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ABSTRACT 

 Zea mays [Φ ƛǎ ƻƴŜ ƻŦ ǘƘŜ ǿƻǊƭŘΩǎ Ƴƻǎǘ ƛƳǇƻǊǘŀƴǘ and widely grown crops and is 

susceptible to a wide range of plant pathogens.  One fungal pathogen of particular 

concern is Aspergillus flavus Link, which is capable of producing the secondary 

metabolite aflatoxin.  Aflatoxin poses serious health concerns when consumed by 

humans and animals and when consumed in large doses can lead to abdominal pain, 

liver damage, and death.  While regulated in the United States, many underdeveloped 

countries do not have the resources to monitor aflatoxin accumulation in maize and, 

thus, developing low aflatoxin accumulation commercial maize lines would be of great 

benefit.  The objective of this project was to identify genotypic and phenotypic 

predictors of low aflatoxin accumulation that could help maize breeders develop a low 

aflatoxin accumulating line.  First, the inheritance pattern of low aflatoxin accumulation 

was investigated in a series of reciprocal crosses between a high toxin accumulating line 

and a low toxin accumulating line.  The data supported the hypothesis that maternal 

effects or the interaction between nuclear and maternal genetic components impacts 

aflatoxin accumulation.  Second, the availability of sugars in maize kernels has been 

shown in laboratory studies to impact aflatoxin production and accumulation in A. 

flavus grown on media.  To determine if sugars impact maize grown in the field, 

aflatoxin accumulation was analyzed in maize starch biosynthesis mutants and four 

mutants were identified that accumulate significantly high aflatoxin concentrations.  
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These maize mutants have unique phenotypic characteristics such as high sugar 

concentrations, altered starch ratios and high moisture that could aid A. flavus in 

aflatoxin production.  The impact of sugar on aflatoxin accumulation was also evaluated 

in a diverse set of maize germplasm providing further evidence for the relationship 

between sugar availability and aflatoxin accumulation.  Finally, two QTL chromosome 

regions were identified in maize cob tissue, a maternally derived tissue.  Candidate 

genes in these regions associated with low aflatoxin accumulation include genes for the 

transport of sugars and disease resistance.  The results of this work reveal the potential 

impact the maternal parental plant has on low aflatoxin accumulation through the 

movement of carbohydrates into developing kernels, how maternal tissues (e.g. husks, 

cob and pericarp) serve as barriers to fungal infection and the location of QTL in the 

maize genome associated with low aflatoxin accumulation.
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CHAPTER I 

INTRODUCTION 

Zea mays 

Zea mays L. ssp. mays, commonly referred to as corn or maize, is an annual crop 

that has been adapted to many growing conditions around the world.  In the early 

spring, kernels, which serve as the seeds, are planted in soil and germinate where they 

emerge 6-21 days after planting, depending on environmental conditions (Figure I.1).  

The vegetative stage follows and lasts approximately nine weeks but can vary depending 

on the maize line.  During the early vegetative stages, the seminal root system is 

replaced by a nodal root system, juvenile leaves provide photosynthates to the growing 

plant, and the first internode begins to elongate below the fifth leaf.  Later vegetative 

stages involve the initiation of ears and tassels, stem elongation and adult leaf 

production.  The shift from the vegetative to reproductive stage occurs at the 

maturation of the male tassels, which begin shedding pollen, and the extension of silks 

beyond the husks of the female ears.  Under natural field conditions, wind blows the 

pollen onto the sticky silks and viable pollen germinates producing a pollen tube which 

grows down the silk and fertilizes both the egg, to create the embryo, and the polar 

nuclei, to produce the triploid endosperm.  Researchers can control this process in order 

to make specific crosses or ensure that a plant fertilizes itself by using specialized tassel 

bags to collect pollen and shoot bags to protect emerging silks from capturing undesired 

pollen.  Kernels that have been fertilized begin undergoing kernel maturation.  The 
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blister stage occurs 10-14 days after pollination (DAP) when the small kernels are filled 

with clear fluid, become distinct from cob tissue and nutrients begin relocating from 

leaves to the kernels.  The milk stage occurs 18-22 DAP and is a time distinguished by 

rapid grain filling and kernel color development.  It is during this time that sweet corn is 

picked for eating off the cob or for canning.  At 24-28 DAP is the dough stage, in which 

the kernels begin to harden and fluids are reduced while solid products like starches are 

increased.  A dent in the top of the kernel indicates the dent stages at 35-42 DAP 

followed by half maturity in which a hard, white layer of starch reaches from the top to 

half way down each kernel.  Maturity is reached when the starch layer extends to the 

cob and a black abscission layer has formed at the base of the kernel (Kiesselback 1949; 

Ritchie et al., 2005; Bortiri and Hake, 2007). 

Since its domestication in Central America 6000-9000 years ago, Z. mays has 

ōŜŎƻƳŜ ƻƴŜ ƻŦ ǘƘŜ ǿƻǊƭŘΩǎ Ƴƻǎǘ ƛƳǇƻǊǘŀƴǘ ŎǊƻǇǎ όtƛǇŜǊƴƻ ŀƴŘ CŀƴƴŜǊȅΣ нллмΤ aŀǘǎǳƻƪŀ 

et al., 2002).  According to the United States Department of Agriculture-Foreign 

Agriculture Service, 163 million hectares of land were dedicated to growing maize 

during the 2010-2011 marketing year yielding almost 900 million tons (USDA-FAS, 2011).  

hŦ ǘƘƛǎ ŎǊƻǇΣ ǘƘŜ ¦ƴƛǘŜŘ {ǘŀǘŜǎ ŀƭƻƴŜ ǇǊƻŘǳŎŜŘ ŀƭƳƻǎǘ пл ǇŜǊŎŜƴǘ ƻŦ ǘƘŜ ǿƻǊƭŘΩǎ ƳŀƛȊŜ 

worth approximately 66 billion dollars (National Corn Growers Association, 2011).  

Maize is a versatile crop that has a key role in the food, feed, fuel and consumer goods 

industries.  Maize and its byproducts (starches, sugars and oils) can be found in 

thousands of products including food items such as cereals, snack foods, peanut butter, 

alcoholic beverages, and packaged meat products and non-food items such as aspirin, 
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carpet tiles, cosmetics, batteries, and paint (National Corn Growers Association, 2011).  

The high starch content in maize also makes it an ideal source of energy for dairy and 

beef cows, poultry, and pigs.  More recently, the movement to find alternative forms of 

renewable energy has led to a rapidly increasing percentage of maize being devoted to 

ethanol production (National Corn Growers AssociationΣ нлммύΦ  !ǎ ǘƘŜ ǿƻǊƭŘΩǎ 

population continues to grow, the demand for maize is also projected to increase 

dramatically.  Over the next ten years, meat consumption is expected to increase with 

the growing middle class and, in turn, 50 million more tons of feed grain will need to be 

produced to feed livestock in order to meet the increase in demand (Edgerton, 2009).  In 

addition, the proportion of maize needed to meet the demand for biofuels is expected 

to increase by 60 million tons over the next decade (Edgerton, 2009; Banerjee, 2011). 

The genetic resources available also make maize a model plant for scientific 

research.  First, maize has been adapted to thrive in a variety of environmental 

conditions and to express a wide range of phenotypic characteristics.  Maize inbred lines 

have been shown to be genetically diverse and amenable to a wide range of techniques 

including quantitative trait locus (QTL) mapping, molecular evolution, developmental 

genetics, and more recently association mapping (Lui et al., 2003; Buckler et al., 2006).  

Lui and co-workers also performed phylogenetic analyses showing that maize inbred 

lines can be grouped into one of six structure groups based on their characteristics: non-

stiff stalk (NSS), stiff stalk (SS), tropical (TS), mixed (MS), sweet and popcorn (Lui et al., 

2003).  There are also many phenotypic mutants available including those affecting 

plant growth factor production, starch production, ear and tassel development, and 
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photosynthesis (Neuffer et al., 1996).  Lastly, the maize genome has been sequenced 

and continues to be annotated (Schnable et al., 2009). 

 

Aspergillus flavus 

Field crops like maize are subject to infection by a wide variety of bacteria, 

viruses and fungi.  Infections from these and other plant pathogens can greatly impact 

the yield and quality of harvestable materials resulting in billions of dollars in losses 

each year.  It is estimated that 14% of pre-harvest and another 6-12% of post-harvest 

crop losses are due to plant pathogens (Agrios, 2005).  In addition to the physical 

damage these pathogens cause, many fungal plant pathogens also produce compounds 

called mycotoxins that are harmful when consumed by humans or other animals.  The 

economic loss due to the top three mycotoxins, aflatoxins, fumonisins and 

deoxynivalenol, is estimated to be in excess of 946 million dollars annually (CAST, 2003).  

As consumer demand intensifies for healthy crops, it is becoming increasingly important 

to develop ways to minimize the impact of plant pathogens and mycotoxins on our food 

supply. 

One plant pathogen of particular detriment to the maize plant is the fungal 

pathogen Aspergillus flavus Link.  A. flavus is a member of Phylum Ascomycota and is 

closely related to other plant pathogens, such as Ophiostoma sp. responsible for Dutch 

Elm Disease and Uncinula necator the cause of powdery mildew, and other chemical 

producing fungi, such as Penicillium chrysogenum (antibiotic penicillin), Fusarium sp. 

(mycotoxin fumonisin) and Claviceps purpurea (cause of ergotism) (Agrios, 2005).  A. 
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flavus  is one of thirty-six species of Aspergillus that have been identified as capable of 

producing at least one form of mycotoxin and all are associated with disease in plants, 

insects, humans, and other animals (Leger et al., 2000; Bräse et al., 2009).  The fungus 

can be identified on host plants by its greenish-yellow color and almost powdery/fuzzy 

appearance (Figure I.2).  In culture, mycelial colonies have been observed growing 

rapidly reaching a diameter of 6-7 centimeters in ten days (Raper et al., 1965).  The 

ŦǳƴƎǳǎΩ ƭŀŎƪ ƻŦ Ƙƻǎǘ ǎǇŜŎƛŀƭƛȊŀǘƛƻƴ ŀƭƭƻǿǎ ƛǘ ǘƻ ƛƴŦŜŎǘ ŀ ǿƛŘŜ ǊŀƴƎŜ ƻŦ Ǉƭŀƴǘ Ƙƻǎǘǎ ƛƴŎƭǳŘƛƴƎ 

peanut, rice, cotton, and pecan, among others, in addition to maize (Diener et al., 1987; 

Leger et al, 2000). 

A. flavus is a facultative parasite whose growth and development cycles allow it 

ǘƻ ŀŘŀǇǘ ǘƻ ŀ ǿƛŘŜ ǊŀƴƎŜ ƻŦ ŜƴǾƛǊƻƴƳŜƴǘŀƭ ŎƻƴŘƛǘƛƻƴǎΦ  ¢ƘŜ ŦǳƴƎǳǎΩ ǾŜƎŜǘŀǘƛǾŜ ŎŜƭƭǎΣ 

called hyphae, are multinucleate, haploid, septate and highly branched forming large 

networks of mycelia that can survive as a saprophyte living off decaying plant material in 

the soil or as a pathogen on live tissues (Raper et al., 1965).  At the end of a growing 

season, infected kernels, cobs and leaf material remaining in the field help propagate 

fungal mycelial growth until the next growing season (Figure I.2).  The fungus can also 

overwinter in the soil in the form of sclerotia which are small, thick-walled, heavily 

melanized masses of mycelia.  As temperatures increase during the spring and summer 

months, the sclerotia germinate and begin producing mycelium in the soil and on plant 

debris (Diener et al., 1987).  Only asexual reproduction has been observed, occurring 

when hyphae develop into conidiophores producing millions of conidia (Timberlake, 
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1990).  These conidia serve as the primary inoculum and are carried via wind and insects 

to plant hosts where they severely reduce the quality of infected fruits and seeds.   

It has been shown that the environmental conditions for conidiophore 

development occur at nearly the same time as silk maturation in maize ears.  Thus, 

maize ears often become infected when conidia land on the sticky silks, germinate and 

grow down the silk channel to the kernel (Vincelli et al., 1996).  The fungal infection 

process can also occur when conidia land on silk scars, at the base of the kernels, or 

wounding sites (Vincelli et al., 1996).  Conidia that successfully attach themselves to the 

plant produce hyphae that grow around and into developing kernels and feed off the 

increasing carbohydrate supply as sugars are moved into the kernels during grain filling 

leading to ear rot.  Internal hyphal growth is concentrated around the developing 

embryo where sugar levels are at the highest (Keller et al., 1994).  Hyphae are also able 

to use the vascular network in the cob to travel from kernel-to-kernel and throughout 

the maize plant.   

A. flavus is also capable of infecting humans, especially those with compromised 

or immature immune systems.  Human infection can result in fungal growth along the 

respiratory tract and cause the potentially life-threatening diseases allergic 

bronchopulmonary aspergillosis, pulmonary aspergilloma and invasive aspergillosis 

(Stevens et al., 2000). 
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Aflatoxin 

While A. flavus is capable of directly harming plants and, to a lesser extent, 

ƘǳƳŀƴǎΣ ǘƘŜ ƎǊŜŀǘŜǊ ŎƻƴŎŜǊƴ ƛǎ ƛƴ ǘƘŜ ŦǳƴƎǳǎΩ ŀōƛƭƛǘȅ ǘƻ ǇǊƻŘǳŎŜ ŀŦƭŀǘƻȄƛƴΦ  !ŦƭŀǘƻȄƛƴ ƛǎ a 

secondary metabolite produced by several Aspergillus species and is the most potent 

natural carcinogen identified to date (Calvo et al., 2002).  Humans and animals that 

consume contaminated food products with high aflatoxin levels may develop 

aflatoxicosis with symptoms such as abdominal pain, vomiting, convulsions, liver 

damage, and death.  Awareness of the potential dangers of consuming aflatoxin first 

came to the public eye in 1960 when over 100,000 turkeys died after eating peanut 

meal contaminated with high levels of the toxin.  Several episodes of human 

consumption of tainted maize have also led to multiple deaths (Wild and Gong, 2010).  

In 1974, 106 out of 397 persons in northwest India died after consuming maize 

contaminated with aflatoxin at levels of 6,250-15,600 parts per billion (ppb).  High 

aflatoxin levels also led to the deaths of 16 and 125 Kenyans in 1981 and 2004, 

respectively.  In the United States, Diamond Pet Food products were recalled in 2005 

after testing positive for aflatoxin contamination but not before at least 100 dogs died 

from eating tainted food (Brinkman, 2005; Lang, 2006).  

Due to the potential dangers of consuming aflatoxin, the Food and Drug 

Administration (FDA) in the United States has developed specific limits and testing 

procedures to minimize the amount of aflatoxin in food products for both human and 

animal consumption.  These limits are: 0.5 ppb in milk for human consumption; 20 ppb 

in food for human consumption, feed for immature animals, feed for dairy animals or 
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when the destination of the food item is unknown; 100 ppb in feed for breeding cattle, 

breeding swine or mature poultry; 200 ppb in feed for finishing swine of greater than 

100 pounds; and 300 ppb in feed for finishing beef cattle.  The USDA has published a 

handbook for grain inspection, packers and stockyards detailing accepted testing 

procedures (USDA, 2005).  While the testing of maize for aflatoxin is mandatory in the 

United States, many underdeveloped countries do not have any regulations in place to 

limit aflatoxin exposure and the expense associated with proper testing and 

unavailability of testing tools greatly limit the amount of grain tested. 

Aflatoxin is a complex molecule whose production comes at a high metabolic 

cost to the fungus even though the compound is not essential for fungal growth, 

development or plant pathogenicity.  The exact reasons why Aspergillus sp. produce 

aflatoxin are still unknown but many hypotheses have been proposed.  Possible 

aflatoxin functions include serving as a chemical signal between fungal species, signaling 

fungal developmental, protecting the fungus from competitors, and protecting fungal 

colonies from insects (Bhatnagar et al., 2003). 

  The aflatoxin synthesis pathway in A. flavus is a 70 kb cluster of 27 genes 

encoding both pathway regulators and enzymes essential to aflatoxin biosynthesis (Yu 

et al. 2004; Roze et al. 2007).  This pathway is responsible for the production of the 

twenty-nine different aflatoxin compounds with unique stereochemical properties that 

have been identified to date.  A. flavus is able to produce fifteen of these.  The six major 

aflatoxin forms are: aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1), aflatoxin 

G2 (AFG2), aflatoxin M1 (AFM1) and aflatoxin M2 (AFM2) (Figure I.3).  AFB1 and AFB2 are 
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named after the fact that they glow blue under black light while AFG1 and AFG2 glow 

green under black light.  AFM1 and AFM2 are found in milk and are the oxidated forms of 

AFB1 and AFB2, respectively, which were modified in the liver of milk producing animals.  

The AFB1 conformation makes up 90% of aflatoxin contamination in maize and is the 

most toxic form (Bräse et al. 2009).   

 

Aflatoxin Production in Maize 

Z. mays is an ideal model crop for studying the complex nature of aflatoxin 

accumulation due to the many available resources, its long history of use in aflatoxin 

studies and its economic importance.  Infection by A. flavus and subsequent production 

of aflatoxin is of major concern to maize growers in the United States, Central and South 

America, Africa, southern Asia and Australia where aflatoxin accumulation is a problem 

(Taylor-Pickard, 2009).  Unfortunately, there are currently no commercially available 

lines that consistently have low aflatoxin accumulation levels when infected by A. flavus.   

To help combat the problem of aflatoxin accumulation, agricultural extension 

programs at universities across the Midwest have published literature outlining 

measures to prevent A. flavus infection in fieldcrops (Vincelli et al., 1996; Duncan and 

Hagler, Jr., 2008; Munkvold et al., 2009).  Pre-harvest control involves sound agronomic 

practices, irrigation, insect control and seed fumigation before planting.  Since A. flavus 

can colonize kernels both pre- and post-harvest, properly drying and storing the grain 

can help prevent the fungus from continued growth and production of aflatoxin post-

harvest.  When portions of a field have become infected with high levels of A. flavus, 
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studies have shown that introducing atoxigenic A. flavus strains to soil contaminated 

with toxigenic A. flavus can limit aflatoxin because the atoxigenic strains are able to 

outcompete the toxigenic strains (Cotty, 1989).   

These control recommendations primarily address limiting fungal infection in 

kernels.  This is a problem because fungal growth and aflatoxin concentration are not 

correlated.  Both low and high fungal infection levels can produce aflatoxin levels above 

the FDA guidelines.  Because aflatoxin contamination is difficult to control, numerous 

biological and chemical detoxification strategies have been proposed.  While chemical 

inactivation via ammoniation has been shown to be safe for grain used for feed 

purposes, most proposed grain treatment processes result in maize that is not safe for 

human consumption (Lopez-Garcia et al., 1999).  Although infected kernels pose the 

largest health risk, several studies have measured high aflatoxin levels in other parts of 

the plant body, including cob tissue, which can potentially expose humans and animals 

to aflatoxin (Zummo and Scott, 1990; Jaime-Garcia and Cotty, 2004; Windham and 

Williams, 2007). 

A multitude of abiotic and biotic factors impact aflatoxin accumulation in maize.  

These factors include temperature, pH, carbon source, nitrogen source, water 

availability and stresses (Calvo et al., 2002; Chen et al., 2004).  Because of the large 

environmental impact, aflatoxin concentrations can vary greatly from one year to the 

next and across different growing regions.  Pre-harvest aflatoxin accumuation tends to 

be greatest when it is hot and dry while post-harvest aflatoxin accumulation is highest 

under warm and humid conditions (Vincelli, 1996).  One factor of particular interest in 
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toxin accumulation is carbon source; specifically the availability of sugars, like glucose 

and sucrose, and starches, chains of glucose stored in maternally derived amyloplasts.  

Many studies have demonstrated that there is a relationship between availability of 

simple sugars such as sucrose, glucose, fructose and sorbital and high aflatoxin 

accumulation (Davis and Diener, 1968; Abdollahi and Buchanan, 1981).  Woloshuk et al. 

(1997) presented data supporting the idea that the presence of glucose, maltose and 

maltotriose are key factors in the induction of aflatoxin production.  Another key 

experiment showed that when the Amy1 gene in A. flavusI, which encodes fungal a-

amylase, was disrupted, fungal growth on a starch-containing medium decreased by as 

much as 45% and the fungus did not produce aflatoxin (Fakhoury and Woloshuk, 1999).  

These studies primarily measured aflatoxin levels in whole or ground kernels in 

laboratory settings leaving their impact in a whole plant, field situation unclear.   

Understanding what allows an A. flavus infected maize line to consistently 

accumulate low toxin levels is complicated by the fact that multiple maize tissues with 

different genetic backgrounds probably play a role in preventing the spread of fungal 

growth and aflatoxin development (Gardner et al., 2006).  The silks, husks, cob and 

pericarp tissues are maternally derived while diploid embryo and triploid endosperm  

are the results of a double fertilization event.  Many of the cellular components are also 

maternally-derived including plastids (i.e., chloroplasts, amyloplasts, etc.), mitochondria 

and cytosol.  The idea that maternally inherited components affect aflatoxin 

accumulation is further supported by Adams et al. (1984).  They reported significant 
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differences in aflatoxin levels between reciprocal crosses of high aflatoxin accumulating 

and low aflatoxin accumulating lines.  Crosses in which the maternal parent was a low 

aflatoxin accumulating line had lower aflatoxin levels compared to those where the 

maternal parent was a high aflatoxin accumulating line.   

 

Project Objectives 

The overarching goal of this project was to understand the factors that allow 

some maize lines to consistently accumulate low levels of aflatoxin.  Specifically, my 

research objectives were: 

Objective 1: Investigate the inheritance patterns of low aflatoxin accumulation 

across multiple generations to determine the role of maternally-inherited cell 

components in toxin accumulation. 

Objective 2: Investigate the impact of sugar availability on aflatoxin production 

in field grown maize. 

Objective 3: Identify the location of genes affecting aflatoxin content in 

maternally-derived cob tissue. 
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Figure I.1: Developmental stages of Zea mays from planting to maturity.   

Modified from Teixeira et al., 2011. 
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Figure I.2: Life and infection cycle of the pathogenic fungus Aspergillus flavus.   

Pictures obtained from: http://www.hear.org/pph/images/01_033.htm, 
http://www.regional.org.au/au/asa/2006/poster/environment/4578_shavrukov
y.htm, http://www.oxfam.org.uk/education/resources/water_for_all/water/ 
celebrate/ maize.htm, http://ci.vbi.vt.edu/pathinfo/ pathogens/A-f.html, 
http://ci.vbi.vt.edu/ pathinfo/pathogens/A-f.html, 
http://www.ipm.iastate.edu/ipm/icm/2005/919/ aflatoxin.html, 
http://www.ces.ncsu.edu/plymouth/ent/ECB.html and 
http://pest.ceris.purdue.edu/pest.php?code=INAMBOA  

 

 


























































































































































































































































































































































































































































































































