

Enhancing Collaboration by Providing a Shared Environment
in wEMBOSS

A Thesis

Presented to
The Faculty of Computer Science Department

University of Missouri-Columbia

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

By
Prathyusha Muddasani

Dr. Gordon K. Springer, Thesis Supervisor

July 2011

The undersigned, appointed by the Dean of the Graduate School, have examined the project
entitled

Enhancing Collaboration by Providing a Shared Environment in wEMBOSS

Presented by

Prathyusha Muddasani

A candidate for the degree of

Master of Science

And hereby certify that in their opinion it is worthy of acceptance.

Dr. Gordon K. Springer

Dr. William Harrison

--
Dr. Jianlin Cheng

ii

 Acknowledgements

 All praise to the Almighty God who has given me knowledge, patience, and perseverance

to finish my Master’s Thesis.

 Apart from the efforts of me, the success of this project depends largely on the

encouragement and guidelines of many others. I take this opportunity to express my gratitude to

the people who have been instrumental in the successful completion of this project.

 I would like to convey my greatest appreciation to my advisor, Dr. Gordon Springer. I

can’t say thank you enough for his tremendous support and help. I feel motivated and

encouraged every time I attend his meeting. Without his encouragement and guidance this

project would not have materialized.

 Special thanks go to Dr. William Harrison and Dr. Jianlin Cheng for the invaluable help

and suggestions. I appreciate their time and efforts in serving my thesis committee.

 Most of all, I am greatly indebted to my parents, Srinath Reddy and Padmaja Reddy, for

their blessings, encouragement and support at every step of my life. If not for the inspiration

given by them I would not have gained success. Words are inadequate in offering thanks to my

husband, Bharathwajan Narayanan, for his tolerance levels in reviewing my drafts though not his

subject.

 Finally, yet importantly, I would like to express my heartfelt thanks to my sister, my

cousins and my friends for their help and wishes for the successful completion of this project.

iii

Enhancing Collaboration by Providing a Shared Environment
in wEMBOSS

Prathyusha Muddasani
Dr. Gordon K. Springer, Thesis Advisor

Abstract

wEMBOSS, a web interface for EMBOSS suite of programs, is a powerful tool

developed to serve the needs of molecular biology user community. It started as a coordinated effort

from Martin Sarachu of the Argentinean EMBnet Node and Marc Colet from the Belgian EMBnet node.

Exchange of thoughts brings new ideas into life. Collaboration is a process where two or

more people work together to achieve a common goal. Collaboration is especially important to

researchers in obtaining better results. wEMBOSS being a platform for research, the idea of

introducing a collaborative environment into wEMBOSS seems worth considering. The current

project deals with implementing a shared environment in wEMBOSS by introducing the concept

of groups and sharing. Users can create groups, add members to these groups and assign groups

to projects on which the group members collectively work and share results. This kind of a

shared environment not only helps with better but also faster results. This project also has an

interface for wEMBOSS administrator, which helps manage data efficiently. Another important

point to be discussed about wEMBOSS is the authentication system. wEMBOSS uses the basic

HTTP authentication using .htaccess and .htpasswd files, where in it is mandatory for the users

of wEMBOSS to be known by the server where wEMBOSS resides. Any outside user cannot use

wEMBOSS. It does not sound sensible and secure to provide access to any random user to the

server where wEMBOSS resides. It becomes a hassle especially when users from other

iv

organizations would like to use wEMBOSS at a particular organization and contribute to the

research. In order to solve this problem, the current project uses a different authentication

system. The Shibboleth system is integrated with wEMBOSS which provides access to users

from federated organizations formed based upon trust. Users are provided access to wEMBOSS

after authenticating and authorizing themselves.

v

Table of Contents

Acknowledgements………………………………………………………………………………ii

Abstract………………………………………………………………………………………….iii

Table of Contents………………………………………………………………………….….….v

Table of Figures………………………………………………………………………………...vii

Chapter 1. Introduction...1

Chapter 2. Background ...5

2.1 EMBOSS………………………………………………………………………………………5

2.1.1 EMBOSS Programs……………………………………………………………....5

2.2 WEMBOSS…………………………………………………………………………………....7

2.2.1 Working with wEMBOSS………………………………………………………..8

2.2.2 Internal Working of wEMBOSS………………………………………………..13

2.3 Technologies Used…………………………………………………………………..14

2.4 Dynamic Web Content Technology…………………………………………………15

Chapter 3. System Design……………………………………………………………………...17

3.1 Client Server Architecture…………………………...………………………………17

3.2 System Overview…………………………………………………………………….20

3.2.1 Project Types……………………………………………………………………20

3.2.2 File Structure……………………………………………………………………22

3.3 Database Design……………………………………………………………………..26

3.3.1 Application Architecture …………………..……………………………....26

3.4 Integration with Shibboleth……………………….…………………………………28

3.4.1 Shibboleth and Entitlement Server Protocol……………………………………29

Chapter 4. System Implementation …………………………………………………………..32

4.1 Group Management………………………………………………………………………..32

4.2 Data Sharing………………………………………………………….………………….....37

Chapter 5. System Administration……………………………………………………………42

5.1 User Limitations……………………………………………………………………………..42

5.2 Data Management…………………………………………………………………………....43

Chapter 6. Working with Enhanced wEMBOSS……………….…………………………....46

vi

Chapter 7. Conclusion...………………………………………………………………………..67

Glossary…………………………………...…….……………………………….……………...70

References ……………………………………………………………………………………...72

vii

 Table of Figures

Figure 1.1: wEMBOSS - A Web Interface for EMBOSS……………………………………...2

Figure 2.1: Sections of wEMBOSS Web Interface………………………………………….....10

Figure 2.2: File Structure of wEMBOSS……………………………………………………....11

Figure 2.3: Client Server Interaction in CGI Applications ……………………………….…...16

Figure 3.1: Three Layered Architecture of wEMBOSS………………..……………………...19

Figure 3.2: File Structure of Enhanced wEMBOSS……………………………………………23

Figure 3.3: Shibboleth Authentication Protocol ……………………………………………….24

Figure 3.4: Structure that Defines the Basic Unit of Data Storage in GDBM ………………...26

Figure 3.5: Key-Data Pair of a Record that Holds Group Information...……………………...27

Figure 3.6: Key-Data Pair of a Record that Holds Groups of a Project………………………..27

Figure 3.7: Key-Data Pair of a Record that Holds Shared File Names of a User……………...28

Figure 3.8: Shibboleth Authentication Protocol………………………………………………..31

Figure 4.1: Pictorial Representation of Sharing a Group Project..………………………….....35

Figure 4.2: Pictorial Representation of Sharing a Project……………………………………...39

Figure 6.1: wEMBOSS Home Page…………………….……………………………….……...47

Figure 6.2: Creation of New Group……………………………………………………….…....48

Figure 6.3: Message Displayed in Case of Group Creation……………………………….…...49

Figure 6.4: Assignment of a Group to a Project………………………….………………….….50

Figure 6.5: Message Displayed When a Group is Assigned More Than Once……...………....51

Figure 6.6: Deletion of a Group…………………………………………………………………52

Figure 6.7: Adding Users to a Group……………………………………………………………53

Figure 6.8: Process of Sharing Files……..……………………………………………………..55

Figure 6.9: Violations in File Sharing…………………………………………………………..56

Figure 6.10: Editing Permissions of a Shared File……………………………………………..57

Figure 6.11: Unshare Files From a User………………………………………………………..58

Figure 6.12: wEMBOSS Home Page From a Group User’s Perspective……………………….60

Figure 6.13: Executing EMBOSS Program Using Group Project Files…………………….......61

Figure 6.14: Project Results Display………………………………………………………........62

Figure 6.15: Unauthorized Operation…………………………………………………………...63

viii

Figure 6.16: wEMBOSS home Page From a Shared User’s Perspective……………………..64

Figure 6.17: Unauthorized Access………………………………………………………….....65

Figure 6.18: Files with Execute Permission…………………………………………………..66

1

Chapter 1. Introduction

 The complexity of molecular data and its enormous volume has led to an absolute

requirement for computerized databases and sequence analysis tools. Efficient algorithms

and approaches are now being derived to deal with the volume and complexity of

molecular data, which help researchers advance their understanding of our genetic legacy

and its role in health and disease. The latest advances in the field of software have led

researchers to better access the analysis and computational tools. Today with the rapid

growth in the fields of Bioinformatics and Biocomputing, more good programmers are

developing software; many making it freely available. EMBOSS [1], the European

Molecular Biology Open Software Suite, is one such software analysis package which is

freely available on the Internet and is developed for the needs of the molecular biology

(e.g. EMBnet) user community.

Using EMBOSS scientists are able to analyze the DNA sequence data with the

help of about 150 sequence analysis programs present in the EMBOSS package. Using

EMBOSS one can perform sequence alignment, rapid database searching with sequence

patterns, protein motif identification, including domain analysis and many more.

Emboss programs are written in the computer programming language “C” and the

software is mainly designed for the Unix operating system, although attempts are being

made to run the software on PCs with Windows and Macintoshes. All EMBOSS

programs are generally accessible through command line or a console interface. As a

result it lacks the ease of use for most of the EMBOSS users, as many of them are

biologists and are not familiar with the UNIX command line style of program execution.

To address this problem many graphical interfaces to EMBOSS have been developed.

2

wEMBOSS [2], a joint effort of Argentinean EMBnet node and Belgian EMBnet node, is

a web interface for the EMBOSS package where all the EMBOSS programs are

accessible through interactive web pages in a user friendly way. wEMBOSS supplies

each user with space and tools to organize and review his or her work. Each wEMBOSS

user is provided with separate and private workspace where his/her work can be stored

and reviewed securely.

wEMBOSS logically organizes work into projects facilitating the review of all

project related data for the users. Many functions are provided to manage files in the

project. Data can be incorporated into the project by creating a new file, by uploading a

file from a local computer or by retrieving data from the databases available in the local

EMBOSS installation. Similarly files can also be downloaded to the local computer as

shown in Figure 1.1.

 Figure 1.1: wEMBOSS - A Web Interface for EMBOSS

In order for the users to access wEMBOSS, they must be a valid user in the server

where wEMBOSS resides. Users are provided with user accounts on the server.

3

wEMBOSS implements the basic HTTP authentication using .htaccess1 and .htpasswd2

files, where in it is mandatory for the users of wEMBOSS to be known by the server

where wEMBOSS resides. It checks whether the user exists on the system by calling

standard system functions. What happens when the number of users who would like to

use wEMBOSS is very large? Certainly this causes maintenance and performance issues

on a heavily used system with a large number of users. What happens when some

researcher outside your organization is interested in participating in the research by

becoming a member of wEMBOSS at your organization? This kind of participation is not

allowed because of two main issues. Firstly, wEMBOSS requires user profiles to be

created on the server for its users. But it is not a good idea to create user profiles in your

server to users from different organizations as there might exist some security breaches.

Secondly, wEMBOSS does not provide the opportunity to work in collaboration with

different users of the same organization or different organizations. Allowing users to

work in groups by sharing data among themselves would be of great help to users,

especially to those users who are in the research field.

To address the questions mentioned above, the current project integrates

Shibboleth [5] for authenticating and authorizing users, by which users of different

organizations are provided access to wEMBOSS with the Shibboleth authentication

scheme and helping them to work in collaboration. This also mitigates the complexity

involved in providing and managing individual accounts for each user, with the high level

of support involved in the current end user authentication of wEMBOSS. Users are

1 This file is the key to providing who has access to the files in a directory and what types of operations
they are allowed to perform within this directory
2 The .htpasswd file contains the usernames and encrypted passwords of those individuals who has access
to your directory

4

neither provided with accounts in the server nor a separate Username-Password database

is needed with this type of authentication system. A detailed description of Shibboleth is

given in the next chapter. Data corresponding to each user is maintained under the root

repository where every wEMBOSS user is provided with a limited amount of space.

 As mentioned earlier, this project addresses the problem of sharing work by

introducing group management and file sharing in wEMBOSS. This provides the ability

to share the research work among different users in wEMBOSS. There are several ways

in which a user can share his/her work. They can share it with a single user, or

group/groups of users or to all the users in the system. This project advances the usability

of wEMBOSS, thereby helping biologists carry on their work in a more adaptable, secure

and robust environment. The rest of the report explains in detail how the proposed

approach is implemented.

5

Chapter 2. Background

This chapter gives an overview of the EMBOSS software package and its web

interface tool, wEMBOSS. It is important to know about EMBOSS and wEMBOSS before

discussing the current project in order to get a clear understanding of the project. This chapter

also discusses the technologies used in developing the current project.

2.1 EMBOSS

 The "The European Molecular Biology Open Software Suite", popularly known as

EMBOSS, is a comprehensive package of sequence analysis and display programs.

EMBOSS is a free Open Source software analysis package specially developed for the needs

of the molecular biology (e.g. EMBnet) user community.

 EMBOSS being a free software, is extensively used by many not only for

educational purposes but also in production environments. EMBOSS can be easily installed

on most UNIX/Linux, MS Windows and Mac OS systems. EMBOSS programs are executed

on the command line. EMBOSS is integrated with GUIs and web interfaces like wEMBOSS

and JEMBOSS3 in order to provide users with a better user interface. EMBOSS also provides

extensive libraries thereby providing a platform for other scientists to develop new software.

Users can easily work with EMBOSS as every program interface is designed the same way.

Mastering one is enough to work with all others. Users need not worry about the amount of

data that can be processed using EMBOSS, as there are no size limits while processing data.

2.1.1 EMBOSS Programs

 EMBOSS consists of hundreds of programs for analyzing Nucleic/Protein

sequences that include display of protein statistics, pattern searching, merging sequences to

3 JEMBOSS is an open source software that provides graphical user interface for EMBOSS.

6

make a consensus, data management, feature predictions, multiple sequence alignment and

more. All EMBOSS programs are logically organized into groups depending on their

functions.

 Sequences can be read and written in many different formats. Almost every

sequence analysis package like EMBOSS and every sequence database with a collection of

sequences has its sequence format. Sequence formats define the way in which sequence data

and its related information can be read/written. Every sequence is recognized by a unique ID

number and/or Accession number. Every sequence format has its own way of arranging the

sequence identification number, any comments related to the sequence and the sequence

itself. From sequence databases an entry can be picked by its ID or accession-number.

Sequences can be created in any sequence editor, such as mse4, or any plain text editor.

Examples of some well-known sequence formats are gcg, embl, fasta etc.

 For every EMBOSS program, inputs can be given by specifying the database or file

name that contains the input sequence(s) to work on and the sequence(s) itself. With a wide

variety of sequence formats users might get confused but EMBOSS automatically recognizes

the input sequence format, reads sequences from databases or files and executes the program.

However, if a sequence is not specified in any recognized format analyzing the sequence data

can be difficult.

 All EMBOSS programs use a common style of specifying input sequences and

outputs generated. The Uniform Sequence Address or USA is the sequence specifying

scheme used by all EMBOSS programs. A Sequence can be specified as “file”,

“format::file:entry”, “dbname:entry” or “@listfile”, where file is the name of the file that

4 Mse is a multiple sequence editor that is compatible with EMBOSS. This editor does not come with the
EMBOSS package

7

contains the sequence, format is any recognized sequence format, entry is the sequence

identification number, dbname is the installed database of format dbname and @listfile is the

name a file that acts like an index of other files. Similar to input sequence format, output

formats can also be specified. Output sequences are created in the format specified to the

program whereas a default format, fasta, is used if no format for an output sequence is

specified.

 Given below is an example of an EMBOSS program with input and output files

mentioned. Seqret is an EMBOSS program that reads a sequence file and writes it out in any

format we wish to convert to.

>seqret file1.seq embl::file2.seq

In this example, the program converts sequences in the file ‘file1.seq’ into the format 'embl'

and stores them in the file 'file2.seq'.

 Apart from the input sequences and output files, there are several other parameters

that can be specified to an EMBOSS program for concise and better results. In the absence of

any mandatory parameters, EMBOSS programs prompt for any required parameter values.

2.2 WEMBOSS

wEMBOSS is one of the user interfaces for the EMBOSS software. It provides a user

friendly web based environment for the users to access EMBOSS. All the Emboss programs

can be accessed and users’ work can be organized and reviewed with the help of various

functions available in wEMBOSS. Since EMBOSS programs are accessed through a

command line it is a lot more convenient for the users to work with such user interface tools

and can better contribute to the research.

8

wEMBOSS provides each user with a private workspace where his/her work is stored

in a systematic manner and is separated from the rest of the users’ data. All the programs

included in the EMBOSS installation can be accessed by using wEMBOSS and can be

executed with the help of several tools available in wEMBOSS that are explained in the

following sections.

2.2.1 Working with wEMBOSS

wEMBOSS provides a web-based access to the system. The interface of wEMBOSS

is organized into four primary sections. They are project selector, programs menu, program

searcher and data management. Each of these sections are described briefly in the following

paragraphs.

Project selector is designed to help users select a project and work on the selected

project. Project selector comprises of the top most frame of the wEMBOSS interface. Once a

project is created it appears in the projects menu. All the files related to the project selected

appear in the data management section. Once established, the user can perform several

operations like create new files, view/edit/copy/delete existing files and many other

operations available on the data management section.

Programs menu, located at the left side of the interface screen, displays all the

programs that come with the EMBOSS installation. These programs are presented in a drop

down menu arranged in an alphabetical order by groups or by program name. Users can

select any program and run the program by providing the required inputs. Inputs to the

EMBOSS programs can be provided from available databases, current project directory or

uploaded from a user’s local computer. Output of the programs can be saved either as a file

in the project directory or downloaded to a user’s local computer or used as input to other

9

programs. wEMBOSS also allows the administrator to prevent the display of certain

programs, like programs that are not suitable for web access, to users.

Program searcher helps users search for programs that are present in the programs

menu. All the matched programs are displayed in a new window where the users can either

run the program or view the help manual that is provided with all the programs. The program

searcher section is located at the bottom of the wEMBOSS interface.

The data management section comprises most of the wEMBOSS interface display

area. Data management routines help users organize data into different projects and sub

projects. This section is further divided into three sub sections; project management, project

files and project results. Project management, as the name suggests, has several tools that

manage projects. Operations like create, rename and delete a project are performed with the

help of project management routines. All tools related to file management can be seen in the

project files section. The last sub section, project results, displays all the results of any

program executed. Figure 2.1 shows the alignment of all the sections of the wEMBOSS web

interface display.

10

 Figure 2.1: Sections of wEMBOSS Web Interface

The data in wEMBOSS revolve around the concept of a project and its management.

wEMBOSS organizes work into projects. As mentioned earlier, every user is provided with a

private workspace under the user’s home directory, where all work is organized into projects.

A project is simply a directory in the user’s workspace where the user can create files and

sub projects within a project. A user can give any name to the project at the time of its

creation. A directory with the same name is created in the user’s home directory. A user can

create as many projects, sub projects and files as permitted by the system.

11

By organizing work into projects, users can easily place files related to a particular

research activity together. This project data can be accessed during the current session and

saved for subsequent use at a later time. Users can also rename projects, delete projects and

move projects to a different location. Under the user’s home directory is the directory named

wProjects, which is the root directory for wEMBOSS projects. All the projects created by the

user are placed under this directory. All files and sub projects related to a project are placed

under the project’s directory. The file structure used by wEMBOSS is shown in Figure 2.2

below.

 Figure 2.2. File Structure of wEMBOSS

 USER
Home Directory

wProjects

Project A Project B Project C Project Z

File A File B Sub Project
A

12

Several services are provided in wEMBOSS to effectively manage files in a project.

Once a project is created, users have the option to rename the project to another name or

move the project and its contents into some other existing project. The project moved

becomes a sub project of the project it is moved into. Users can delete an existing project,

which also deletes all the project’s contents. Project data can be viewed using the view

function, edited to modify their contents, deleted or copied to another project. Two special

sequence lists, protList and nucList, are created in each project to include user or database

sequence names to be used as an input allowing quick access to these sequences from any

program. Names of files containing sequences, names of sequences in the USA (as defined in

Section 2.1.2) format are accepted as nucList and protList file entries. These files are only

shown for programs that require protein or nucleotide sequences as input, respectively.

Instead of entering the database or file names repeatedly, including them in the nucList and

protList files is easier to reference while executing a program. Users can also filter the data

by some matching criteria after selecting an entry from one of the nucList and protList files,

while executing a program. The file NucList only has entries corresponding to nucleotide

sequences and protList contains entries corresponding to only protein sequences.

While running a program, results are saved under the current project with the

indication of the name of the executed program and the exact date and time it was run. The

interface also allows users to copy a given file from the results to the current or another

project capable of using these data as input. An output file appears in the project results

section and is not part of project files. An output file therefore cannot be directly used as an

input to any EMBOSS program. It has to be first copied as a file to the project, either with

the same name or a different name and it can then be used as an input to a program.

13

2.2.2 Internal Working of wEMBOSS

wEMBOSS is composed of four main components, authentication, client side

validation, parsing and presentation.

In order to use wEMBOSS, users have to be valid members of the server in which

wEMBOSS is present. Since wEMBOSS uses basic http authentication5, whenever a user

attempts to access wEMBOSS, a prompt is displayed asking for the user’s authentication

details. The authentication program checks if the user is a valid user in the system.

 Validation is performed every time the user interacts with the server side of wEMBOSS,

although the user password is required only once by the web browser. After the validation is

performed, the user can work with wEMBOSS. The first time a user logs in, he is prompted

to create a new project. This is required since every program requires at least one project

initially to store data.

Validations are of two types; client side validation and server side validation. Server

side validation involves performing checks on the server. Client side validation involves

validating user input before a query is posted to the server. Whenever a user wishes to

execute a program, basic validations such as check for the input entries, and creation of a

project before creating files are checked using the client side validation module. The system

does not have to contact the server for such small validations.

Every EMBOSS program is associated with an ACD (Ajax6 Command Definitions)

file. This file has information about the input files, output files generated, and describes the

necessary parameters required by the respective programs. It also validates and writes error

5 Basic http authentication is the simplest form of authentication where a web browser or client program is
required to provide username and password to access a resource.
6 Asynchronous JavaScript and XML, also known as Ajax is a technique by which web applications
exchange data with a server and update parts of a web page without reloading the whole page.

14

messages if any necessary parameters are missing; any parameters are outside a specified

range or any dependencies among the parameters of the program exist. The ACD file

contains a special purpose language called Ajax Command Definitions or ACD, specially

designed for EMBOSS. These ACD files are translated into Perl language files called SACD

files that contain a nested hash structure holding information of the associated programs.

These SACD files are in turn evaluated during the execution of the CGI (Common Gateway

Interface) script that generates an HTML page that is displayed to the users. The wEMBOSS

CGI script along with a few Perl modules are responsible for the presentation of the

wEMBOSS interface and working of various functions that are discussed in further chapters.

Every section of wEMBOSS is associated with a Perl module and this module is responsible

for the presentation of its section. The input.pm7 module parses the SACD structure for the

requested EMBOSS program and prepares dynamically a form to gather input choices of the

user. The HTML page of the program is then generated and displayed in the user’s browser

window.

2.3 Technologies Used

The current project uses Perl and C programming languages. Java Script is also used for

client side validation. Majority of the project is developed in Perl. CGI technology, SACD

files and HTML along with Perl modules are responsible for the display and analysis of user

data, as well as execution of EMBOSS programs. Users’ sequences are easily analyzed by

using the regular expressions of Perl. Also Perl has dynamic loaders that help extend Perl

with programs written in C as well as create compiled libraries that can be interpreted by the

Perl interpreter. Current project has programs written in C, developed for interaction with the

7 One of the perl modules responsible for the interface of wEMBOSS. Input.pm displays the HTML page of
all EMBOSS programs.

15

GDBM database and manipulation of information stored in the database. Data stored in the

database corresponds to the groups and sharing information that are discussed in the later

chapters

 wEMBOSS also uses JavaScript. JavaScript does minor user validations and adds

some functionality to wEMBOSS. JavaScript makes the application run faster since a request

does not have to be sent to the server to make small validations that can be taken care of at

the client’s side. Validations such as, check for proper project or group names, checks for the

minimum number of users in a group and so on are validated with the help of a JavaScript

file in wEMBOSS. A CSS8 (cascading style sheet) file is used for enhancing the look of

wEMBOSS application that makes it appealing to the user.

2.4 Dynamic Web Content Technology

As already mentioned wEMBOSS is a web based application that uses CGI [4] technology

for dynamic interaction with the users. The Common Gateway Interface, most commonly

known as CGI, is a standard way of transferring data between a World Wide Web server and

an application program. A CGI program is a filter for requests sent to a server to transform

requests to dynamically produced output based on that request. When a client sends a request

to the web server, the web server locates the CGI program on the server. It is the CGI

program that processes the request and sends the appropriate output back to the web server

and from there to the user. The process is clearly shown in Figure 2.3 below.

8 Cascading Style Sheets are used to control the style and display of pages written in a markup language.
They are mostly used for designing web pages.

16

Figure 2.3: Client Server Interaction in CGI Applications [4]

CGI programs are one of the common ways for Web servers to serve users dynamically. CGI

standards are platform independent and can run on most operating systems, although they are

popularly used on UNIX systems. As wEMBOSS is web based and requires execution of

Perl scripts dynamically, CGI technology plays an important role in the working of

wEMBOSS.

17

Chapter 3. System Design

This chapter focuses on the design of the system that includes the application

architecture, directory structure of the system and different types of projects involved. The

database design and authentication mechanisms are also discussed in this chapter. The word

wEMBOSS in this chapter refers to the new enhanced version of wEMBOSS developed by

this project.

3.1 Application Architecture

One of the key elements of any system design is the application architecture. The

application architecture defines what functions each component of the application does and

how components interact with one another. To reduce the complexity, applications are

broken into several layers or tiers where each layer is dedicated to perform a specific type of

service. Any web based application like wEMBOSS incorporates the Client/Server

Architecture that involves at least two layers. The Client/Server architecture involves service

providers called servers and service requesters called clients, who communicate over a

network. Every user that uses a web browser is a client and data accessed by these clients

through web pages is stored on one or more servers. Separation of components improves the

ability of the application to change easily according to different user and different system

requirements. wEMBOSS uses a Client/Server architecture involving three layers. The three

layers are client, application and data layers.

The Client layer or the user interface layer provides an interface between the user and

the system and gives the user access to the application. This layer, usually a web browser,

processes and displays HTML data and formatting instructions, issues HTML requests and

processes the responses generated by the application layer. In wEMBOSS, the client layer is

18

responsible for the display of the user’s project contents, program results and allows for data

manipulations.

The application layer contains a centralized processing logic that facilitates

management and administration. This layer receives requests from clients and generates

HTML responses after applying application logic and manipulating data present in the data

layer. This layer mediates between the client and data layers. wEMBOSS has eight Perl

modules, each one corresponding to one of the eight possible areas of action. The areas are

project management, program execution, program display, start of application, project

display, program search, view files and parsing of SACD files. All these modules revolve

around one CGI script that is called every time the user sends a request. The CGI script in

turn calls any of the above mentioned Perl modules depending on the request sent by the

user. For instance, when a user selects a project from the projects list, the titleAction9 module

identifies the project selected and sends a query to the CGI script to call the PMAction10

module to generate the selected project’s contents. The workflow process from data

acquisition to data processing and delivery of data is managed by the application layer.

The third layer is called the data layer that manages the data stored and is responsible

for handling queries submitted by the application layer. It consists of the data management

system and the data itself. In wEMBOSS, this layer consists of the GDBM database and data

repository. Figure 3.1 shows the three layers of wEMBOSS.

9 This is one of the eight Perl modules that is responsible for displaying the projects list and lets users
select any project from the list.
10 This Perl module helps the user to manage data corresponding to each project.

19

Figure 3.1. Three Layered Architecture of wEMBOSS

Web Browser

 CGI Program

Perl
Modules

 C
Programs

GDBM Data
Repository

Client Layer

Application Layer

Data Layer

 Web Server

20

3.2 System Overview

This section describes different types of projects in wEMBOSS and how the facility

of sharing data introduces a collaborative environment to wEMBOSS. Also, the file structure

of the enhanced wEMBOSS is described in detail.

3.2.1 Project Types

In wEMBOSS, projects11 are broadly classified into four types depending on how

data is shared by the project owners with other users in the wEMBOSS system. The sharing

can be private, group, shared and public projects.

Private projects are the basic type of projects that are created by simply providing a

name to the project. As the name suggests, the contents of these projects are only accessible

to the creator or owner of the project. Only the owner of the project has complete authority to

perform any operations on the project such as file creation, renaming the project, move the

project into another project, or delete the project.

In wEMBOSS a project that involves one or more groups is called a group project. A

group consists of two or more users, formed for the purpose of working collectively on

projects and sharing data among the members of the group. Groups can be created by any

user who is authorized to use wEMBOSS. Projects that are associated with at least one group

are called group projects. The concept of groups is introduced to promote the ability of users

to work on research projects in a collaborative way. Any user willing to allow other users to

work on his projects can do so by simply creating a group of users he wishes to collaborate

with and associating this group with his projects. A group can also be associated with one or

more projects. Similarly a project can be associated with one or more groups. However there

11 A project in wEMBOSS is a directory that contains files and sub directories (sub projects) that belong to
the project.

21

is a limit to the number of groups a project can be assigned to and the number of projects a

group can be associated with. The creation of groups, sharing data and user limitations are

dealt in detail in the next chapter. In the case of a group project, the project contents are

accessible to the project owner and the members of the group to which the project is

assigned. Members of a group can view, edit project contents, create new files and access

project results. However they are not eligible to delete files of the project created by other

members for obvious reasons. Groups are assigned a group leader. The group creator by

default becomes the group leader. The group leader has all access rights on the projects

assigned to the group. Shared projects are similar to the group projects except that in shared

projects there are no groups involved.

In some cases users might just be interested in sharing certain data with individual

users only and not a group as a whole. In such situations wEMBOSS users can work with

shared projects. Project contents are shared with individual users with choice of permissions

by the owner of the project. Read and write permissions can be granted on files to users.

Permissions can also be changed or revoked from a user at any point of time by the owner of

the project. Even after granting permissions on a file the shared user can never be able to

create new files in the shared project or perform actions like delete, copy, rename on the

shared file. This limitation is to protect the owner’s project contents against any inappropriate

use by the shared users. Read permission is the default permission. Users can view a file with

a read permission on the file. Write/edit permission gives the user authority to make changes

to the file. However there are also limitations on the number of files that can be shared with a

user and the number of users a file can be shared with. Setting up this limitation saves storage

space in the database.

22

Public projects, as the name suggests, are projects whose contents are shared with all

the users in the wEMBOSS system. Owner of the project can select the option of sharing

files of a project to the entire set of users of wEMBOSS. Similar to shared projects, owners

are given the option of choosing permissions on files to be shared with other users. Also,

permissions can be revoked at any point of time by the owner. A detailed description of how

groups are created, files are shared, and permissions are defined is given in the Chapters 4

and 5.

3.2.2 Directory Structure

The directory structure is the way in which directories and files are organized in a system and

displayed to the users. Files are grouped according to their purpose and are arranged into a

hierarchy of folders for quick retrieval. Similar to operating systems, wEMBOSS has its own

directory structure to group data of different users separately. Every wEMBOSS user is

provided with a personal workspace where he can create project folders to manage his data

and results. All projects, sub projects, files and project results of the user are stored in his

personal workspace. The introduction of different types of projects into wEMBOSS and the

concept of sharing has changed its file system structure significantly. The way projects, files

of different users are arranged is described in subsequent paragraphs. The file system

structure of wEMBOSS is shown in Figure 3.2.

23

 Figure 3.2. Directory Structure of Enhanced wEMBOSS

From Figure 3.2 it can be clearly seen that every user has a separate working directory

under the wEMBOSS root directory. USER-A, USER-B AND USER-C are example

users shown in the figure that depicts three different users’ working directories. These

working directories are created when a user logs into wEMBOSS system for the very first

time. A check is made if the user is already allotted a working space. As already

discussed, a project is also a directory and all projects belonging to each user are located

under the user’s directory that in turn is located under the wEMBOSS root directory.

PROJECT-1 and PROJECT-2 are examples of projects that belong to USER-C shown in

the figure. Every time USER-C logs into wEMBOSS these directories are listed as

projects on the wEMBOSS homepage. As can be seen from the figure, any files or sub

projects created in a project are placed under the project’s directory.

USER-A USER-B USER-C Public Projects

PROJECT-1 PROJECT-2 Group Projects Shared Projects

PROJECT-3 File-1 File-2

DB File

wEMBOSS Repository

24

As mentioned previously, there also exist group, shared and public projects other than

private projects. When a new group is created, it is placed under the Group Projects

directory. This new group is a directory by itself and is given the name of the group at the

time of its creation. If at any time, a project is assigned to a group by its owner, a symbolic

link is created in the group directory which points to the project assigned to the group. By

this arrangement, all the projects assigned to a particular group can be easily known just by

tracking the links in the group directory. Such projects are called group projects. Now, how

do group members get access to these group projects? As you can see from Figure 3.3, a

symbolic link is created in the Group Projects directory of each of the group members. The

figure shows User A is a member of Group 1. The symbolic link created in User A’s Group

Projects directory points to Group 1 created under the Group Projects directory of User B.

This acts like an indirect link from User A’s Group Projects directory to projects assigned to

Group 1, as Group1 directory itself has symbolic links pointing to its assigned projects.

Figure 3.3 Sharing of Group Projects

User A User B

Project 2 Project 1 Shared
Projects

Group
Projects

Group 1

Symbolic link

Group
Projects

Shared
Projects

Symbolic link

25

As mentioned previously, Group Projects directory has links to group projects. Similarly,

Shared Projects directory has links to shared projects and Public Projects directory has links to

public projects. Every time a user shares his project’s contents with other users, a symbolic link is

created in the Shared Projects directory of the shared user. This link points to the project shared.

Shared projects appear in the projects list of the sharer user. As a result the shared user has access to

the shared projects. When access to a shared project is revoked by its owner, the symbolic link

present in the shared user’s Shared Projects directory is unlinked and as a result the shared user will

no longer be able to view the contents of the shared project.

Public projects are also shared in a similar way. The only difference is that the directory that

contains all symbolic links to projects is placed under the wEMBOSS root directory and not under

each user’s working directory as in the case of group and shared projects. In other words the Public

Projects directory is accessible to all users of wEMBOSS and is not specific to a single user. Each

user has a Group Projects and Shared Projects directory that are created along with the working

directory of the user. When a user makes his project public, a symbolic link is created in the Public

Projects directory and all other users in the system have access to the public projects.

The database file, DB_file, stores information corresponding to groups, projects and user

limitations. Information like members of a group; groups associated with a project; files of a project

and permissions with which they are shared are stored in this file. Other information like: users with

whom projects are shared; groups owned by a user; and projects assigned to a group are fetched

from the file system of wEMBOSS. The process of sharing project contents is discussed in detail in

Chapter 4.

26

3.3 Database Design

The GNU database manager [9], a well-known hash based database, is used for the storage of

groups, sharing and administrative information in wEMBOSS. This database manager, popularly

known as GDBM is a set of database routines that uses extensible hashing and is commonly used on

the UNIX platforms. wEMBOSS does not need a relational database that uses an extensible set of

SQL statements, as no complex queries are involved and data can be accessed by simply providing a

key. A simple hash based key-data pair database is perfect for this kind of application. GDBM keys

as well as data are of type datum that is a structure as defined in the Figure 3.4.

Figure 3.4 Structure that Defines the Basic Unit of Data Storage in GDBM

The pointer dptr points to the key or data value and dsize corresponds to the length of key or data

value. The above structure allows for arbitrary sized key and data values. Keeping this design issue

in mind GDBM is chosen for data storage. GDBM stores data in a data file on disk, Data

corresponding to groups, shared projects and administrative information are retrieved by simply

providing the key value.

3.3.1 Data Storage

Data corresponding to groups, projects and administrative information is stored in GDBM.

When a group is created, the name of the group, the owner of the group, members of the group and

the total number of members in the group are stored in the database. The key value for such records

is the group name and the rest of the group information is stored as the data value. Data value is

27

stored in the format [Length][username]. Key-data pair of a record that stores group information is

shown in the Figure 3.5 below.

 Figure 3.5 Key-Data Pair of a Record that Holds Group Information

In the format given in Figure 3.5, Number of users is the total number of members in the group. Here

length field corresponds to the length of respective usernames that appear immediately after the

length field. For example, let the username be ‘Martin’, so the length of the name ‘Martin’ is 6. This

value is stored as [6][Martin] in the database. Search for a username becomes a lot easier with this

format. From the above example we know that the username ‘Martin’ is of length six. So, while

searching for a username, the value to be compared is compared with the first six characters of the

data. The pointer keeps moving ahead until it finds a match. Also, integer values like Number of

users, Length are stored as binary. Groups associated with a project are stored in a similar fashion. In

this case key and data pair is shown in the Figure 3.6.

 Figure 3.6 Key-Data Pair of a Record that Holds Groups of a Project

Since project names can be duplicated in wEMBOSS, specifying the owner of the project in the key

value avoids the duplication of keys in the database.

Information about files in a project, along with granted permissions, shared with users by the

owner of the project is also stored in the database. Key-data pair for such records is as shown in the

Figure 3.7.

28

 Figure 3.7 Key-Data Pair of a Record that Holds Shared Filenames of a User

In the key value UserName is the user with whom files are shared by Owner of the project

with name ProjectName.

As mentioned previously, wEMBOSS has several user limitations that are set by the

wEMBOSS administrator. Each of these limitations are discussed in detail in Chapter 5.

3.4 Integration with Shibboleth

The wEMBOSS system uses an authentication scheme that is based, in part, on Shibboleth

[5]. Shibboleth is standards based, open source software package for web single sign-on within an

organization or among organizations that have an established trust relationship in order to form a

Virtual Organization. Most applications follow the traditional method of allocating usernames and

passwords to users for authentication. Shibboleth avoids administrative as well as storage overhead

involved in maintaining usernames and passwords. Shibboleth’s single sign on methodology gives

access to multiple applications by authenticating just once. Shibboleth’s main objective is to

facilitate authentication followed by authorization of a user requesting access to a restricted resource.

The Shibboleth system has two main components, identity provider (IDP) and Service

Provider (SP). The identity provider is the software run by the organization whose users request

access to a secured resource with in the same organization or at a different organization. The service

provider software is run by the provider of a restricted service or resource. To gain access to a

restricted resource a user first authenticates with his home institutions credentials. On successful

authentication, the user’s necessary identity information is passed by the identity provider to the

service provider upon request. Depending on the attributes of the user provided by the identity

29

provider, the Service Provider makes authorization decisions based on the requirements of the

requested service. Virtual organizations can maintain an entitlement server that defines and manages

virtual organization entitlements that are independent of any organization. Authorization decisions

are also made by the entitlements of a user pertaining to the virtual organization, if required by the

requested service.

3.4.1 Shibboleth and Entitlement Server Protocol

A brief Step by step procedure of how Shibboleth integrated with an Entitlement Server works is

explained in this section.

1. A user sends a request to a Service Provider to access a restricted resource, which is

wEMBOSS in our case, through the web.

2. The browser is redirected to WAYF (Where Are You From) service by the Shibboleth

Indexical Reference Establisher [SHIRE] component of the Service Provider.

3. A user identifies his home institution from a list of institutions in the network, displayed by

the WAYF service.

4. The request is then passed to the appropriate identity provider’s handle service by the WAYF

service.

5. The Identity Provider contacts the user for credentials for authentication purpose

6. The user provides credentials to the home institution.

7. Upon successful authentication, a unique handle is generated by the Identity Provider’s

handle service and is sent to Service Provider’s SHIRE indicating the user is who he claims

to be.

8. The handle is now passed to the Shibboleth Attribute Requester[SHAR] by SHIRE

30

9. Service Provider now needs to make authorization decisions. It needs to know if the user has

the necessary attributes to access the resource. SHAR requests the Identity Provider’s

attribute authority for attribute assertions. Requests can also be made to the Entitlement

Server for any attributes pertaining to the Virtual Organization, as discussed from Step 11

through Step 14.

10. The attribute authority now looks for the user’s attributes according to the user’s release

policy and sends the requested attributes to the SHAR.

11. The attribute authority can also contact the Entitlement Server for user entitlements.

12. Entitlement Server’s client application, which resides at the Service Provider, makes requests

to Entitlement Server.

13. Entitlement Server looks up in the database for user’s entitlements and replies with

assertions.

14. This information is sent back to the SHAR and access is either granted or denied to the user.

31

Figure 3.8 Shibboleth Authentication Protocol [6]

Any user wanting to work with wEMBOSS can do so by directing the browser to the wEMBOSS

web address, which automatically redirects the browser to the (where are you from)WAYF service.

A user can gain access to wEMBOSS only if his home institution is present in the list of

organizations provided by the WAYF service. After the user selects his home institution and

authenticates himself successfully, authorization decisions are made by requesting user attributes.

Entitlement checks are made by contacting the Entitlement Server. Any user with the wEMBOSS

entitlement is authorized to work with wEMBOSS.

32

Chapter 4. System Implementation

Collaborative work refers to processes, methodologies and environments in which

professionals engage in a common task and individuals depend on and are accountable to each

other. Groups with a common mission or goal are normally involved in such collaborations.

Similarly, enhanced wEMBOSS also provides a collaborative environment for users with a

common mission. A clear understanding of different types of projects; sharing of data; group

description and the role played by a group in wEMBOSS are given in Chapter 3. The current

chapter provides an insight on various functions in wEMBOSS which facilitate collaborative

work such as creating groups, assigning projects to groups, sharing data with other users, and

using other users’ project results. Each of the above mentioned functions are explained in detail

in this chapter.

All group management and file sharing functions are handled by the Project Management

module. Any function initiated by the user requires wEMBOSS CGI script to process the input

and pass the query to the corresponding Perl script. The concerned Perl script then handles the

query and performs the necessary action.

4.1 Group Management

The Group Management section in wEMBOSS provides users with a set of functions that

help them create a group, share data with the group members and various other activities

involving a group. The following paragraphs explain each of the functions that are present in the

Group Management section.

The New Group command, as the name implies, allows users to create a new group.

Clicking on the New Group button displays a pop up window, where the name for new group is

entered. The Project Management module handles all the functions related to groups and sharing

33

besides managing projects and files. This module accepts the user’s command and displays a

pop-up window with the help of a JavaScript file. After the user enters the name of the group to

be created, a list of users in the wEMBOSS system is displayed allowing him to add users to the

newly created group. The group creator/owner can either select users from the list displayed or

can search for a user by entering the user’s name in the search box. The list dynamically

populates with users whose names match with the value entered in the search box. Dynamic

population of users is achieved with the help of Java Script regular expressions, which perform

pattern-matching functions every time a character is entered in the search box. A group is

comprised of at least two members, as it does not make any sense for a group to have just one

member. Therefore, a minimum of two users should be chosen from the users list, which

otherwise displays an error message asking the group creator to select more users. Also, there is

a limitation on the maximum number of users in a group. Addition of a large number of users to

a group not only requires enormous storage space for storing group information in the database,

but also requires numerous links to be created in each of the group member’s working

directories. The worst scenario occurs when a user adds all other users in the system to his group.

The wEMBOSS administrator sets the ‘number of group users’ limitation. However, default

values are set initially to all the limitation values, before the administrator changes them. Error

messages are also displayed in scenarios where a group with the same name already exists in the

system or when a user tries to exceed the maximum number of groups that can be created by

him. Once a group is successfully created, an entry is made in the database with the group name,

number of users in the group and all the members of the group including the user who created it.

In addition, a directory with the group name is created under the Group Projects directory of the

user who created the group. Links to this group directory are created in the Group Projects

34

directory of those users who are members of the newly created group. As a result, the group

members will now have access to the contents of the group. Every user can create groups

although there is a limit to the number of groups each user can create.

Creating a group is not enough to provide the group members access to group projects.

The next step is to associate the group with a project to be worked on. Assign Group command

helps users to accomplish this task. A list of groups owned/created by a user is displayed in the

Group Management section. In order to associate a group with the current project, user needs to

select a group first and then click on Assign Group button. If, either a project or group is not

selected then a pop-up window appears asking the user to select the required entity. Similar to

user selection, group name, if known, can also be typed in the search box. If the operation is

successful an entry is made in the database where the numbers of groups, names of all groups

associated with a project are stored. A link to the associated project is created in the group

directory present in the Group Projects directory of the creator/owner. The group directory now

contains links to the projects, also known as group projects, assigned to the group. As already

discussed, group members have access to the group directory contents. As a result, indirect links

are formed from the group members working directories to the group projects, allowing them to

access group projects and work collectively. Formation of links to the group directory and to the

group projects is shown in the Figure 4.1.

35

Figure 4.1: Pictorial Representation of Sharing Group Projects.

Default user limitation value of ten is set on the number of groups that can be associated with a

project or number of projects that can be assigned to a group, for the same reasons mentioned

previously. These limitations can be changed by the administrator. A user is issued an error

message about the limitation, if he tries to exceed the count. Trying to associate a group that is

already associated with a particular project displays an error message to the user. A user can

filter the groups list by making a choice of either viewing all groups owned by him or groups

associated with the current project. When a user selects to view all groups owned by him, data is

acquired from his Group Projects directory, that contains all the groups created by him. When

the choice to view all groups associated with the current project is selected, the database is

searched using current project name as the key and the data retrieved is displayed in a list.

Group
Directory

Project Has symbolic link to

Consists of

Has symbolic link

Group Projects
Directory

Belongs

creates

36

Group members can not only be added at the time of group creation, but can be either

added or removed at any point of time. The number of group members is always within the

limitation value set by the administrator. Add Members function lets users add new members to

the group. However, only owner of the group is allowed to perform this operation. By selecting a

group from the groups list and clicking on Add Members button displays a list of users not

already present in the group. Users belonging to the group selected, are retrieved from the

database and are filtered from all the users in the system. This function avoids duplicating

members in the list. Selected users become the new group members and are able to access the

group projects. The Remove Members button displays all the members of the selected group. It

works in a similar fashion to Add Members. Once users are removed from a group, they no

longer have access to the group projects.

A user can unshare his project from a group at any time. Group members no longer are

able to access the project contents. This act deletes the symbolic link to the owner's project,

previously created in the Group Directory. This group is also removed from the list of groups

assigned to the project, from the database. A project can be unshared from a group with the help

of the Unassign Group button.

Unassigning a group from a project and deleting a group are two different actions.

Unassigning precedes the deleting actions. When a group is deleted all the data in the database

pertaining to the group is deleted from the database. This group is also removed from all the

projects previously associated with the group. The group directory is also deleted. To delete a

group, user selects a group from the list and clicks on the Delete Group button.

Group members are allowed to create files in a group project. However, a user can delete

or rename only those files created by him in the group project. Group members can edit all files

37

of a group project irrespective of the owner of the file being edited. In order to keep track of all

files created in a group project, a log is created in the database when a file is created by a group

member. The log keeps track of the creator of the file, user who last edited the file and the time

stamp at which the file is edited.

All the above mentioned functions let users access other users' project contents. All the

group members except the project owner are prohibited from performing certain actions like

deleting, renaming or moving projects to a different location. Only the owner of the project has

all permissions on the project’s data.

4.2 Data Sharing

Similar to group projects, shared projects also contribute towards collaborative research. In some

cases users prefer to share different files to individual users rather than creating a group and

sharing data to the group. File sharing in wEMBOSS is the concept of giving access rights on

individual files to specific users by the owner of the project. When a file is shared, the user with

whom the file is shared can view the file. Edit permission on a shared file gives the sharer12 the

ability to make changes in the shared file. Sharers can also use a shared file as input to a

wEMBOSS program. Functions available for sharing data are discussed in the subsequent

paragraphs.

Users can choose any other user(s) in the system and share selected files with them using

the Share Files command. When using the Share Files command, a list of all the users present in

the wEMBOSS system is displayed. Users can either be selected by scrolling down the list or by

typing their names in the search box present. As already explained usernames are populated

dynamically when typed in the search box. Usernames of all the users in the system are retrieved

12 Sharer is a user with whom files are shared by the owner of a project

38

into an array and the list is dynamically populated from this array. An option of sharing files with

everyone in the system is also available. Projects with files shared to everyone in the system are

called Public Projects. After selecting a particular user with whom files are to be shared, a list of

all files belonging to the current project is displayed. The files list is populated by running a

search on the current project directory. This listing uses a Depth First Search, commonly known

as DFS algorithm. If a symbolic link to the shared project already exists in the Shared Projects

directory of the sharer, then the files selected are simply stored in the database. If not, a link is

first created and then an entry is made in the database. Sharer can now see the shared project in

his list of projects. Before displaying contents of a shared project to the sharer, the database is

queried to get the list of files of the shared project. Similar process is followed while sharing a

project result with a sharer. The only difference is that a project result is shared only for viewing

purpose and not editing. Owner of a project is also provided with an option to view all the

sharers of the project. Figure 4.2 shows sharing of projects to individual users in wEMBOSS.

.

39

 (a)Individual Users

 (b)All Users in wEMBOSS

Figure 4.2: Pictorial Representation of Sharing a Project

Project

Has symbolic link

Shared
Projects

Directory Belongs

Creates

Belongs

Project Creates

Shared
Projects

Directory

Has symbolic link

Has symbolic link

Public Projects
Directory

40

The owner of a project can edit permissions on files shared with sharers at any point of

time. To edit permissions on a file, the owner simply selects another user from the users

list and clicks on Edit Permissions button. A new list is populated with a set of files

shared with the user selected from the users list. Shared files along with the write

permissions given on respective files are displayed. In this case, the database is used to

get the list of files of a project along with their corresponding permissions shared with the

sharer. Check boxes are provided so that the project owner can change permission on the

shared files. Any changes made are updated in the database. These updates are atomic.

Either all updates are made or none. If an error occurs, appropriate messages are

displayed to the user.

Files shared with a user can be withdrawn in a similar fashion to editing

permissions. A user has to first select another user from the list and click on Unshared

Files button to unshare a file from the user selected. The list is then populated with files

shared with the selected user. After the user selects files to unshare, changes are reflected

in the database. If all the files of a particular shared project are unshared, the link to this

shared project is broken. There might also be some exceptional situations wherein a user

unknowingly deletes files or projects shared with other users. In such situations sharers

are displayed empty shared projects. It might also leave symbolic links dangling and

corresponding data in the database untouched and obsolete. wEMBOSS has a smart way

of handling such situations. Every time a user tries to access a shared project, the link to

the project is checked for its validity. Any dangling links are removed and empty shared

projects are not displayed in the projects list of a sharer. wEMBOSS also checks if files

41

of a shared project exist. If a shared file is deleted by the owner, then its corresponding

entry is deleted from the database.

42

Chapter 5. System Administration

System administration is necessary for wEMBOSS to effectively manage users’

data both in the data repository as well as in the database. Duties of a wEMBOSS

administrator include, but are not limited to setting limitations on various user activities,

discarding undesirable data, especially data that belongs to users deleted from the system.

As mentioned previously, users might misuse the system if no limitations are set on

various activities. Obsolete data uses storage space which otherwise can be used for

storing useful information. This chapter discusses each of the administrative functions.

5.1 User Limitations

Setting up user limitations is one of the major tasks in wEMBOSS. These

limitations prevent users from exploiting the system. User limitations are stored in the

database as a single entry. A structure called limitations is defined in the wEMBOSS

header file. An array of this structure that contains information of each of the user

limitations, acts as a lookup table. Information of a user limitation includes number of

bytes used to store the limitation value in the database, offset13 of the limitation value in

the database entry, and description of the limitation value.

 There are six user limitations defined, each of which are assigned a default value.

As already mentioned, administrator can change the limitation values at any time. The six

user limitations are namely maxProjsPerUser, maxGrpsPerProj, maxUsersPerGrp,

maxProjsPerGrp, maxShrFilesPerPerson, and maxSharersPerProj.

maxProjsPerUser limitation holds the value of maximum projects a user can

create. This limitation controls the user from creating numerous projects/subprojects. The

13 Offset variable holds the position of the limitation value considering the start position to have the value
zero.

43

maxGrpsPerProj limitation holds the maximum number of groups that can be associated

with a single project. Associating a large number of groups to a project creates a multiple

number of links to this project and also requires a lot of storage space for storing related

data in the database. The maxUsersPerGrp is a limitation on the maximum users that a

group can have. The maxProjsPerGrp is a limitation for maximum projects that can be

assigned to a group. This is different from maxGrpsPerProj limitation where in the

maxProjsPerGrp limitation, more than one project can be assigned to a single group and

in maxGrpsPerProj limitation, more than one group can be associated with a single

project. maxShrFilesPerPerson is set to the maximum number of files of a shared project

that can be shared with a single user. This controls the user from sharing a large number

of files to a single user. maxSharersPerProj limitation restricts the owner of a shared

project from sharing files with more users than the limitation value assigned.

Corresponding limitations are checked each time a user performs an operation.

Exceeding any of the limitation values stops the user from performing the operation and

displays an appropriate error message.

5.2 Data Management

The Administrator has several authorities other than setting up limitations, which

help in managing data in the database effectively. Delete Group, Unassign Group and

Unshare Project are a few among several operations of an administrator. All the

administrator tools are developed in the C programming language and are executed on

the command line interface. The administrator interface provides a set of options, each

one corresponding to a specific function. These functions are especially important in

instances where a user is to be removed from the system. Clearing wEMBOSS of

44

obsolete data saves space in the database that can otherwise be used to store necessary

data. Consider a situation where a user who previously shared a project with another user

is no longer using the system. Removal of data related to shared files/projects from the

database and unlinking of symbolic links are done automatically as discussed in Chapter

4. There might also be situations where both the owner of a shared project and the sharer

are no longer using the system. In such cases, removal of these users’ working directories

gets rid of all the links between these directories, but the data in the database remains

untouched. Such data may get accumulated using up space for storage and potentially

slows the system. Explicit removal of data directly from the database is therefore

required. Operations of an administrator mentioned above are explained in the subsequent

paragraphs.

A group can be unassigned from a project by an administrator by the function

Unassign Group. This operation precedes deletion of a group. All the groups assigned to

a project are stored in the database with project name as the key. The Unassign Group

operation removes a group from the list of assigned groups to a project. Project name and

the group name are provided as inputs in this case. An option for removal of all groups

associated with a project is also provided.

The Delete Groups function is used to delete a specific group. The delete group

function deletes all data associated with a particular group in the database. The group

name is provided as input to this program. A group has to be unassigned from a

project(s), if previously assigned to any, before deleting it.

Unshare Project is another helpful operation which gets rid of unnecessary data.

Projects can be unshared from an individual user or from the public. This operation

45

erases all the information related to projects/files shared with a specific user or public.

Project names and user names (in case of an individual user) are provided as inputs. In

any situation where the operation is not successful appropriate messages are displayed.

 Another important option that is provided in the administrator interface is to set

user limitations. The six user limitations, previously discussed are displayed as options.

The administrator can select any of these options to change the value of the

corresponding user limitation.

46

Chapter 6. Working with Enhanced wEMBOSS

Working of the enhanced wEMBOSS with usage examples are explained in this

section. This application is hosted by University of Missouri and can be accessed by

anyone who belongs to an organization within the list of federated organizations of the

Great Plains Network virtual organization and has the proper entitlements needed for this

application.

Since the wEMBOSS service is a web based application, it can be accessed on the

web with the URL https://web.rnet.missouri.edu/wEMBOSS. This page is now redirected

to the WAYF service where the user selects his home institution. Let us assume the user

selects University of Missouri System as the home intitution. The page is redicted to

University of Missouri authentication page. After successful authentication and

authorization checks the project access page is displayed as shown in the Figure 6.1.

Clicking on ‘Project Access’ button redirects the page to the wEMBOSS application

where the user can access EMBOSS programs and share projects with other users. Figure

6.1 shows the home page of the application.

47

 Figure 6.1 wEMBOSS Home Page

Group Management

Functioning of each of the group management functions are demonstrated with examples.

For simplicity let us assume the user, pmwf5@mizzou.edu, has already created two

projects namely ‘project1’ and ‘project2’.

New Group: Creating a group is the primary step for sharing projects with a group.

Clicking on the ‘New Group’ button prompts the user to enter the group name. The user

now selects members of the group and clicks on submit to create the group. Limitations

apply and the group name is checked against the database to see if a group with same

48

name exists. After the group is created it appears in the list of groups. Figure 6.2 shows

the step by step process of group creation.

 Figure 6.2: Creation of New Group

Figure 6.3 shows the warning messages displayed in case of any violations while creating

a group.

49

 Figure 6.3: Warnining Messages Displayed in Case of Group Creation

Assign Group: The user needs to associate a group with a project in order to share this

project with the group members. The project assigned is called a group project. After

selecting the group to be assigned from the group list and the project to be associate with

from the project list in the title section, the ‘Assign Group’ button is clicked. Not

selecting any one of the two results an error and is displayed to the user. The group is

now assigned to the project and the group members can access the contents. Figures 6.4

and 6.5 show the process of assigning a group and the error messages displayed in case

of any violations.

50

 Figure 6.4: Assignment of a Group to a Project

51

Figure 6.5: Message Displayed When a Group is Assigned More Than Once

Unassign Group: Withdrawal of a group from a project can be done in a similar faashion

to assigning a group. The user needs to select a project and a group to be unassigned and

click on the ‘Unassign Group’ button. Any error messages or success messages are

displayed.

Delete Group: The delete group function deletes the selected group. Irrespective if the

group being assigned to a project or not, it can be deleted. The user is prompted if he is

sure of deleting the group. Any group assigned to a project would be first unasassigned

and then deleted. Figure 6.6 shows the deletion of a group.

52

 Figure 6.6: Deletion of a Group

Add Users: Add Users function lets users add members to a group any time.There is

again a limitation to the number of users that a group can contain. In order to add new

users to a group, the user first selects the group and then clicks on the ‘Add Users’

button. This brings up a list of users not already present in the group. In our case group

‘group1’ has users ‘user1@mizzou.edu’ and ‘user2@mizzou.edu’.The list now contains

all users in the system except these two users. Selecting the users and clicking ‘Submit’

adds these users to the group. If the number of users exceeds the limitation of a group an

error message is displayed. The process of adding users to a group is shown in the Figure

6.7.

53

 Figure 6.7: Adding Users to a Group

54

Delete Users: Deleting users from a group can be done in a similar fashion to adding

users. The user first selects the group and clicks on the ‘Delete Users’ button.This shows

a list of users present in the group. The user selects the users and clicks submit to delete

the users from the group. An error message is displayed if the user tries to delete all or

less than minimum numberof users, that is two, from the group.

Share Files

Sharing of files section in wEMBOSS has three funtions, namely ‘Share Files’, ‘Edit

Permisssions’ and ‘Unshare Files’. Working of these functions is demonstrated with

examples in furthur paragraphs.

Share Files: This function lets users share files of a project to other users. As already

discussed, such projects are called shared projects. In order to share files with anyone the

user first selects the project from which files are to be shared. The Share files section

displays a list of users in the system, from which a user can be picked by just typing the

user name in the search box or selecting the user from the list directly. After selecting a

user, clicking on ‘Share Files to’ button again displays a list of files available in the

project. The user then selects the files to be shared and the permissions on these files. Not

selecting a user and clicking on the share files button gives a warning message to the

user. Like in the case of groups, error messages are displays if the user tries to share a

large number of files with other users. Figure 6.8 shows the process of sharing files.

55

Figure 6.8: Process of Sharing Files

56

Figure 6.9: Violations in File Sharing

Edit Permissions: Permissions given on a file can be edited using this feature. Like in

the case of sharing a file, editing permissions on a file shared to a person can be done by

selecting a person first. If any files are previously shared to this person, they appear in a

list with permissions given on these files. Permissions can be changed by selecting either

57

read, write or execute check box. Figure 6.10 shows the process of editing permissions on

a file already shared to the user shown in the previous example.

Figure 6.10: Editing Permissions of a Shared File

58

Unshare Files: Unshare files from anyone is similar to sharing of files.This process is

shown in the Figure 6.11.

Figure 6.11: Unshare Files From a User

59

All the above examples are from the user’s perspective who owns the projects/files and

how he can share projects with other users. Further examples show how a user, with

whom projects have been shared, are able to use the shared files.

Group projects

In the previous examples, user ‘pmwf5@mizzou.edu’ has shared assigned group ‘group1’

to project ‘project1’. Any user who belongs to group1, can view and use the files in this

project for research. The following examples are based on the users’ perspective who

belongs to group1.

When the user selects a group project from the list of projects it appears in the format

‘GroupName:ProjectName’, which indicates that the project belongs to a group. Also for

the convience of the user, a message is displayed to let the user know the project details.

Figure 6.12 shows the home page when the user selects a group project.

60

 Figure 6.12: wEMBOSS Home Page From a Group User’s Perspective

From the Figure 6.12, it is evident that all the files of project1 appear in the Project Files

section. The user can now work with these files and results obtained appear in the Project

Results section, which again can be viewed by all other group members.

As an example, let us run a program named btwisted and use the file btwisted as

an input.This program takes a region of a pure DNA sequence and calculates by simple

arithmetic the probable overall twist of the sequence and the stacking energy. The input

can be given from an EMBOSS database, a current project file or file from the local

computer. In Figure 6.13, the user uses a group project file and runs a program to get an

output.

61

 Figure 6.13: Executing EMBOSS Program Using Group Project Files

62

 Figure 6.14: Project Results Display

63

Figure 6.15 shows the results obtained after running the program btwisted.This result

appears in the Project Results section. The output file can also be copied to another

project. Though the group users have all access rights on the project contents, they do not

have permissions to share or delete the project contents. They are also not authorized to

rename, delete or move the project. Performing these operations alerts the users that they

are not authorized.

 Figure 6.15: Unauthorized Operation

Shared Projects

Users accessing a shared project can only contents of the projects that are shared to them.

The format of the project, as it appears to the shared user, is OwnerName:ProjectName.

Like the case of group projects, a message is displayed stating the project name and the

user who shared it.

Figure 6.16 shows the home page when a shared project is selected.

64

Figure 6.16: wEMBOSS Home Page From a Shared User’s Perspective

As mentioned earlier not all project contents are visible to the shared user. Only files

shared to them are visible. As evident from the Figure 6.16, only two files are seen in the

files list. Whereas the original project has more files. The user also has access restrictions

on files. For example if the user does not have read permission on a file and tries to view

it he is informed that he is not authorized to do so as shown in Figure 6.17.

65

 Figure 6.17 : Unauthorized Access

Also only files with execute permissions appear in the list of input files while running a

program. Though two files are shared with the user in the above examples only one can

be seen while executing programs.

66

 Figure 6.18: Files with Execute Permission

67

Chapter 7. Conclusion

This project report provides a detailed description of wEMBOSS[2], and the

enhancements made to it. The report started with an introduction describing the need for

a change in wEMBOSS and uses of a collaborative work environment. In the later

chapters, the model and working of the enhanced system is discussed. wEMBOSS is a

web interface for the EMBOSS[1] package where all the EMBOSS programs are

accessible through interactive web pages in a user friendly way. Though wEMBOSS is

very useful tool to users while working individually, it does not provide users the

opportunity to work in collaboration. In order to provide wEMBOSS users the ability to

work collectively towards better results, the concept of group management and file

sharing has been introduced. The new version of wEMBOSS integrated with sharing

capabilities has been discussed in this project report.

wEMBOSS is a very handy tool as it provides a web environment from which

users can access EMBOSS in a user friendly way and also manage data efficiently. This

application is especially useful to users who are not familiar with the UNIX environment,

as EMBOSS can be executed only from the command line. There are of course other

tools affiliated with EMBOSS that make interaction with EMBOSS easier. wEMBOSS

being a very popular and widely used application is chosen for the current project. This

project tries to enhance wEMBOSS by introducing a shared environment where users can

share their projects with others and work in collaboration. The new features integrated

into the old system work in a similar fashion to the already existing functions in order to

make the users comfortable while using the system. Incorporating the Shibboleth

authentication and authorization mechanism provides a secured environment to the new

68

system. Technology plays a major role in determining the working of the system.

wEMBOSS uses Perl because of its convenient functions for processing strings that are

commonly encountered in biological data analysis. Enhancements made to wEMBOSS

are also developed in Perl for the same reason mentioned above and also to make the

integration smoother. The database management system used in wEMBOSS is GDBM.

GDBM is easier to use and maintain when compared to the relational databases like

Oracle, and SQL server. Data transactions from the database and data management

programs are coded in the C programming language. The new system is highly portable.

It works on any UNIX system with a working EMBOSS installation, a web server, a C

compiler, Perl and Shibboleth.

Despite the enhancements made, there is still room for improvement in the

system. In the current system, the administrator executes programs from UNIX command

line to make changes to the data in the database. This can be transformed to a web based

interface as not everyone is familiar with the command line interface. A log file can be

introduced to keep track of activities of shared project users or group project users. This

way the owner of a shared/group project can know when and what files a user used for

executing wEMBOSS programs.

In conclusion this project is successful in providing wEMBOSS users with a

better way of interacting with fellow collaborators by working in a collaboration

environment. This project required a careful study of the existing wEMBOSS system and

provided an opportunity to improve my knowledge of operating systems and

programming skills required in enhancing the existing system. Completing this project

69

gave me intense satisfaction and confidence from my experience in developing this

application.

70

Glossary

1. ACD: Every EMBOSS program is associated with a so called Ajax Command

Definitions (ACD) file. This file contains information about the input, output files

and other parameters needed by the corresponding program. Also, any mandatory

parameters, parameter limits or parameter dependencies are indicated by these

files.

2. Depth First Search (DFS): Depth-first search (DFS) is an algorithm for

traversing or searching a tree, tree structure, or graph. It is implemented in many

applications like directory traversing, maze puzzles etc.

3. EMBnet (European Molecular Biology network): EMBnet is an international

collaboration network that aims to enhance bioinformatics services by bringing

together bioinformatics service providers.

4. GPN: Great Plains Network, commonly known as GPN is a consortium of

universities in the Midwestern states, dedicated to supporting research and

education through the use of advanced networking technology.

5. Identity Provider (IDP): Identity Provider is the software run by the home

institution of a user that can authenticate users from that institution. It provides

authentication services on behalf of the institution following the institution’s

authentication mechanism.

6. Service Provider (SP): Service Provider is the software run by the provider

sharing a restricted resource. It makes authorization decisions based upon user

required attributes/entitlements needed to access the resource.

71

7. Single Sign on: Single sign-on (SSO) is a mechanism whereby authentication of a

user is required only once to access all systems or applications that the user has

access permissions to.

8. Shibboleth Indexical Reference Establisher (SHIRE): SHIRE is a component

of a Service Provider that determines if user needs to be authenticated, and, if so

redirects the user to a WAYF service in order to identify the home institution and

authenticate.

9. Symbolic Link: A symbolic link, also known as soft link, is a special kind of file

that points to another file or directory. A symbolic link does not contain the data

in the target file. It simply points to another entry somewhere in the file system.

Programs that read or write to files named by a symbolic link behave as if

operating directly on the target file.

10. Virtual Organization: It is a set of organizations defined around a set of rules

and conditions. Though these organizations are physically separate they function

as one unit through the use of common practices and resources for the purpose of

one or more identified goals.

11. WAYF: The Where Are You From service is used by Shibboleth software to

determine what a user's home organization is. This Service lets the user choose

his home organization from a list and then redirects the user to this home

organization's login page for authentication.

72

References

[1] Rice,P. Longden,I. and Bleasby,A. "EMBOSS: The European Molecular Biology Open

Software Suite" Trends in Genetics June 2000 Vol 16, No 6. Pp.276-277

[2] Sarachu M and Colet M. 2005. “wEMBOSS: a web interface for EMBOSS”.

Bioinformatics Vol 21, pp.540-541.

[3] Swiss node of EMBnet. EMBOSS. Swiss Institute of Bioinformatics

 http://www.ch.embnet.org/EMBOSS/index.html (accessed November, 2010)

[4] The Client Server Architecture. Web Developers Notes.

http://www.webdevelopersnotes.com/basics/client_server_architecture.php3

(Accessed November, 2010)

[5] Internet2. About Shibboleth. (n.d). Retrieved from

http://shibboleth.internet2.edu/about.html (Accessed December, 2010).

[6] Ciordas, I. O. FINE-GRAINED AUTHORIZATION IN THE GREAT PLAINS

NETWORK VIRTUAL ORGANIZATION. Computer Science, Master’s Thesis, University

of Missouri, Columbia. 2007. Retrieved from

https://mospace.umsystem.edu/xmlui/handle/10355/4967

[7] Anjali, Gupta. 2008. Web-Based Data Repository in the Great Plains Network Virtual

Organization. Computer Science, Master’s Project, University of Missouri, Columbia. 2008.

