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ABSTRACT

Zeamay§ ® Aa 2yS 27F {KSandditely éwicropsardis A Y LJ2 N

susceptibleo a wide range of plant pathogens. Olumgalpathogen ofparticular
concern isAspergillus flavukink,which is capable of producing tlsecondary

metabolite aflatoxin. Aflatoxin poses serious health concerns when consumed by
humans and animaland when consumed in large doses can leadlidominal pain,

liver damageand death While regulated in the United States, many underdeveloped
countries do not have thessources to monitor aflatoxin accumulation in maize and
thus, developing low aflatoxin accumulati@m@mmercial maize linesould be of great
benefit. The objective of this project was to identify genotypic and phenotypic
predictors of low aflatoxin acecaulationthat could help maize breeders develop a low
aflatoxin accumulating lineFirst, the inheritance pattern of low aflatoxin accumulation
was investigated in a series of reciprocal crosses between a high toxin accumulating line
and a low toxin accuniating line. The data supported the hypothesis that maternal
effects or the interaction between nuclear and maternal genetic components impacts
aflatoxin accumulation. Second, the availability of sugars in maize kéaelseen
shownin laboratory stuéesto impact aflatoxin production and accumulationA.
flavusgrown on media. To determine if sugars impact maize grown in the field,
aflatoxin accumulation was analyzed in maize starch biosynthesis mutants and four

mutants were identifiedhat accumuate significantly high aflatoxin concentrations.
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These maize mutants have unique phenotypic characteristics such as high sugar
concentrations, altered starch ratios and high moisture that couldraitfavusn

aflatoxin production. The impact of sugar aflatoxin accumulation was also evaluated
in a diverse set of maize germplagmoviding further evidence for the relationship
between sugaavailabilityand aflatoxin accumulation. Finally, two QTL chromosome
regions were identified in maize cob tissaematernally derived tissue. Candidate

genes in these regions associated with low aflatoxin accumulation include genes for the
transport of sugars and disease resistan¢é@e results of this work reveal the potential
impact the maternal parental plantds on low aflatoxin accumulation through the
movement of carbohydrates into developing kernels, how maternal tissues (e.g. husks,
cob and pericarp) serve as barriers to fungal infection and the location of QTL in the

maize genome associated with low aflaiim accumulation.
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CHAPTER
INTRODUCTION

Zea mays

Zea mayd4.. sspmays commonly referred to as corn or maize, rssanual crop
that has been adapted to many growing conditions around the world. In the early
spring, kernels, which serve as the seeds,@anted in soil and germinate where they
emerge 621 days after planting, depending on environmental conditions (Figure 1.1).
The vegetative stage follows and lasts approximately nine weeks but can vary depending
on the maize line. During the early \&gtive stages, the seminal root system is
replaced by a nodal root system, juvenile leaves provide photosynthates to the growing
plant, and the first internode begins to elongate below the fifth leaf. Later vegetative
stages involve the initiation of eaemd tassels, stem elongation and adult leaf
production. The shift from the vegetative to reproductive stage occurs at the
maturation of the male tassels, which begin shedding pollen, and the extension of silks
beyond the husks of the female ears. Undatural field conditions, wind blows the
pollen onto the sticky silks and viable pollen germinates producing a pollen tube which
grows down the silk and fertilizes both the egg, to create the embryo, and the polar
nuclei, to produce the triploid endospernResearchers can control this process in order
to make specific crosses or ensure that a plant fertilizes itself by using specialized tassel
bags to collect pollen and shoot bags to protect emerging silks from capturing undesired

pollen. Kernels that havbeen fertilized begin undergoing kernel maturation. The



blister stage occurs 104 days after pollination (DAP) when the small kernels are filled
with clear fluid, become distinct from cob tissue and nutrients begin relocating from
leaves to the kernelsThe milk stage occurs-P2 DAP and is a time distinguished by
rapid grain filling and kernel color development. It is during this time that sweet corn is
picked for eating off the cob or for canning. At28 DAP is the dough stage, in which
the kerrels begin to harden and fluids are reduced while solid products like starches are
increased. A dent in the top of the kernel indicates the dent stages-4235AP
followed by half maturity in which a hard, white layer of starch reaches from the top to
half way down each kernel. Maturity is reached when the starch layer extends to the
cob and a black abscission layer has formed at the base of the kernel (Kiesselback 1949;
Ritchie et al., 2005; Bortiri and Hake, 2007).
Since its domestication in Central Arita 60089000 years agaZ. may$as
0S02YS 2yS 2F (KS ¢g2NIRQa Yz2ad AYLRZNIFyd O
et al., 2002). According to the United States Department of AgricuRareign
Agriculture Service, 163 million hectares of landeveedicated to growing maize
during the 20162011 marketing year yielding almost 900 million tons (USBS, 2011).
h¥ GKA&a ONRLIE GUKS !yAGSR {GFdSa Fft2yS LINER
worth approximately 66 billion dollardN@tional Can Growers Associatior2011).
Maize is a versatile crop that has a key role in the food, feed, fuel and consumer goods
industries. Maize and its byproducts (starches, sugars and oils) can be found in

thousands of products including food items such agaks; snack foods, peanut butter,

alcoholic beveragesnd packaged meat products and nfood items such as aspirin,



carpet tiles, cosmetics, batterieand paint National Corn Growers Associatjd@011).

The high starch content in maize also makes iid@al source of energy for dairy and

beef cows, poultryand pigs. More recently, the movement to find alternative forms of
renewable energy has led to a rapidly increasing percentage of maize being devoted to
ethanol production Kational Corn Growers Assatior>s HAMMU0 @ la GKS 62N
population continues to grow, the demand for maize is also projected to increase
dramatically. Over the next ten years, meat consumption is expected to increase with
the growing middle class and, in turn, 50 million moras®f feed grain will need to be
produced to feed livestock in order to meet the increase in demand (Edgerton, 2009). In
addition, the proportion of maize needed to meet the demand for biofuels is expected

to increase by 60 million tons over the next ddegEdgerton, 2009; Banerjee, 2011).

The genetic resources available also make maize a model plant for scientific
research. First, maize has been adapted to thrive in a variety of environmental
conditions and to express a wide range of phenotypic charesties. Maize inbred lines
have been shown to be genetically diverse antenableto a wide range ofechniques
including quantitative trait locus (QTL) mapping, molecular evolution, developmental
geneticsand more recently association mapping (Lui et2003; Buckler et al., 2006).

Lui and ceworkers also performed phylogenetic analyses showing that maize inbred
lines carbe grouped into one of six structure groups based on their characteristics: non
stiff stalk (NSS), stiff stalk (SS), tropical (h&gd (MS), sweet and popcorn (Lui et al.,
2003). There are also many phenotypic mutants available including those affecting

plant growth factor production, starch production, ear and tassel developpaert



photosynthesis (Neuffer et al., 1996). Lasthe maize genome has been sequenced

and continues to be annotated (Schnable et al., 2009).

Aspergillus flavus

Field crops like maize are subject to infection by a wide variety of bacteria,
viruses and fungi. Infections from these and other plant patimsgcan greatly impact
the yield and quality of harvestable materials resulting in billions of dollars in losses
each year. It is estimated that 14% of #rarvest and another-42% of posharvest
crop losses are due to plant pathogens (Agrios, 200baddition to the physical
damage these pathogens cause, many fungal plant pathogens also produce compounds
called mycotoxins that are harmful when consumed by humans or other animals. The
economic loss due to the top three mycotoxiafiatoxins, fumonigs and
deoxynivalenol, is estimated to be in excess of 946 million dollars annually (CAST, 2003).
As consumer demand intensifies for healthy crops, it is becoming increasingly important
to develop ways to minimize the impact of plant pathogens and mydonsoon our food
supply.

One plant pathogen of particular detriment to the maize plant is the fungal
pathogenAspergillus flavukink. A. flavuss a member of Phylum Ascomycota asd
closely related to other plant pathogens, suchCGgshiostomasp. respasible for Dutch
EIm Disease andncinula necatothe cause of powdery mildew, and other chemical
producing fungi, such @enicillium chrysogenufantibiotic penicillin) Fusariunmsp.

(mycotoxin fumonisin) an@€laviceps purpure@ause of ergotism) (Agsp2005).A.



flavus is one of thirtysix species oAspergillughat have been identified as capable of
producing at least one form of mycotoxin and all are associated with disease in plants,
insects, humansand other animals (Leger et al., 2000; Brésalg 2009). The fungus
can be identified on host plants by its greenigtllow color and almost powdery/fuzzy
appearance (Figure 1.2). In culture, mycelial colonies have been observed growing
rapidly reaching a diameter of B centimeters in ten days@per et al., 1965). The
Fdzy3dzaQ €+ 01 2F K2a0d aLISOAFfATFIGARZY FEft264
peanut, rice, cottonand pecanamong others, in addition to maize (Diener et al., 1987,
Leger et al, 2000).

A. flavusis a facultativeparasite whose growth and development cycles allow it
G2 FTRIFILI G2 F+ 6ARS Nry3aS 2F Sy@GANBYYSyGl
called hyphae, are multinucleate, haploid, septate and highly branched forming large
networks of mycelia that can suive as a saprophyte living off decaying plant material in
the soil or as a pathogen on live tissues (Raper et al., 1965). At the end of a growing
season, infected kernels, cobs and leaf material remaining in the field help propagate
fungal mycelial growt until the next growing season (Figure 1.2). The fungus can also
overwinter in the soil inhe form of sclerotia which are small, thiekalled, heavily
melanized masses of mycelia. As temperatures increase during the spring and summer
months, the sclertba germinate and begin producing mycelium in the soil and on plant
debris (Diener et al., 1987). Only asexual reproduction has been observed, occurring

when hyphae develop into conidiophores producing millions of conidia (Timberlake,



1990). These conigiserve as the primary inoculum and are carried via wind and insects
to plant hosts where they severely reduce the quality of infected fruits and seeds.

It has been shown that the environmental conditions for conidiophore
development occur at nearly theame time as silk maturation in maize ears. Thus,
maize ears often become infected when conidia land on the sticky silks, germinate and
grow down the silk channel to the kernel (Vincelli et al., 1996). The fungal infection
process can also occur when atia land on silk scars, at the base of the keryals
wounding sites (Vincelli et al., 1996). Conidia that successfully attach themselves to the
plant produce hyphae that grow around and into developing kernels and feed off the
increasing carbohydrate pply as sugars are moved into the kernels during grain filling
leading to ear rot. Internal hyphal growth is concentrated around the developing
embryo where sugar levels are at the highest (Keller et al., 1994). Hyphae are also able
to use the vascularaiwork in the cob to travel from kerngb-kernel and throughout
the maize plant.

A. flavusis also capable of infecting humans, especially those with compromised
or immature immune systems. Human infection can result in fungal growth along the
respirabry tract and cause the potentially lHdreatening diseases allergic
bronchopulmonary aspergillosis, pulmonary aspergilloma and invasive aspergillosis

(Stevens et al., 2000).



Aflatoxin

While A. flavusis capable of directly harming plants and, to ssker extent,
KdzYl yaz GKS 3INBIFGSNI O2yOSNYy Aa Ay (HKS Fdzy3
secondary metabolite produced by sevefapergilluspecies and is the most potent
natural carcinogen identified to date (Calvo et al., 2002). Huraadsanimals that
consume contaminated food products with high aflatoxin levels may develop
aflatoxicosis with symptoms such as abdominal pain, vomiting, convulsions, liver
damageand death. Awareness of the potential dangers of consuming aflatoxin first
came to the public eye in 1960 when over 100,000 turkeys died after eating peanut
meal contaminated with high levels of the toxin. Several episodes of human
consumption of tainted maize have also led to multiple deaths (Wild and Gong, 2010).
In 1974, 16 out of 397 persons in northwest India died after consuming maize
contaminated with aflatoxin at levels of 6,286,600 parts per billion (ppb). High
aflatoxin levels also led to the deaths of 16 and 125 Kenyans in 1981 and 2004,
respectively. Inthe Uted States, Diamond Pet Food products were recalled in 2005
after testing positive for aflatoxin contamination but not before at least 100 dogs died
from eating tainted food (Brinkman, 2005; Lang, 2006).

Due to the potential dangers of consuming aflatgxhe Food and Drug
Administration (FDA) in the United States has developed specific limits and testing
procedures to minimize the amount of aflatoxmfood products for both humaand
animal consumption. These limits are: 0.5 ppb in milk for humaswoption; 20 ppb

in food for human consumption, feed for immature animals, feed for dairy animals or



when the destination of the food item is unknown; 100 ppb in feed for breeding cattle,
breeding swine or mature poultry; 200 ppb in feed for finishing svahgreater than

100 pounds; and 300 ppb in feed for finishing beef cattle. The USDA has published a
handbook for grain inspection, packers and stockyards detailing accepted testing
procedures (USDA, 2005). While the testing of maize for aflatoxinndatary in the
United States, many underdeveloped countries do not have any regulations in place to
limit aflatoxin exposure and the expenassociated with proper testing and

unavailability of testing tools greatly limit the amount of grain tested.

Aflatoxin is a complex molecule whose production comes at a high metabolic
cost to the fungus even though the compound is not essential for fungal growth,
development or plant pathogenicity. The exact reasons pergillusp. produce
aflatoxin are still unkawn but many hypotheses have been proposed. Possible
aflatoxin functions include serving as a chemical signal between fungal species, signaling
fungal developmental, protecting the fungus from competit@sd protecting fungal
colonies from insects (Bhaagar et al., 2003).

The aflatoxin synthesis pathwayAn flavusis a 70 kb cluster of 27 genes
encoding both pathway regulators and enzymes essential to aflatoxin biosynthesis (Yu
et al. 2004; Roze et al. 2007). This pathway is responsible for tdegiron of the
twenty-nine different aflatoxin compounds with unique séexchemical properties that
have been identified to dateA. flavuss able to produce fifteen of these. The six major
aflatoxin forms are: aflatoxin;BAFB), aflatoxin B (AFB), aflatoxin G (AFG), aflatoxin

G (AFG), aflatoxin M (AFM) and aflatoxin M (AFM) (Figure 1.3). AkRBnd AFBare



named after the fact that they glow blue under black light while A&itel AFG@glow
green under black light. ARMnd AFM are found inmilk and are the oxidated forms of
AFB and AFB respectively, which wermodified in the liverof milk producing animals.
The AFBconformation makes up 90% of aflatoxin contamination imize and is the

most toxic form(Brase et al. 2009).

Aflatoxin Production in Maize

Z. mayss an ideal model crop for studying the complex nature of aflatoxin
accumulation due to the many available resourdtslong history of use in aflatoxin
studies andts economic importance. Infection . flavusand subseqant production
of aflatoxin is of major concern to maize growers in the United States, Central and South
America, Africa, southern Asia and Australia where aflatoxin accumulation is a problem
(TaylorPickard, 2009). Unfortunately, there are currently monenercially available
lines that consistently have low aflatoxin accumulation levels when infectéd Bgivus

To help combat the problem of aflatoxin accumulation, agricultural extension
programs at universities across the Midwest have publishedhlitee outlining
measures to prevenA. flavusnfection in fieldcrops (Vincelli et al., 1996; Duncan and
Hagler, Jr., 2008; Munkvold et al., 2009). -Raevest control involves sound agronomic
practices, irrigation, insect control and seed fumigation befplanting. Sincé. flavus
can colonize kernels both prand postharvest, properly drying and storing the grain
can help prevent the fungus from continued growth and production of aflatoxin-post

harvest. When portions of a field have become infeatgih high levels oA. flavus



studies have shown that introducing atoxigeAicflavusstrains to soil contaminated
with toxigenicA. flavuscan limit aflatoxin because the atoxigenic strains are able to
outcompete the toxigenic strains (Cotty, 1989).

These control recommendations primarily address limiting fungal infection in
kernels. This is a problem because fungal growth and aflatoxin concentration are not
correlated. Both low and high fungal infection levels can produce aflatoxin levels above
the FDA guidelines. Because aflatoxin contamination is difficult to control, numerous
biological and chemical detoxification strategies have been proposed. While chemical
inactivation via ammoniation has been shown to be safe for grain used for feed
purposes most proposed grain treatment processes result in maize that is not safe for
human consumption (LopeZarcia et al., 1999). Although infected kernels pose the
largest health risk, several studies have measured high aflatoxin levels in other parts of
the plant body, including cob tissue, which can potentially expose humans and animals
to aflatoxin (Zummo and Scott, 1990; Jai@arcia and Cotty, 2004; Windham and
Williams, 2007).

A multitude of abiotic and biotic factors impact aflatoxin accumulation ifema
These factors include temperature, pH, carbon source, nitrogen source, water
availability and stresses (Calvo et al., 2002; Chen et al., 2004). Because of the large
environmental impact, aflatoxin concentrations can vary greatly from one year to the
next and across different growing regions. fRegvest aflatoxin accumuation tends to
be greatest when it is hot and dry while pdsdrvest aflatoxin accumulation is highest

under warm and humid conditions (Vincelli, 1996). One factor of particulameisttéen

10



toxin accumulation is carbon source; specifically the availability of sugars, like glucose
and sucrose, and starches, chains of glucose stored in maternally derived amyloplasts.
Many studies have demonstrated that there is a relationship betwaexlability of
simple sugars such as sucrose, glucose, fructose and sorbital and high aflatoxin
accumulation (Davis and Diener, 1968; Abdollahi and Buchanan, 1981). Woloshuk et al.
(1997) preserdd data supporting the idea that the presence of glucoseltosa and
maltotriose are key factors in the induction of aflatoxin production. Another key
experiment showed that when thamylgene inA. flavusiwhich encodes fungal-
amylase, was disrupted, fungal growth on a statontaining medium decreased by as
much as 45% and the fungus did not produce aflatoxin (Fakhoury and Woloshuk, 1999).
These studies primarily measured aflatoxin levels in whole or ground kernels in
laboratory settings leaving their impact in a whole plant, field situation unclear.
Undestanding what allows aA. flavusnfected maize line to consistently
accumulate low toxin levels is complicated by the fact that multiple maize tissues with
different genetic backgrounds probably play a role in preventing the spread of fungal
growth andaflatoxin development (Gardner et al., 2006). The silks, husks, cob and
pericarp tissues are maternally derived while diploid embryo and triploid endosperm
are the results o double fertilization event. Many of the cellular components are also
materndly-derived including plastids (i.e., chloroplasts, amyloplasts, etc.), mitochondria
and cytosol. The idea that maternally inherited components affect aflatoxin

accumulation is further supported by Adams et al. (1984). They reported significant
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differences in aflatoxin levels between reciprocal crosses of high aflatoxin accumulating
and low aflatoxin accumulating lines. Crosses in which the maternal parent was a low
aflatoxin accumulating line had lower aflatoxin levels compared to those where the

maternal parent was a high aflatoxin accumulating line.

Project Objectives

The overarching goal of this project was to understand the factors that allow
some maize lines to consistently accumulate low levels of aflatoxin. Specifically, my
research objectivewere:

Objective l:investigate the inheritance patterns of low aflatoxin accumulation

across multiple gnerations to determine the rolef maternallyinherited cell

components in toxin accumulation.

Objective 2:Investigate the impact of sugar availalyiliin aflatoxin production

in field grown maize.

Objective 3:ldentify the location of genes affecting aflatoxin content in

maternally-derived cob tissue.
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Figure I.1: Developmental stagesZzfa may$rom planting to maturity.

Modified from Teixe@a et al., 2011.
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Figure 1.2: Life and infection cycle of the pathogenic furgpergillus flavus

Pictures obtained from: http://www.hear.org/pph/images/01_033.htm,
http://lwww.regional.org.au/au/asa/2006/poster/environment/4578_shavrukov
y.htm, http://www.oxfam.org.uk/education/resources/water_for_all/water/
celebrate/ maize.htm, http://ci.vbi.vt.edu/pathinfo/ pathogens/html,
http://ci.vbi.vt.edu/ pathinfo/pathogens/Af.html,
http://lwww.ipm.iastate.edu/ipm/icm/2005/919/ aflatoxin.html,
http://www.ces.ncsu.edu/plymouth/ent/ECB.html and
http://pest.ceris.purdue.edu/pest.php?code=INAMBOA
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