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ABSTRACT

Protection and inventory of current wetlands is important for critical habitats
education, recreation, flood control, and storm water filtration. Over ths, yha
United States has lost over one-half of its wetlands due to natural processes and urba
development. Satellite imagery was used to test the possibility of acgumaiepbing
existing wetlands located in a subset study site along the confluenceMittiairi
River and the Blue River in Kansas City, Missouri, following the National \Wesla
Inventory (NWI) classification scheme. Testing was performed usipgrigectral
(Hyperion) and higher spatial resolution multispectral (SPOT 5) imagdetgtitionally,
testing was performed by fusing the hyperspectral with multispéciagery. Results
indicated that the fused imagery produced a classified landscape with higltadir ove

accuracy, as well as increased accuracy within the individual wetlasg@€la$hese



results are significant because they indicate the possibility of an inexpensive, accurate
approach for classifying wetlands to obtain metrics for wetlands within even larger study

areas.
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CHAPTER 1

INTRODUCTION

The diverse nature of wetland areas is an important aspect of the comnandties
rural areas which they affect. By definition, wetlands are essentialyg af land that
are periodically covered with water seasonally, annually, or for very langppeof time.
There are numerous functions of wetland environments from providing criticalteabita
for many species (including birds and aquatic life), to simply being used featiecral
reasons. Though some say that wetlands are obstructive to urban development, wetlands
are essential not only to species habitat but also for human development to thrive.
Wetlands have economic importance when considering wildlife and fish, pollution
filtration, coastal erosion prevention, and management of storm water runioff toPr
this recognition, the United States lost over half of its natural wetlands due to ho#i na
causes and urban development.

Industrial development is very prosperous in areas that have close access.to wate
This is seen as a good reason for development to take place in and around wetland areas.
Of course, with the intrusion of urban environments within wetland areas may dinastica
alter the characteristics of the environment. Urban wetland habitatse’ oftan subject
to different climate and air quality that nonurban systems.” (Windham, Laska, a
Wollenberg, 2004) Primary examples include sewage drainage and other toxicants
warmer temperatures due to the proximity of surrounding urban environments, and a

decline in wind speed through the wetland environment. Only recently have the



economic importance, as well as the importance to species habitat, come to light i
wetland areas. As reported by Karen Rouse of the Missouri Department ofl Natura
Resources, “smaller urban wetlands may be more valuable than rural wetldreds to t
developed watersheds for water quality improvement and flood retention.” (Rouse, 2004)
She goes on to report that “research showed that the closer a wetland residedoamthe ur
growth boundary, the more likely it was to be impacted or removed.” (Rouse, 2004)
Measures have been taken to protect water bodies from further obstruction due to
development of urban areas. Such measures include awareness groups, functions, or
legislation. “The U.S. Federal Wild and Scenic Rivers Act of 1968 establislysteans
to protect wild and scenic rivers from development.” (Enger and Smith, 2004) Section
404 of the Clean Water Act prohibits the filling or draining of wetland/watgufes for
the purpose of developmetespite this, Section 404 and many other forms of
legislation do not solely represent wetlands and their diverse nature butoattiexs on
them.

Many wetlands are on privately owned land, thus becoming the land owner’s
responsibility to maintain. Furthermore, the government will only protect thedands
that are considered jurisdictional; in other words, the government is awargrof t
existence and takes measures to protect them. As urban areas upstreaandf wetl
environments expand due to urban sprawl, it can be assumed that even without direct
invasion, urban growth will still have a negative effect. “Current informatiohen t
uplands surrounding wetlands is important because land use practices in uplands cause

loss of wetland functions, goods, services and values.” (Ozesmi and Bauer, 2002) This
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added stress will then lead to degradation of habitat heterogeneity witllovtingtream
wetland areas.
The desired outcome from governmental regulations in lost wetlands is that they

must be replaced elsewhere in an effort to mitigate lost habitats or eneintad

functions. “In the United States, federal and state regulatory prograni® nextigation

or compensation for certain types of disturbances... with the ultimate goaliniimgtar

restoring the ecosystem services provided by aquatic habitat.” (Windham, bask

Wollenberg, 2004) This is not totally efficient, however, but there are reasongig/ing t

important in urban areas:
Urban wetlands, although subjected to many disturbances, still provide
many functions which make their restoration important. These include
provision of habitat for commercially important fish and wildlife species
and recreational, educational and aesthetic values which are particularly
important given that little natural habitat is available in cities. (Grays
Chapman, and Underwood, 1998)

Furthermore, they filter toxic wastes, excess nutrients, and other pollutavesntpr

erosion, and manage storm waters to reduce gross loss from large floodirsg event
However, despite the no-net-loss requirements of the federal Clean Water
Act and the restoration components of CERCLA (the Comprehensive
Environmental Response, Compensation, and Liability Act, also known as
Superfund) and RCRA (the Resource Conservation and Recovery Act),
wetlands are still being lost at a significant rate (NRC, 2001), and no
metrics are being collected universally to demonstrate the contribution of
restored wetlands to larger ecosystem and landscape functions. (Windham,
Laska, and Wollenberg, 2004)

Using the theory that the restoration projects taking place for lost wettands

fully efficient, we can look at the function of natural wetlands versus the function of

restored wetlands. The natural wetland area may be required to support indigenous
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species of plants, birds, etc. Once it is seen that wetland areas need to be restared, hum
alterations to the landscape may change the original function. It may be sherldndt
use planner that the new wetland function may be primarily needed for flood orgpollut
control rather than species habitat. This may allow the introduction of invasiveidiolog
species outcompeting species that may have existed in the original h@bisais not
purely efficient, because it is still harming the natural function that ttlanweaehad
recently held. For example, common reed / Phragmites australis (P.iglssralvery
persistent form of invasive plant species in wetland areas. “The common testsfthe
marsh surface, lowers the water table and the salinity of the soil and conuesies of
vegetation into dense monotypic stands.” (McClary, 2004) Urban developments may
even be at fault for the intrusion of such invasive species as common reed. lda goes
state that “...drainage or mosquito ditches, and construction creating higher gnacimds s
as roads have been found to be associated with invasions of P. australis.” (McClary,
2004) Because of the effect common reed has on the ecology of the area, it may be
altering the natural habitat required for indigenous species to thrive. ®#spjt‘small,
restored, and constructed wetlands in an urban watershed setting may phafycarsig
role in maintaining or improving water quality at the landscape scale.” (R2034)
Regardless of a wetland’s current or updated function, any wetland is &arthatt no
wetland at all.

Aerial photography or other very high resolution imagery such as IKONOS or
Quickbird is commonly accepted platforms used for digitizing wetland coverage.

Regarding automated wetland delineation, there are limitations withingle&ems.

4



Detailed spectral information is often lost when using such datasets. Madigsdtave
found that separating different wetland classifications is often extyatifgcult if
spectral information is not a key component of the data used. With the use of
hyperspectral imagery, “training sites for species and communitiesunigue spectral
characteristics (especially exotic species) can be seleutieesults with very good
accuracy have been obtained.” (Jollineau and Howarth, 2008)

The goal of this research is to utilize satellite based hyperspestgéry to
classify wetland features with greater accuracy than conventideiiteamaging
sensors. Additional analysis was performed to perform image fusion betwe&ra880
Hyperion datasets, thus emphasizing the benefits of higher spatial andl spsctudion.
Furthermore, an attempt will be made to display the capability of advancgd ima
processing for updating NWI datasets. The United States GeologicaySWSGS)
Earth Observer (EO)-1 Hyperion sensor has a very similar spectrhitres to that of
most aerial hyperspectral scanners, but has a much lower spatialioasol30m.
However, this gives the sensor the capability of imaging a much wider swathanilt

length than possible with aerial hyperspectral imagery at a reduced cost



CHAPTER 2

LITERATURE REVIEW

The U.S. Fish and Wildlife Service supplies very much outdated NWI maps and
datasets, where the data portrayed is mostly derived from airborne ppbiogral site
visits. Furthermore, these maps represent wetland features from the nedli@3@’s.
Kansas City urban buildup had increased by 10.54% from 8.65% in 1972 to 19.19% in
2001 (Ji, 2008); therefore, it is necessary for these inventories to be updated. yhe stud
by Rouse (2004) illustrates the difference between the 1985 NWI dataset 2002he
inventory of wetlands within the East Fork Little Blue River and Rock CreekrgVetes

in Kansas City, Mo (Tables 1 and 2).



Table 1

Wetland Inventory Comparison, Blue River Watershed (Rouse, 2004)

Wetland Type NWI, 1984/85 (acres) 2002 I nventory
(acres)
Lacustrine -- Aquatic Bottom 1 0
Lacustrine -- Unconsolidated Bottom 1,234 1,965
Palustrine -- Aquatic Bed 1 28
Palustrine -- Emergent 58 42
Palustrine -- Forested 162 9
Palustrine -- Scrub Shrub 3 0
Palustrine -- Unconsolidated Bottom 152 181
Total 1,611 2,225




Table 2

Wetland Inventory Comparison, Rock Creek Watershed (Rouse, 2004)

Wetland Type NWI, 1984/85 (acres) 2002 Inventory

(acres)

Riverine — Unconsolidated Shore 4 1
Riverine — Unconsolidated Bottom 54 31

Palustrine — Aquatic Bed 0 0

Palustrine -- Emergent 13 3
Palustrine -- Forested 198 205
Palustrine -- Scrub Shrub 22 20
Palustrine -- Unconsolidated Bottom 72 60

Total 363 320

The Rock Creek Watershed clearly shows a net loss of wetland acread84rio
2002. Despite the net gain in wetland acreage in the Blue River Watershebkait is ¢
that particular categories have shown a net loss; the most drastic lossbenegted
wetlands. Analyzing satellite imagery for wetland mapping is now becomang
practical than utilizing aerial photographs as was done with the previous NWI data.
Relatively large or dispersed study sites may be difficult to efficiendgitor. Despite
this, “It is difficult to distinguish between various kinds of marsh surface tygieg
traditional remote sensing technologies like aerial photography intdrpnsta (Artigas

and Yang, 2004) This is likely due to characteristics such as pitch, roll, and yfaev of



aircraft, ultimately yielding to distortion of the final photograph. Furtheemibtakes a

tremendous amount of time to search through large and small areas alike whidmgligi

all relevant features. Fuller, Morgan, and Aichele reports:
Although the study area was relatively small, and a manual digitizing
approach was possible, an automated technique was sought because field-
based wetland delineation is labor intensive and costly, whereas a remote
sensing approach using high-resolution multispectral satellite imagery
be more cost-and labor-efficient. (Fuller, Morgan, and Aichele, 2006)

The use of modern digital image processing methods to determine surfasarisics

are ideal in this situation.

Orbiting satellite imagery, such as Landsat Thematic Mapper artsphdtral
Scanner (MSS), provides very useful data in landscape classification vatragoairacy.
Since the imagery from Landsat MSS is gathered across a wide range of the
electromagnetic spectrum from blue to thermal, very detailed landsleagéications
are easily made. “For mapping and monitoring large geographic areasisaoflys
satellite images is less costly and time-consuming when comparedab inigrpretation
of aerial photographs.” (Jollineau and Howarth, 2008) Results from the study by
Townsend and Walsh (2001) on mapping forested wetlands with Landsat TM data
showed relatively high accuracy for particular forested wetland treeespeci

Despite the relative accuracy in classification from these systeniargleerange
of spectral signatures covered by the limited number of spectral bands masldhasy
much information as needed for an urban wetland environment. Spectrally similar

objects often may be misclassified, thus increasing the margin of errorsiictd®n

and landscape metrics computations. This is of utmost importance to urban wetlands due
9



to the relative lack of homogeneity, and some confusion may exist within fgaiures.
Ozesmi and Bauer (2002) show an example of spectral overlap inherent within different

wetland types in the near infrared and red bands (Figure 1).

NEAR INFRARED

.
I

Figure 1. Spectral Overlap between Wetland Types (Ozesmi and Bauer, 2002)

RED

Results from the study by Fuller, Morgan and Aichele (2006) using high resolution
IKONOS data shows “the supervised classification on the unedited imagdiédenti
water (pond) areas very well but had difficulty identifying emergent armdtiea/shrub
wetlands. Upland areas were often confused and mixed with the emergent and

forested/shrub wetlands.” (Fuller, Morgan, and Aichele, 2006) Similarly, Townsend and
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Walsh (2001) showed the lowest accuracy for Sweetgum and (Wet) Oak-Maple-
Sweetgum. They report “the Sweetgum class is highly variable in compasiid often
bears close resemblance to several other classes.” (Townsend and Walsh, 2001)

With the advent of hyperspectral scanners, large data arrays of spgciaslises
are collected within very narrow bandwidths as most hyperspectral systam the
capability of utilizing several hundred different spectral bands:

Unlike multispectral imagery, which consists of disjointed spectral bands,

hyperspectral imagery contains a larger number of images from

contiguous regions of the spectrum. This increased sampling in spectrum

provides a significant increase in image resolution—and thus in

information about the objects being viewed. (Artigas and Yang, 2004)
Laboratory-derived spectral signatures are available for use $b th&sgensor in
classification. The resultant analysis has greater accuracy thamtongaesystems, and
makes it “...possible to map plant species in coastal wetlands and relate their
configuration and spatial arrangement to hydrological conditions influencbigha
heterogeneity -- and ultimately, biodiversity.” (Artigas and Yang, 2004)

Hyperspectral imagery similarly is useful in studying small seatdogy and
environmental displacement within urban settings as well. “There i$ycteneed to
undertake studies, in conjunction with wetland scientists and managers, to determine
whether information that can lead to improved management of these inland wetland
ecosystems can be extracted from hyperspectral remote-sensirig dtalineau and
Howarth, 2008)Hyperspectral imaging supplies a greater number of narrowly spaced

bands in which landscape data is sensed thereby ensuring the capabilityrof bette

differentiating between very spectrally similar objects that maydjaant to one
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another.Intuitively, the resultant analysis should be far more accurate in classifiof
wetland features, even within sensors with only moderate spatial resolution.

The accuracy of hyperspectral imaging makes it is possible to monitor and
classify the characteristics of urban wetlands unlike many other s/stEimnere are
several possible classification algorithms available when processaggry of any type.
One of the most popular classification algorithms in remote sensing ajgpiecet the
Maximum Likelihood method. However, certain algorithms have been developed to take
full advantage of the spectral properties within hyperspectral datasetcomtinuity of
hyperspectral bands allows the possibility to apply very detailed matlsahmethods,
such signature derivatives. Research by Sun et al. indicated that depvatessing
will enhance relatively minute alterations, reduce sensitivity, and pdigmémove
background spectra from processed signatures. Multispectral syst&rttadaaffective
continuity, thus making such processing not relevant. Furthermore, results frame$ale
al. determined that “conventional, statistically based methods used for mutaspata
classification are not efficient when using hyperspectral data.i(Salel., 2005)

Much research has found great success with the use of the spectral angle mapper
classifier (SAM) and matched filtered analysis (MF) with hyperspkitnagery. The
MF technique “maximizes the response of the known endmember and suppresses the
response of the composite unknown background; thus matching the known signature.”
(ITT Visual Information Solutions, 2006) This approach rapidly detects featuthe
imagery with very similar spectral properties found in the spectratyisrassociated

feature. These similarities are based on the location of spectral cuksegpelavalleys

12



between the pixel signatures and corresponding library signatures. Thighaldaas the
tendency to over-classify because slope of the spectral curve is not ngcessari
considered; only magnitude and the location along the electromagnetic spectrum. The
SAM method analyzes spectral signatures with a little more detail andipnec

“Treated as vectors in n-dimensional feature space, the SAM algorithm re@mpa
unknown pixel spectra to selected endmember spectra by calculating thel sregt,

in radians, between them.” (Jollineau and Howarth, 2008) They continue that, “minor
spectral confusion between the shrub-dominated class and the other wetland plant
communities, especially submerged aquatic vegetation.” (Jollineau and HAx£&)
SAM is not limited to hyperspectral data; any imagery acquired may be sif@mteas

the dataset has undergone atmospheric correction to obtain surfacame#iexgt opposed
to pixel digital numbers.

The most common hyperspectral scanners currently used in wetland research ar
mounted on low altitude aircrafts. Airborne Imaging Spectroradiometer foroagipis
(AISA) and Airborne Visible/Infrared Imaging Spectrometer (A\8IRare two very
popular systems used in several different research applications. Due tbdneeair
platforms of these sensors, they achieve both high spectral resolution and spatial
resolution. The main limitation to aerial hyperspectral platforms is Wethsvidth and
path length is drastically reduced when compared to satellite sensorgdghuimg
several flight lines to cover the same extent covered by one satellitéirse. Despite

this limitation, there has been limited research depicting the advantagps|bte
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platform hyperspectral scanners over conventional satellite scangarding wetland
classification as opposed to aerial hyperspectral scanners.
High spectral and spatial resolution from low altitude aerial sensorsiweul
ideal for classifying wetland features, especially when consglermall or long narrow
spatial characteristics. As previously mentioned, however, aerial imagdergquired a
large number of flight lines to cover a potential study area, which will beregty
costly. To reduce this cost while still obtaining reasonably high spatadlities), data
fusion may be performed on low resolution hyperspectral imagery with highautresol
panchromatic or multispectral imagery:
The main objectives of image fusion are to sharpen images, improve
geometric corrections, enhance certain features that are not visible in
either of the images, replace the defective data, complement the data sets
for the improved classification, detect changes using multispectral data
and, substitute the missing information in one of the images with the
signals from another source image. (Pande, Tiwari, and Dobhal, 2009)
There are several different algorithms available to perform data fudiohydiich have
been tested extensively to determine the output quality of the fused image.aiihe m
algorithms used for data fusion are Principal Component Transformation (P@m) -G
Schmidt Transformation (GST), and Color Normalized Transformation (CN).aRbse
by Darvishi, Kappas, and Erasmi (Darvishi et al., 2005) showed little variat@8T
and PCT output statistics. They go on to report, “the results show that the fusion process

in general preserves the image statistics well, considering the mewtardtdeviation,

mode, and median of the histograms taken from the raw data and the fused image
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channels.” (Darvishi, et al., 2005) Similar results have been found in research by
Waldhoff et al. (2008) and Pande et al. (2009)

The main consideration to make when reviewing any data fusion results is that
errors could exist in output datasets; therefore, it is important to stril@xfeoot mean
square errors. This will help limit possible pixel artifacts, and coloradtisdalistortion.
Another factor noted by Darvishi et al. (2005) is that while statistics betwieredt
fusion algorithm results have relatively high correlation, there was muxkde®lation
between all fusion results and raw imagery spectra. This exemplifies theonee
carefully review and possibly test many different fusion methods to ensureshe
possible output is used for further analysis.

For further analysis, landscape metrics will be used to analyze the final
characteristics of wetlands within the study site to make a deteramraatihabitat
heterogeneity or potential fragmentation. Two categories of landscapesare
considered for this task. One consists of metrics that focus on the compositiontiethi
landscape rather than the spatial arrangement of the composition withindbeslae.
The other category will focus on how the data and classes are spatiallyedrvatign
the landscape. Proportion, dominance, and Shannon Evenness are very common metrics
used to describe the amount of area covered by each class, number of classes that
dominate the landscape, and describes how evenly spread the classeeeatigahs
Spatial configuration will look at metrics including but not limited to Mean Paizd S
Probability of Adjacency, and Contagion evaluating the average size of edaligatc

grouping of one class type by 4 or 8 neighbor rules), the probability that one cetilof pa
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type will reside next to another cell of any patch type, and measurementalf ove
clumping within the landscape per class type. Applying these metricsher, ratseries
of different metrics and plotting them together will likely show the impogamx
correlation between various different metrics within a landscape. Tlensaay
different sources available for metric analysis, where spati@heand grain will have
direct impact on the behavior of these metrics.

Scale plays a tremendous role in analyzing the behavior of a landscape. The
appropriate extent for a study site will be based upon the size, length, or areahinh&hi
feature itself tends to be. “It is known that the scale of such maps affetssdpe
patterns, and therefore it is expected that landscape metrics also deperd.bn sca
(Carréo and Caetano, 2002) Wetland features will have a wide variety of shdpes a
sizes that may be studied, where some of these habitats may be very long@md nar
The studies by Carrdo and Caetano (2002) show that very few metrics, including
contagion and fractal dimension appear to show very little dependence on scale
variations. On the other hand, values for patch density shows very interestirgjinesult
how scale changes. Essentially, as the extent of the imagery chosen s)q@atrse

density decreases (Figure 2).
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Figure 2. Relationship Between Patch Density and Scale (Carrao2€02)

Artigas and Yang (2004) set to show how important scale is when interpretitsgdgpe
patterns based on landscape metrics. “The ramifications of scale are profetunties
in which habitat heterogeneity measurements are based on spatial m@riogas and
Yang, 2004) The studies they reported on with tide-open versus tide-restricimadwetl
using landscape metrics tend to agree with the results from Carrdo and Caetano.

Like scale, grain will directly affect the ability for an analyst tocdié® the
heterogeneity of wetland habitats. With extent, the importance is to enehalgh area
to cover the particular area of interest without including so much data thahpatter
analysis may be disrupted. Grain, however, focuses on the size of the cell in which dat

is captured. For very general results in landscape pattern analysisrgearkas,
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Landsat MSS data with 30 m cell resolution could be useful. However, this would only
be possible if the features being studied cover a large area of at theage§0len. If

the feature is smaller than this cell size, the dominant feature for thatliceake over in
classification. This could likely result in misclassification of the wetiteatures,
especially along the edges of feature types. Thanks to advances in modern ¢gg¢chnolo
there are several sensors available with very fine cell resolutammiad) for far more
detailed analysis. “If landscape data continue to be available with imgiyaane
resolutions suitable for design, management, and monitoring, understandinfgd¢tec#f
changing grain size on landscape pattern measurements will bd tritemporal
analysis.”(Corry and Lafortezza, 2007) Essentially, with increasingg resolution, sub
meter pixel classification may someday be possible giving extrercelyate analysis
with landscape metrics. Sidewalks that force fragmentation or connection avitlaiture
reserve surrounding wetland habitats may be included within metrics arellgsiing
even greater detail in how the habitat is behaving.

Inferences on environmental health or strength could be made based on landscape
metrics within wetland habitats based on measures of dispersal and levelsraraem
within the habitat. Wetlands affected by surrounding urban areas may haveea great
likelihood for homogenous environments, where only the most aggressive or possibly
invasive species will survive. Results by Artigas and Yang (2004) discussléhapen
sites displayed healthier habitat with greater heterogeneity bagegearmhumber of patch

types and Shannon Diversity Index (SHDI) values. A graph of their results, showing
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approximately 0.6 higher in tide open wetlands; therefore, since the points are not

centralized near the point where y = x there is not a similar distributigaré=3).

Shannon's Diversity Index
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Figure 3. Shannon Diversity Results for Tide Open and Tide Restricted Wetlands
(Artigas and Yang, 2004)

Research by Ehrenfeld within urban wetlands exemplifies this by shomahtspecies
richness of both plant and animal groups may be higher than in comparable non-urban
wetlands, due to the incursion of exotic and weedy species... and the removal of nutrient

limitations due to pollutants in both air and water.” (Ehrenfeld, 2000) As species
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richness increases, this would then show that dominance may have taken hold on the

environment forcing the naturally heterogeneous habitat into a state of distress.
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CHAPTER 3

STUDY SITE

North Western Jackson County, MO is a densely populated area with residential
commercial, industrial, and agricultural areas dispersed along the MiBseeriat its
confluence with the Blue River (Figure 4) (Kansas City, MO National LaneC
Database, 2001). According to the United States Census Bureau 2007 Population
Estimates, Jackson County has shown an increase in population of 12,010 people since
2000, and 37,624 since 1980. Many new homes and office spaces were required to
accommodate such expansion, thus taking a toll on the natural landscape. There is a
blend of emergent, freshwater, and riparian wetlands within this area, makimgléal
location for testing spectral variability in wetland mapping. Many wddaun directly
along edges of residential properties in this region, thus emphasizing the npeate
classification, and manage these areas prior to further degradation. Téwt poojndary
for this study runs along a very mixed landscape with heavy population, comreandial
agricultural areas (Figure 5).

Updated wetland mapping is required to facilitate wetland protection or
reconstruction in many of these areas. “To prevent further loss of wetladdsyresserve
existing wetland ecosystems for biodiversity and ecosystem servicgoaatsl it is
important to inventory and monitor wetlands and their adjacent uplands.” (Ozesmi and
Bauer, 2002) Such measures had been taken with the National Wetlands Inventory

(NWI) from the late 1970’s to mid 1980’s. Kansas City, MO has undergone a variety of
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landscape changes from then to the present day, making it necessary to update suc
datasets. It has been reported by the Missouri Department of Naturatessihat the

state has lost nearly 87 percent of its natural wetlands.
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Figure 4. Kansas City, MO National Land Cover Database (NLCD) (2001)
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Figure 5. Study Site Location
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CHAPTER 4

METHODOLOGY

Earth Observing 1 / Hyperion Imagery Specifications

The Earth Observing 1 (EO-1) satellite was launched into orbit on November 21,
2000 as part of NASA’s New Millennium Program; the extended mission of thktsatel
is currently under USGS supervision and continuation. The EO-1 orbit is designed to
match that of Landsat 7 to collect imagery approximately one minute aftdsaia7 for
direct comparison with the three imaging systems onboard. The temporal oesfauti
EO-1is 16 days. The three sensors include ALI, Hyperion, and LEISA. ALl is a 10-
band multispectral, push-broom style scanner, with one high resolution panchromatic
band; panchromatic resolution is listed at 10m, while multispectral resolutisted at
30m. The swath width is 37km and path length can be collected at 42 or 185km. LEISA
is the first space-based test of an atmospheric corrector to help impracesurf
reflectance approximations at the sensor. Hyperion is a hyperspectrabrpashstyle
scanner, utilizing 242 spectral bands with a spatial resolution of 30 meters. Tee ima
swath width is 7.5km and path length can be collected at 42 or 185km. The spectral
information onboard the Hyperion sensors range from 0.4 — 2.5um. There are 35 visible
bands, 35 near infrared bands, and 172 shortwave infrared bands. A narrow band spacing
of 10nm, very detailed analysis is easily performed to extract spedirailgr features

(ex. Plant species) as opposed to more generic or broad classes.
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Initial dimensionality reduction should be performed by removing bands 1 — 7 and
58 — 76 because these are delivered as un-calibrated bands due to overlapping channels
and large signal to noise ratios. Thus, the resulting dataset is reduced to alt@al of
useable bands for subsequent image processing (Figure 6). Levell datersdlak
radiometrically corrected and geometrically resampled products.ndrajeatmospheric
correction should be performed to take full advantage of the capabilities this sensor ha

offer.
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Figure 6. Raw Hyperion Imagery Subset

SPOT 5 Imagery Specifications

The SPOT 5 satellite was launched into orbit on May 3, 2002. SPOT 5is a 4-

band, push-broom style scanner, with one high resolution panchromatic band (Figure 7).
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Bands 1 and 2 cover the green and red part of the visible spectrum, while bands 3 and 4
cover the near infrared and shortwave infrared parts of the electromagnetiarspe
respectively. The temporal resolution of SPOT 5 is two to three days pending latitude
Both swath width and path length are approximately 60km; therefore covering \gery lar
spatial area. SPOT 5 spatial and spectral resolutions are variable betle®ard

(Table 3).

Table 3

SPOT 5 Spatial and Spectral Resolution

Band Spatial Resolution Spectral Region
Panchromatic 5m 0.480 - 0.710um
Green 10m 0.500 - 0.590pm
Red 10m 0.610 - 0.680pum
Near IR 10m 0.780 - 0.890um
Shortwave IR 20m 1.580 - 1.750pm
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Figure 7. Raw SPOT 5 Imagery Subset

Atmospheric Correction

Level 1 data is generally delivered with pixels recorded as ravakigimbers
(DN) representing the intensity of electromagnetic radiation for geettral band. In
order to obtain reflectance values, DN values must first be converted to radiance to
display the energy units that each DN represents within a pixel in units of
W/(m*Srsum). Hyperion DN values are converted to radiance by dividing visual near

infrared bands 1 — 70 by a scale factor of 40 and the shortwave infrared bands 71 — 242
29



by a scale factor of 80. To obtain radiance for SPOT 5 imagery, an ENVI IDL module
was executed to compute the following equation for radiometric calibratiossaait

bands (Equation 1, ITT Visual Information Solutions, 2006).

Equation 1. SPOT 5 Calibration to Radiance

L:1+B
A

L = Radiance value in W/#Sr*um) X = radiometric value per pixel from

metadata
A = Sensor Physical Gain Value from B = Sensor Physical Bias Value from
metadata metadata

The module reads the sensor gain and offset information from the DIMAP metbalata fi
for calibration.

Surface reflectance allows imagery to display typical speairaks associated
with specific materials. This enhances the subsequent classificatiomhatgoability to
extract features of interest, as well as associate and mosaic opeat@mnsultitude of
imagery datasets. While this may be more useful for hyperspectralrymthgeto
detailed spectral information, such correction will readily enhance multiapdatasets
by removing some haze and allowing certain advanced hyperspectral mapping
techniques.

Fast Line-of-sight Atmospheric Analysis of Spectral HypercubesASH),
which utilizes the model, MODTRAN within the ENVI software package, wad ts

perform atmospheric correction for surface reflectance:
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Using scattering and transmission properties of the atmosphere, the
difference between the radiation leaving the earth and the radiation
received at the sensor is modeled by radiative transfer codes having a
typical atmosphere models for a large number of atmosphere types for
calculation of atmospheric radiance spectrum on a pixel-by-pixel basis.
The surface reflectance is attained by the ratio of radiance at the genso
the model solar irradiance. (San, B.T. and M. L. Suzen, 2010)
Hyperion inputs to the model include sensor altitude (705km), collection date (2/2/2009),
collection time (16:41:24), and center point latitude and longitude (39.112 and -94.489
respectively). Through consultation with NOAA and based on the collection
temperature the atmospheric model utilized was U.S. Standard, the aerosolvasdel
Urban, and the aerosol retrieval method was 2-Band (K-T). SPOT inputs to the model
include a sensor altitude of 800km, collection date of 10/10/2008, collection time of
17:06:44, and center point latitude and longitude of 39.0404 and -94.6120 respectively.
Through consultation with NOAA and based on the collection temperature the
atmospheric model utilized was Sub-Arctic Summer, the aerosol model was &ltan,
the aerosol retrieval method was 2-Band (K-T). Regarding both datasetsphénc
correction was performed on non-geometrically corrected imagery to prevagye
statistics by not introducing arbitrary zero cells that exist in gaaraly corrected

feature space. Figure 8 displays the difference between DN andaetleprofiles for

both Hyperion and SPOT 5 imagery:
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Figure 8. DN and Reflectance Profiles for Vegetation

Geometric Correction

Geometric correction was performed on atmospherically correctesktata
Individual ground control points (GCP) were selected from a previoussteegd SPOT
5 (2008) dataset for both Hyperion and SPOT 5 imagery datasets. Twenty five GCP’s

were randomly chosen, in a widely dispersed pattern for each dataset tovearpae
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results were not focused on a centralized location. Only permanent featires soad
intersections, bridges, and large building corners were used to place the GRoBt

Mean Square Error (RMSE) was calculated for these control points on bothdtyaed
SPOT 5 to describe and validate image registration accuracy. The shralRIVISE

value, the closer the warped image is estimated to match the referenced itnaal
RMSE of 0.57 was found for Hyperion, and an RMSE of 0.317 was found for SPOT 5;

these values are less than 1, and deemed acceptable for image myi$trgtre 9).
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a. Un-Georeferenced Hyperion; b. Georeferenced Hyperion; c. Un-georefirenc
SPOT 5; d. Georeferenced SPOT 5

Figure 9. Geometrically Corrected Hyperion and SPOT 5 Imagery

Hyperspectral Imagery Sharpening

In order to perform spectral sharpening techniques between the SPOT 5 and
Hyperion datasets, both imagery was required to be geometrically corrauted

covering the same geographic space (Figures 10 and 11).
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Figure 10. 30m Hyperion Imagery Study Area Subset
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Figure 11. 10m SPOT 5 Imagery Study Area Subset
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Color normalization (CN), principal components transformation (PCT), and Gram-
Schmidt transformation (GST) spectral sharpening algorithms were mpedaxith the
Hyperion 30m datasets and the SPOT 5 10m bands; the panchromatic band with SPOT 5
was unavailable during processing.

Testing results displayed that CN produced very poor results in comparison to the
other methods. While the appearance of the output dataset was very good, little

correlation between resulting and original spectral profiles existgdré=i12).
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Figure 12. CN Sharpening Result with Spectral Profile

The profile associated with CN sharpening results indicates that atymafdiie spectral
information is lost during transformation. This methodology is not used for subsequent
processing because of this.

Both GST and PCT algorithms produce very good sharpening results in both

appearance and spectra. Output reflectance from both PST and GST resuttsangre
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identical, and showed very little difference from the raw Hyperion dat&mple
statistics on bands 13 (Green), 23 (Red), and 44 (NIR) were computed for the raw, PCT,

and GST datasets to determine the best resulting dataset for d#issif(Eigure 13).
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Figure 13. Raw, PCT, and GST Imagery Statistics

Based on the comparison of simple statistics between each dataset, both PCT and GS
show very high correlation, and little difference from the raw dataset. Time mai
differences are found in the standard deviations for bands 13 and 23, where the PCT
algorithm sits slightly closer to the raw dataset value. The PC fesealt was chosen

to proceed based on these two values and slightly better image appearameclé@)ig
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Raw Hyperion PCT Results

Figure 14. Raw Hyperion and PCT Comparison

Hyperspectral Derivative Processing

The limited spectral resolution available with multispectral imagererently
displays spectral information through a series of disjointed spectral bandsy forc
generalized spectral profiles for given features within the imageoynp@ratively,
hyperspectral imagery offers the spectral resolution that producesgalglabntinuous
spectral profiles. The benefit of these detailed profiles is not limitddhfgyslocating
parts of the electromagnetic spectrum that best detects speciiefdiut also allows

advanced imagery analysis that is unavailable with multispectral datdbeterm of
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continuity attribute, it becomes possible to apply many mathematicabdseth analyze
hyperspectral data, such as derivative method.”(Sun et al., 2008) Takingtthe firs
derivative of hyperspectral imagery extrapolates the slope from tketegfte profile,

thus enhancing relatively subtle changes within a curve (Equation 2).

Equation 2. First Derivative (Sun et al., 2008)

R,..— R;

FDR, = First derivative result

R, = Reflectance of band j, j+1, j+2;

AL = Wavelength difference between bands j and j+1;

Similar to the SPOT 5 radiance calculation, the first derivative equationseal
within an ENVI IDL module. This module was used on both the Hyperion 30m
reflectance data (Figure 15), and sharpened reflectance data (FiguRetiGative
profiles are nearly identical in shape, displaying even further succéssnaigery
sharpening methodology. Subsequent image processing used radiance proétés i
imagery and spectral libraries, though reflectance profiles wérassd for spectral

range detection, feature separation, and class determination.
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Signature Extraction

There are several sources of spectral libraries freely avaitatile public for a
variety of landscape features. Previous spectral libraries may hkeveelétvance to
current imagery for many reasons, including seasonal variance, atmosphdiiioos,
and landscape patterns. Methodology to obtain current spectral information tpvemy
target may be as labor intensive as performing field work with a hand-held eadrpor
simply generating spectral libraries from the imagery itself. Inyncases radiometers
will collect spectral information with 1nm band spacing, yielding very detapectral
profiles spanning thousands of electromagnetic bands. The detailed signataotsctol
may be very useful in determining the best region of the electromagneticuspéo
utilize for target detection. These signatures may also be applied tdeaitas
extraction within the imagery itself. While this is very useful inforomtfield work of
this magnitude is a very costly endeavor in terms of both time and money.

Many practices will generate spectral libraries from the imageeif to reduce
the effort of field signature collection. These libraries will have $gestral information
than a hand-held radiometer, but still cover several hundred bands of information;
therefore, the in-scene spectral libraries will still be very detaithen compared to those
of multispectral sensors. This methodology is not only efficient and less dnstly,
will also produce target signatures representative of the spectral itifamrfeund within
the imagery itself. This is a very important consideration because aeftectalues will
be affected (ex. scattering) within the imagery due to radiation gatssough the

atmosphere, while libraries collected at ground level will have far lesspimaric
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interference. Atmospheric correction tasks retrieved apparent rafteadbserved by the
sensor, but does not remove all affects the atmosphere has on incoming and outgoing
solar radiation.

To build an in-scene spectral library, regions of interest (ROI) werdogekas
polygons for the atmospherically corrected Hyperion SPOT 5 datasets. RfD#'s w
generated using source data from NWI datasets, NLCD datasets] lamétevisits for
validation, prior knowledge of the area, and high resolution National Agriculture
Inventory Program (NAIP) aerial photography. Wetland ROI classes eeenprised of
riverine, freshwater pond, lake, forested / shrub wetland, and freshwater emergent in
accordance with the NWI classification scheme. Additional classésrést / trees,
vegetation, agriculture / grazing, and impervious were included to cover a broad land
cover classification scheme. The endmember selection tool within ENVI eddais
analyze all pixels contained within an ROI polygon, and extract the averagegymage
spectra from pixels that appear to have the least amount of target mixingtidiyse
this tool assumes pixels that appear to fully contain spectra for one elfass fand little
to no spectra from another class feature are pure, and the signature for thesargixel
extracted. The average reflectance signature is then computed for saalesteectively,

and saved as a spectral library for both Hyperion (Figure 17) and SPOT & (F&ju
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Figure 17. Hyperion Spectral Library Reflectance
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Figure 18. SPOT 5 Spectral Library Reflectance

As previously mentioned, derivative processing was performed on the
atmospherically corrected Hyperion dataset. The same ROI's and endnoetidxtion
process for the Hyperion reflectance dataset were used to extractdagaildh background

spectra for classification and the derivative processed, raw imageuyeHig).
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Figure 19. Raw Hyperion Derivative Spectral Library

Recalling the simple statistics gathered the output spectral profilgsxpéfor PCT
spectral sharpening performance, reflectance values per pixel hagedhath the PCT
fused dataset. Due to this, ROI's and endmember collections for this detaset
required. ROI's from the raw Hyperion dataset could not simply be used for the PCT

sharpened dataset because the raw dataset covered a large area, arfdl'sdiale R
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outside the spatial extent of the sharpened imagery. New ROI's were deMelofie

PCT fused dataset to extract a sharpened spectral library (Figure 20)

.
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Figure 20. PCT Fused Spectral Library

The derivative class profiles for both raw and PCT fused librariedyckaow how

similar the wetland classes are in terms of reflectance as opposed towsmgly
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reflectance profiles for classification. The subtle variations in slopékeypre refined
target detection for feature classification.

Hyperspectral Dimensionality Reduction

Dimensionality of hyperspectral datasets is very important to considettgrior
classification. Initially, spectral bands for Hyperion have been reduaedZ42 to 196
due to calibration issues inherent within the EO-1 Hyperion imaging systesnstilt
necessary to consider whether all the remaining bands contain pertinent iidorima
subsequent image processing tasks. Not only will processing on a full set of hyserba
be computationally intensive, but certain parts of the electromagneticispexiuld
introduce misclassification with other features. Regarding wetlandfidasgen,
consideration must be taken that all types of wetlands will likely respondenechf
parts of the electromagnetic spectrum similarly to other featurbsiite landscape,
including forests, agricultural lands, etc. It is possible, and necessarydw reliat
specific region of the spectrum these features respond within that are e\adignikst
different from other features within the landscape.

There are several ways to check and reduce hyperband dimensionality. One of
the more common methods to reduce dimensionality is Minimum Noise Fraction (MNF)
MNF is essentially a two level principal components analysis (PCA)shesteid to define
eigenvectors within the dataset. The first level PCA is used to de-coaethtescale
noise statistics from the noise covariance matrix generated for each dencestilting
noise from the given bands will have no unit variance and no correlation between bands,

otherwise known as noise whitening. The second PCA run transforms the noise whitened
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data by rescaling the noise standard deviation and utilizing the origina.infég final
result of this transformation is a series of MNF statistics and eigenpiaiise

Eigenvalues are defined as the change in magnitude of a mean vector that has no
directional change under a given linear transformation (Strang, 2005). Initial
dimensionality reduction was performed using the MNF process. MNF was run on the
Hyperion dataset as an initial test for dimensionality reduction. Output etiers/e
indicated too many bands were needed to be removed. This indicated that MNF alone
was not the best method for hyperband reduction.

The BandMax algorithm is a more recent approach to reduce hyperband
dimensionality available in the ENVI software package. BandMax analyzettarget
spectral profiles against all other input background spectral profildalaeai The result
from this algorithm is a subset list of bands that best detect the input target phéter
running this for all input targets, all significant bands are merged to one file intorder
subset the hyperbands to only necessary bands for target classificatientuafing
BandMax on the Hyperion reflectance data, the dimensionality was reduced by 90 bands
leaving a total of 106 potential bands for processing. This helps reduce computational
effort, while preserving a large amount of spectral information for detaitgdtt

detection.

Classification
The Normalized Difference Vegetation Index (NDVI) was initialiy on all

three imagery datasets (SPOT 5, Raw Hyperion, and PCT Fused) tornesspsriating
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healthy vegetation from non-vegetated areas within the imagery. B2Mommonly
used and simple numerical remote sensing indicator for assessing the lawegof |
vegetation from multispectral imagery datasets. NDVI is processedliemtio of the
difference between the near-infrared and red bands, and the sum of thdraezd-and

red bands (Equation 3).

_ NIR-RED

NDVI =
NIR + RED

Equation 3. Normalized Difference Vegetation Index

The rationale behind the functionality of this equation is that living green plants
highly absorb incoming, visible, solar radiation (Blue, Green, and Red) for use during
photosynthesis. The cellular structures of the leaves from living plantsotegitett
radiation in the near infrared part of the spectrum more readily as wellvégmtated
features will tend to reflect poorly in the NIR wavelengths when comparedltbye
vegetation. The higher reflectance of NIR wavelengths with healthy viegetall yield
resulting output values closer to 1. Soils tend to reflect in the red and somewhatrhigher
NIR wavelengths, but not as high as vegetation. Other non-vegetated areas such a
impervious surfaces, water bodies, and clouds tend to be on the lower end of the positive
values and into the negative values. Inspection of resulting NDVI files wasmerd to
determine the appropriate thresholds for vegetation and non-vegetation @xtfaigjure

21). NDVI output was then used as an analysis mask, thus reducing the probability of
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misclassification by certain classes (ex. forested wetlamais) dfgorithms which may
respond to large amplitude changes or trends as opposed to subtle features which are
typical of vegetation signatures. For example, by using the resultglHeoNDVI

threshold to mask out non-vegetation pixels, the possibility to misclassify forel pi

over impervious features is effectively reduced.

Miles

Figure 21. SPOT 5 NDVI Vegetation / Non-Vegetation Threshold
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The hyperspectral and multispectral methodology used for wetland and landscape
classification employed two separate algorithms commonly used in hypeatpaage
analysis. This methodology was used for raw Hyperion, PCT Fused, and SPOT 5
datasets. With both algorithms, each target feature was classifiednddagg. The
Matched Filter (MF) algorithm was first run on each individual landsckgss.c This
approach rapidly detects features in the imagery with very similar Spgectperties
found in the spectral library’s associated feature. These similargdsased on the
location of spectral curve peaks and valleys between the pixel signatures and
corresponding library signatures. The higher the MF response, the closer thieralgor
matches pixel spectra to reference spectra. This algorithm has thectetalever-
classify because slope of the spectral curve is not necessarily cedsmay peak
magnitudes and their location along the electromagnetic spectrum.

The Spectral Angle Mapper (SAM) algorithm was run after all MFsdiaations
were complete. SAM is a fairly more complex classifier than the gérighm in that it
considers both the occurrence of spectral profile peak magnitudes, but alepé¢hef sl
these curves as well. This is performed by converting the reflectance t@hectors
and calculating the vector angle between pixel spectra and referelmneraber library

spectra (Figure 22).
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Band |

“dark point” Band J

Figure 22. SAM Conceptual Reference (ITT Visual Information Soluti»®86)

Smaller angles between pixel and reference spectra produce lowereéSpdhse values.
Different from MF outputs, SAM outputs with lower response values are corgsidere
good detections.

The final classification step used was using band math to perform the rigtio of
to SAM. This ratio “suppresses false positives that may be present in oné&hatgor
“but not the other, while enhancing true positives.” (ITT Visual Information Boisit
2006) For example, a pixel representing riverine features may have a Rigespbnse,
while the SAM response is very low. In this case, a high MF and low SAM response
indicates this pixel will map as the riverine wetlands class. In thimsoea high MF

response value divided by a low SAM response value results in output resporse pixel
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that are more likely to be good detections. Conversely, if there is a high MF response f
a false positive detection on riverine wetland features, while the SAM resgoas not

map the pixel as riverine wetland, the division between the two results supphesse

false response from the MF algorithm (Figure 23). To further reduce errors
classification, the NDVI product was used to mask out pixels that could introdsee fal
positive classifications. Regarding riverine wetlands, for example, Hithheegetation
class extracted from the NDVI product was used to mask / remove pixels teatate

identified as non-vegetated.

Miles

Figure 23. Raw Hyperion Riverine MF Divided by SAM Result
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Histogram stretching, similar to that of the NDVI approach, was negdassar
extract the appropriate pixels for the individual class ratio products. Threshblsisna
began by reviewing the output ratio product histograms for the location along the normal

curve where the slope is negative and beginning to level out near zero (Figure 24).

Input Histogram

.
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-6.61

Figure 24. Raw Hyperion Riverine MF Divided by SAM Histogram

The further the threshold is set in the positive direction along the x-axis, the more
confidence class representation is correct. However, this will also réauasmbunt of
pixels classified for this class, thus increasing the possibility foreeof omission.
Conversely, the further the threshold is set towards the negative direction along the x
axis, the more pixels are included. Intuitively, this increases errors ohission from

over classification. After sliding the threshold along the histogram towamnron
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appropriate cutoff locations, the ratio pixels were rendered as standalosetsi&daland

cover dataset merging (Figure 25).

o eeesw— e |\jles

Figure 25. Raw Hyperion Riverine MF Divided by SAM Histogram ThresholdIRes

After thresholds were determined and rendered, post processing was pertormed t
clean the individual files by the clump and sieve process in ENVI. Clumpingnstas f
performed to fill gaps between nearby pixels based on a 3 by 3 kernel. Anymese o
than a 3 by 3 kernel filled far too many gaps or far too few gaps betwees pixel

respectively. The sieve process was then performed to remove extranetsuthpixe
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give the output class datasets a salt and pepper appearance. Similar to clamp, sie
utilizes a kernel pass to search through each pixel within the datasets. A 2rhgl2 ke
was used while sieving to reduce only truly speckled classified pixelsenlegels

would have reduced data that was unnecessary, and introduce further errors ohomissi
Finally, all individual wetland and background class datasets were merged imjtea s

land cover dataset for each of the three imagery sources (Figure 26).

Hyperion Landscape SPOT 5 Landscape PCT Fused Landscape

I N a0 O |\jles

Figure 26. Hyperion, PCT Fused, and SPOT 5 Land Cover
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Metrics

Patterns and processes within landscapes need to be quantified in order to fully
understand how the landscape is behaving. The natural heterogeneity of a healthy
wetland displays the importance of quantifying the pattern of such habitats. ifndodel
how these habitats change over time, or determining the difference in heggypgen
between urban and rural wetlands will directly display how the habitatarastoning
differently. To do this, there is a multitude of statistical analysis technayadisble,
some of which may be found within different software packages. Furthermoee, thes
statistics were also used to describe not only how detailed spectral intormviti
improve classification results, but also how spatial resolution (grain sieejlgimpacts
the results of landscape metrics. To assist in the execution of mulgvstasistical
analysis, a multivariate statistical software package developédt:yriversity of
Massachusetts Landscape Ecology Lab, entitted FRAGSTATS, was usedytrea
classified results.

Prior to loading the classified results into FRAGSTATS, the classifiectyp
results were resampled to 10m resolution, so all three datasets haveatenpixel
size. All classified imagery datasets were subset to the same boundagytiye/same
number of rows and columns for statistical analysis of 1787 and 1064 respectively.
Regarding metrics calculations with FRAGSTATS, all NULL valueseweclassified to

0 for each of the three classification output files. The result of these natiwedisteps
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ensure that output metrics may be directly compared for landscape clstiesters
results from different imagery properties.

The search window used in FRAGSTATS may be set to either a four- or eight-
neighbor patch rules. The four-neighbor rule simply reviews class valaashat
adjacent pixel to determine the number of patch types classified within Hsetjamne
on top, bottom, left, and right only. The eight-rule will also search diagonally atjace

cells to determine patch numbers within the dataset (Figure 27).

Four-neighbor rule @ Eight-neighbor rule
(5 patches) (2 patches)

Figure 27. Four-neighbor and eight-neighbor Patch Differences (Turaler 2001)

FRAGSTATS is capable of running a tremendous amount of statistics on a
landscape dataset. The three main scales for metric calculations acapend$ass, and
patch. Patch metrics alone were not used in this analysis, however do play alede in ¢
and landscape calculations. Class metrics are used to describe patterosessbprthat

exist within each specified class of the datasets, while landscapesneridcto describe
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the spatial relationship or dispersion of all classes across the entireéSaraa
redundancies exist between metrics at all scales, and others may hav@detmice
given what the landscape research priority may be. Class and landscape caatbe
broken down even further to describe what patterns and processes the research is
interested in. A set of Area/Density/Edge metrics were catmlifatr both class and
landscape scales, while a set of diversity metrics were calcutatiohtiscape scale
only. FRAGSTATS outputs numerical values as indexes, percentages, or in units of
hectares.

Class metrics used for analysis of Area/Density/Edge calculatiohsled Total
Class Area, Percentage of Landscape, Number of Patches, and LargjesbdRax.
Class area describes landscape composition in terms of the quantity in which the
landscape is comprised of a particular class per hectare. As claappmeaches zero

for a particular class, this class is more rarely found within the landdeégpation 4).

n

CA= Z a; (10,%300

j=1

CA = Class Area
aj = area () of patch ij

Equation 4. Total Class Area with units of Hectares (McGarigal, K.,&0fl2)

Percentage of Landscape was used to describe the proportion of which the

landscape is comprised of a particular patch type in percent. The maindimdagathis
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calculation while using FRAGSTATS is that it considers all pixels wighclassified

dataset, including any background or pixels with no data associated with them. This was
easily avoidable by ensuring classified datasets used for metricH bellsavith no data
removed prior to processing. As percent of landscape approaches zero fouuéapartic

class, this class is considered rarer within the landscape (Equation 5)

n
R
j=1

PLAND =P, =
A

(100

PLAND = Percent of Landscape

P, = proportion of the landscape occupied by patch type (class) i
aj = area () of patch ij

A = total landscape area

Equation 5. Percent of Landscape (McGarigal, K. et al., 2002)

Landscape metrics used for analysis of Area/Density/Edge caaglatcluded
Total Area, Number of Patches, and Largest Patch Index. Total aneslas & class
area calculations, but differs in that this calculation reports the totakatent of the
landscape being studied rather than the area comprised of a certain ¢iastheit
landscape. Alone, total area does not describe any importance on pattern or guantity
classes. The necessity of this calculation is that it was commonly usesiNvgequent

metrics calculations (Equation 6).
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1
A=Al0000

A = total landscape area fn

Equation 6. Total Area with units of Hectares (McGarigal, K. et al., 2002)

Number of patches was used to provide a measure of fragmentation within class
and landscape metrics. The main limitation to this metric is that it is aftes hot very
usable by itself, and generally needs to be accompanied by a varigtgiohtrics to
extract truly meaningful information. This was calculated for both clastaaddcape
metrics, as they each provided slightly different information. The number of pathe
the class scale represents the total number within a landscape per luil@sat the
landscape scale this is simply a total number of patches present regafrdlass. Area
calculations also allow the number of patches metric to provide the same indormat
from other metrics including patch density and mean patch size regardjngefraation
of the landscape. Because the eight-neighbor rule was used while calauleitiicg
reduces the overall number of patches in the landscape (see Figure 27 foregferenc
providing a more realistic view on landscape fragmentation.

The largest patch index was used for both class and landscape metrics as well.
This metric is reported the percentage cover of the largest patch founml egth class
(Equation 7) or within the full landscape (Equation 8) for the study area. The result f

this percentage calculation measures a level of dominance for a givenithasshe
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landscape. If the largest patch found has a relatively low percent covatiaigethe
landscape, then the result indicates a low level of dominance because thteplaicie
size is relatively small in itself. This also indicates the possibility lnéterogeneous

landscape.

n
max(aij)
LPI =— = (10
A (100
aj = area (M) of patch ij
A = total landscape area

Equation 7. Class Level Largest Patch Index Percent (McGarigal, K. 20@R)

maxia;;
Lpy = M6y

aj = area () of patch ij
A = total landscape area

Equation 8. Landscape Level Largest Patch Index Percent (McGarigahlK.2002)

Additional metrics were used to describe the contagion and diversity of the
classified images at the landscape scale. These metrics included Sh&nvensisy
Index, Shannon’s Evenness Index, and Contagion. Patch richness was not considered in

this study because it is very similar to the number of patches metric ihithegported

64



as a total number of patches. The main difference between patch richness andofiumber
patches is that patch richness represents the number of patch types found within the
classified landscape. At the landscape scale, the number of patcheslesatrices the
total number of patches found regardless of class. The main limitation of patutssc
is that does not describe the quantity of patch types, but rather provides a veey simpl
approach to describe landscape composition.

Shannon’s Diversity Index (SHDI) is an approach at describing how diverse a
landscape is with respect to the number of classes present. This may alst & ais
way describe how evenly distributed landscape classes are amongst goandsca

(Equation 9).

SHDI =-3 (P +InP)

i=1

P, = proportion of the landscape occupied by patch type (class) i
m = number of patch types (classes) present in the landscape

Equation 9. Shannon’s Diversity Index (McGarigal, K. et al., 2002)

“SHDI equals minus the sum, across all patch types, of the proportional abundance of
each patch type multiplied by that proportion.”(McGarigal, K., et al., 2002) The mumbe
of patches present in the landscape directly proportional to patch richness; as patch
richness increases diversity increases. For example, if there is onlgtohgpesent in

an entire landscape,@n= 0 giving SHDI the value of 0 and describing the environment
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as homogeneous. The main limitation from SHDI is that the index value is Isnitles
This leaves room for debate on how a resulting index value is interpreted, i.e. how to
determine what the high and low threshold is when describing distribution.

Shannon’s Evenness Index (SHEI) is an approach at describing how evenly
distributed all patch types are across a landscape, with respect to the nuoibesesf
present. SHEI has a limit of 1, which enables less arbitrary conclusion on the daminanc
of any patch type within the landscape. The equation for SHEI is very simiteat tof t

SHDI; however, it is normalized by the number of patch types (Equation 10).

NG

SHE| ==
Inm

P, = proportion of the landscape occupied by patch type (class) i
m = number of patch types (classes) present in the landscape

Equation 10. Shannon’s Evenness Index (McGarigal, K. et al., 2002)

When the index result is closer to 1, this suggests maximum evenness within the
landscape between patch types present. Conversely, lower results itdittte t
landscape is heavily dominated by a patch type.

Contagion is a calculation that aims at describing how well like patches ar
dispersed throughout the landscape. Essentially, this calculation attemptstoene
how aggregated, or clumped, the classes present within a landscape arem@diviee

Contagion is affected primarily by dispersion and interspersion of patch wifien a
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landscape, and may therefore lead to inferences on fragmentation or habita¢heityog

(Equation 11).

ii (P|) mgik *|In P mgik
= Z Jix Z Jik
k=1 k=1

CONTAG =1+ = - = ((100)
2Inm

P, = proportion of the landscape occupied by patch type (class) i
gk = number of adjacencies between pixels of patch types i and k
m = number of patch types (classes) present in landscape

Equation 11. Contagion (McGarigal, K. et al., 2002)

Results from the contagion expression are multiplied by 100 to retrieve the pevetnt

of aggregation within the landscape. When values are near 100, the index calculation
indicates that the patch types are very well aggregated, leading to vergttdwiypes
existing within the landscape. Conversely, a contagion value close to O indicates the
landscape is very disaggregated, and possibly suggests a very fragmenteky evagar

pixel is representative of different patch types with few adjacencies.

67



CHAPTER 5

RESULTS

The spectral profile for the Hyperion, SPOT, and PCT fused data results were
compared with each other to describe the overall outcome from the respectivegesult
land cover classifications. Classification totals and accuracy asseisswere all
performed for each dataset. Classification accuracy statistics¢daver totals, and
visual quality were the criteria used to determine the overall successfor e
classification method performed in this study. Nine different land cover slasse
used to build a generalized landscape for the study area, with a focus on weisnd ty
and other generalized predominant landscape characteristics (imperviest/ fages).

As expected, the major sources of error reside in the Freshwater EmerdgianioVaad
Forested / Shrub Wetland classes between each other and various other landssege cla
In all three datasets, the Freshwater Emergent Wetland class hadtime#olvest user
accuracy total; the SPOT 5 dataset had two classes with much lowacoasercy

results, while this was the least accurate class for both Hyperion andubtiTdatasets.
Overall, however, when considering the producer accuracy for the SPOT 5 &eshw
Emergent Wetland class, it is clear that this class is indeed thedeasita. Final

analysis shows that the PCT fused dataset outperformed the results from pleadede
SPOT 5 and Hyperion datasets, and will be explained in greater detail within the

following sections.
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Hyperion Accuracy

The detailed spectral profiles developed from the Hyperion dataset allowed f
very slight changes along the electromagnetic spectrum to be detectederiVagve
processing capable with hyperspectral datasets allowed more detidadiex of
features, because of the output dataset’s ability to exemplify regmmg thle spectrum
where subtle slope changes exist; this was particularly useful for the Basification
method. This is directly apparent in the misclassification between thd Fores class
and Forested / Shrub wetland class. For each class, 50 total randomly genenéded poi
were assigned to be verified for accuracy, giving a total of 450 points for the stntly
site. The overall accuracy for the Hyperion landscape classification proas35%.
While this overall accuracy is generally low for a production result, ghssli relatively
good considering the amount of spectral overlap that tends to exist between mo& of thes
classes. Table 4 shows the individual class accuracies for the resalsaiftagtion,

which also equates to the “User’s Accuracy” for the dataset.
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Table 4

Hyperion 30m Class Accuracy

Class Classified (Correct)  Class Accuracy
Agriculture / Grazing 45 90%

Forest / Trees 43 86%

Forested / Shrub Wetland 40 80%
Freshwater Emergent Wetland 35 70%
Freshwater Pond 46 92%
Impervious 42 84%

Lake 44 88%

Riverine 47 94%

Vegetation 42 84%

The best performing classes based on user accuracy include AgricultazngGr
Freshwater Pond, Lake, Impervious, and Riverine classes. Though the Hoeest /
class was classified with an 86% user accuracy suggesting rglaieal results, the
producer accuracy only resulted with a 67% success. The Forest / as=sekad
particular difficulty in separating Forested / Shrub Wetlands and Fedésh&mergent
Wetlands; the two classes expected to cause most difficulty due to speettap

between adjacent classes. Commission errors of 14% are moderate, duhatetyr
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omission errors of 33% are far too high when considering overall performance of the

Forest / Trees classification. Forested / Shrub wetlands performed regsoalhblith a

producer accuracy of 87%, user accuracy of 80%, and omission / commission errors of

13% and 20% respectively. Table 5 lists all resulting accuracies and omission /

commission errors associated with each individual class.

Table 5

Hyperion 30m Producer / User Accuracy

Class Producer User Accuracy Omission Commission
Accuracy Error Error

Agriculture / 94% 90% 6% 10%

Grazing

Forest/ Trees 67% 86% 33% 14%

Forested / Shrub 87% 80% 13% 20%

Wetland

Freshwater 80% 70% 20% 30%

Emergent

Wetland

Freshwater Pond 92% 92% 8% 8%

Impervious 82% 84% 18% 16%

Lake 100% 88% 0% 12%

Riverine 92% 94% 8% 6%

Vegetation 76% 84% 24% 16%
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SPOT 5 Accuracy

Despite higher spatial resolution, the spectral profiles from the SPOT 5
multispectral dataset were greatly lacking in detail along the eteatynetic spectrum.
This made it relatively difficult for the classification process to detdges between
spectrally similar features. This lack of detail in electromagnetjmorese also
disallowed the ability to perform derivative processing for minor detectibsi®pe
change along the spectral profile. For each class, 50 total randomlgtgen@oints
were assigned to be verified for accuracy, giving a total of 450 points for the stntly
site. The overall accuracy for the SPOT 5 landscape classification pmas80%.
Unlike the Hyperion dataset overall accuracy result, this is very low when congide
future applications the dataset may be used for. However, classes wi#pdesal
overlap or that are easily identifiable did perform better; thus, area asrdstdkistical
calculations may be more reliable for such classes as Riverine andivogerTable 6

shows the individual class accuracies for the resultant classification
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Table 6

SPOT 5 10m Class Accuracy

Class Classified (Correct)  Class Accuracy
Agriculture / Grazing 49 98%
Forest/ Trees 43 86%
Forested / Shrub Wetland 37 74%
Freshwater Emergent Wetland 37 74%
Freshwater Pond 32 64%
Impervious 47 94%
Lake 24 48%
Riverine 48 96%
Vegetation 42 84%

The best performing classes based on the user accuracy include Agriculture /
Grazing, Impervious, and Riverine. Much like the Hyperion dataset, the Forests/
class resulting in 86% user accuracy, but unfortunately the producer accuracy only
resulted with a 74% success. Also consistent with the Hyperion results, the onapar s
of confusion for the Forest / Trees class was within the Forested / Shrub Wetland and
Freshwater Emergent Wetland. That being said, the Forested / Shrub Wetland class
contributed far more to the inaccuracy of the class because of lackingakpect

information that is not available within multispectral datasets. The leastade classes
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include Lake, and Freshwater Pond. These classes were commonly misdlagsif
additional water classes (either between themselves or with the Rivaisse ahd with

the Impervious class. Very dark features such as asphalt parking loteréaftops

have very similar reflectance, or lack thereof, with water features iFhaused by

similar radiation absorption with these darker objects to that of water, unlike other
pavement which reflects much more wavelength energy due to higher albedo rate
While the Impervious class had a very good user accuracy of 94%, the produceryaccura
is very low. The over-classification of the Impervious class allowed for higdesr
accuracy results, while contributing very negatively by misclassjfgixels that belong

to additional classes. Forested / Shrub Wetland and Freshwater Emergandwetbrs

of omission and commission were very similar to that found in the Hyperion landscape
classification despite the lower producer and user accuracy total. Tadtke allli

resulting accuracies and omission / commission errors associated viatim@aclual

class.
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Table 7

SPOT 5 10m Producer / User Accuracy

Class Producer User Accuracy Omission Commission
Accuracy Error Error

Agriculture / 94% 98% 6% 2%

Grazing

Forest/ Trees 74% 86% 26% 14%

Forested / Shrub 90% 74% 10% 26%

Wetland

Freshwater 86% 74% 14% 26%

Emergent

Wetland

Freshwater Pond 97% 64% 3% 36%

Impervious 48% 94% 52% 6%

Lake 92% 48% 8% 52%

Riverine 92% 96% 8% 4%

Vegetation 89% 84% 11% 16%

PCT Fused (Sharpened) Accuracy

Combining the higher spatial resolution of the SPOT 5 dataset with the higher
spectral resolution of the Hyperion dataset provided the ability to spatiadite lteatures
with greater detail in feature boundaries, while spectrally separatgrés more readily
along their feature space boundaries. It was not assumed that there would be a one to one

relationship between pixels after fusion occurred, but rather, enhanced sphtial a
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spectral detail. Because there are far more pixels in the higher resoluéipit idat
known that the broad spectral information, in many cases, was interpolated to time highe
spatial resolution pixels in the resultant dataset. Even with the understanditigsthat
may not be considered a “purely” hyperspectral dataset, the overall penfoerof the
classifications exceeded the accuracy results of the independent high sibsiadetral
resolution datasets respectively.

For each class, 50 total randomly generated points were assigned to bd farifi
accuracy, giving a total of 450 points for the entire study site. The overalbagdar
the PCT fused landscape classification process was 88%. This accuabeyeatplifies
the PCT fused datasets capability to take advantage of higher resolutiefigixrebne
source coupled with greater spectral detail from another. While the overall@csura
not as desirable as something in the low 90% range, this is still good considering the
amount of spectral overlap that tends to exist between most of these classes.
Additionally, changes to post processing steps, minor refinement of threshold evaluati
or even slight changes to the spectral library could jump this to well withirathige
requiring far less effort than what is needed for the other two dataset® 8Slstidws the

individual class accuracies for the resultant classification.
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Table 8

PCT Fused (Sharpened) 10m Hyper spectral Class Accuracy

Class Classified (Correct)  Class Accuracy
Agriculture / Grazing 47 94%

Forest/ Trees 46 92%

Forested / Shrub Wetland 42 84%
Freshwater Emergent Wetland 39 78%
Freshwater Pond 41 82%
Impervious 49 98%

Lake 40 80%

Riverine 48 96%

Vegetation 46 92%

The best performing classes for the PCT fused dataset include Agri¢ulture
Grazing, Impervious, Riverine, and Vegetation. It is notable that the Fonesty dlass
improved tremendously from the other two datasets. Both the user and producer
accuracies increased to be at 92% and 78% respectively. The Forested / Stant We
class user accuracy increased as well to 84%. The producer accuracy for stexdFore
Shrub Wetland increased from the Hyperion dataset, and decreased from th& SPOT
dataset to 89%. These totals describe how the fusion process worked, and what

contributions were made to the PCT fused dataset results. Ultimateyghiee spectral
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resolution allowed the dataset to more readily extract forested / shrulegeaitir higher
water contents, while the spatial resolution from the SPOT 5 dataset helpedddhefi
class’ spatial boundaries. However, the spectral overlap between the/ Hoeest and
Forested / Shrub Wetland classes still existed, with Forest / Treasnegnas the
primary source of confusion for the Forested / Shrub Wetland class.

The Impervious class suffered a bit in overall classification which may have
occurred during the interpolation process when providing higher resolution pixels higher
spectral resolution feature space. The Freshwater Emergent Wetlasderhained the
most problematic class, however, misclassifications were spread matg evether
classes unlike the SPOT 5 dataset which had most misclassifications foe¢heShrub
Wetland class within the Forested / Shrub Wetland class (similar to theiétypesults).
Table 9 lists all resulting accuracies and omission / commission ersoEated with

each individual class.
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Table 9

PCT Fused 10m Hyperspectral Producer / User Accuracy

Class Producer User Accuracy Omission Commission
Accuracy Error Error

Agriculture / 96% 94% 4% 6%

Grazing

Forest/ Trees 78% 92% 22% 8%

Forested / Shrub 89% 84% 11% 16%

Wetland

Freshwater 83% 78% 17% 22%

Emergent

Wetland

Freshwater Pond 93% 82% 7% 18%

Impervious 84% 98% 16% 2%

Lake 100% 80% 0% 20%

Riverine 87% 96% 13% 4%

Vegetation 84% 92% 16% 8%

Metrics

Landscape and Class metrics were run to describe the overall “shapesuidhe

area land cover results. In an attempt to maintain consistency between dta Sfim

Hyperion results were resampled to 10m spatial resolution. The overall dadsrahe

Hyperion and SPOT 5 results were very comparable at 11,197.2 Ha and 11,197.0 Ha

respectively. A slight difference between these two datasets and theis&dTdataset
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does exist, with the PCT fused overall class area reported as 11,191.5 Ha. This
difference is a result of the slightly less than 1 to 1 relationship betwebigtiex
resolution SPOT 5 imagery and the lower resolution Hyperion imagery. Fuodfesr
each individual class area was analyzed between each dataset toed#istnibutions of

the datasets (Table 10 and Figure 28).
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Table 10

Class Area Distribution

Class Hyperion Hyperion SPOT5 SPOT 5 Fused Fused
Area (Ha) % Cover Area(Ha) % Cover Area(Ha) % Cover

Agriculture / 276.4 2.5% 567.9 5.1% 577.6 5.2%

Grazing

Forest / 2,332.9 20.8% 1,682.9 15.0% 1,772.1 15.8%

Trees

Forested / 481.6 4.3% 614.9 5.5% 458.0 4.1%

Shrub

Wetland

Freshwater 19.7 0.2% 44.0 0.4% 25.8 0.2%

Emergent

Wetland

Freshwater 248.6 2.2% 39.5 0.4% 401.2 3.6%

Pond

Impervious 4,470.4 39.9% 4,167.7 37.2% 4,831.4 43.2%

Lake 15 0.0% 41.3 0.4% 2.6 0.0%

Riverine 206.5 1.8% 214.9 1.9% 234.1 2.1%

Vegetation 3,159.7 28.2% 3,823.9 34.2% 2,888.5 25.8%
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Class Area Distribution
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Figure 28. Class Area Distribution per Dataset

Individual class areas were reported for each dataset as well. Theddyperi
SPOT 5, and PCT fused classified results all showed that the predominant thass i

study area is Impervious, which is as expected considering the urban nah&stofiy

area. The Riverine class was comparable between the Hyperion, SPOT 5, and PCT

fused datasets covering ~2% of each landscape. It is also clear thatrepaligion was
the key element to successful classification of the Riverine Class. &dl tlatasets had

highly accurate results, but the 30m Hyperion dataset was unable to classifyfsbheme

narrower stream features running north and south in the study area. While th& SPOT
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dataset appears to have slightly cleaner edges along the Riversbatlaslaries, the
PCT fused dataset exceeded the SPOT 5 results due to having the advantage of both high

spatial resolution and detailed spectral information (Figure 29).

Figure 29. Riverine Classification Comparison

The Hyperion and PCT fused datasets are in agreement that “Lake” issthe lea
dominant class in the study area, reporting 1.5 Ha and 2.6 Ha (0.0%) respectively, while
over-classification within the SPOT 5 dataset reported lakes as colgmfsil.3 Ha
and 0.4% landscape coverage. Similar results existed within the FreshwatelaBsnd ¢
as well. This suggests that enhanced spectral information within a daiseset e
classification confusion between spectrally overlapping features suchkgzagament

and certain water features.
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Freshwater emergent wetlands were reported to cover 248.6 Ha and 2.2%
landscape coverage for the Hyperion dataset, while 401.2 Ha and 3.6% landscape
coverage was reported for the PCT fused dataset. The SPOT 5 datasetsiflgdatla
39.5 Ha and 0.4% landscape coverage for freshwater emergent wetlands. While the
Hyperion and PCT fused results have relatively high levels of commissms err
associated with them, these results are more likely to exist in the regda kdhw lying
banks off major rivers as well as extensive floodplain within the region.

The Forest / Tree and Forested / Shrub Wetlands classes were major apstribut
to classification errors between each other, and with many other cla$seBorested /
Shrub Wetland class was in agreement between the Hyperion and PCT fusetsdata
with reports of 481.6 Ha (4.3% coverage) and 458 Ha (4.1%) respectively. The SPOT 5
dataset reported 614.9 Ha, or 5.5% landscape coverage and is accompanied by the highes
error or commission between all three datasets. The Forest / Treefoclhe Hyperion
dataset shows far more coverage than the other datasets, with 2,332.9 Ha or 20.8%. The
SPOT 5 and PCT fused datasets were much closer in agreement with reports of 1,682.9
Ha (15%) and 1,772.1 (15.8%) respectively. The PCT fused dataset accuracy for the
Forest / Trees class far exceeds that of the other classes, egpegeitling commission
errors of only 8%. Ultimately, it is clear that spectral information ltetpierentiate the
Forest / Trees class from other classes, while enhanced spatial tnforassisted with
defining feature boundaries, thus reducing the commission error rate.

Measures for landscape heterogeneity were taken with the number opatche

patch density, and largest patch index calculations at the class and landscise met
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scales. Landscape measurements show that the Hyperion dataset contained 70,066
patches, the SPOT 5 dataset contained 114,677 patches, and the PCT fused dataset
contained 95,585 patches. The major difference between the SPOT 5 and the Hyperion
datasets is due to differing resolutions and aggregation steps during post procdssing. T
slightly less exaggerated change from the SPOT 5 and PCT fused datasetsult of

higher resolution coupled with detailed spectral information. The limited apdetail

in the SPOT 5 dataset found more patches due to spectral overlap betweene&stass typ
Class boundaries were more easily classified with higher degree kgatirdimiting

the number of segregated patches within the resultant datasets, while findeng mor
patches than the 30m Hyperion dataset due to higher spatial resolution leading to more
detailed / less aggregated results. Though the number of patches metric does pot conve
the most useful information by itself due to lack of information regarding pate$ s
spatial distribution, the results from these calculations tend to suggesiettatdscapes

for each dataset tends to be relatively heterogeneous, or moderately disférse

largest patch indexes were reported as 1.56, 1.40, and 1.54 for the Hyperion, SPOT 5, and
PCT fused datasets respectively. Alone, these values do not tell us mucHev@lass
metrics describe these statistics in a much clearer manner. @kssumber of patches

and largest patch index calculations were run to describe in greater detafiéh

landscape patterns exist within the study area (Table 11).
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Table 11

Number of Patches and Largest Patch Index Distributions

Class Hyperion  Hyperion SPOT5 SPOT5 Fused Fused
Number of Largest Patch Number  Largest Number  Largest
Patches Index of Patches Patch of Patches Patch

Index Index

Agriculture 1,515 0.12 1,921 0.66 1,394 0.66

| Grazing

Forest / 20,996 0.52 38,043 0.03 29,668 0.38

Trees

Forested/ 7,354 0.05 19,290 0.00 10,598 0.01

Shrub

Wetland

Freshwater 5,816 0.00 1,898 0.00 11,429 0.00

Emergent

Wetland

Freshwater 287 0.00 1,454 0.00 405 0.00

Pond

Impervious 9,873 1.56 19,747 1.40 12,468 1.54

Lake 26 0.00 1,485 0.00 76 0.00

Riverine 713 0.15 1,229 0.15 1,256 0.15

Vegetation 23,486 0.60 29,610 1.00 28,291 0.24

At the class level, all three datasets showed that the Forest / Trees atatidege

classes had the two highest numbers of patches. However, the Hyperion datagesindic

that there are more Forest / Trees patches in the landscape than thegetaidn,

which differs from the results in the SPOT 5 and PCT fused classified tdatdsas
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difference likely exists primarily due to spatial resolution differenttesse should be

little influence from errors of omission / commission since all three hadsuarar

results from the accuracy assessment process. It is also noted that thertype
Impervious class underestimated the number of patches when considering the results
from the SPOT 5 and PCT fused datasets. Spatial resolution and lower acc@etty dir
impact the total number of segregated patches that exist for this classlyptreon

dataset (Figure 30).

Hypenon

gt
o

!-.
4is

Figure 30. Impervious Classification Comparison

Essentially, it is clear in the number of patches metrics for all thregetisthat the grain
(spatial resolution) of the datasets impact the number of patches found in thesdataset

Likewise, the SPOT 5 dataset showed far more patches for all classeshbathei
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Hyperion or PCT fused datasets except for the Lake and Freshwater Pased.clihese
classes suffered from decreased spectral information to accurgtefateedifferent

water types within the SPOT 5 classified landscape. The PCT fused adaase
benefited by higher resolution which increased the number of patches from what was
found in the Hyperion classified landscape, and higher spectral resolution which
decreased the number of patches found from what was found in the SPOT Zdlassifi
landscape; thus, indicating that the PCT fused dataset gave a befiecipezsof the

possible fragmentation within the landscape for this study area (Figure 31).
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Figure 31. Number of Patches Distribution per Dataset

At the class level, the largest patch index was used to determine the most

dominant class in the study area landscape. Unlike the number of patcheswhéthc

inferred upon the notion that the Vegetation and Forest / Trees classes made up the

majority of the landscape, the largest patch index defines which classsaagpearthe
most dominant by considering the maximum area of each patch within a class.
Essentially, if a class has more patches than any other class, but attties @ae

relatively small, it is possible that this class is still not the most daorhirkéhe largest
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patch index found that the Impervious class was the most dominant class in therjyper
SPOT 5, and PCT fused datasets with values of 1.56, 1.40, and 1.54 respectively. The
Vegetation and Forest / Trees classes still comprise of higher domindiolzer types

in the landscape, but still not as prevalent as the Agriculture / Grazirgjiatba
northeastern portion of the study area. By normalizing the number of patchiesamet
reviewing against the largest patch index, fragmentation in the landscaje rbegter

inferred upon within each class independently (Figures 32, 33, and 34).
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Figure 32. Hyperion Number of Patches and Largest Patch Index peCGhagarison
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SPOT 5: NP vs. LPI
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Figure 33. SPOT 5 Number of Patches and Largest Patch Index per ClassiSompa
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PCT Fused: NP vs. LPI
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Figure 34. PCT Fused Number of Patches and Largest Patch Index per Class

Comparison

It is also clear from the preceeding charts that spatial resolutiotlyglirepacts the
comparison between these two metrics. This is especially clear in thé/Finesess
class, the Impervious class, and the Agriculture / Grazing class. The SPQPEa
fused datasets show that the largest patch index was greater than theofyratEhes
over the lower spatial resolution Hyperion dataset for the Agriculture /rigralass.
The Hyperion and PCT fused datasets indicate that the largest patch irsdesswhan
the number of patches over the lower spectral resolution SPOT 5 dataset for the

Impervious class. The Hyperion and PCT fused datasets also indicatedradiajHer
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the largest patch index than the SPOT 5 dataset, while all three daiddetd stlargest
patch index much lower than the number of patches metric.
The correlation coefficient was calculated for the results from the tgrgeh

index, class area, and number of patches metrics using Microsoft Exceli¢Bdqugt

> (x=x)(y-Y)
S (x=%73 (y-y)?

Equation 12. Correlation Between Arrays X and Y

Corrélation(x, y) =

Correlation was computed between the pairs of the SPOT 5 — PCT fused ddtasets, t
Hyperion — PCT fused datasets, and the Hyperion - SPOT 5 datasets. Thehesults s
moderately high correlation between each pair of datasets. Regardiaggtst patch
index, the SPOT 5 — PCT fused correlation and Hyperion — SPOT 5 correlation each
totaled 0.84, while the Hyperion — PCT fused dataset correlation was highest at 0.89.
The class area showed similar results with the SPOT 5 — PCT fused antHhlyper
SPOT 5 correlations each totaling 0.97, while the Hyperion — PCT fused dataset
correlation was highest at 0.99. The number of patches metric showed identi¢sl res
with correlations for all three pairs totaling to 0.93. The very minor difference i
correlations between pairs suggest that all three datasets performadysirklowever,
the PCT fused dataset’s constant involvement with the more highly correlated pa

coupled with the best overall accuracy suggests that this was the best perftatags].
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Further calculations to test the connectivity or fragmentation of theifctals
landscapes included Contagion, Shanon’s Diversity Index, and Shannon’s Evenness
Index. In all three datasets, very similar results were found in all thtbes® metrics.
Regarding Contagion, the Hyperion, SPOT 5, and PCT fused datasets had contagion
values of 50.92%, 48.90%, and 50.42% respectively. These results indicate that the
patches within the landscapes were not extremely aggregated or diaggringestetthere
is a slight level of fragmentation found within all the classified landscagemnsn’s
Diversity Index indicated values of 1.45, 1.47, and 1.50 for each classified dataset
respectively. These values appear low, but there is no limit to what these wallges c
reach. The most diverse landscape was derived from the PCT fused datasdtbgaus
both enhance spatial and spectral characteristics of the underlyingt ddtasted the
classified patch results. Shannon’s Evenness Index is normalized by the number of
patches found in each dataset, giving an output range from 0 — 1. These results aggreed
with the contagion results suggesting a moderatlely evenly dispersed [andstan

each dataset, with values of 0.58, 0.59, and 0.59 respectively.
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CHAPTER 6

SUMMARY AND CONCLUSION

This study focused on the ability to meaningfully classify differindamet types
with similar classification schemes to that of the NWI datasets produceel i980’s by
the United States Department of Fish and Wildlife with low-cost multispectca
hyperspectral imagery. The results from this study indicate that itsgbpeoto obtain
better classification results, yielding more informative landscapeasidby fusing low
spatial resolution hyperspectral imagery with high spatial resolution pedtisl
imagery. The PCT fused imagery resulted in the best overall acafr@8%o, totaling
8% higher than the least accurate SPOT 5 dataset at 80%. While the SPOT 5 dataset
produced very good individual class results, which in some cases exceeded that of
individual class accuracies for the PCT fused dataset, the PCT fusezt deaagained
better accuracies for classes such as Freshwater Emergent Wetlast&d=o&hrub
Wetland, and open water classes. Considering that these were primary driteiss f
study, the PCT fused dataset produced the best results out of all three tests.

The classification methodology for this study was a very detailed approach on
exploiting digital image information. There are many other methodoldgé¢sdould be
employed, but highly detailed hyperspectral analysis techniques allow lityetabi
dissect digital imagery in a more intensive manner. While atmosphergctorris
generally always performed with hyperspectral analysis, it is watyalnecessary with

multispectral analysis. Performing atmospheric correction on the muttisipdataset
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converted raw digital numbers within the data to reflectance, allowing & detailed
comparison of class spectra when viewing the spectral profiles developeddismend-
members. Unlike hyperspectral datasets, derivative analysis is not pastible
multispectral data due to lacking detail in the derived dataset spegtralsies. Despite
this, other detailed hyperspectral methodology employed with the multidg&ed 5
dataset was still employed as an enhanced mapping technique. The SAM and MF
approaches are far stricter when classifying either hyper — orsprdtral imagery than
more conventional classification algorithms.

The metrics calculated in this study also indicated that the PCd dasaset
resulted in more meaningful results. Enhanced spatial and spectral resolutisn of thi
dataset allowed better segregation of spectrally similar featutteis ¥he landscape, and
better defined edges between neighboring patch types. This was cleafanasied /
Shrub Wetland class, where the Hyperion dataset appeared to have difficultidgio f
patch boundaries due to coarse spatial resolution. After fusing the high spatidgiaes
with high spectral resolution, there was a class accuracy increase ofd&odacrease in
both class area and number of patches. Based on ancillary datasets, thessesrgelt
far more accurate within this study area. Open water classes, Lakeeshtvater Pond
had far better class accuracies. It was clear that the SPOT 5 datetentty
misclassified impervious features as open water and vice versa due tol spectra
similarities. Both Hyperion and PCT fused datasets performed far betthese classes
which is noticeable with similar metrics; however, the PCT fusedetdtasl more

clearly defined edges allowing more meaningful resulting metrics.
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Classification results and metrics analysis in this study showed theelefini
advantages of using hyperspectral imagery to classify and quantify |pedgbat
contain moderate to high class heterogeneity. Furthermore, the resulthif@tudy
also indicate that spatial resolution is of the utmost importance when tryitagp$thc
landscapes that would likely contain relatively small or narrow featuriesenést; in
particular, long narrow rivers, relatively small ponds, etc. Very spbcsiatilar
features in this study, such as dense forests and forested emergent wetands,
classified with greater success when using the PCT fused hypeaspataset. These
classes were still difficult to separate due to similar composition, kermained clear
that the narrow band spacing of the hyperspectral imagery allowed thy tabiletter

distinguish between the two.

Recommendations for Further Research

The more detailed edges found for all classes derived within the PCT fused
dataset ultimately displayed that higher spectral and spatial resolutasedaare ideal
for wetland mapping. This methodology was a cost effective approach to takeaapy
of both higher spectral and spatial resolution considering these types etslarasnow
currently available at little to no cost. The EO-1 satellite is equipped withhmth t
Hyperion sensor and an additional sensor and the Advanced Land Imaging (Abl) sens
The ALI sensor’s specifications include 7 multispectral bands with 30m resglas

well as a 10m resolution panchromatic band. Effective August 5, 2009 the USGS Earth
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Resources Observation and Science (EROS) Center announced that future data acces
requests for new imagery on-board the EO-1 satellite will be processed atg®. cha

This allows the ability to obtain hyperspectral and multispectral / panahi®magery

at the same time; thus, the higher resolution panchromatic imagery willtbevexact

area as the hyperspectral imagery, as well as ensuring no landscapesdietween
datasets exist. The relationship between PCT fused hyperspectral antptie
panchromatic image captured at the same time would allow for less distorti@ebetw

the datasets and could create a better product than what was resultahtSstomty.

With these datasets no longer costing thousands of dollars to purchase, cities,
metros, counties, or even states could be mapped with this type of imagery without
looming extensive costs. While this would be an immense amount of processing and
time commitment, ENVI IDL programming could easily be performed tohbauast of
the preprocessing, and post processing steps involved. It is not uncommon for
hyperspectral analysis projects to require tens to hundreds of flight lines fro
intrinsically large study sites with higher spatial resolution. Utiizihe methods
performed in this study would reduce the number scan lines necessary to cover a larg
study area, while only sacrificing a small amount of spatial resolutiondesral
hyperspectral imagery that is obtained for tens to hundreds of thousands of dollars.

Additionally, time series research for larger study areas may ba'ped with
this study’s methodology. Such research could indicate landscape change atéh gre
regards to wetland areas, endangered species, etc. Furthermore, infeoaildde

made about how local population growth, increasing upland impervious area, storm water
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runoff, and other urban expansion activities are affecting the wetlands surrothreiing

as well as the migration patterns of the fish and wildlife that utilizeethecas as their
natural habitats. Invasive species could be mapped within urban wetlands, and
correlations between this and land use change could be tested. Additionally, coupling
such research with urban heat island analysis could allow inferences on how the
landscape and wetlands within an urban area are affecting or beingaftigahcreasing

temperatures.
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APPENDIX A

Accuracy Assessment Tables
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_ISum:o: (30m)

Reference

Classification Agriculture / Grazing |Forest / Trees _uoqm,w,wmm__%:wzcc _mB”@mM”E@Mﬁ_m:a _uﬂm_w””wﬁmq Impenvious Lake Riverine Vegetation Total |Class Accuracy
Agriculture / Grazing 45 1 2 2 50 90%
Forest / Trees 43 4 1 2 50 86%
Forested / Shrub Wetland 10 40 50 80%
Freshwater Emergent Wetland 1 5 1 35 2 6 50 70%
Freshwater Pond 1 46 1 2 50 92%
Impenvious 1 3 42 2 2 50 84%
Lake 6 44 50 88%
Riverine 1 2 a7 50 94%
Vegetation 2 3 1 1 1 42 50 84%

48 63 46 44 50 50 44 51 54 450 85%
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SPOT 5 Reference
e ) . Forested / Shrub Freshwater Freshwater . o .

Classification Agriculture / Grazing | Forest / Trees Wetland Emergent Wetland Pond Impenious Lake Riverine Vegetation Total |Class Accuracy
Agriculture / Grazing 49 1 50 98%
Forest / Trees 43 2 3 2 50 86%
Forested / Shrub Wetland 10 37 1 2 50 74%
Freshwater Emergent Wetland 3 37 9 1 50 74%
Freshwater Pond 1 32 16 1 50 64%
Impenious 2 47 1 50 94%
Lake 1 21 24 2 2 50 48%
Riverine 2 48 50 96%
Vegetation 1 2 2 3 42 50 84%

52 58 41 43 33 98 26 52 47 450 80%
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Principal Components

X Reference
Transformation - Fused
- . : Forested / Shrub Freshwater Freshwater ) . )

Classification Agriculture / Grazing | Forest / Trees Wetland Emergent Wetland Pond Impenious Lake Riverine Vegetation Total |Class Accuracy
Agriculture / Grazing 47 3 50 94%
Forest / Trees 46 1 2 1 50 92%
Forested / Shrub Wetland 6 42 1 1 50 84%
Freshwater Emergent Wetland 1 2 3 39 5 50 78%
Freshwater Pond 1 41 6 2 50 82%
Impenvious 1 49 50 98%
Lake 1 2 40 7 50 80%
Riverine 1 1 48 50 96%
Vegetation 1 2 1 46 50 92%

49 56 47 47 44 58 40 55 54 450 88%
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APPENDIX B

Land Cover Classification Maps
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Hyperion Land Cover Map
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PCT Fused Land Cover Map
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