery.  Additionally, 

testing was performed by fusing the hyperspectral with multispectral imagery.  Results 

indicated that the fused imagery produced a classified landscape with higher overall 

accuracy, as well as increased accuracy within the individual wetland classes.  These 
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results are significant because they indicate the possibility of an inexpensive, accurate 

approach for classifying wetlands to obtain metrics for wetlands within even larger study 

areas. 

 
 



v 
 

APPROVAL PAGE 

 The faculty listed below, appointed by the Dean of the College of Arts and 

Sciences have examined a thesis titled “Comparative Analysis of Urban Wetland 

Classification from Multispectral, Hyperspectral, and Fused Satellite Imagery,” presented 

by Daniel W. Gwartney, candidate for the Master of Science degree, and certify that in 

their opinion it is worthy of acceptance. 

 
Supervisory Committee 

 
Wei Ji, Ph.D., Committee Chair 

Department of Geosciences 
 

Jejung Lee, Ph.D. 
Department of Geosciences 

 
Jim Murrowchick, Ph.D. 

Department of Geosciences 
 

 



vi 
 

CONTENTS 
 
 

ABSTRACT ……………………………………………………………………………. iii 

LIST OF ILLUSTRATIONS ………………………………………………………….. viii 

LIST OF TABLES ……………………………………………………………………....  x 

LIST OF EQUATIONS ……………………………………………………………….... xi 

ACKNOWLEDGEMENTS ……………………………………………………………. xii 

Chapter 

1. INTRODUCTION …………………………………………………………...….  1 

2. LITERATURE REVIEW ……………………………………………………….  6 

3. STUDY SITE …………………………………………………………………..  21 

4. METHODOLOGY …………………………………………………………….. 25 

Earth Observing 1 / Hyperion Imagery ...................................................  25 

SPOT 5 Imagery Specifications ..............................................................  27 

Atmospheric Correction ..........................................................................  29 

Geometric Correction ..............................................................................  32 

Hyperspectral Imagery Sharpening .........................................................  34 

Hyperspectral Derivative Processing ......................................................  40 

Signature Extraction ................................................................................  43 

Hyperspectral Dimensionality Reduction ...............................................  49 

Classification ...........................................................................................  50 

Metrics ....................................................................................................  59 



vii 
 

5. RESULTS ...........................................................................................................  68 

Hyperion Accuracy .................................................................................  69 

SPOT 5 Accuracy ...................................................................................  72 

PCT Fused (Sharpened) Accuracy ..........................................................  75 

Metrics ....................................................................................................  79 

6. SUMMARY AND CONCLUSION ...................................................................  95 

Recommendations for Further Research .................................................  97 

Appendix 

A: Accuracy Assessment Tables ...........................................................  100 

B: Land Cover Classification Maps ......................................................  104 

REFERENCE LIST ..........................................................................................  108 

VITA .................................................................................................................  112 

 



viii 
 

ILLUSTRATIONS 

Figure Page 
  
1. Spectral Overlap between Wetland Types ................................................................  10 

2. Relationship Between Patch Density and Scale ........................................................  17 

3. Shannon Diversity Results for Tide Open and Tide Restricted Wetlands ................  19 

4. Kansas City, MO National Land Cover Database (2001) .........................................  23 

5. Study Site Location ...................................................................................................  24 

6. Raw Hyperion Imagery Subset .................................................................................  27 

7. Raw SPOT 5 Imagery Subset ...................................................................................  29 

8. DN and Reflectance Profiles for Vegetation ............................................................  32 

9. Geometrically Corrected Hyperion and SPOT 5 Imagery ........................................  34 

10. 30m Hyperion Imagery Study Area Subset ..............................................................  35 

11. 10m SPOT 5 Imagery Study Area Subset .................................................................  36 

12. CN Sharpening Result with Spectral Profile ............................................................  38 

13. Raw, PCT, and GST Imagery Statistics ....................................................................  39 

14. Raw Hyperion and PCT Comparison .......................................................................  40 

15. 30m Hyperion Derivative Profile ..............................................................................  42 

16. PCT Fused Derivative Profile ...................................................................................  42 

17. Hyperion Spectral Library Reflectance ....................................................................  45 

18. SPOT 5 Spectral Library Reflectance .......................................................................  46 

19. Raw Hyperion Derivative Spectral Library ..............................................................  47 

20. PCT Fused Spectral Library ......................................................................................  48 



ix 
 

ILLUSTRATIONS 

Figure Page 
 
21. SPOT 5 NDVI Vegetation / Non-Vegetation Threshold ..........................................  52 

22. SAM Conceptual Reference .....................................................................................  54 

23. Raw Hyperion Riverine MF Divided by SAM Result ..............................................  55 

24. Raw Hyperion Riverine MF Divided by SAM Histogram .......................................  56 

25. Raw Hyperion Riverine MF Divided by SAM Histogram Threshold Result ...........  57 

26. Hyperion, PCT Fused, and SPOT 5 Land Cover ......................................................  58 

27. Four-neighbor and Eight-neighbor Patch Differences ..............................................  60 

28. Class Area Distribution per Dataset ..........................................................................  82 

29. Riverine Classification Comparison .........................................................................  83 

30. Impervious Classification Comparison .....................................................................  87 

31. Number of Patches Distribution per Dataset ............................................................  89 

32. Hyperion Number of Patches and Largest Patch Index per Class Comparison ........  90 

33. SPOT 5 Number of Patches and Largest Patch Index per Class Comparison ..........  91 

34. PCT Fused Number of Patches and Largest Patch Index per Class Comparison .....  92 

 



x 
 

TABLES 
 

Table Page 
 
1. Wetland Inventory Comparison, Blue River Watershed ............................................  7 

2. Wetland Inventory Comparison, Rock Creek Watershed ...........................................  8 

3. SPOT 5 Spatial and Spectral Resolution ..................................................................  28 

4. Hyperion 30m Class Accuracy .................................................................................  70 

5. Hyperion 30m Producer / User Accuracy .................................................................  71 

6. SPOT 5 10m Class Accuracy ....................................................................................  73 

7. SPOT 5 10m Producer / User Accuracy ...................................................................  75 

8. PCT Fused (Sharpened) 10m Hyperspectral Class Accuracy ...................................  77 

9. PCT Fused 10m Hyperspectral Producer / User Accuracy .......................................  79 

10. Class Area Distribution .............................................................................................  81 

11. Number of Patches and Largest Patch Index Distributions ......................................  86 



xi 
 

EQUATIONS 
 

Equation Page 
 
1. SPOT 5 Calibration to Radiance ...............................................................................  30 

2. First Derivative .........................................................................................................  41 

3. Normalized Difference Vegetation Index .................................................................  51 

4. Total Class Area with units of Hectares ...................................................................  61 

5. Percent of Landscape ................................................................................................  62 

6. Total Area with units of Hectares .............................................................................  62 

7. Class Level Largest Patch Index Percent ..................................................................  64 

8. Landscape Level Largest Patch Index Percent .........................................................  64 

9. Shannon’s Diversity Index ........................................................................................  65 

10. Shannon’s Evenness Index .......................................................................................  66 

11. Contagion ..................................................................................................................  67 

12. Correlation Between Arrays X and Y .......................................................................  93 

 
 



xii 
 

ACKNOWLEDGEMENTS 
 
 

 I would like to take the time to thank my wife for supporting me during all of my 

studies, my children for their patience and understanding while I was working, and my  

supervisors for understanding my commitment to both work and education as I worked 

through my thesis research.  Additionally, I am grateful for the suggestions and editing 

assistance provided by Mike Wood as I worked through each chapter of my thesis. 

 I would like to thank the members of my thesis graduate committee Professor Wei 

Ji, Professor Jejung Lee, and Professor James Murowchick of UMKC’s Department of 

Geosciences for their support, suggestions, and guidance during this process.  

Additionally, I would like to extend a special thank you to Professor Wei Ji for his 

understanding of both my employment and educational obligations, as well as for 

working with me remotely when necessary and making time to meet with me throughout 

the duration of work.  Regarding advanced hyperspectral analysis methodology, I am 

extremely grateful for the support from Brian Collins’ (IntTerra, Denver Colorado) as 

well as for basic IDL codes he provided to assist my research. 

 Finally, I would like to thank everyone who has taken the time to listen, read, or 

discuss my research with me over the years. 

 
 



1 
 

CHAPTER 1 

INTRODUCTION 
 
 

The diverse nature of wetland areas is an important aspect of the communities and 

rural areas which they affect.  By definition, wetlands are essentially areas of land that 

are periodically covered with water seasonally, annually, or for very long periods of time.  

There are numerous functions of wetland environments from providing critical habitats 

for many species (including birds and aquatic life), to simply being used for recreational 

reasons.  Though some say that wetlands are obstructive to urban development, wetlands 

are essential not only to species habitat but also for human development to thrive.  

Wetlands have economic importance when considering wildlife and fish, pollution 

filtration, coastal erosion prevention, and management of storm water runoff.  Prior to 

this recognition, the United States lost over half of its natural wetlands due to both natural 

causes and urban development.  

Industrial development is very prosperous in areas that have close access to water.  

This is seen as a good reason for development to take place in and around wetland areas.  

Of course, with the intrusion of urban environments within wetland areas may drastically 

alter the characteristics of the environment.  Urban wetland habitats “… are often subject 

to different climate and air quality that nonurban systems.” (Windham, Laska, and 

Wollenberg, 2004)  Primary examples include sewage drainage and other toxicants, 

warmer temperatures due to the proximity of surrounding urban environments, and a 

decline in wind speed through the wetland environment.  Only recently have the 
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economic importance, as well as the importance to species habitat, come to light in 

wetland areas.  As reported by Karen Rouse of the Missouri Department of Natural 

Resources, “smaller urban wetlands may be more valuable than rural wetlands to their 

developed watersheds for water quality improvement and flood retention.” (Rouse, 2004)  

She goes on to report that “research showed that the closer a wetland resided to the urban 

growth boundary, the more likely it was to be impacted or removed.” (Rouse, 2004)  

Measures have been taken to protect water bodies from further obstruction due to 

development of urban areas.  Such measures include awareness groups, functions, or 

legislation. “The U.S. Federal Wild and Scenic Rivers Act of 1968 established a system 

to protect wild and scenic rivers from development.” (Enger and Smith, 2004)  Section 

404 of the Clean Water Act prohibits the filling or draining of wetland/water features for 

the purpose of development. Despite this, Section 404 and many other forms of 

legislation do not solely represent wetlands and their diverse nature but rather touches on 

them.   

Many wetlands are on privately owned land, thus becoming the land owner’s 

responsibility to maintain.  Furthermore, the government will only protect those wetlands 

that are considered jurisdictional; in other words, the government is aware of their 

existence and takes measures to protect them.  As urban areas upstream of wetland 

environments expand due to urban sprawl, it can be assumed that even without direct 

invasion, urban growth will still have a negative effect.  “Current information on the 

uplands surrounding wetlands is important because land use practices in uplands cause 

loss of wetland functions, goods, services and values.” (Ozesmi and Bauer, 2002)  This 
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added stress will then lead to degradation of habitat heterogeneity within the downstream 

wetland areas. 

The desired outcome from governmental regulations in lost wetlands is that they 

must be replaced elsewhere in an effort to mitigate lost habitats or environmental 

functions.  “In the United States, federal and state regulatory programs require mitigation 

or compensation for certain types of disturbances… with the ultimate goal of retaining or 

restoring the ecosystem services provided by aquatic habitat.” (Windham, Laska, and 

Wollenberg, 2004)  This is not totally efficient, however, but there are reasons why this is 

important in urban areas:   

Urban wetlands, although subjected to many disturbances, still provide 
many functions which make their restoration important.  These include 
provision of habitat for commercially important fish and wildlife species 
and recreational, educational and aesthetic values which are particularly 
important given that little natural habitat is available in cities. (Grayson, 
Chapman, and Underwood, 1998)  
  

Furthermore, they filter toxic wastes, excess nutrients, and other pollutants, prevent 

erosion, and manage storm waters to reduce gross loss from large flooding events: 

However, despite the no-net-loss requirements of the federal Clean Water 
Act and the restoration components of CERCLA (the Comprehensive 
Environmental Response, Compensation, and Liability Act, also known as 
Superfund) and RCRA (the Resource Conservation and Recovery Act), 
wetlands are still being lost at a significant rate (NRC, 2001), and no 
metrics are being collected universally to demonstrate the contribution of 
restored wetlands to larger ecosystem and landscape functions. (Windham, 
Laska, and Wollenberg, 2004)  

  
Using the theory that the restoration projects taking place for lost wetlands is not 

fully efficient, we can look at the function of natural wetlands versus the function of 

restored wetlands.  The natural wetland area may be required to support indigenous 
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species of plants, birds, etc.  Once it is seen that wetland areas need to be restored, human 

alterations to the landscape may change the original function.  It may be seen by the land 

use planner that the new wetland function may be primarily needed for flood or pollution 

control rather than species habitat.  This may allow the introduction of invasive biologic 

species outcompeting species that may have existed in the original habitat.  This is not 

purely efficient, because it is still harming the natural function that the wetland had 

recently held.  For example, common reed / Phragmites australis (P. australis), is a very 

persistent form of invasive plant species in wetland areas.  “The common reed flattens the 

marsh surface, lowers the water table and the salinity of the soil and converts mosaics of 

vegetation into dense monotypic stands.” (McClary, 2004)  Urban developments may 

even be at fault for the intrusion of such invasive species as common reed.  He goes on to 

state that “…drainage or mosquito ditches, and construction creating higher grounds such 

as roads have been found to be associated with invasions of P. australis.” (McClary, 

2004)  Because of the effect common reed has on the ecology of the area, it may be 

altering the natural habitat required for indigenous species to thrive.  Despite this, “small, 

restored, and constructed wetlands in an urban watershed setting may play a significant 

role in maintaining or improving water quality at the landscape scale.” (Rouse, 2004)  

Regardless of a wetland’s current or updated function, any wetland is far better than no 

wetland at all.   

Aerial photography or other very high resolution imagery such as IKONOS or 

Quickbird is commonly accepted platforms used for digitizing wetland coverage.  

Regarding automated wetland delineation, there are limitations within these platforms.  
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Detailed spectral information is often lost when using such datasets.  Many studies have 

found that separating different wetland classifications is often extremely difficult if 

spectral information is not a key component of the data used.  With the use of 

hyperspectral imagery, “training sites for species and communities with unique spectral 

characteristics (especially exotic species) can be selected and results with very good 

accuracy have been obtained.” (Jollineau and Howarth, 2008) 

The goal of this research is to utilize satellite based hyperspectral imagery to 

classify wetland features with greater accuracy than conventional satellite imaging 

sensors.  Additional analysis was performed to perform image fusion between SPOT and 

Hyperion datasets, thus emphasizing the benefits of higher spatial and spectral resolution.  

Furthermore, an attempt will be made to display the capability of advanced image 

processing for updating NWI datasets.  The United States Geological Survey (USGS) 

Earth Observer (EO)-1 Hyperion sensor has a very similar spectral resolution to that of 

most aerial hyperspectral scanners, but has a much lower spatial resolution of 30m.  

However, this gives the sensor the capability of imaging a much wider swath width and 

length than possible with aerial hyperspectral imagery at a reduced cost. 
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CHAPTER 2 

LITERATURE REVIEW 
 
 

The U.S. Fish and Wildlife Service supplies very much outdated NWI maps and 

datasets, where the data portrayed is mostly derived from airborne photography and site 

visits.  Furthermore, these maps represent wetland features from the mid to late 1980’s.  

Kansas City urban buildup had increased by 10.54% from 8.65% in 1972 to 19.19% in 

2001 (Ji, 2008); therefore, it is necessary for these inventories to be updated.  The study 

by Rouse (2004) illustrates the difference between the 1985 NWI dataset and the 2002 

inventory of wetlands within the East Fork Little Blue River and Rock Creek Watersheds 

in Kansas City, Mo (Tables 1 and 2). 
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Table 1 

Wetland Inventory Comparison, Blue River Watershed (Rouse, 2004) 

Wetland Type 
 

NWI, 1984/85 (acres) 2002 Inventory 
(acres) 

Lacustrine -- Aquatic Bottom 1 0 

Lacustrine -- Unconsolidated Bottom 1,234 1,965 

Palustrine -- Aquatic Bed 1 28 

Palustrine -- Emergent 58 42 

Palustrine -- Forested 162 9 

Palustrine -- Scrub Shrub 3 0 

Palustrine -- Unconsolidated Bottom 152 181 

Total 1,611 2,225 
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Table 2 

Wetland Inventory Comparison, Rock Creek Watershed (Rouse, 2004) 

Wetland Type 
 

NWI, 1984/85 (acres) 2002 Inventory 
(acres) 

Riverine – Unconsolidated Shore 4 1 

Riverine – Unconsolidated Bottom 54 31 

Palustrine – Aquatic Bed 0 0 

Palustrine -- Emergent 13 3 

Palustrine -- Forested 198 205 

Palustrine -- Scrub Shrub 22 20 

Palustrine -- Unconsolidated Bottom 72 60 

Total 363 320 

 
 
 
The Rock Creek Watershed clearly shows a net loss of wetland acreage from 1984 to 

2002.  Despite the net gain in wetland acreage in the Blue River Watershed, it is clear 

that particular categories have shown a net loss; the most drastic loss being in forested 

wetlands.  Analyzing satellite imagery for wetland mapping is now becoming more 

practical than utilizing aerial photographs as was done with the previous NWI data.  

Relatively large or dispersed study sites may be difficult to efficiently monitor.  Despite 

this, “It is difficult to distinguish between various kinds of marsh surface types using 

traditional remote sensing technologies like aerial photography interpretations.” (Artigas 

and Yang, 2004)  This is likely due to characteristics such as pitch, roll, and yaw of the 
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aircraft, ultimately yielding to distortion of the final photograph.  Furthermore, it takes a 

tremendous amount of time to search through large and small areas alike while digitizing 

all relevant features. Fuller, Morgan, and Aichele reports: 

Although the study area was relatively small, and a manual digitizing 
approach was possible, an automated technique was sought because field-
based wetland delineation is labor intensive and costly, whereas a remote 
sensing approach using high-resolution multispectral satellite imagery can 
be more cost-and labor-efficient. (Fuller, Morgan, and Aichele, 2006)   

 
The use of modern digital image processing methods to determine surface characteristics 

are ideal in this situation.      

Orbiting satellite imagery, such as Landsat Thematic Mapper and Multispectral 

Scanner (MSS), provides very useful data in landscape classification with great accuracy.  

Since the imagery from Landsat MSS is gathered across a wide range of the 

electromagnetic spectrum from blue to thermal, very detailed landscape classifications 

are easily made.  “For mapping and monitoring large geographic areas, analysis of 

satellite images is less costly and time-consuming when compared to visual interpretation 

of aerial photographs.” (Jollineau and Howarth, 2008)  Results from the study by 

Townsend and Walsh (2001) on mapping forested wetlands with Landsat TM data 

showed relatively high accuracy for particular forested wetland tree species.   

Despite the relative accuracy in classification from these systems, the large range 

of spectral signatures covered by the limited number of spectral bands may not yield as 

much information as needed for an urban wetland environment.  Spectrally similar 

objects often may be misclassified, thus increasing the margin of error in classification 

and landscape metrics computations.  This is of utmost importance to urban wetlands due 
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to the relative lack of homogeneity, and some confusion may exist within urban features.  

Ozesmi and Bauer (2002) show an example of spectral overlap inherent within different 

wetland types in the near infrared and red bands (Figure 1). 

 

 

Figure 1.  Spectral Overlap between Wetland Types (Ozesmi and Bauer, 2002) 

 
 

Results from the study by Fuller, Morgan and Aichele (2006) using high resolution 

IKONOS data shows “the supervised classification on the unedited image identified 

water (pond) areas very well but had difficulty identifying emergent and forested/shrub 

wetlands.  Upland areas were often confused and mixed with the emergent and 

forested/shrub wetlands.” (Fuller, Morgan, and Aichele, 2006)  Similarly, Townsend and 
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Walsh (2001) showed the lowest accuracy for Sweetgum and (Wet) Oak-Maple-

Sweetgum.  They report “the Sweetgum class is highly variable in composition and often 

bears close resemblance to several other classes.” (Townsend and Walsh, 2001) 

With the advent of hyperspectral scanners, large data arrays of spectral signatures 

are collected within very narrow bandwidths as most hyperspectral systems have the 

capability of utilizing several hundred different spectral bands:  

Unlike multispectral imagery, which consists of disjointed spectral bands, 
hyperspectral imagery contains a larger number of images from 
contiguous regions of the spectrum. This increased sampling in spectrum 
provides a significant increase in image resolution—and thus in 
information about the objects being viewed. (Artigas and Yang, 2004)   
 

Laboratory-derived spectral signatures are available for use to assist the sensor in 

classification.  The resultant analysis has greater accuracy than conventional systems, and 

makes it “…possible to map plant species in coastal wetlands and relate their 

configuration and spatial arrangement to hydrological conditions influencing habitat 

heterogeneity -- and ultimately, biodiversity.” (Artigas and Yang, 2004)  

Hyperspectral imagery similarly is useful in studying small scale ecology and 

environmental displacement within urban settings as well.  “There is clearly a need to 

undertake studies, in conjunction with wetland scientists and managers, to determine 

whether information that can lead to improved management of these inland wetland 

ecosystems can be extracted from hyperspectral remote-sensing data.” (Jollineau and 

Howarth, 2008)  Hyperspectral imaging supplies a greater number of narrowly spaced 

bands in which landscape data is sensed thereby ensuring the capability of better 

differentiating between very spectrally similar objects that may be adjacent to one 
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another.  Intuitively, the resultant analysis should be far more accurate in classification of 

wetland features, even within sensors with only moderate spatial resolution.  

The accuracy of hyperspectral imaging makes it is possible to monitor and 

classify the characteristics of urban wetlands unlike many other systems.  There are 

several possible classification algorithms available when processing imagery of any type.  

One of the most popular classification algorithms in remote sensing applications is the 

Maximum Likelihood method.  However, certain algorithms have been developed to take 

full advantage of the spectral properties within hyperspectral datasets.  The continuity of 

hyperspectral bands allows the possibility to apply very detailed mathematical methods, 

such signature derivatives.  Research by Sun et al. indicated that derivative processing 

will enhance relatively minute alterations, reduce sensitivity, and potentially remove 

background spectra from processed signatures.  Multispectral systems lack this effective 

continuity, thus making such processing not relevant.  Furthermore, results from Salem et 

al. determined that “conventional, statistically based methods used for multispectral data 

classification are not efficient when using hyperspectral data.”(Salem et al., 2005)   

Much research has found great success with the use of the spectral angle mapper 

classifier (SAM) and matched filtered analysis (MF) with hyperspectral imagery.  The 

MF technique “maximizes the response of the known endmember and suppresses the 

response of the composite unknown background; thus matching the known signature.” 

(ITT Visual Information Solutions, 2006)  This approach rapidly detects features in the 

imagery with very similar spectral properties found in the spectral library’s associated 

feature.  These similarities are based on the location of spectral curve peaks and valleys 
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between the pixel signatures and corresponding library signatures.  This algorithm has the 

tendency to over-classify because slope of the spectral curve is not necessarily 

considered; only magnitude and the location along the electromagnetic spectrum.  The 

SAM method analyzes spectral signatures with a little more detail and precision.  

“Treated as vectors in n-dimensional feature space, the SAM algorithm compares 

unknown pixel spectra to selected endmember spectra by calculating the spectral angle, 

in radians, between them.” (Jollineau and Howarth, 2008)  They continue that, “minor 

spectral confusion between the shrub-dominated class and the other wetland plant 

communities, especially submerged aquatic vegetation.” (Jollineau and Howarth, 2008)  

SAM is not limited to hyperspectral data; any imagery acquired may be used as long as 

the dataset has undergone atmospheric correction to obtain surface reflectance as opposed 

to pixel digital numbers.   

The most common hyperspectral scanners currently used in wetland research are 

mounted on low altitude aircrafts.  Airborne Imaging Spectroradiometer for Applications 

(AISA) and Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) are two very 

popular systems used in several different research applications.  Due to the airborne 

platforms of these sensors, they achieve both high spectral resolution and spatial 

resolution.  The main limitation to aerial hyperspectral platforms is that swath width and 

path length is drastically reduced when compared to satellite sensors, thus requiring 

several flight lines to cover the same extent covered by one satellite scan line.  Despite 

this limitation, there has been limited research depicting the advantages of satellite 



14 
 

platform hyperspectral scanners over conventional satellite scanners regarding wetland 

classification as opposed to aerial hyperspectral scanners.   

High spectral and spatial resolution from low altitude aerial sensors would be 

ideal for classifying wetland features, especially when considering small or long narrow 

spatial characteristics.  As previously mentioned, however, aerial imagery will required a 

large number of flight lines to cover a potential study area, which will be extremely 

costly.  To reduce this cost while still obtaining reasonably high spatial resolution, data 

fusion may be performed on low resolution hyperspectral imagery with higher resolution 

panchromatic or multispectral imagery: 

The main objectives of image fusion are to sharpen images, improve 
geometric corrections, enhance certain features that are not visible in 
either of the images, replace the defective data, complement the data sets 
for the improved classification, detect changes using multispectral data 
and, substitute the missing information in one of the images with the 
signals from another source image. (Pande, Tiwari, and Dobhal, 2009) 
 

There are several different algorithms available to perform data fusion, all of which have 

been tested extensively to determine the output quality of the fused image.  The main 

algorithms used for data fusion are Principal Component Transformation (PCT), Gram – 

Schmidt Transformation (GST), and Color Normalized Transformation (CN).  Research 

by Darvishi, Kappas, and Erasmi (Darvishi et al., 2005) showed little variation in GST 

and PCT output statistics.  They go on to report, “the results show that the fusion process 

in general preserves the image statistics well, considering the mean, standard deviation, 

mode, and median of the histograms taken from the raw data and the fused image 
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channels.” (Darvishi, et al., 2005)  Similar results have been found in research by 

Waldhoff et al. (2008) and Pande et al. (2009)  

The main consideration to make when reviewing any data fusion results is that 

errors could exist in output datasets; therefore, it is important to strive for low root mean 

square errors.  This will help limit possible pixel artifacts, and color / spectral distortion.  

Another factor noted by Darvishi et al. (2005) is that while statistics between different 

fusion algorithm results have relatively high correlation, there was much less correlation 

between all fusion results and raw imagery spectra.  This exemplifies the need to 

carefully review and possibly test many different fusion methods to ensure the best 

possible output is used for further analysis.   

For further analysis, landscape metrics will be used to analyze the final 

characteristics of wetlands within the study site to make a determination on habitat 

heterogeneity or potential fragmentation.  Two categories of landscape metrics are 

considered for this task. One consists of metrics that focus on the composition within the 

landscape rather than the spatial arrangement of the composition within the landscape.  

The other category will focus on how the data and classes are spatially arranged within 

the landscape.  Proportion, dominance, and Shannon Evenness are very common metrics 

used to describe the amount of area covered by each class, number of classes that 

dominate the landscape, and describes how evenly spread the classes are respectively.  

Spatial configuration will look at metrics including but not limited to Mean Patch Size, 

Probability of Adjacency, and Contagion evaluating the average size of each patch (a 

grouping of one class type by 4 or 8 neighbor rules), the probability that one cell of patch 
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type will reside next to another cell of any patch type, and measurement of overall 

clumping within the landscape per class type.  Applying these metrics, or rather, a series 

of different metrics and plotting them together will likely show the importance and 

correlation between various different metrics within a landscape.  There are many 

different sources available for metric analysis, where spatial extent and grain will have 

direct impact on the behavior of these metrics. 

Scale plays a tremendous role in analyzing the behavior of a landscape.  The 

appropriate extent for a study site will be based upon the size, length, or area in which the 

feature itself tends to be.  “It is known that the scale of such maps affects landscape 

patterns, and therefore it is expected that landscape metrics also depend on scale.” 

(Carrão and Caetano, 2002)  Wetland features will have a wide variety of shapes and 

sizes that may be studied, where some of these habitats may be very long and narrow.  

The studies by Carrão and Caetano (2002) show that very few metrics, including 

contagion and fractal dimension appear to show very little dependence on scale 

variations.  On the other hand, values for patch density shows very interesting results in 

how scale changes.  Essentially, as the extent of the imagery chosen increases, patch 

density decreases (Figure 2).   
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Figure 2.  Relationship Between Patch Density and Scale (Carrão et al., 2002) 
 
 
 
Artigas and Yang (2004) set to show how important scale is when interpreting landscape 

patterns based on landscape metrics.  “The ramifications of scale are profound in studies 

in which habitat heterogeneity measurements are based on spatial metrics.” (Artigas and 

Yang, 2004)  The studies they reported on with tide-open versus tide-restricted wetlands 

using landscape metrics tend to agree with the results from Carrão and Caetano. 

Like scale, grain will directly affect the ability for an analyst to describe the 

heterogeneity of wetland habitats.  With extent, the importance is to include enough area 

to cover the particular area of interest without including so much data that pattern 

analysis may be disrupted.  Grain, however, focuses on the size of the cell in which data 

is captured.  For very general results in landscape pattern analysis over large areas, 
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Landsat MSS data with 30 m cell resolution could be useful.  However, this would only 

be possible if the features being studied cover a large area of at the very least 90 m2.  If 

the feature is smaller than this cell size, the dominant feature for that cell will take over in 

classification.  This could likely result in misclassification of the wetland features, 

especially along the edges of feature types.  Thanks to advances in modern technology, 

there are several sensors available with very fine cell resolution allowing for far more 

detailed analysis.  “If landscape data continue to be available with increasingly fine 

resolutions suitable for design, management, and monitoring, understanding the effects of 

changing grain size on landscape pattern measurements will be critical to temporal 

analysis.”(Corry and Lafortezza, 2007)  Essentially, with increasingly fine resolution, sub 

meter pixel classification may someday be possible giving extremely accurate analysis 

with landscape metrics.  Sidewalks that force fragmentation or connection within a nature 

reserve surrounding wetland habitats may be included within metrics analysis allowing 

even greater detail in how the habitat is behaving. 

Inferences on environmental health or strength could be made based on landscape 

metrics within wetland habitats based on measures of dispersal and levels of dominance 

within the habitat.  Wetlands affected by surrounding urban areas may have a greater 

likelihood for homogenous environments, where only the most aggressive or possibly 

invasive species will survive.  Results by Artigas and Yang (2004) discuss that tide-open 

sites displayed healthier habitat with greater heterogeneity based a larger number of patch 

types and Shannon Diversity Index (SHDI) values.  A graph of their results, showing 
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approximately 0.6 higher in tide open wetlands; therefore, since the points are not 

centralized near the point where y = x there is not a similar distribution (Figure 3). 

 
 

 
Figure 3.  Shannon Diversity Results for Tide Open and Tide Restricted Wetlands 
(Artigas and Yang, 2004) 
 

 
 

Research by Ehrenfeld within urban wetlands exemplifies this by showing that “species 

richness of both plant and animal groups may be higher than in comparable non-urban 

wetlands, due to the incursion of exotic and weedy species… and the removal of nutrient 

limitations due to pollutants in both air and water.” (Ehrenfeld, 2000)  As species 
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richness increases, this would then show that dominance may have taken hold on the 

environment forcing the naturally heterogeneous habitat into a state of distress. 
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CHAPTER 3 

STUDY SITE 
 

North Western Jackson County, MO is a densely populated area with residential 

commercial, industrial, and agricultural areas dispersed along the Missouri River at its 

confluence with the Blue River (Figure 4) (Kansas City, MO National Land Cover 

Database, 2001).  According to the United States Census Bureau 2007 Population 

Estimates, Jackson County has shown an increase in population of 12,010 people since 

2000, and 37,624 since 1980.  Many new homes and office spaces were required to 

accommodate such expansion, thus taking a toll on the natural landscape.  There is a 

blend of emergent, freshwater, and riparian wetlands within this area, making it an ideal 

location for testing spectral variability in wetland mapping.  Many wetlands run directly 

along edges of residential properties in this region, thus emphasizing the need to update 

classification, and manage these areas prior to further degradation. The project boundary 

for this study runs along a very mixed landscape with heavy population, commercial, and 

agricultural areas (Figure 5). 

Updated wetland mapping is required to facilitate wetland protection or 

reconstruction in many of these areas.  “To prevent further loss of wetlands, and conserve 

existing wetland ecosystems for biodiversity and ecosystem services and goods, it is 

important to inventory and monitor wetlands and their adjacent uplands.” (Ozesmi and 

Bauer, 2002)  Such measures had been taken with the National Wetlands Inventory 

(NWI) from the late 1970’s to mid 1980’s.  Kansas City, MO has undergone a variety of 
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landscape changes from then to the present day, making it necessary to update such 

datasets.  It has been reported by the Missouri Department of Natural resources that the 

state has lost nearly 87 percent of its natural wetlands.   
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Figure 4.  Kansas City, MO National Land Cover Database (NLCD) (2001) 
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Data Source: Multi-Resolution Land Characteristics Consortium (MRLC); National Land Cover Database (NLCD), 2001 
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Figure 5.  Study Site Location 

Imagery Source: 2006 National Agricultural Inventory Program (NAIP) Map Produced by Daniel Gwartney 
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CHAPTER 4 

METHODOLOGY 
 
 

Earth Observing 1 / Hyperion Imagery Specifications 
 

The Earth Observing 1 (EO-1) satellite was launched into orbit on November 21, 

2000 as part of NASA’s New Millennium Program; the extended mission of the satellite 

is currently under USGS supervision and continuation.  The EO-1 orbit is designed to 

match that of Landsat 7 to collect imagery approximately one minute after Landsat 7 for 

direct comparison with the three imaging systems onboard.  The temporal resolution for 

EO-1 is 16 days.  The three sensors include ALI, Hyperion, and LEISA.  ALI is a 10-

band multispectral, push-broom style scanner, with one high resolution panchromatic 

band; panchromatic resolution is listed at 10m, while multispectral resolution is listed at 

30m.  The swath width is 37km and path length can be collected at 42 or 185km.  LEISA 

is the first space-based test of an atmospheric corrector to help improve surface 

reflectance approximations at the sensor.  Hyperion is a hyperspectral, push-broom style 

scanner, utilizing 242 spectral bands with a spatial resolution of 30 meters.  The image 

swath width is 7.5km and path length can be collected at 42 or 185km. The spectral 

information onboard the Hyperion sensors range from 0.4 – 2.5µm.  There are 35 visible 

bands, 35 near infrared bands, and 172 shortwave infrared bands.  A narrow band spacing 

of 10nm, very detailed analysis is easily performed to extract spectrally similar features 

(ex. Plant species) as opposed to more generic or broad classes.   
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Initial dimensionality reduction should be performed by removing bands 1 – 7 and 

58 – 76 because these are delivered as un-calibrated bands due to overlapping channels 

and large signal to noise ratios.  Thus, the resulting dataset is reduced to a total of 196 

useable bands for subsequent image processing (Figure 6).  Level1 data is delivered as 

radiometrically corrected and geometrically resampled products.  In general, atmospheric 

correction should be performed to take full advantage of the capabilities this sensor has to 

offer.   
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Figure 6.  Raw Hyperion Imagery Subset 
 
 
 

SPOT 5 Imagery Specifications 

The SPOT 5 satellite was launched into orbit on May 3, 2002.  SPOT 5 is a 4-

band, push-broom style scanner, with one high resolution panchromatic band (Figure 7).  
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Bands 1 and 2 cover the green and red part of the visible spectrum, while bands 3 and 4 

cover the near infrared and shortwave infrared parts of the electromagnetic spectrum 

respectively.  The temporal resolution of SPOT 5 is two to three days pending latitude.  

Both swath width and path length are approximately 60km; therefore covering very large 

spatial area.  SPOT 5 spatial and spectral resolutions are variable between each band 

(Table 3). 

 
 
Table 3 

SPOT 5 Spatial and Spectral Resolution 

Band     Spatial Resolution   Spectral Region 
                
Panchromatic 5m 0.480 - 0.710µm 

Green 10m 0.500 - 0.590µm 

Red 10m 0.610 - 0.680µm 

Near IR 10m 0.780 - 0.890µm 

Shortwave IR 20m 1.580 - 1.750µm 
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Figure 7.  Raw SPOT 5 Imagery Subset 

 
 

Atmospheric Correction 

 Level 1 data is generally delivered with pixels recorded as raw digital numbers 

(DN) representing the intensity of electromagnetic radiation for each spectral band.  In 

order to obtain reflectance values, DN values must first be converted to radiance to 

display the energy units that each DN represents within a pixel in units of 

W/(m2*Sr*µm).  Hyperion DN values are converted to radiance by dividing visual near 

infrared bands 1 – 70 by a scale factor of 40 and the shortwave infrared bands 71 – 242 
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by a scale factor of 80.  To obtain radiance for SPOT 5 imagery, an ENVI IDL module 

was executed to compute the following equation for radiometric calibration across all 

bands (Equation 1, ITT Visual Information Solutions, 2006). 

 
 
Equation 1. SPOT 5 Calibration to Radiance 

B
A

X
L +=  

L = Radiance value in W/(m2*Sr*µm) X = radiometric value per pixel from 
metadata 

A = Sensor Physical Gain Value from 
metadata 

B = Sensor Physical Bias Value from 
metadata 

 

 
The module reads the sensor gain and offset information from the DIMAP metadata file 

for calibration.   

 Surface reflectance allows imagery to display typical spectral curves associated 

with specific materials.  This enhances the subsequent classification algorithms ability to 

extract features of interest, as well as associate and mosaic operations for a multitude of 

imagery datasets.  While this may be more useful for hyperspectral imagery due to 

detailed spectral information, such correction will readily enhance multispectral datasets 

by removing some haze and allowing certain advanced hyperspectral mapping 

techniques.   

  Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH), 

which utilizes the model, MODTRAN within the ENVI software package, was used to 

perform atmospheric correction for surface reflectance: 
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Using scattering and transmission properties of the atmosphere, the 
difference between the radiation leaving the earth and the radiation 
received at the sensor is modeled by radiative transfer codes having a 
typical atmosphere models for a large number of atmosphere types for 
calculation of atmospheric radiance spectrum on a pixel-by-pixel basis.  
The surface reflectance is attained by the ratio of radiance at the sensor to 
the model solar irradiance.  (San, B.T. and M. L. Suzen, 2010) 
 

 Hyperion inputs to the model include sensor altitude (705km), collection date (2/2/2009), 

collection time (16:41:24), and center point latitude and longitude (39.112 and -94.489 

respectively).   Through consultation with NOAA and based on the collection 

temperature the atmospheric model utilized was U.S. Standard, the aerosol model was 

Urban, and the aerosol retrieval method was 2-Band (K-T).  SPOT inputs to the model 

include a sensor altitude of 800km, collection date of 10/10/2008, collection time of 

17:06:44, and center point latitude and longitude of 39.0404 and -94.6120 respectively.  

Through consultation with NOAA and based on the collection temperature the 

atmospheric model utilized was Sub-Arctic Summer, the aerosol model was Urban, and 

the aerosol retrieval method was 2-Band (K-T).  Regarding both datasets, atmospheric 

correction was performed on non-geometrically corrected imagery to preserve image 

statistics by not introducing arbitrary zero cells that exist in geometrically corrected 

feature space.  Figure 8 displays the difference between DN and reflectance profiles for 

both Hyperion and SPOT 5 imagery: 
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Figure 8.  DN and Reflectance Profiles for Vegetation 
 
 
 

Geometric Correction 

 Geometric correction was performed on atmospherically corrected datasets.  

Individual ground control points (GCP) were selected from a previously registered SPOT 

5 (2008) dataset for both Hyperion and SPOT 5 imagery datasets.  Twenty five GCP’s 

were randomly chosen, in a widely dispersed pattern for each dataset to ensure warped 

a. Hyperion vegetation DN profile; b. SPOT 5 vegetation DN profile; c. Hyperion 
vegetation reflectance profile (notice that atmospheric windows have been 
removed); d. SPOT 5 vegetation reflectance profile 
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results were not focused on a centralized location.  Only permanent features such as road 

intersections, bridges, and large building corners were used to place the GCP’s.  Root 

Mean Square Error (RMSE) was calculated for these control points on both Hyperion and 

SPOT 5 to describe and validate image registration accuracy.  The smaller the RMSE 

value, the closer the warped image is estimated to match the referenced image.   A total 

RMSE of 0.57 was found for Hyperion, and an RMSE of 0.317 was found for SPOT 5; 

these values are less than 1, and deemed acceptable for image registration (Figure 9). 
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Figure 9.  Geometrically Corrected Hyperion and SPOT 5 Imagery 

 
 

Hyperspectral Imagery Sharpening 

 In order to perform spectral sharpening techniques between the SPOT 5 and 

Hyperion datasets, both imagery was required to be geometrically corrected, and 

covering the same geographic space (Figures 10 and 11).  

 
 

a. Un-Georeferenced Hyperion; b. Georeferenced Hyperion; c. Un-georeferenced 
SPOT 5; d. Georeferenced SPOT 5 

a. b. 

c. d. 
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Figure 10.  30m Hyperion Imagery Study Area Subset 
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Figure 11.  10m SPOT 5 Imagery Study Area Subset 
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 Color normalization (CN), principal components transformation (PCT), and Gram-

Schmidt transformation (GST) spectral sharpening algorithms were performed with the 

Hyperion 30m datasets and the SPOT 5 10m bands; the panchromatic band with SPOT 5 

was unavailable during processing.   

Testing results displayed that CN produced very poor results in comparison to the 

other methods.  While the appearance of the output dataset was very good, little 

correlation between resulting and original spectral profiles existed (Figure 12).    
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Figure 12.  CN Sharpening Result with Spectral Profile 

 
 
 

The profile associated with CN sharpening results indicates that a majority of the spectral 

information is lost during transformation.  This methodology is not used for subsequent 

processing because of this. 

 Both GST and PCT algorithms produce very good sharpening results in both 

appearance and spectra.  Output reflectance from both PST and GST results were nearly 
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identical, and showed very little difference from the raw Hyperion dataset.  Simple 

statistics on bands 13 (Green), 23 (Red), and 44 (NIR) were computed for the raw, PCT, 

and GST datasets to determine the best resulting dataset for classification (Figure 13). 

 
 

 

Figure 13.  Raw, PCT, and GST Imagery Statistics 
 
 
 
Based on the comparison of simple statistics between each dataset, both PCT and GST 

show very high correlation, and little difference from the raw dataset.  The main 

differences are found in the standard deviations for bands 13 and 23, where the PCT 

algorithm sits slightly closer to the raw dataset value.  The PCT fused result was chosen 

to proceed based on these two values and slightly better image appearance (Figure 14). 
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    Raw Hyperion                           PCT Results 
 

      
 

 
 
 
Figure 14.  Raw Hyperion and PCT Comparison 
 
 
 

Hyperspectral Derivative Processing 

 The limited spectral resolution available with multispectral imagery inherently 

displays spectral information through a series of disjointed spectral bands, forcing 

generalized spectral profiles for given features within the imagery.  Comparatively, 

hyperspectral imagery offers the spectral resolution that produces relatively continuous 

spectral profiles.  The benefit of these detailed profiles is not limited to simply locating 

parts of the electromagnetic spectrum that best detects specific features, but also allows 

advanced imagery analysis that is unavailable with multispectral datasets.  “In term of 
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continuity attribute, it becomes possible to apply many mathematical methods to analyze 

hyperspectral data, such as derivative method.”(Sun et al., 2008)  Taking the first 

derivative of hyperspectral imagery extrapolates the slope from the reflectance profile, 

thus enhancing relatively subtle changes within a curve (Equation 2). 

 
 

Equation 2.  First Derivative (Sun et al., 2008) 

λλ
λλ

λ
∆

−
== + jj

i

RR

d

dR
FDR 1

 

iFDRλ  = First derivative result 

jRλ  = Reflectance of band j, j+1, j+2; 

λ∆  = Wavelength difference between bands j and j+1; 
 
 
 

 Similar to the SPOT 5 radiance calculation, the first derivative equation was used 

within an ENVI IDL module.  This module was used on both the Hyperion 30m 

reflectance data (Figure 15), and sharpened reflectance data (Figure 16).  Derivative 

profiles are nearly identical in shape, displaying even further success with imagery 

sharpening methodology.  Subsequent image processing used radiance profiles in both 

imagery and spectral libraries, though reflectance profiles were still used for spectral 

range detection, feature separation, and class determination. 
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Figure 15.  30m Hyperion Derivative Profile 
 
 
 

 

Figure 16.  PCT Fused Derivative Profile 
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Signature Extraction 

 There are several sources of spectral libraries freely available to the public for a 

variety of landscape features.  Previous spectral libraries may have little relevance to 

current imagery for many reasons, including seasonal variance, atmospheric conditions, 

and landscape patterns.  Methodology to obtain current spectral information for any given 

target may be as labor intensive as performing field work with a hand-held radiometer, or 

simply generating spectral libraries from the imagery itself.  In many cases radiometers 

will collect spectral information with 1nm band spacing, yielding very detailed spectral 

profiles spanning thousands of electromagnetic bands.  The detailed signatures collected 

may be very useful in determining the best region of the electromagnetic spectrum to 

utilize for target detection.  These signatures may also be applied towards feature 

extraction within the imagery itself.  While this is very useful information, field work of 

this magnitude is a very costly endeavor in terms of both time and money.   

Many practices will generate spectral libraries from the imagery itself to reduce 

the effort of field signature collection.  These libraries will have less spectral information 

than a hand-held radiometer, but still cover several hundred bands of information; 

therefore, the in-scene spectral libraries will still be very detailed when compared to those 

of multispectral sensors.  This methodology is not only efficient and less costly, but it 

will also produce target signatures representative of the spectral information found within 

the imagery itself.  This is a very important consideration because reflectance values will 

be affected (ex. scattering) within the imagery due to radiation passing through the 

atmosphere, while libraries collected at ground level will have far less atmospheric 
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interference.  Atmospheric correction tasks retrieved apparent reflectance observed by the 

sensor, but does not remove all affects the atmosphere has on incoming and outgoing 

solar radiation. 

 To build an in-scene spectral library, regions of interest (ROI) were developed as 

polygons for the atmospherically corrected Hyperion SPOT 5 datasets.  ROI’s were 

generated using source data from NWI datasets, NLCD datasets, limited site visits for 

validation, prior knowledge of the area, and high resolution National Agriculture 

Inventory Program (NAIP) aerial photography.  Wetland ROI classes were comprised of 

riverine, freshwater pond, lake, forested / shrub wetland, and freshwater emergent in 

accordance with the NWI classification scheme.  Additional classes for forest / trees, 

vegetation, agriculture / grazing, and impervious were included to cover a broad land 

cover classification scheme.  The endmember selection tool within ENVI was used to 

analyze all pixels contained within an ROI polygon, and extract the average imagery 

spectra from pixels that appear to have the least amount of target mixing.  Essentially, 

this tool assumes pixels that appear to fully contain spectra for one class feature and little 

to no spectra from another class feature are pure, and the signature for those pixels are 

extracted.  The average reflectance signature is then computed for each class respectively, 

and saved as a spectral library for both Hyperion (Figure 17) and SPOT 5 (Figure 18). 
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Figure 17.  Hyperion Spectral Library Reflectance 
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Figure 18.  SPOT 5 Spectral Library Reflectance 
 
 
 
 As previously mentioned, derivative processing was performed on the 

atmospherically corrected Hyperion dataset.  The same ROI’s and endmember collection 

process for the Hyperion reflectance dataset were used to extract wetland and background 

spectra for classification and the derivative processed, raw imagery (Figure 19). 
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Figure 19.  Raw Hyperion Derivative Spectral Library 
 
 
 
Recalling the simple statistics gathered the output spectral profiles per pixel for PCT 

spectral sharpening performance, reflectance values per pixel have changed with the PCT 

fused dataset.  Due to this, ROI’s and endmember collections for this dataset were 

required.  ROI’s from the raw Hyperion dataset could not simply be used for the PCT 

sharpened dataset because the raw dataset covered a large area, and some ROI’s fall 
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outside the spatial extent of the sharpened imagery.  New ROI’s were developed for the 

PCT fused dataset to extract a sharpened spectral library (Figure 20). 

 
 

 

Figure 20.  PCT Fused Spectral Library 
 
 
 

The derivative class profiles for both raw and PCT fused libraries clearly show how 

similar the wetland classes are in terms of reflectance as opposed to simply using 
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reflectance profiles for classification.  The subtle variations in slope key in more refined 

target detection for feature classification. 

Hyperspectral Dimensionality Reduction 

Dimensionality of hyperspectral datasets is very important to consider prior to 

classification.  Initially, spectral bands for Hyperion have been reduced from 242 to 196 

due to calibration issues inherent within the EO-1 Hyperion imaging system.  It is still 

necessary to consider whether all the remaining bands contain pertinent information for 

subsequent image processing tasks.  Not only will processing on a full set of hyperbands 

be computationally intensive, but certain parts of the electromagnetic spectrum could 

introduce misclassification with other features.  Regarding wetland classification, 

consideration must be taken that all types of wetlands will likely respond in different 

parts of the electromagnetic spectrum similarly to other features within the landscape, 

including forests, agricultural lands, etc.  It is possible, and necessary to review what 

specific region of the spectrum these features respond within that are even just slightly 

different from other features within the landscape.    

There are several ways to check and reduce hyperband dimensionality.  One of 

the more common methods to reduce dimensionality is Minimum Noise Fraction (MNF).  

MNF is essentially a two level principal components analysis (PCA) that is used to define 

eigenvectors within the dataset.  The first level PCA is used to de-correlate and rescale 

noise statistics from the noise covariance matrix generated for each band.  The resulting 

noise from the given bands will have no unit variance and no correlation between bands, 

otherwise known as noise whitening.  The second PCA run transforms the noise whitened 
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data by rescaling the noise standard deviation and utilizing the original image.  The final 

result of this transformation is a series of MNF statistics and eigenvalue plots.  

Eigenvalues are defined as the change in magnitude of a mean vector that has no 

directional change under a given linear transformation (Strang, 2005).  Initial 

dimensionality reduction was performed using the MNF process.   MNF was run on the 

Hyperion dataset as an initial test for dimensionality reduction.  Output eigenvectors 

indicated too many bands were needed to be removed.  This indicated that MNF alone 

was not the best method for hyperband reduction.   

The BandMax algorithm is a more recent approach to reduce hyperband 

dimensionality available in the ENVI software package.  BandMax analyzes input target 

spectral profiles against all other input background spectral profiles available.  The result 

from this algorithm is a subset list of bands that best detect the input target profile.  After 

running this for all input targets, all significant bands are merged to one file in order to 

subset the hyperbands to only necessary bands for target classification.  After running 

BandMax on the Hyperion reflectance data, the dimensionality was reduced by 90 bands 

leaving a total of 106 potential bands for processing.  This helps reduce computational 

effort, while preserving a large amount of spectral information for detailed target 

detection. 

 
Classification 

 The Normalized Difference Vegetation Index (NDVI) was initially run on all 

three imagery datasets (SPOT 5, Raw Hyperion, and PCT Fused) to assist in separating 
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healthy vegetation from non-vegetated areas within the imagery.  NDVI is a commonly 

used and simple numerical remote sensing indicator for assessing the level of living 

vegetation from multispectral imagery datasets.  NDVI is processed from the ratio of the 

difference between the near-infrared and red bands, and the sum of the near-infrared and 

red bands (Equation 3). 

 
 

REDNIR

REDNIR
NDVI

+

−
=  

Equation 3.  Normalized Difference Vegetation Index 
 
 
 

The rationale behind the functionality of this equation is that living green plants 

highly absorb incoming, visible, solar radiation (Blue, Green, and Red) for use during 

photosynthesis.  The cellular structures of the leaves from living plants tend to reflect 

radiation in the near infrared part of the spectrum more readily as well.  Non-vegetated 

features will tend to reflect poorly in the NIR wavelengths when compared to healthy 

vegetation.  The higher reflectance of NIR wavelengths with healthy vegetation will yield 

resulting output values closer to 1.  Soils tend to reflect in the red and somewhat higher in 

NIR wavelengths, but not as high as vegetation.  Other non-vegetated areas such as 

impervious surfaces, water bodies, and clouds tend to be on the lower end of the positive 

values and into the negative values.  Inspection of resulting NDVI files was performed to 

determine the appropriate thresholds for vegetation and non-vegetation extraction (Figure 

21).  NDVI output was then used as an analysis mask, thus reducing the probability of 
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misclassification by certain classes (ex.  forested wetlands) from algorithms which may 

respond to large amplitude changes or trends as opposed to subtle features which are 

typical of vegetation signatures.  For example, by using the results from the NDVI 

threshold to mask out non-vegetation pixels, the possibility to misclassify forest pixels 

over impervious features is effectively reduced. 

 
 

 

 
 

Figure 21.  SPOT 5 NDVI Vegetation / Non-Vegetation Threshold 
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The hyperspectral and multispectral methodology used for wetland and landscape 

classification employed two separate algorithms commonly used in hyperspectral image 

analysis.  This methodology was used for raw Hyperion, PCT Fused, and SPOT 5 

datasets.  With both algorithms, each target feature was classified independently.  The 

Matched Filter (MF) algorithm was first run on each individual landscape class.  This 

approach rapidly detects features in the imagery with very similar spectral properties 

found in the spectral library’s associated feature.  These similarities are based on the 

location of spectral curve peaks and valleys between the pixel signatures and 

corresponding library signatures.  The higher the MF response, the closer the algorithm 

matches pixel spectra to reference spectra.  This algorithm has the tendency to over-

classify because slope of the spectral curve is not necessarily considered; only peak 

magnitudes and their location along the electromagnetic spectrum.  

The Spectral Angle Mapper (SAM) algorithm was run after all MF classifications 

were complete.  SAM is a fairly more complex classifier than the MF algorithm in that it 

considers both the occurrence of spectral profile peak magnitudes, but also the slope of 

these curves as well.  This is performed by converting the reflectance values to vectors 

and calculating the vector angle between pixel spectra and reference endmember library 

spectra (Figure 22). 
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Figure 22.  SAM Conceptual Reference (ITT Visual Information Solutions, 2006) 
 
 
 
Smaller angles between pixel and reference spectra produce lower SAM response values.  

Different from MF outputs, SAM outputs with lower response values are considered 

good detections. 

 The final classification step used was using band math to perform the ratio of MF 

to SAM.  This ratio “suppresses false positives that may be present in one” algorithm, 

“but not the other, while enhancing true positives.” (ITT Visual Information Solutions, 

2006)  For example, a pixel representing riverine features may have a high MF response, 

while the SAM response is very low.  In this case, a high MF and low SAM response 

indicates this pixel will map as the riverine wetlands class.  In this scenario, a high MF 

response value divided by a low SAM response value results in output response pixels 



55 
 

that are more likely to be good detections.  Conversely, if there is a high MF response for 

a false positive detection on riverine wetland features, while the SAM response does not 

map the pixel as riverine wetland, the division between the two results suppresses the 

false response from the MF algorithm (Figure 23).  To further reduce errors in 

classification, the NDVI product was used to mask out pixels that could introduce false 

positive classifications.  Regarding riverine wetlands, for example, the healthy vegetation 

class extracted from the NDVI product was used to mask / remove pixels that were not 

identified as non-vegetated. 

 
 

 

 
 

Figure 23.  Raw Hyperion Riverine MF Divided by SAM Result 
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 Histogram stretching, similar to that of the NDVI approach, was necessary to 

extract the appropriate pixels for the individual class ratio products.  Threshold analysis 

began by reviewing the output ratio product histograms for the location along the normal 

curve where the slope is negative and beginning to level out near zero (Figure 24). 

 
 

 

Figure 24.  Raw Hyperion Riverine MF Divided by SAM Histogram 
 
 
 
The further the threshold is set in the positive direction along the x-axis, the more 

confidence class representation is correct.  However, this will also reduce the amount of 

pixels classified for this class, thus increasing the possibility for errors of omission.  

Conversely, the further the threshold is set towards the negative direction along the x-

axis, the more pixels are included.  Intuitively, this increases errors of commission from 

over classification.  After sliding the threshold along the histogram to narrow in on 
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appropriate cutoff locations, the ratio pixels were rendered as standalone datasets for land 

cover dataset merging (Figure 25). 

 
 

 
 
 
 

Figure 25.  Raw Hyperion Riverine MF Divided by SAM Histogram Threshold Result 
 
 
 
 After thresholds were determined and rendered, post processing was performed to 

clean the individual files by the clump and sieve process in ENVI.  Clumping was first 

performed to fill gaps between nearby pixels based on a 3 by 3 kernel.  Any more or less 

than a 3 by 3 kernel filled far too many gaps or far too few gaps between pixels 

respectively.  The sieve process was then performed to remove extraneous pixels that 
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give the output class datasets a salt and pepper appearance.  Similar to clump, sieve 

utilizes a kernel pass to search through each pixel within the datasets. A 2 by 2 kernel 

was used while sieving to reduce only truly speckled classified pixels.  Larger kernels 

would have reduced data that was unnecessary, and introduce further errors of omission.  

Finally, all individual wetland and background class datasets were merged into a single 

land cover dataset for each of the three imagery sources (Figure 26). 

 
 

 

 
Figure 26.  Hyperion, PCT Fused, and SPOT 5 Land Cover 
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Metrics 

 
Patterns and processes within landscapes need to be quantified in order to fully 

understand how the landscape is behaving.  The natural heterogeneity of a healthy 

wetland displays the importance of quantifying the pattern of such habitats.  Modeling 

how these habitats change over time, or determining the difference in heterogeneity 

between urban and rural wetlands will directly display how the habitats are functioning 

differently.  To do this, there is a multitude of statistical analysis techniques available, 

some of which may be found within different software packages.  Furthermore, these 

statistics were also used to describe not only how detailed spectral information will 

improve classification results, but also how spatial resolution (grain size) directly impacts 

the results of landscape metrics.  To assist in the execution of multivariate statistical 

analysis, a multivariate statistical software package developed by the University of 

Massachusetts Landscape Ecology Lab, entitled FRAGSTATS, was used to analyze 

classified results.   

Prior to loading the classified results into FRAGSTATS, the classified Hyperion 

results were resampled to 10m resolution, so all three datasets have comparable pixel 

size.  All classified imagery datasets were subset to the same boundary giving the same 

number of rows and columns for statistical analysis of 1787 and 1064 respectively.  

Regarding metrics calculations with FRAGSTATS, all NULL values were reclassified to 

0 for each of the three classification output files.  The result of these normalization steps 
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ensure that output metrics may be directly compared for landscape characteristics, as 

results from different imagery properties.   

The search window used in FRAGSTATS may be set to either a four- or eight-

neighbor patch rules.  The four-neighbor rule simply reviews class values at each 

adjacent pixel to determine the number of patch types classified within the dataset; one 

on top, bottom, left, and right only.  The eight-rule will also search diagonally adjacent 

cells to determine patch numbers within the dataset (Figure 27). 

 
 

 

Figure 27.  Four-neighbor and eight-neighbor Patch Differences (Turner et al., 2001) 
 
 
 
FRAGSTATS is capable of running a tremendous amount of statistics on a 

landscape dataset.  The three main scales for metric calculations are landscape, class, and 

patch.  Patch metrics alone were not used in this analysis, however do play a role in class 

and landscape calculations.  Class metrics are used to describe patterns and processes that 

exist within each specified class of the datasets, while landscape metrics tend to describe 
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the spatial relationship or dispersion of all classes across the entire area.  Some 

redundancies exist between metrics at all scales, and others may have less importance 

given what the landscape research priority may be.  Class and landscape metrics can be 

broken down even further to describe what patterns and processes the research is 

interested in.  A set of Area/Density/Edge metrics were calculated for both class and 

landscape scales, while a set of diversity metrics were calculated for landscape scale 

only.  FRAGSTATS outputs numerical values as indexes, percentages, or in units of 

hectares. 

Class metrics used for analysis of Area/Density/Edge calculations included Total 

Class Area, Percentage of Landscape, Number of Patches, and Largest Patch Index.  

Class area describes landscape composition in terms of the quantity in which the 

landscape is comprised of a particular class per hectare.  As class area approaches zero 

for a particular class, this class is more rarely found within the landscape (Equation 4). 
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Equation 4.  Total Class Area with units of Hectares (McGarigal, K. et al., 2002) 
 

 
 

Percentage of Landscape was used to describe the proportion of which the 

landscape is comprised of a particular patch type in percent.  The main limitation of this 
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calculation while using FRAGSTATS is that it considers all pixels within a classified 

dataset, including any background or pixels with no data associated with them.  This was 

easily avoidable by ensuring classified datasets used for metrics had all cells with no data 

removed prior to processing.  As percent of landscape approaches zero for a particular 

class, this class is considered rarer within the landscape (Equation 5) 
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PLAND = Percent of Landscape 
Pi = proportion of the landscape occupied by patch type (class) i 
aij = area (m2) of patch ij 
A = total landscape area (m2) 

Equation 5.  Percent of Landscape (McGarigal, K. et al., 2002) 
 

 
 

 Landscape metrics used for analysis of Area/Density/Edge calculations included 

Total Area, Number of Patches, and Largest Patch Index.  Total area is similar to class 

area calculations, but differs in that this calculation reports the total area extent of the 

landscape being studied rather than the area comprised of a certain class within the 

landscape.   Alone, total area does not describe any importance on pattern or quantity of 

classes.  The necessity of this calculation is that it was commonly used with subsequent 

metrics calculations (Equation 6). 
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A = total landscape area (m2) 

Equation 6.  Total Area with units of Hectares (McGarigal, K. et al., 2002) 
 
 
 

Number of patches was used to provide a measure of fragmentation within class 

and landscape metrics.  The main limitation to this metric is that it is often times not very 

usable by itself, and generally needs to be accompanied by a variety of other metrics to 

extract truly meaningful information.  This was calculated for both class and landscape 

metrics, as they each provided slightly different information.  The number of patches at 

the class scale represents the total number within a landscape per class, while at the 

landscape scale this is simply a total number of patches present regardless of class.  Area 

calculations also allow the number of patches metric to provide the same information 

from other metrics including patch density and mean patch size regarding fragmentation 

of the landscape.  Because the eight-neighbor rule was used while calculating metrics 

reduces the overall number of patches in the landscape (see Figure 27 for reference), 

providing a more realistic view on landscape fragmentation. 

The largest patch index was used for both class and landscape metrics as well.  

This metric is reported the percentage cover of the largest patch found within each class 

(Equation 7) or within the full landscape (Equation 8) for the study area.  The result from 

this percentage calculation measures a level of dominance for a given class within the 
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landscape.  If the largest patch found has a relatively low percent coverage within the 

landscape, then the result indicates a low level of dominance because the largest patch 

size is relatively small in itself.  This also indicates the possibility of a heterogeneous 

landscape. 
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aij = area (m2) of patch ij 
A = total landscape area (m2) 

Equation 7.  Class Level Largest Patch Index Percent (McGarigal, K. et al., 2002) 
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aij = area (m2) of patch ij 
A = total landscape area (m2) 

Equation 8.  Landscape Level Largest Patch Index Percent (McGarigal, K. et al., 2002) 
 
 

 
Additional metrics were used to describe the contagion and diversity of the 

classified images at the landscape scale.  These metrics included Shannon’s Diversity 

Index, Shannon’s Evenness Index, and Contagion.  Patch richness was not considered in 

this study because it is very similar to the number of patches metric in that it is reported 
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as a total number of patches.  The main difference between patch richness and number of 

patches is that patch richness represents the number of patch types found within the 

classified landscape.  At the landscape scale, the number of patches metric describes the 

total number of patches found regardless of class.  The main limitation of patch richness 

is that does not describe the quantity of patch types, but rather provides a very simple 

approach to describe landscape composition.   

Shannon’s Diversity Index (SHDI) is an approach at describing how diverse a 

landscape is with respect to the number of classes present.  This may also be used as a 

way describe how evenly distributed landscape classes are amongst a landscape 

(Equation 9). 
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Pi = proportion of the landscape occupied by patch type (class) i 
m = number of patch types (classes) present in the landscape 

 
Equation 9.  Shannon’s Diversity Index (McGarigal, K. et al., 2002) 
 
 
 
“SHDI equals minus the sum, across all patch types, of the proportional abundance of 

each patch type multiplied by that proportion.”(McGarigal, K., et al., 2002)  The number 

of patches present in the landscape directly proportional to patch richness; as patch 

richness increases diversity increases.  For example, if there is only one patch present in 

an entire landscape, lnPi = 0 giving SHDI the value of 0 and describing the environment 
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as homogeneous.  The main limitation from SHDI is that the index value is limitless.  

This leaves room for debate on how a resulting index value is interpreted, i.e. how to 

determine what the high and low threshold is when describing distribution. 

 Shannon’s Evenness Index (SHEI) is an approach at describing how evenly 

distributed all patch types are across a landscape, with respect to the number of classes 

present.  SHEI has a limit of 1, which enables less arbitrary conclusion on the dominance 

of any patch type within the landscape.  The equation for SHEI is very similar to that of 

SHDI; however, it is normalized by the number of patch types (Equation 10). 
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Pi = proportion of the landscape occupied by patch type (class) i 
m = number of patch types (classes) present in the landscape 
 

Equation 10. Shannon’s Evenness Index (McGarigal, K. et al., 2002) 
 
 
 
When the index result is closer to 1, this suggests maximum evenness within the 

landscape between patch types present.  Conversely, lower results indicate that the 

landscape is heavily dominated by a patch type. 

 Contagion is a calculation that aims at describing how well like patches are 

dispersed throughout the landscape.  Essentially, this calculation attempts to measure 

how aggregated, or clumped, the classes present within a landscape are with themselves.  

Contagion is affected primarily by dispersion and interspersion of patch types within a 
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landscape, and may therefore lead to inferences on fragmentation or habitat homogeneity 

(Equation 11). 
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Pi = proportion of the landscape occupied by patch type (class) i 
gik = number of adjacencies between pixels of patch types i and k 
m = number of patch types (classes) present in landscape 

Equation 11.  Contagion (McGarigal, K. et al., 2002) 
 
 
 
Results from the contagion expression are multiplied by 100 to retrieve the percent level 

of aggregation within the landscape.  When values are near 100, the index calculation 

indicates that the patch types are very well aggregated, leading to very few patch types 

existing within the landscape.  Conversely, a contagion value close to 0 indicates the 

landscape is very disaggregated, and possibly suggests a very fragmented or nearly every 

pixel is representative of different patch types with few adjacencies. 
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CHAPTER 5 

RESULTS 
 
 

 The spectral profile for the Hyperion, SPOT, and PCT fused data results were 

compared with each other to describe the overall outcome from the respective resulting 

land cover classifications.  Classification totals and accuracy assessments were all 

performed for each dataset.  Classification accuracy statistics, land cover totals, and 

visual quality were the criteria used to determine the overall success for each 

classification method performed in this study.  Nine different land cover classes were 

used to build a generalized landscape for the study area, with a focus on wetland types 

and other generalized predominant landscape characteristics (impervious, forest / trees).  

As expected, the major sources of error reside in the Freshwater Emergent Wetland and 

Forested / Shrub Wetland classes between each other and various other landscape classes.  

In all three datasets, the Freshwater Emergent Wetland class had nearly the lowest user 

accuracy total; the SPOT 5 dataset had two classes with much lower user accuracy 

results, while this was the least accurate class for both Hyperion and PCT fused datasets.  

Overall, however, when considering the producer accuracy for the SPOT 5 Freshwater 

Emergent Wetland class, it is clear that this class is indeed the least accurate.  Final 

analysis shows that the PCT fused dataset outperformed the results from the independent 

SPOT 5 and Hyperion datasets, and will be explained in greater detail within the 

following sections. 
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Hyperion Accuracy 
 

The detailed spectral profiles developed from the Hyperion dataset allowed for 

very slight changes along the electromagnetic spectrum to be detected.  The derivative 

processing capable with hyperspectral datasets allowed more detailed extraction of 

features, because of the output dataset’s ability to exemplify regions along the spectrum 

where subtle slope changes exist; this was particularly useful for the SAM classification 

method.  This is directly apparent in the misclassification between the Forest / Tree class 

and Forested / Shrub wetland class.  For each class, 50 total randomly generated points 

were assigned to be verified for accuracy, giving a total of 450 points for the entire study 

site.  The overall accuracy for the Hyperion landscape classification process was 85%.  

While this overall accuracy is generally low for a production result, this is still relatively 

good considering the amount of spectral overlap that tends to exist between most of these 

classes.  Table 4 shows the individual class accuracies for the resultant classification, 

which also equates to the “User’s Accuracy” for the dataset.  
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Table 4 

Hyperion 30m Class Accuracy 

Class Classified (Correct) Class Accuracy 

Agriculture / Grazing 45 90% 

Forest / Trees 43 86% 

Forested / Shrub Wetland 40 80% 

Freshwater Emergent Wetland 35 70% 

Freshwater Pond 46 92% 

Impervious 42 84% 

Lake 44 88% 

Riverine 47 94% 

Vegetation 42 84% 

 
 
 

The best performing classes based on user accuracy include Agriculture / Grazing, 

Freshwater Pond, Lake, Impervious, and Riverine classes.  Though the Forest / Trees 

class was classified with an 86% user accuracy suggesting relatively good results, the 

producer accuracy only resulted with a 67% success.  The Forest / Trees class had 

particular difficulty in separating Forested / Shrub Wetlands and Freshwater Emergent 

Wetlands; the two classes expected to cause most difficulty due to spectral overlap 

between adjacent classes.  Commission errors of 14% are moderate, but unfortunately 
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omission errors of 33% are far too high when considering overall performance of the 

Forest / Trees classification.  Forested / Shrub wetlands performed reasonably well with a 

producer accuracy of 87%, user accuracy of 80%, and omission / commission errors of 

13% and 20% respectively.  Table 5 lists all resulting accuracies and omission / 

commission errors associated with each individual class.   

 

Table 5 

Hyperion 30m Producer / User Accuracy 

Class Producer 
Accuracy 
 

User Accuracy Omission 
Error 

Commission 
Error 

Agriculture / 
Grazing 
 

94% 90% 6% 10% 

Forest / Trees 67% 86% 33% 14% 

Forested / Shrub 
Wetland 
 

87% 80% 13% 20% 

Freshwater 
Emergent 
Wetland 
 

80% 70% 20% 30% 

Freshwater Pond 92% 92% 8% 8% 

Impervious 82% 84% 18% 16% 

Lake 100% 88% 0% 12% 

Riverine 92% 94% 8% 6% 

Vegetation 76% 84% 24% 16% 
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SPOT 5 Accuracy 

 Despite higher spatial resolution, the spectral profiles from the SPOT 5 

multispectral dataset were greatly lacking in detail along the electromagnetic spectrum.  

This made it relatively difficult for the classification process to detect edges between 

spectrally similar features.  This lack of detail in electromagnetic response also 

disallowed the ability to perform derivative processing for minor detections of slope 

change along the spectral profile.  For each class, 50 total randomly generated points 

were assigned to be verified for accuracy, giving a total of 450 points for the entire study 

site.  The overall accuracy for the SPOT 5 landscape classification process was 80%.  

Unlike the Hyperion dataset overall accuracy result, this is very low when considering 

future applications the dataset may be used for.  However, classes with less spectral 

overlap or that are easily identifiable did perform better; thus, area and other statistical 

calculations may be more reliable for such classes as Riverine and Impervious.  Table 6 

shows the individual class accuracies for the resultant classification 

.  
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Table 6 

SPOT 5 10m Class Accuracy 

Class Classified (Correct) Class Accuracy 

Agriculture / Grazing 49 98% 

Forest / Trees 43 86% 

Forested / Shrub Wetland 37 74% 

Freshwater Emergent Wetland 37 74% 

Freshwater Pond 32 64% 

Impervious 47 94% 

Lake 24 48% 

Riverine 48 96% 

Vegetation 42 84% 

 
 
 
 The best performing classes based on the user accuracy include Agriculture / 

Grazing, Impervious, and Riverine.   Much like the Hyperion dataset, the Forest / Trees 

class resulting in 86% user accuracy, but unfortunately the producer accuracy only 

resulted with a 74% success.  Also consistent with the Hyperion results, the major source 

of confusion for the Forest / Trees class was within the Forested / Shrub Wetland and 

Freshwater Emergent Wetland.  That being said, the Forested / Shrub Wetland class 

contributed far more to the inaccuracy of the class because of lacking spectral 

information that is not available within multispectral datasets.  The least accurate classes 
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include Lake, and Freshwater Pond.  These classes were commonly misclassified with 

additional water classes (either between themselves or with the Riverine class) and with 

the Impervious class.  Very dark features such as asphalt parking lots or tar on rooftops 

have very similar reflectance, or lack thereof, with water features.  This is caused by 

similar radiation absorption with these darker objects to that of water, unlike other 

pavement which reflects much more wavelength energy due to higher albedo rates.  

While the Impervious class had a very good user accuracy of 94%, the producer accuracy 

is very low.  The over-classification of the Impervious class allowed for higher user 

accuracy results, while contributing very negatively by misclassifying pixels that belong 

to additional classes.  Forested / Shrub Wetland and Freshwater Emergent Wetland errors 

of omission and commission were very similar to that found in the Hyperion landscape 

classification despite the lower producer and user accuracy total.  Table 7 lists all 

resulting accuracies and omission / commission errors associated with each individual 

class.   
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Table 7 

SPOT 5 10m Producer / User Accuracy 

Class Producer 
Accuracy 
 

User Accuracy Omission 
Error 

Commission 
Error 

Agriculture / 
Grazing 
 

94% 98% 6% 2% 

Forest / Trees 74% 86% 26% 14% 

Forested / Shrub 
Wetland 
 

90% 74% 10% 26% 

Freshwater 
Emergent 
Wetland 
 

86% 74% 14% 26% 

Freshwater Pond 97% 64% 3% 36% 

Impervious 48% 94% 52% 6% 

Lake 92% 48% 8% 52% 

Riverine 92% 96% 8% 4% 

Vegetation 89% 84% 11% 16% 

 
 
 

PCT Fused (Sharpened) Accuracy 

 Combining the higher spatial resolution of the SPOT 5 dataset with the higher 

spectral resolution of the Hyperion dataset provided the ability to spatially locate features 

with greater detail in feature boundaries, while spectrally separating features more readily 

along their feature space boundaries.  It was not assumed that there would be a one to one 

relationship between pixels after fusion occurred, but rather, enhanced spatial and 
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spectral detail.  Because there are far more pixels in the higher resolution data, it is 

known that the broad spectral information, in many cases, was interpolated to the higher 

spatial resolution pixels in the resultant dataset.  Even with the understanding that this 

may not be considered a “purely” hyperspectral dataset, the overall performance of the 

classifications exceeded the accuracy results of the independent high spatial and spectral 

resolution datasets respectively. 

 For each class, 50 total randomly generated points were assigned to be verified for 

accuracy, giving a total of 450 points for the entire study site.  The overall accuracy for 

the PCT fused landscape classification process was 88%.  This accuracy total exemplifies 

the PCT fused datasets capability to take advantage of higher resolution pixels from one 

source coupled with greater spectral detail from another.  While the overall accuracy is 

not as desirable as something in the low 90% range, this is still good considering the 

amount of spectral overlap that tends to exist between most of these classes.  

Additionally, changes to post processing steps, minor refinement of threshold evaluation, 

or even slight changes to the spectral library could jump this to well within this range 

requiring far less effort than what is needed for the other two datasets.  Table 8 shows the 

individual class accuracies for the resultant classification. 
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Table 8 

PCT Fused (Sharpened) 10m Hyperspectral Class Accuracy 

Class Classified (Correct) Class Accuracy 

Agriculture / Grazing 47 94% 

Forest / Trees 46 92% 

Forested / Shrub Wetland 42 84% 

Freshwater Emergent Wetland 39 78% 

Freshwater Pond 41 82% 

Impervious 49 98% 

Lake 40 80% 

Riverine 48 96% 

Vegetation 46 92% 

 
 
 

 The best performing classes for the PCT fused dataset include Agriculture / 

Grazing, Impervious, Riverine, and Vegetation.  It is notable that the Forest / Trees class 

improved tremendously from the other two datasets.  Both the user and producer 

accuracies increased to be at 92% and 78% respectively.  The Forested / Shrub Wetland 

class user accuracy increased as well to 84%.  The producer accuracy for the Forested / 

Shrub Wetland increased from the Hyperion dataset, and decreased from the SPOT 5 

dataset to 89%.  These totals describe how the fusion process worked, and what 

contributions were made to the PCT fused dataset results.  Ultimately, the higher spectral 
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resolution allowed the dataset to more readily extract forested / shrub features with higher 

water contents, while the spatial resolution from the SPOT 5 dataset helped to refine the 

class’ spatial boundaries.  However, the spectral overlap between the Forest / Trees and 

Forested / Shrub Wetland classes still existed, with Forest / Trees remaining as the 

primary source of confusion for the Forested / Shrub Wetland class.   

The Impervious class suffered a bit in overall classification which may have 

occurred during the interpolation process when providing higher resolution pixels higher 

spectral resolution feature space.  The Freshwater Emergent Wetland class remained the 

most problematic class, however, misclassifications were spread more evenly to other 

classes unlike the SPOT 5 dataset which had most misclassifications for the Tree / Shrub 

Wetland class within the Forested / Shrub Wetland class (similar to the Hyperion results).  

Table 9 lists all resulting accuracies and omission / commission errors associated with 

each individual class.   
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Table 9 

PCT Fused 10m Hyperspectral Producer / User Accuracy 

Class Producer 
Accuracy 
 

User Accuracy Omission 
Error 

Commission 
Error 

Agriculture / 
Grazing 
 

96% 94% 4% 6% 

Forest / Trees 78% 92% 22% 8% 

Forested / Shrub 
Wetland 
 

89% 84% 11% 16% 

Freshwater 
Emergent 
Wetland 
 

83% 78% 17% 22% 

Freshwater Pond 93% 82% 7% 18% 

Impervious 84% 98% 16% 2% 

Lake 100% 80% 0% 20% 

Riverine 87% 96% 13% 4% 

Vegetation 84% 92% 16% 8% 

 
 
 

Metrics 

 Landscape and Class metrics were run to describe the overall “shape” of the study 

area land cover results.  In an attempt to maintain consistency between datasets, the 30m 

Hyperion results were resampled to 10m spatial resolution.  The overall class area for the 

Hyperion and SPOT 5 results were very comparable at 11,197.2 Ha and 11,197.0 Ha 

respectively.  A slight difference between these two datasets and the PCT fused dataset 
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does exist, with the PCT fused overall class area reported as 11,191.5 Ha.  This 

difference is a result of the slightly less than 1 to 1 relationship between the higher 

resolution SPOT 5 imagery and the lower resolution Hyperion imagery.  Furthermore, 

each individual class area was analyzed between each dataset to describe distributions of 

the datasets (Table 10 and Figure 28). 
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Table 10 

Class Area Distribution 

Class Hyperion 
Area (Ha) 
 

Hyperion 
% Cover 

SPOT 5 
Area (Ha) 

SPOT 5 
% Cover 

Fused 
Area (Ha) 

Fused 
% Cover 

Agriculture / 
Grazing 
 

276.4 2.5% 567.9 5.1% 577.6 5.2% 

Forest / 
Trees 
 

2,332.9 20.8% 1,682.9 15.0% 1,772.1 15.8% 

Forested / 
Shrub 
Wetland 
 

481.6 4.3% 614.9 5.5% 458.0 4.1% 

Freshwater 
Emergent 
Wetland 
 

19.7 0.2% 44.0 0.4% 25.8 0.2% 

Freshwater 
Pond 
 

248.6 2.2% 39.5 0.4% 401.2 3.6% 

Impervious 4,470.4 39.9% 4,167.7 37.2% 4,831.4 43.2% 

Lake 1.5 0.0% 41.3 0.4% 2.6 0.0% 

Riverine 206.5 1.8% 214.9 1.9% 234.1 2.1% 

Vegetation 3,159.7 28.2% 3,823.9 34.2% 2,888.5 25.8% 
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Figure 28.  Class Area Distribution per Dataset 
 
 
 

Individual class areas were reported for each dataset as well.  The Hyperion, 

SPOT 5, and PCT fused classified results all showed that the predominant class in the 

study area is Impervious, which is as expected considering the urban nature of the study 

area.    The Riverine class was comparable between the Hyperion, SPOT 5, and PCT 

fused datasets covering ~2% of each landscape.  It is also clear that spatial resolution was 

the key element to successful classification of the Riverine Class.  All three datasets had 

highly accurate results, but the 30m Hyperion dataset was unable to classify some of the 

narrower stream features running north and south in the study area.  While the SPOT 5 
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dataset appears to have slightly cleaner edges along the Riverine class boundaries, the 

PCT fused dataset exceeded the SPOT 5 results due to having the advantage of both high 

spatial resolution and detailed spectral information (Figure 29).   

 
 

 

Figure 29.  Riverine Classification Comparison 
 
 
 

The Hyperion and PCT fused datasets are in agreement that “Lake” is the least 

dominant class in the study area, reporting 1.5 Ha and 2.6 Ha (0.0%) respectively, while 

over-classification within the SPOT 5 dataset reported lakes as comprising of 41.3 Ha 

and 0.4% landscape coverage.  Similar results existed within the Freshwater Pond class 

as well.  This suggests that enhanced spectral information within a dataset eased 

classification confusion between spectrally overlapping features such as dark pavement 

and certain water features. 
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 Freshwater emergent wetlands were reported to cover 248.6 Ha and 2.2% 

landscape coverage for the Hyperion dataset, while 401.2 Ha and 3.6% landscape 

coverage was reported for the PCT fused dataset.  The SPOT 5 dataset only classified 

39.5 Ha and 0.4% landscape coverage for freshwater emergent wetlands.  While the 

Hyperion and PCT fused results have relatively high levels of commission errors 

associated with them, these results are more likely to exist in the region due to low lying 

banks off major rivers as well as extensive floodplain within the region.   

The Forest / Tree and Forested / Shrub Wetlands classes were major contributors 

to classification errors between each other, and with many other classes.  The Forested / 

Shrub Wetland class was in agreement between the Hyperion and PCT fused datasets, 

with reports of 481.6 Ha (4.3% coverage) and 458 Ha (4.1%) respectively.  The SPOT 5 

dataset reported 614.9 Ha, or 5.5% landscape coverage and is accompanied by the highest 

error or commission between all three datasets.  The Forest / Trees class for the Hyperion 

dataset shows far more coverage than the other datasets, with 2,332.9 Ha or 20.8%.  The 

SPOT 5 and PCT fused datasets were much closer in agreement with reports of 1,682.9 

Ha (15%) and 1,772.1 (15.8%) respectively.  The PCT fused dataset accuracy for the 

Forest / Trees class far exceeds that of the other classes, especially regarding commission 

errors of only 8%.  Ultimately, it is clear that spectral information helped differentiate the 

Forest / Trees class from other classes, while enhanced spatial information assisted with 

defining feature boundaries, thus reducing the commission error rate.   

Measures for landscape heterogeneity were taken with the number of patches, 

patch density, and largest patch index calculations at the class and landscape metrics 
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scales.  Landscape measurements show that the Hyperion dataset contained 70,066 

patches, the SPOT 5 dataset contained 114,677 patches, and the PCT fused dataset 

contained 95,585 patches.  The major difference between the SPOT 5 and the Hyperion 

datasets is due to differing resolutions and aggregation steps during post processing.  The 

slightly less exaggerated change from the SPOT 5 and PCT fused datasets is a result of 

higher resolution coupled with detailed spectral information.  The limited spectral detail 

in the SPOT 5 dataset found more patches due to spectral overlap between class types.  

Class boundaries were more easily classified with higher degree spectral data, limiting 

the number of segregated patches within the resultant datasets, while finding more 

patches than the 30m Hyperion dataset due to higher spatial resolution leading to more 

detailed / less aggregated results.  Though the number of patches metric does not convey 

the most useful information by itself due to lack of information regarding patch sizes and 

spatial distribution, the results from these calculations tend to suggest that the landscapes 

for each dataset tends to be relatively heterogeneous, or moderately dispersed.  The 

largest patch indexes were reported as 1.56, 1.40, and 1.54 for the Hyperion, SPOT 5, and 

PCT fused datasets respectively.  Alone, these values do not tell us much.  Class level 

metrics describe these statistics in a much clearer manner.  Class level number of patches 

and largest patch index calculations were run to describe in greater detail how the 

landscape patterns exist within the study area (Table 11). 
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Table 11 

Number of Patches and Largest Patch Index Distributions 

Class 
 

Hyperion 
Number of 
Patches 

Hyperion 
Largest Patch 
Index 

SPOT 5 
Number 
of Patches 

SPOT 5 
Largest 
Patch 
Index 

Fused 
Number 
of Patches 

Fused 
Largest 
Patch 
Index 

 

Agriculture 
/ Grazing 
 

1,515 0.12 1,921 0.66 1,394 0.66  

Forest / 
Trees 
 

20,996 0.52 38,043 0.03 29,668 0.38  

Forested / 
Shrub 
Wetland 
 

7,354 0.05 19,290 0.00 10,598 0.01  

Freshwater 
Emergent 
Wetland 
 

5,816 0.00 1,898 0.00 11,429 0.00  

Freshwater 
Pond 
 

287 0.00 1,454 0.00 405 0.00  

Impervious 9,873 1.56 19,747 1.40 12,468 1.54  

Lake 26 0.00 1,485 0.00 76 0.00  

Riverine 713 0.15 1,229 0.15 1,256 0.15  

Vegetation 23,486 0.60 29,610 1.00 28,291 0.24  

 
 

At the class level, all three datasets showed that the Forest / Trees and Vegetation 

classes had the two highest numbers of patches.  However, the Hyperion dataset indicates 

that there are more Forest / Trees patches in the landscape than there are Vegetation, 

which differs from the results in the SPOT 5 and PCT fused classified datasets.  This 



87 
 

difference likely exists primarily due to spatial resolution differences; there should be 

little influence from errors of omission / commission since all three had very similar 

results from the accuracy assessment process.  It is also noted that the Hyperion, 

Impervious class underestimated the number of patches when considering the results 

from the SPOT 5 and PCT fused datasets.  Spatial resolution and lower accuracy directly 

impact the total number of segregated patches that exist for this class in the Hyperion 

dataset (Figure 30). 

 
 

 

Figure 30.  Impervious Classification Comparison 

 
 
Essentially, it is clear in the number of patches metrics for all three datasets that the grain 

(spatial resolution) of the datasets impact the number of patches found in the datasets.  

Likewise, the SPOT 5 dataset showed far more patches for all classes than either the 
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Hyperion or PCT fused datasets except for the Lake and Freshwater Pond classes.  These 

classes suffered from decreased spectral information to accurately separate different 

water types within the SPOT 5 classified landscape.  The PCT fused dataset was 

benefited by higher resolution which increased the number of patches from what was 

found in the Hyperion classified landscape, and higher spectral resolution which 

decreased the number of patches found from what was found in the SPOT 5 classified 

landscape; thus, indicating that the PCT fused dataset gave a better perspective of the 

possible fragmentation within the landscape for this study area (Figure 31). 
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Figure 31.  Number of Patches Distribution per Dataset 

 
 
 At the class level, the largest patch index was used to determine the most 

dominant class in the study area landscape.  Unlike the number of patches metric, which 

inferred upon the notion that the Vegetation and Forest / Trees classes made up the 

majority of the landscape, the largest patch index defines which class appears to be the 

most dominant by considering the maximum area of each patch within a class.  

Essentially, if a class has more patches than any other class, but all the patches are 

relatively small, it is possible that this class is still not the most dominant.  The largest 
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patch index found that the Impervious class was the most dominant class in the Hyperion, 

SPOT 5, and PCT fused datasets with values of 1.56, 1.40, and 1.54 respectively.  The 

Vegetation and Forest / Trees classes still comprise of higher dominant land cover types 

in the landscape, but still not as prevalent as the Agriculture / Grazing areas in the 

northeastern portion of the study area. By normalizing the number of patches metric and 

reviewing against the largest patch index, fragmentation in the landscape may be better 

inferred upon within each class independently (Figures 32, 33, and 34). 

 
 

 

Figure 32.  Hyperion Number of Patches and Largest Patch Index per Class Comparison 
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Figure 33.  SPOT 5 Number of Patches and Largest Patch Index per Class Comparison 
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Figure 34.  PCT Fused Number of Patches and Largest Patch Index per Class 

Comparison 

 
 
It is also clear from the preceeding charts that spatial resolution directly impacts the 

comparison between these two metrics.  This is especially clear in the Forest / Trees 

class, the Impervious class, and the Agriculture / Grazing class.  The SPOT 5 and PCT 

fused datasets show that the largest patch index was greater than the number of patches 

over the lower spatial resolution Hyperion dataset for the Agriculture / Grazing class.  

The Hyperion and PCT fused datasets indicate that the largest patch index was less than 

the number of patches over the lower spectral resolution SPOT 5 dataset for the 

Impervious class.  The Hyperion and PCT fused datasets also indicated a higher total for 
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the largest patch index than the SPOT 5 dataset, while all three datasets still had a largest 

patch index much lower than the number of patches metric.   

The correlation coefficient was calculated for the results from the largest patch 

index, class area, and number of patches metrics using Microsoft Excel (Equation 12). 
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Equation 12.  Correlation Between Arrays X and Y  

 
 
Correlation was computed between the pairs of the SPOT 5 – PCT fused datasets, the 

Hyperion – PCT fused datasets, and the Hyperion - SPOT 5 datasets.  The results show 

moderately high correlation between each pair of datasets.  Regarding the largest patch 

index, the SPOT 5 – PCT fused correlation and Hyperion – SPOT 5 correlation each 

totaled 0.84, while the Hyperion – PCT fused dataset correlation was highest at 0.89.  

The class area showed similar results with the SPOT 5 – PCT fused and Hyperion – 

SPOT 5 correlations each totaling 0.97, while the Hyperion – PCT fused dataset 

correlation was highest at 0.99.  The number of patches metric showed identical results 

with correlations for all three pairs totaling to 0.93.  The very minor difference in 

correlations between pairs suggest that all three datasets performed similarly.  However, 

the PCT fused dataset’s constant involvement with the more highly correlated pairs 

coupled with the best overall accuracy suggests that this was the best performing dataset. 
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 Further calculations to test the connectivity or fragmentation of the classified 

landscapes included Contagion, Shanon’s Diversity Index, and Shannon’s Evenness 

Index.  In all three datasets, very similar results were found in all three of these metrics.  

Regarding Contagion, the Hyperion, SPOT 5, and PCT fused datasets had contagion 

values of 50.92%, 48.90%, and 50.42% respectively.  These results indicate that the 

patches within the landscapes were not extremely aggregated or diaggregated; thus, there 

is a slight level of fragmentation found within all the classified landscapes.  Shannon’s 

Diversity Index indicated values of 1.45, 1.47, and 1.50 for each classified dataset 

respectively.  These values appear low, but there is no limit to what these values could 

reach.  The most diverse landscape was derived from the PCT fused dataset, caused by 

both enhance spatial and spectral characteristics of the underlying dataset affected the 

classified patch results.  Shannon’s Evenness Index is normalized by the number of 

patches found in each dataset, giving an output range from 0 – 1.  These results aggreed 

with the contagion results suggesting a moderatlely evenly dispersed landscape within 

each dataset, with values of 0.58, 0.59, and 0.59 respectively.  
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CHAPTER 6 

SUMMARY AND CONCLUSION 
 
 

 This study focused on the ability to meaningfully classify differing wetland types 

with similar classification schemes to that of the NWI datasets produced in the 1980’s by 

the United States Department of Fish and Wildlife with low-cost multispectral and 

hyperspectral imagery.  The results from this study indicate that it is possible to obtain 

better classification results, yielding more informative landscape metrics, by fusing low 

spatial resolution hyperspectral imagery with high spatial resolution multispectral 

imagery.  The PCT fused imagery resulted in the best overall accuracy of 88%, totaling 

8% higher than the least accurate SPOT 5 dataset at 80%.  While the SPOT 5 dataset 

produced very good individual class results, which in some cases exceeded that of 

individual class accuracies for the PCT fused dataset, the PCT fused dataset maintained 

better accuracies for classes such as Freshwater Emergent Wetland, Forested / Shrub 

Wetland, and open water classes.  Considering that these were primary drivers for this 

study, the PCT fused dataset produced the best results out of all three tests. 

 The classification methodology for this study was a very detailed approach on 

exploiting digital image information.  There are many other methodologies that could be 

employed, but highly detailed hyperspectral analysis techniques allow the ability to 

dissect digital imagery in a more intensive manner.  While atmospheric correction is 

generally always performed with hyperspectral analysis, it is not always necessary with 

multispectral analysis.  Performing atmospheric correction on the multispectral dataset 
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converted raw digital numbers within the data to reflectance, allowing a more detailed 

comparison of class spectra when viewing the spectral profiles developed from class end-

members.  Unlike hyperspectral datasets, derivative analysis is not possible with 

multispectral data due to lacking detail in the derived dataset spectral signatures.  Despite 

this, other detailed hyperspectral methodology employed with the multispectral SPOT 5 

dataset was still employed as an enhanced mapping technique.  The SAM and MF 

approaches are far stricter when classifying either hyper – or multispectral imagery than 

more conventional classification algorithms.   

 The metrics calculated in this study also indicated that the PCT fused dataset 

resulted in more meaningful results.  Enhanced spatial and spectral resolution of this 

dataset allowed better segregation of spectrally similar features within the landscape, and 

better defined edges between neighboring patch types.  This was clear in the Forested / 

Shrub Wetland class, where the Hyperion dataset appeared to have difficulties in finding 

patch boundaries due to coarse spatial resolution.  After fusing the high spatial resolution 

with high spectral resolution, there was a class accuracy increase of 8%, and a decrease in 

both class area and number of patches.  Based on ancillary datasets, these results seemed 

far more accurate within this study area.  Open water classes, Lake and Freshwater Pond 

had far better class accuracies.   It was clear that the SPOT 5 dataset constantly 

misclassified impervious features as open water and vice versa due to spectral 

similarities.  Both Hyperion and PCT fused datasets performed far better on these classes 

which is noticeable with similar metrics; however, the PCT fused dataset had more 

clearly defined edges allowing more meaningful resulting metrics.   
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Classification results and metrics analysis in this study showed the definite 

advantages of using hyperspectral imagery to classify and quantify landscapes that 

contain moderate to high class heterogeneity.  Furthermore, the results from this study 

also indicate that spatial resolution is of the utmost importance when trying to classify 

landscapes that would likely contain relatively small or narrow features of interest; in 

particular, long narrow rivers, relatively small ponds, etc.  Very spectrally similar 

features in this study, such as dense forests and forested emergent wetlands, were 

classified with greater success when using the PCT fused hyperspectral dataset.  These 

classes were still difficult to separate due to similar composition, but it remained clear 

that the narrow band spacing of the hyperspectral imagery allowed the ability to better 

distinguish between the two. 

 
Recommendations for Further Research 

 
The more detailed edges found for all classes derived within the PCT fused 

dataset ultimately displayed that higher spectral and spatial resolution datasets are ideal 

for wetland mapping.  This methodology was a cost effective approach to take advantage 

of both higher spectral and spatial resolution considering these types of datasets are now 

currently available at little to no cost.  The EO-1 satellite is equipped with both the 

Hyperion sensor and an additional sensor and the Advanced Land Imaging (ALI) sensor.  

The ALI sensor’s specifications include 7 multispectral bands with 30m resolution, as 

well as a 10m resolution panchromatic band.  Effective August 5, 2009 the USGS Earth 
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Resources Observation and Science (EROS) Center announced that future data access 

requests for new imagery on-board the EO-1 satellite will be processed at no charge.  

This allows the ability to obtain hyperspectral and multispectral / panchromatic imagery 

at the same time; thus, the higher resolution panchromatic imagery will cover the exact 

area as the hyperspectral imagery, as well as ensuring no landscape changes between 

datasets exist.  The relationship between PCT fused hyperspectral outputs and the 

panchromatic image captured at the same time would allow for less distortion between 

the datasets and could create a better product than what was resultant from this study.   

With these datasets no longer costing thousands of dollars to purchase, cities, 

metros, counties, or even states could be mapped with this type of imagery without 

looming extensive costs.  While this would be an immense amount of processing and 

time commitment, ENVI IDL programming could easily be performed to batch most of 

the preprocessing, and post processing steps involved.  It is not uncommon for 

hyperspectral analysis projects to require tens to hundreds of flight lines from 

intrinsically large study sites with higher spatial resolution.  Utilizing the methods 

performed in this study would reduce the number scan lines necessary to cover a larger 

study area, while only sacrificing a small amount of spatial resolution from aerial 

hyperspectral imagery that is obtained for tens to hundreds of thousands of dollars. 

Additionally, time series research for larger study areas may be performed with 

this study’s methodology.  Such research could indicate landscape change with greater 

regards to wetland areas, endangered species, etc.  Furthermore, inferences could be 

made about how local population growth, increasing upland impervious area, storm water 
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runoff, and other urban expansion activities are affecting the wetlands surrounding them, 

as well as the migration patterns of the fish and wildlife that utilize these areas as their 

natural habitats.  Invasive species could be mapped within urban wetlands, and 

correlations between this and land use change could be tested.  Additionally, coupling 

such research with urban heat island analysis could allow inferences on how the 

landscape and wetlands within an urban area are affecting or being affected by increasing 

temperatures.   
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APPENDIX A 
 

Accuracy Assessment Tables 
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APPENDIX B 
 

Land Cover Classification Maps 
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