
1

Understanding the Performance of TCP and
UDP-based Data Transfer Protocols using

EMULAB
Sunae Shin Kaustubh Dhondge Baek-Young Choi

University of Missouri – Kansas City
5100 Rockhill Rd. Kansas City, MO, USA

Email: {sshin,kaustubh.dhondge,choiby}@umkc.edu

Abstract—In this paper, we present a hands-on course project
that explores the performance of data transfer protocols using
a GENI resource. TCP is one of the key topics in networking
courses, and understanding its behavior as well as limitations,
from real experiments, offers an invaluable and deep learning
experience. A protocol’s performance is directly impacted by
network parameters such as network bandwidth, delay and
loss. However, it is difficult to control and even vary those
parameters, if it is not evaluated with simulations. GENI facilities
conveniently provide a virtual laboratory that enables us to
control the network settings with real network systems. Through
this educational project, students had an opportunity to control
important network parameters, and measure and compare TCP’s
performance with a UDP-based data transfer protocol, UDT,
using EMULAB. Students were enthusiastic to witness the
protocols’ performances, and the limitations of TCP under a
high bandwidth delay product network in the presence of packet
loss, and to recognize the importance of protocol design and
system issues for the future Internet.

I. INTRODUCTION

Understanding TCP behavior is indispensable in a network-
ing course, as TCP is the dominant transport layer protocol
in today’s Internet, and performs vital network functionalities
such as connection-oriented reliable transfer and congestion
control.

The best way of learning a protocol behavior is to carry out
experiments with real traffic in real network environments. A
protocol’s performance is directly impacted by network param-
eters such as network bandwidth, delay and loss. However, it is
difficult to control and even vary those parameters, if it is not
evaluated with simulations. Fortunately, GENI facilities, such
as EMULAB, conveniently provide a virtual laboratory that
enables us to control the network settings with real network
systems.

In this paper, we present a hands-on educational project
development using EMULAB [1]. It is to provide students
an opportunity to explore the performance of TCP and to
compare it with the one of a UDP-based data transfer protocol,
UDT [2], under various network conditions. As UDT takes
very distinctive approaches from TCP, it provides students
a profound learning opportunity to examine diverse proto-
col design spectrums. EMULAB is a large public network
emulation testbed that allows a controllable environment of
network topology, delay and line-speed up to 1 Gbps running

at multiple sites around the world, ranging from testbeds with
a few nodes up to hundreds of nodes. Using EMULAB, we
have varied various network settings including bandwidth,
delay, and loss, and measured TCP and UDT’s throughput
performances. The showcase result has demonstrated that TCP
throughput significantly suffers in high bandwidth networks
especially with long delays, and the impact of loss was
relatively less critical than delay on the TCP throughput. On
the other hand, UDT could quickly reach and stay at almost
the full network capacity in high bandwidth and delay network
settings, but was very sensitive to packet loss. Both of the
protocols have permitted fairness among the flows. The real
experiments have also exposed a possible system issue that
is apart from network or protocol issues, but could affect the
performance of data transfer.

The rest of the paper is organized as follows. Section II
provides background of the evaluated protocols in the course
project. The experiment environments are described in Sec-
tion III. The evaluation results are discussed in Section IV.
Section V concludes the paper.

II. BACKGROUND

In this section, we describe the background of the evaluated
protocols – TCP and UDT.

The Transmission Control Protocol (TCP) is the de facto
transport protocol of today’s Internet for reliable data transfer.
It provides connection-oriented reliable data transfer using cu-
mulative ACK based Automatic Repeat reQuest (ARQ). It also
performs flow control, and congestion control. Flow control
is to avoid the case of a sender’s overflowing a receiver’s
buffer when the receiver is slow in processing its received
data to pass onto its application layer. Congestion control is
for a sender to find an appropriate sending rate and also to
reduce it in response to network congestion. A TCP sender
recognizes network congestion based on three duplicate ACKs
or timeout events. Congestion control is largely responsible for
the achieved rate of throughput. TCP uses a window-based rate
control, and the congestion control has different phases such
as slow-start and AIMD (Additive Increase and Multiplicative
Decrease). In the slow-start phase, it begins with a small value
of congestion window size, and the window increases by 1
MSS per acknowledgement until it reaches a threshold. This

2

results in doubling the window size per every RTT. After the
congestion threshold, it enters conservative AIMD phase until
it experiences network congestion, where the windows size
increases by a fraction of an MSS per acknowledgement in
order to cause the increase of the window size by only 1 MSS
over RTT. When TCP recognizes the network congestion by
three duplicate ACKs or timeout events, it drastically reduces
the windows size either to 1 MSS or half of the previous
window size.

Unfortunately, it is known that TCP does not utilize avail-
able network bandwidth well, especially with high bandwidth
and delay product settings. Furthermore, the throughput of
TCP is significantly impacted by packet loss ([3], [4]). The
following formula ([5], [6]) for a simple TCP throughput
modeling indicates that its throughput is inversely proportional
to both RTT and the square root of loss rate.

ThroughputTCP ≈
√
1.5 ·MSS

RTT ·
√
lossrate

(1)

There have been many solutions proposed to improve
TCP’s congestion control mechanism. For example, Scalable
TCP [7], BIC-TCP [8], H-TCP [9], FAST TCP [10] and
CUBIC-TCP [11] propose to change the sender’s adaptation
rate in response to congestion.

On the other hand, DCTCP [12] and XCP [13] require
routers’ feedback in TCP congestion control, and PSocket [14]
suggests using multiple TCP flows to achieve a higher through-
put.

A very different approach for reliable data transfer is
taken from UDT [2] that is a UDP-based application-level
protocol designed for wide area high-speed networks (i.e.,
high bandwidth and delay product environments). UDT uses
UDP at the transport layer in order to transfer bulk data, and
provides its own reliability and congestion control mechanisms
on top of UDP. It uses time-based selective acknowledgement
that generates an acknowledgement at a fixed interval if there
are new continuously received data packets. This results in a
lower ratio of acknowledgement in a higher speed network,
and almost an acknowledgement for each data packet in a low
speed network.

UDT uses a mixture of ACK (acknowledgement), ACK2 (a
sender’s acknowledgement responding to a receiver’s acknowl-
edgement), and NAK (negative acknowledgement). ACK2 is
generated more sparsely than ACK, and used to reduce re-
peated ACKs as well as to calculate RTT. As for the congestion
control, UDT decreases its sending rate x by a constant factor
upon any negative feedback, and increases the rate by α(x),
for every rate control interval if there is only positive feedback.
α(x) is non-increasing and approaches 0 as x increases using
the following formula.

α(x) = 10⌈log(L−C(x))⌉−τ × 1500

S
· 1

SY N
(2)

In the formula, L is the link capacity (bps), C(x) is the current
sending rate, S is the packet size (the factor 1500

S is to balance
the impact of the packet size), and τ is a protocol parameter
set as 9. The rationale is that α(x) should be large around
its initial value for efficiency, and should decrease quickly to
reduce oscillations.

Differences TCP UDT
Layer transport layer application layer

Feedback Cum. ACK NAK, Periodic ACK, ACK2
Congestion control Window-based Rate-based

TABLE I
TCP VS. UDT APPROACHES

We choose TCP and UDT protocols for this performance
evaluation project, since they take drastically different schemes
for data transfer. Table I summarizes the differences between
TCP and UDT for data transfer.

III. EVALUATION ENVIRONMENTS

The evaluations are performed using EMULAB [15]. EM-
ULAB is a public GENI network testbed that allows PC
nodes with full root access and a controllable environment of
topology, delay and line-speed up to 1 Gbps. EMULAB runs
at more than two dozen sites around the world, ranging from
testbeds with a few nodes up to hundreds of nodes. Not only
for the controllability but also due to its scalable resource, it
is well-suited for class students to use at any time.

The network environment settings that we have varied
for this project experiments of TCP and UDT data transfer
are synopsized in Figure 1. Figure 2 illustrates the network
configuration on EMULAB that uses up to three concurrent
flows.

Fig. 1. Varied network environments

IV. EXPERIMENT RESULTS

In this section, we discuss the experimental results obtained
from the aforementioned settings. For a concise presentation,
we show a few representative results out of our extensive
experiments.

We first observe the average throughput achieved by TCP
and UDT for a variety of conditions of i) No additionally
introduced delay or loss, ii) No delay and 0.01 loss, and iii)
50 ms delay and no loss, under different network bandwidths
of 100 Mbps, 500 Mbps, and 1 Gbps. The results from TCP
and UDT are shown in Figure 3 (a) and (b), respectively. While
TCP remains at substantially lower throughput, UDT displays
close to the maximum average throughput across the network

3

Fig. 2. Network Topology on EMULAB

bandwidths when there is no added delay and loss. Also, the
large delay substantially impacts TCP, while the impact on
UDT is negligible. Interestingly, Figure 3 (a) shows that on
the TCP throughput experience, the impact of delay is greater
than the loss, while UDT is affected by loss more significantly
than delay since throughput drops more with change of loss
than delay as shown in figure 3 (b).

Next, we take a closer look at the throughput using the time
series that are depicted in Figures 6 (a) and (b). For these
experiments, we measure the throughput at the granularity of
1 second to get a time series of throughput. We observe from
Figure 6 (b), that the UDT protocol rapidly utilizes almost all
of the available bandwidth and remains at the rate in absence
of any loss. However, when a loss factor of 0.01 is introduced,
the performance degrades to a large extent. The two points
at which the throughput drops can be observed for the 50
ms added delay case, we have encountered 2 and 3 NAKs,
respectively, that caused the drop in performance. Even if we
do not have injected loss, we may encounter NAKs due to
increased delay and timeout value. The small number of 2 and
3 NAKs can decrease throughput notably and this confirms
that UDT is sensitive to loss observed in Figure 3 (b).

We now examine the behavior of multiple concurrent TCP
and UDT flows, in order to investigate fairness. Figures 4(a)
and (b) show the performance of TCP and UDT flows in
the presence of cross traffic flows. The experimental setup
involved the topology as in Figure 2 with 1 Gbps links and 25
ms delay in them. For both Figure 4 (a) and (b), the Flow 1
starts at time t = 0 sec and goes on for 150 sec. The cross traffic
Flow 2 starts at time t = 30 sec and goes on for 90 sec. The
last cross flow - Flow 3 starts at time t = 60 sec and goes on
for 30 sec. For the TCP based protocol, as shown in Figure 4
(a), since TCP performs poorly and is unable to tap into the
available high bandwidth anyway, there is no noticeable effect
of cross flows. This leads to the increased total throughput of
all the flows. On the other hand, an individual UDT flow well
exploits the high bandwidth, and thus, it can be observed in
Figure 4 (b) that the occurrence of concurrent flows decreases

the throughput of the existing flows in such a manner that
their combined bandwidth usage is pretty much equivalent to
a single flow.

Finally, we report a system issue on data transfer per-
formance that we have encountered during the experiments.
We have found an interesting performance behavior when
sending a large file that was different from sending dummy
data consecutively. The performance of a large file transfer
is shown in Figure 5. For a file transfer, the file has to be
loaded into the memory and then written to a socket. Hence,
the peak is the buffered file data being sent at high speed by
UDT. The trough is the representation if the system is unable
to keep up with the high speed protocol resulting in it going
idle until the data is available to be sent. This phenomenon
is not observed in TCP except with a very large file, because
the sending rate itself does not reach high enough speeds. The
observation reminds us that the network itself may not be the
sole source of limited throughput, and care needs to be taken
when transmitting large files.

V. CONCLUDING REMARKS

We have presented a course project development that allows
students to explore the performance of TCP and to compare it
with one from a UDP-based data transfer protocol (UDT) un-
der various network conditions. The protocols’ performances
were measured under various network settings of bandwidth,
delay, and loss, using EMULAB testbed. The showcase result
has demonstrated that TCP throughput significantly suffers in
high bandwidth networks especially with long delays, and the
impact of loss was relatively less critical than the delay on the
TCP throughput. On the other hand, UDT could quickly reach
and stay at almost the full network capacity in high bandwidth
and delay network settings, but was very sensitive to packet
loss. Both of the protocols have permitted fairness among
the flows. The real experiments have also exposed a possible
system issue that is apart from network or protocol issues, but
could affect the performance of data transfer. The controllable
virtual laboratory environments of GENI have offered students
an invaluable and deep learning experience.

REFERENCES

[1] “EMULAB, a Network Emulation Testbed.” [Online]. Available:
http://www.emulab.net/

[2] Y. Gu and R. L. Grossman, “Udt: Udp-based data transfer for high-speed
wide area networks,” Computer Networks, vol. 51, no. 7, pp. 1777–1799,
2007.

[3] W. Feng and P. Tinnakornsrisuphap, “The failure of tcp in high-
performance computational grids,” in ACM/IEEE Supercomputing,
November 2000, p. 37.

[4] T. Faber, A. Falk, J. Bannister, A. Chien, R. Grossman, and J. Leigh,
“Transport protocols for high performance: Whither tcp?” Communi-
cations of the Association for Computing Machinery, vol. 47, no. 11,
November 2003.

[5] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling tcp through-
put: a simple model and its empirical validation,” in SIGCOMM. New
York, NY, USA: ACM, 1998, pp. 303–314.

[6] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The macroscopic be-
havior of the tcp congestion avoidance algorithm,” SIGCOMM Comput.
Commun. Rev., vol. 27, pp. 67–82, July 1997.

[7] T. Kelly, “Scalable tcp: Improving performance in highspeed wide area
networks,” ACM SIGCOMM Computer Communication Review, vol. 33,
pp. 83–91, 2002.

,
~-- -~

,
',0:. .!'f; ·e~ - ~!. ·

'.:~~ . "t' ~~ .. . -::', ., ,.
-T
~,
~"" ,

4

100Mbps 500Mbps 1Gbps
0

50

100

150

200

250

300

350

400

Bandwidth

T
hr

ou
gh

pu
t (

M
bp

s)

no delay no loss
no delay 0.01 loss
50ms delay no loss

100Mbps 500Mbps 1Gbps
0

100

200

300

400

500

600

700

800

900

1000

Bandwidth

T
hr

ou
gh

pu
t (

M
bp

s)

no delay no loss
no delay 0.01 loss
50ms delay no loss

(a) TCP (b) UDT
Fig. 3. Average throughput under varied network bandwidths (no cross traffic)

0 20 40 60 80 100 120 140 160
0

2

4

6

8

10

12

14

Time (sec)

T
hr

ou
gh

pu
t (

M
bp

s)

Flow1
Flow2
Flow3
Total BW used

0 20 40 60 80 100 120 140 160
0

200

400

600

800

1000

1200

Time (sec)

T
hr

ou
gh

pu
t (

M
bp

s)

Flow1
Flow2
Flow3
Total BW used

(a) TCP (b) UDT
Fig. 4. Fairness of multiple flows (network bandwidth = 1Gbps)

[8] L. Xu, K. Harfoush, and I. Rhee, “Binary increase congestion control
(bic) for fast long-distance networks,” in INFOCOM, 2004.

[9] D. Leith and R. Shorten, “H-tcp: Tcp for high-speed and long-distance
networks,” 2004.

[10] D. X. Wei, C. Jin, S. H. Low, and S. Hegde, “Fast tcp:
motivation, architecture, algorithms, performance,” IEEE/ACM Trans.
Netw., vol. 14, pp. 1246–1259, December 2006. [Online]. Available:
http://dx.doi.org/10.1109/TNET.2006.886335

[11] S. Ha, I. Rhee, and L. Xu, “Cubic: a new tcp-friendly high-speed
tcp variant,” SIGOPS Oper. Syst. Rev., vol. 42, pp. 64–74, July 2008.
[Online]. Available: http://doi.acm.org/10.1145/1400097.1400105

[12] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data center tcp (dctcp),” in

Proceedings of the ACM SIGCOMM 2010 conference on SIGCOMM,
ser. SIGCOMM ’10. New York, NY, USA: ACM, 2010, pp. 63–74.

[13] D. Katabi, M. Handley, and C. Rohrs, “Congestion control for high
bandwidth-delay product networks,” in SIGCOMM. New York, NY,
USA: ACM, 2002, pp. 89–102.

[14] S. B. Grossman, H. Sivakumar, S. Bailey, and R. L. Grossman, “Psock-
ets: The case for application-level network striping for data intensive
applications using high speed wide area networks,” in Supercomputing,
2000.

[15] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar, “An integrated experimental
environment for distributed systems and networks,” Boston, MA, Dec.
2002, pp. 255–270.

II II

.. ;_ - - ,;". ... - - -,.
~>~,*' ---: ~,~~,~"~'\ ! - -------:- -------;

I .:

5

0 10 20 30 40 50 60 70 80 90
0

20

40

60

80

100

120

140

160

Time (sec)

T
hr

ou
gh

pu
t (

M
bp

s)

200MB
500MB
800MB
1GB

0 20 40 60 80 100
0

100

200

300

400

500

600

700

Time (sec)

T
hr

ou
gh

pu
t (

M
bp

s)

250M
500M
750M
1GB

(a) TCP (b) UDT
Fig. 5. Impact of a System Issue of Network Performance (Large File Copy onto Memory on a Sender Throttles Sending Rate)

0 2 4 6 8 10
0

50

100

150

200

250

300

Time (sec)

T
hr

ou
gh

pu
t (

M
bp

s)

no delay no loss
no delay 0.01 loss
25ms delay no loss

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

Time (sec)

T
hr

ou
gh

pu
t (

M
bp

s)

no delay no loss
no delay 0.01 loss
50ms delay no loss

(a) TCP (b) UDT
Fig. 6. Time series of throughput (network bandwidth = 1Gbps)

" ", ,.,.
' /,'
'/

/

I ,
(
! ,
i
I

;----------, ,
• , , , , , , , ,

,
• ,
: .'-''''''''''''''''''''''''

, '
~/

- -.

--­, .. , .. , EJ"""

... , ... , .. , .. , , ...

~
i-
!i
,i
~ i
, i
~ i , i
I ,
I ,
I ,
1/
,
•

-
V

, ,
, , , ,

1---=
~

--­, .. , .. , [J"""
r

I

#0'';'' "~ .. ,' r'", ... '" " .. " ... ,'" .. ,:\" , .. " ,

