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ABSTRACT 

 

 

 

The North American Great Plains is the primary grassland in the United States. Both cool 

season grasses (CSG) and warm season grasses (WSG) grow in the Great Plains, with 

their distributions vary with environmental conditions and climate dynamics. As global 

climate change is being a hot topic today, there is a need of detailed maps of these grass 

functional types in the Great Plains to enhance our understanding of grassland 

ecosystems and their responses to climate change. This study delineates CSG and WSG 

based on their unique phenology features that could be extracted from time-series satellite 

imagery; and preliminarily examines their inter-annual variation responding to the 

changing climate conditions in this region. 

Several spatial analysis methods are examined in this study. I have 1) built user-defined 

programs to perform time series analysis of 10 years’ MODIS imagery, and extracted 

useful phenological parameters as innovative inputs of image classification; 2) Developed 

a sequential multivariate regression algorithm in SAS to classify crop and grass maps in 

the Great Plains; 3) compared the 10-year climatic data with the classified grass 

distributions to examine the relationship between climate change and vegetation 

dynamics. The achievements filled the gap of lacking detailed distribution of grass 

functional types in the Great Plains, and reported the credible analysis in climate-induced 

land cover changes.  
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CHAPTER I: INTRODUCTION 

 

 

 

1.1 Research Background  

The North America Great Plains covers the central United States and extends to Canada 

in the North. As the primary land covers in this region, grasslands are composed of two 

major plant functional types: cool season grasses (CSG) and warm season grasses (WSG), 

with their distribution varying with spatial and temporal dynamics.  These two grass 

types hold different photosynthetic pathways: the CSG absorbs 3 carbon atoms while 

WSG holds 4 carbon atoms during photosynthesis.  

The alteration of WSG/CSG relative abundances plays an important role in testing 

regional or global biogeochemical cycle models. Knowing detailed geographic 

distributions of CSG and WSG is also important in estimating grassland productivity and 

quantifying land-surface carbon sinks in global climate studies. Therefore, mapping 

potential distribution of WSG/CSG with remote sensing techniques could be applied for 

phenology and climate change prediction. Meanwhile, vast of grasslands have been 

converted to croplands and urban development lands, which increased unknown places 

and uncertain factors in classification study. How could we find a suitable approach that 

would be performed well in large-area grassland mapping? It is the focal issue in today’s 

society.    
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1.2 CSG and WSG Grasses 

1.2.1 Geographic distributions 

The North American Great Plains covers vast area of prairies expanding from ShortWSG 

in the west of Rocky Mountain to TallWSG in the east of Mississippi River. Cool season 

grasses gradual increase from south to north along with higher latitude. Two grass types 

are commonly observed in the Great Plains grasslands: cool season grass (CSG) and 

warm season grass (WSG), which dominate the grass covers in the region. Warm season 

grass produces four carbon molecules in photosynthesis, and cool season grass has three 

carbon molecules. Therefore they are also named C4 and C3 grasses, respectively, and 

their relative abundance distribution changes geographically (Wang, 2009). Seasonal 

distributions of CSG and WSG grasses have been mapped using remote sensing 

techniques (e.g. Goodin et al., 1997; Peterson et al., 2002; Wardlow et al., 2007). Most of 

these studies applied medium-resolution Satellite imagery such as Landsat Thematic 

Mapper (TM) and the Enhanced Thematic Mapper Plus (ETM+). Therefore, these studies 

are often limited in local areas.  Consequently, it is difficult to validate and adopt their 

findings in regional/global climate studies. Taking advantage of large-coverage, frequent 

observations of Terra MODIS imagery, and my research covers the vast area of the U.S. 

Great Plains to examine grassland distributions and dynamics in this region.  

 

1.2.2 Phenology Differences 

Each type of grass has its own phenology characteristics. The WSG grasses in the 

tallWSG prairie appear as tall grass and CSG grasses are shorter. These features are often 
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utilized in past studies to classify CSG and WSG with satellite images (Wang et al. 2010, 

Chen et al., 1996). In large geographic areas, however, it is often difficult to standardize 

these phenology characteristics due to the complexity of grass species and growth 

conditions in different areas. In the west of Great Plains, WSG grasses are much shorter 

than those in the east of Great Plains when it is extended into the TallWSG Prairie. These 

grasses are typically observed in the ShortWSG Prairie in western states of the Great 

Plains. Hereafter these WSG grasses are called ShortWSG. It should be noted that it still 

belongs to warm season grasses in phenology and holds the same C4 photosynthesis 

functions as TallWSG in the eastern states.   

In theory, CSG mostly grow in high latitudes or elevations, while WSG flourish in warm, 

tropical to subtropical regions (Winslow et al, 2003). Because of “warm season” and 

“cool season” grasses refer to different photosynthesis pathways, we could make 

distinction by tracking carbon atom. WSG pathway evolves in species in the wet and dry 

tropics (marked in Table 1). The seasons of CSG grasses are sensitive to water 

availability. In high intensity of heat and light, CSG grasses close their stomates to reduce 

moisture usage in leaves, and the photosynthesis process could decline up to 50%. WSG 

grass has its photosynthesis six times more efficient than CSG, so it grows better in the 

warm, CO2 enhanced environment (www.Primary Industry Agriculture.com).  

In addition, the evidences from the leaf fossil of CSG and WSG prove that they hold 

different kind of photosynthetic pathway. In previous research, the fossil shape of CSG 

leaf’s epidermal cells always is circular, rectangular, or elliptical (Phytolith Systematics, 

1992). Oppositely, the leaf cells in WSG have many intersections inside. Therefore, 
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totally dissimilar types of photosynthetic pathway and photosynthetic efficacy could be 

caused by distinct vegetation epidermal cells (Phytolith Systematics, 1992).  

Table.1 Features of CSG and WSG grasses (www. Industry&investment nsw.com) 

 C3 C4 

Initial molecule formed during 
photosynthesis 

3 carbon 4 carbon 

Growth period cool season or yearlong warm season 

Light requirements Lower higher 

Temperature requirements Lower higher 

Moisture requirements Higher lower 

Frost sensitivity Lower higher 

Feed quality Higher lower 

Production Lower higher 

Examples Weeping grass and common 
wheatgrass 

Kangaroo grass, red grass and 
wire grass 

 

Furthermore, phenological differences of CSG and WSG also widely applied into grass 

biomass production (McLaughlin et al, 1999), which is useful in animal husbandry, 

especially in WSG by using its unique photosynthetic pathway (Heaton et al, 2004). The 

conclusions from past studies are that CSG obtains more biomass production during 

whole growth season than WSG, and WSG represents its productive advantage mostly in 

the periods of summer when CSG turns to be senescent in hot environments (Robins, 

2010).     

 

1.3 Remote Sensing of grasslands 

1.3.1 Satellite Imagery and published maps 
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With the availability of airborne and spaceborne imagery in past decades, intensive 

efforts have been made to create vegetation maps at local, state or national levels. The 

reference data I collected for this research is the so-called Cropland Data Layers (CDL) 

developed by USDA/National Agricultural Statistics Service (NASS). The NASS have 

started to collected national agricultural statistics since 1997. The first set of crop maps 

are North Dakota and part of Arkansas (http://nassgeodata.gmu.edu/CropScape/).  It 

requires huge efforts from individual state governments and USDA as rich information 

and process are needed from both sides. This product combines remote sensing imagery 

(MODIS and AwiFS) and NASS survey data in precise ground locations, farm services 

agency and other accessorial data to estimate major annual crops, other annual plants, and 

land use &land cover types in every state. It also provides annual state- or county-level 

crop acreage data. The program published these results after accuracy assessment. It was 

found that crop types turned to have high interaction with each other (Figure.1). 

The CDL data sets are also treated as “census by satellite”. These products offer yearly 

information about detailed land use and land covers in the United States. In the Great 

Plains, The CDL data identify more than 120 types of vegetation such as corn, soybean, 

winter wheat, and nonagricultural areas. However, the different grass types in the Great 

Plains, the cool season grass, tall grass and short grass, are grouped into one category-

“pasture/grassland”. Therefore, further efforts are needed to map these grass types to 

understand their ecological conditions and to examine their phenological variations and 

responses to global climate change and human activities.  
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Figure.1. NASS Acreage Estimation & Cropland Data Layer Methodology, 

(ftp://ftp.iluci.org/GEO_Ag/PowerPoints/Doorn.Cropland%20Data%20Layer%20Progra

m.pdf) 

Vegetation’s greenness and health are significant factors in annual crop and grass 

research in my study. The expressive forms are reflected as red and near infrared band. 

Having these two spectral bands, the Moderate Resolution Imaging Spectroradiometer 

(MODIS) onboard the Terra satellite that was launched in 2000 provides coarse-

resolution, global coverage, daily observations for regional and global studies. It is the 

most appropriate data sources in this study for remote sensing of grasslands in the Great 

Plains. The MODIS mission provides various products to meet the needs of different 

users. The resolution is from 250 meters to 1000 meters, and the composite could be at 8- 

day, 16-day, or monthly intervals to reduce cloud noises. It also contains 36 spectral 

bands to store data information in a range of visible, near infrared, shortwave infrared and 
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thermal infrared spectral regions (https://lpdaac.usgs.gov/). The shortwave infrared bands 

could be applied in studying vegetation distribution, forest moisture or soil (Xiao et al. 

2004). The USGS Data Pool (https://lpdaac.usgs.gov/lpdaac/get_data/data_pool) provides 

a series of MODIS products that are open to the general public. The resolution and 

temporal granularity are in a variety of data types and formats to meet the needs of 

different users.  

The satellite product I (MOD09A1) was applied in my research. There are several 

advantages for using MOD09A1 in vegetation distribution recognition: Firstly, the 500-m 

resolution imagery contains more information than commonly adopted 1000-m in other 

products, and it holds much better data quality than raw imagery at 250-m resolution. 

Secondly, 8-day scan granularity (temporal composite interval) records primary 

vegetation growth in a growing season to enhance the delineation of WSG and CSG. It 

also saves computation time, which is of great importance in multi-year MODIS image 

processing.  Another benefit is that the MOD09A1 data highly reduce cloud noises and 

reach better atmospheric correction (Vermote & Vermeulen, 1999). 

Even though the MODIS imagery contains 36 spectral bands, only 7 bands could be 

recognized in geospatial software that I could access (ERDAS/Imagine and ENVI). These 

bands, in fact, are most useful in investigating land use and land cover in vegetated 

environments:   

1. Blue band (620–670 nm)  

2. near infrared (841–876 nm)  

3. Green band (459–479 nm) 
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4. Red band (545–565 nm) 

5. near infrared (1230–1250 nm) 

6. Shortwave infrared (1628–1652 nm) 

7. Shortwave infrared (2105–2155 nm) 

Some other bands, such as Reflectance Band Quality, Solar Zenith Angle, View Zenith 

Angle, Relative Azimuth Angle, State Flags, and Day of Year, are designed for advanced 

modeling process and are not explored in this study.  

 

1.3.2 NDVI and Spatio-Temporal Trajectory analysis 

As an indicator of vegetation greenness and growing conditions, the Normalized 

Difference Vegetation Index (NDVI) is a ratio of near infrared band and red band from 

plant reflectance in satellite imagery (Equation.1), which indicates the vegetation 

absorptive and reflective capabilities in spectrogram (Jin et al, 2003).      

     
         

         
                                                            (1) 

The NDVI value ranges from -1 to 1 (Weiss et al, 2004), and has been widely used in 

different purposes such as measuring vegetation health and density (Mwangi J. Kinyanjui, 

2010), monitoring long-term local or large-scale land cover change (Jin et al, 2003), 

biomass productivity and energy transformation (Myneni et al, 1995), and temporal 

variations in grassland growth cycles (Stephen.L et al, 2007). Due to variations in 

precipitation and temperature, soil moisture, soil PH values, and other elements that 

affect vegetation dynamics, some past studies found that spring-summer is the best 
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monitoring time to acquire impactful vegetation growth information (Raynolds et al, 

2008; Epstein et al, 2003).  

More recently, time series analysis bases on multi-day NDVI trajectories provide a 

unique and advanced way of vegetation mapping. The trends of spatio-temporal NDVI 

trajectories reveal the phenology cycles of crops and the associated management 

activities such as harvesting, planting or grazing. This important information can be used 

in crop mapping. The accuracies could reach 80% and higher (Wang et al, 2010) with 

reduced spatial and temporal influences. Different Peak NDVI dates and values of 

different plants optimally reveal their phenological characteristics in peak growing season. 

Besides, if in the summer, NDVI values are keeping raise that index vegetation is more 

and more greenness during this period because of the red band decrease and more 

radiation energy has been absorbed (Kremer and Running, 1993). Therefore, trajectory 

analysis of NDVI could play a better role in this research with the rich information from 

frequent MODIS observations. 

In spite of huge advantage of MOD09A1 data in CSG and WSG mapping, it still contains 

lots of noise to interfere final results. The noise occurs owing to various atmospheric 

effects such as cloud and snow covers, data losing, or hazy conditions. For this reason, 

time-series NDVI values are often lower than ground observations, sometimes even 

represent as negative values (Weiss et al, 2004), or data loss. Spectral smoothing is 

needed to reduce these effects (Macho, 2008).   

Lots of smoothing methods have been established for remote sensing spectral analysis, 

Kalman filter is one of a widely-recognized applied algorithm in spectral smoothing. It is 

based on hidden markov model and simultaneous linear algebraic equations to finish 
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time-series analysis in noise surroundings (R. E. Kalman, 1960). It has been used in 

satellite navigation, positioning system, and time-series model (Dan Simon, 2006). More 

recently, Macho (2008) developed a new algorithm to perform better smoothing based on 

the maximum likelihood estimation. This method is built on picking stochastic samples 

and Fourier transform to smooth two-Dimension data by estimating smoothing 

parameter-the signal to noise ratio and noise variance, and require few calculate time and 

storage memory.    

The smoothing process in my research is a pre-requisite in extracting phenological 

characteristics from a growth cycle. TIMESAT is a program that performs smoothing and 

phenology extraction (Jönsson and Eklundh, 2002). The Savitzky-Golay filter is still a 

mostly popularly used algorithm (Abtaham Savitzky and J.E.Golay, 1964; Chaichoke 

Vaiphasa, 2006). It reached the best results in removing noise and smoothing the NDVI 

time-series curves and was thus adopted in TIMESAT (Jönsson, 2002). The most 

important factor in Savitzky-Golay filter is the filter window size. An oversized window 

cannot remove a majority of noise, while useful signals are often removed if the window 

is too small.  

After smoothing of NDVI series, an asymmetric Gaussian model in TIMESAT could be 

used to extract phenological parameters, some of which could serve as inputs of 

WSG/CSG classification. However, this model only can be applied to normal distribution 

growth cycle. Some vegetation types, such as winter wheat and cool season grass’ growth 

curves do not match normal distribution. Therefore more process will be tested in my 

research.  
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1.4. Classification procedures-Regression Analysis 

 

Land use & land cover mapping and change detection are a core part of digital image 

processing. While intensive studies have been conducted in vegetation mapping in 

specific and small areas, currently more focus has been turned to large-area or regional 

studies that corporate with local ground data. It broadens our scope of mind in global 

change, and at the same time, increases the complexity and challenge in accuracy 

(Schwartz et al. 1999). The commonly applied classification approaches are thus limited 

in large-area studies due to these challenges. More advanced approaches need to be 

integrated in these studies.   

Regression analysis is a statistical method in testing the relationship between independent 

and dependent variables, and in extracting typical features in pattern recognition and 

prediction (Dennis Lindley, 1987). Both logistic regression and regular regression can be 

applied in large-scale studies, and each method has its own strength and weakness in 

classification process.  

1.4.1. Logistic regression classification 

Logistic regression is to calculate the probability of event happened by setting logistic 

determination. This binary regression analysis is popularly used in medical and 

investment analysis in predicting the incidence rate of independent events by considering 

its particular marks, such as how much probability that the patient has a definite 

diagnosis as cancer.   

A linear regression is defined (Equation.2 and 3): 
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                                                   (2) 

                                      (3) 

Where   ,   , …    represent different independent variables, and the    is the 

coefficient of each variable. The variable   represents the logical contribution of all 

independent variables, while the output      shows the probability of happening is from 

0 to 1.  

In general, logistic regression works well when the model has clear criteria and limited 

influencing factors. In theory it requires plenty of training samples. If the sample number 

is less than 500, the estimate values could have a considerable range of deviation. 

Therefore, this “yes” or “no” model does not apply in my study.  

1.4.2 Regular regression classification 

Most statistical software such as SAS and SPSS could accomplish the regression analysis 

including regular regression. Sometimes, this approach is also treated as a general linear 

regression. 

In a general regression model, the dependent variable is the vegetation type we need to 

predict, and independent variable should be the random or discrete sample data in study 

area. And the independent variables can be linked by a linear equation to generate class 

values. The equation of a multi-variable regression model is: 

                                                                  (4) 

Where    is the dependent variable and is a result of linear combination from all 

independent variables,    . The Y value must be linear with the independent variables in 
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analysis.        represents independent variables, which should not have correlative 

relationship between each other, or contains very low correlative parameter with each 

other in regular regression process. The    is the intercept. 

Same as the logistic regression model, a regular regression still requires large number of 

training data. But if we lack of samples, the prediction estimation will not have obvious 

bias. In sum, the regular regression analysis does not have very serious requirements and 

could be widely applied.    

In sum, logistic regression is applied when the dependent variables are divided in 

dichotomy situation, the predict class type can be either binary or multiple outputs 

(Rice.J.C, 1994). This method has been applied in land cover mapping combining the 

GIS system, such as using maximum likelihood ratio and logistic regression coefficient to 

map the landsides location and the level of hazard ratio (Saro Lee, 2004) or predicting 

forest fire on the basis of tree healthy level mapping (D.L.Martell et al., 1987). This 

method will perform well under a small quantity of predicted class types and mapping 

probabilities of dependent variables.  

The regular regression is built on the assumption of samples must be independent and 

obey the normal distribution. When with multiple dependent outputs in study area, 

regular regression will be stronger than logistical regression (McCullagh et al., 1989). For 

example, estimate the distribution of invasive alien grass to evaluate grassland variation 

and biological cycle (Dark S. J, 2004). If the variables cannot reach the requirements for 

regular regression, logistic regression is a better choice (NC States University PA 765-

766, http://faculty.chass.ncsu.edu/garson/PA765/index.htm).          

1.5. Grassland Responses to Climate Change 
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The temporal and spatial distributions of CSG and WSG indicate their responses to 

climate change. For example, using C-13 isotopic into grass leaf’s fossil, CSG reduces its 

photosynthesis in warm and high oxygen environment. Therefore, CSG faces the 

competition from WSG owing to global warming. As WSG’s photosynthetic pathway 

adapts temperature change better, many plants changed their photosynthetic pathway 

closing to this type (Spicer, 1993). Therefore, it is very useful to study plant evolution 

and their ecosystem structure responding global climate change.    

Various empirical physical bio-geospatial models have been developed to simulate 

vegetation distributions under different climate scenarios. The Grassland ecosystem 

model (GEM series) (e.g. Charles F. Rodell, 1977; Nouvellon, Y, 2001; Dev Niyogi et al., 

2009; ) was developed in early years. It is a hierarchical approach that links vegetation’s 

photosynthetic efficacy, energy exchanges and ecosystem structures to test the 

interactions between plant growth and ecosystem progress responding to carbon dioxide 

increase and other climate change (Chen et al, 1996). The next climate change model 

simulation is the dynamic global vegetation model (e.g. Dieter Gerten et al., 2004; John 

Hughes et al., 2006; Peter Levy et al., 2010; Peng et al., 2010). This model collects 

climate change factors in land and atmosphere such as humidity level, precipitation, and 

energy. Then it analyzes whether and how these changes could influence vegetation 

dynamics. Previous studies proved this dynamic global vegetation model can provide 

detailed description about the feedback of climate change to vegetation variation through 

energy, moisture, and momentum (Bonan et al, 2003).  

Another popularly applied model is the seasonal availability of water (SAW) model 

(Winslow et al, 2003). It was developed to predict the fraction of CSG grasses in 1° grid 
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cells all over the globe. In this model CSG and WSG vegetation was separated based on 

their phenological differences (Winslow et al, 1994).   

The application of SAW model proves that temperature and precipitation change will 

change the cool season and warm season grass based on their photosynthesis efficiency 

(Niu et al., 2005).  Even though cool season grass needs more carbon dioxide than warm 

season grass, its photosynthetic advantages could be reduced when the outside 

environment changed. It is very important to get more accurate information about timing 

and spatial distribution of WSG and CSG grasses to better monitor their response to 

future climate change (Winslow et al, 2003).   

 

1.6 Research Goal and Objectives 

The proposed research goal is to delineate CSG and WSG form time-series satellite 

imagery and to examine their inter-annual variation responding to the changing climate in 

the Great Plains. To fulfill this goal, I will address the following specific objectives: 

1) To build 10-year time series of NDVI data sets from MODIS imagery 

(MOD09A1) covering the Great Plains in 2000-2009, and to extract phenological 

metrics that better reveal the differences of WSG and CSG grasses; 

2) To develop a multi-tier phenology-assisted regression classification algorithm to 

delineate WSG and CSG as well as major annual crops in the past 10 years; 

3) To link spatio-temporal shifts of WSG and CSG grasses to local climate 

variations in the past 10 years as a preliminary study about grassland ecosystems’ 

responses to climate change in the Great Plains.  
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CHAPTER II: STUDY AREA AND DATA SETS 

 

 

2.1 Brief Introduction 

The study area of my research is the U.S. Great Plains, which covers 10 states (Montana, 

Wyoming, Colorado, New Mexico, Texas, Oklahoma, Kansas, Nebraska, South Dakota, 

North Dakota) in the central and Midwest United States.  Distributions of vegetation 

types and wildlife habitats vary dramatically in this region and therefore, it is regarded as 

a perfect study area for investigating grassland dynamics, land use and land cover 

changes, the associated human activities, and climate variation.  

 

Figure 2. The study area (The example image mosaic is extracted from Terra/MODIS 

acquired in July 2007). 
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Figure 3. General distributions of CSG and WSG in the Great Plains. (Modified from 

Risser et al. 1981) 

Four focus areas in the Great Plains are selected to represent CSG and WSG grass types 

and their relative abundances. From east to west of the plains, these focus areas are 

TallWSG (Flint Hills, KS), ShortWSG (Central Plains Experimental Range, CO), mixed 

grass (Sandhills, NE), and a special short-lived CSG grass environment (Montana Prairie) 

in the very north of the plains.  

The Flint Hills focus area is marked as #1 in Figure 4. It is located inside the TallWSG 

Prairie in Kansas and WSG occupies more than 80% in this area. The Sandhills focus 

area is in Nebraska. It is the largest mixed prairie in North America. The primary grass 

species in this area include little bluestem (Schizachyriumscoparium (Michx)), sand 

bluestem (Andropogonhallii Hack), and blue Gramma (Boutelouagracilis).  
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The Sandhills grassland has been largely used as pasture lands and hay fields (Wang et.al, 

2009). From previous researches and ground observations, warm season grasses (both 

TallWSG and ShortWSG species) still dominate this area. The Central Plains 

Experimental Range (CPER) in Colorado is operated by the USDA Agricultural Research 

Service (ARS), and is the smallest of the four focus sites.  

The CPER has similar CSG and WSG mixture and growth environment as the Sandhills 

in Nebraska. However, ShortWSG species, primarily blue Gramma (Boutelouagracilis), 

are the dominated grass types in this focus area. The CPER is part of the NSF ShortWSG 

Steppe Long-Term Ecological Research (LTER) program and is covered in the Pawnee 

National Grassland, a 78,100 hectare of public land managed by US Forest Service 

(Wang et al. 2009). The 4th focus area is the Montana Prairie located in Montana and 

North Dakota States. Very limited studies of vegetation distribution change in this area 

have been published. The CDL products classified this area as grassland. The Montana 

Prairie contains approximately one quarter of grassland areas in the Great Plains. Thus, it 

plays an important role in climate change and carbon cycle.  Due to its high latitudinal 

geographic locations, it is reasonable to assume that this area is dominated by CSG 

species.  

2.2 Data Acquisition 

The Terra/MODIS time-series imagery is applied in this research. From USGS LP 

DAAC: Land Processes Distributed Active Archive Center 

(https://lpdaac.usgs.gov/lpdaac/get_data/data_pool), I downloaded the MOD09A1 surface 

reflectance images acquired in 2000-2009. To simplify the process, only data in odd 

years (2001, 2003, 2005, 2007, and 2009) are downloaded in my research.  Even though 
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there are only 5-year results, according to information from many channel resources, the 

years of 2007 and 2009 are very representative in observing climate change and 

vegetation variation, such as suddenly increased precipitation. Therefore, the relative 

abundance of CSG and WSG in the four focus areas is useful in climate factors analysis.  

 

Figure 4. The four study focus areas in the Great Plains: 1-Flint Hills Prairie in Kansas; 

2-Sand hills Prairie in Nebraska; 3-the Central Plains Experimental Range (CPER) in 

Colorado; 4-Montana Prairie. 

This 8-day, 500-m resolution composite image contains 7 spectral bands in visible - 

shortwave infrared region. The original data sets are stored in the sinusoidal projection 

and are converted to Orthographic Geographic Coordinate System, the North American 

Datum 1983 (NAD83), for better visualization. Arranged in path and row sequences, four 

MOD09A1 tiles (H09V05, H10V04, H10V05 and H11V04) are needed to cover the 
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whole area of the Great Plains. These MODIS images are the primary dataset in my 

studies. 

The secondary data is the cropland data layer (CDL) maps developed by the USDA 

National Agricultural Statistics Services. The CDL products are classified from satellite 

images for detailed documentation of annual crops in major agricultural regions of the 

United States. Major annual crops in the Great Plains include soybean, corn, winter wheat, 

and spring wheat. The resolutions of these layers vary from 30 meters to 60 meters 

depending on the satellite images used in classification. The availability of state-level 

CDL products varies in different years for different states. I managed to download the 

2007 CDL data sets for most of the states in the Great Plains. For several states in which 

the CDL products are not available in 2007, I used their 2008 or 2009 products as an 

alternative. With these data sets I created one CDL mosaic layer for whole coverage of 

the U.S. Great Plains. At much finer resolution (56-meter) than MODIS imagery, this 

data set serves as ground truth sources for the primary annual crops. It also serves as a 

filter to mask out non-herbaceous covers such as forest, wetland, water and urban 

development. These areas are not the concern of this study. As mentioned earlier, the 

CDL data groups’ cool season grass and warm season grass into one single class, which 

will be delineated in this research.  
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CHAPTER III: Phenology-assisted time series analyzing for 

WSG/CSG delineation 

 

 

 

 

The original MODIS imagery and Cropland Data Layer contain different image 

resolutions coordinate systems, and other geographic factors. Also, both data types 

contain noises leading to inaccuracies in classification. Several preprocessing algorithms, 

including georeferencing and spectral smoothing for noise removal, have to be applied 

before building classification models.  

With the time-series MODIS data sets, phenological features of the two grassland 

functional types could be extracted, which maximally differentiate WSG and CSG along 

their growing season. In this research, several user-defined approaches were applied to 

obtain different kinds of vegetation’s phenological parameters, which were adopted in 

WSG/CSG classification.        

 

3.1 Data Pre-processing 

3.1.1 MODIS Imagery 

3.1.1MODIS Imagery 
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The MODIS data contains 4 tiles (H09V05, H10V04, H10V05 and H11V04) and 5 years 

(2001, 2003, 2005, 2007, and 2009) of individual MOD09A1 images. Each tile has 46 

images per year, so the total number of images is 1840 over the whole study area. 

These data sets were processed in the following steps. Firstly, each image was re-

projected into the Geographic Coordinate System (NAD83) in the ENVI software batch 

process. Then I calculated NDVI values from red and near infrared bands in each image. 

The leaves of vegetation absorb luminous energy in visible band from 0.6 µm to 0.7 µm, 

and reflect in near infrared band (from 0.7 µm to 1.1 µm) that could be captured from 

sensor. Therefore, the NDVI represents vegetation greenness and healthiness in the study 

region. In each year, there were 46 NDVI images, which were stacked into one 46-band 

NDVI composite for the following time-series analysis. The four scenes of these NDVI 

composite images were mosaicked to cover the whole U.S. Great Plains, and also clipped 

by Great Plains’ boundary that removed nearly 50% redundant data for saving storage 

and operation processing. The final image sets in this research included five NDVI 

images (2001, 2003, 2005, 2007, and 2009); each contains 46 bands to represent NDVI 

series at 8-day interval in each year.  

3.1.2 Cropland Data Layer Imagery 

The 10 CDL products in 2007 (in the 10 states in the Great Plains) are downloaded and 

used as reference in this research. The CDL maps contain more than 120 crop types. As 

the major concern of this research is grassland, only major annual crops (corn, soybean, 

winter wheat, and spring wheat) are considered in this grassland study (Table 2). The 

low-acreage crops could not be further investigated due to the limited spatial resolution 

of MODIS imagery. Furthermore, the non-agricultural lands, such as urban development, 
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road, lake, and river, need to be masked from the original MODIS images as well. These 

class types are grouped into “other crops” and “non-crop land” as shown in Table2   

Table.2 Percentages of major annual agricultural and non-agricultural lands in the 10-

states CDL data (Montana, Wyoming, Colorado, New Mexico, Texas, Oklahoma, Kansas, 

Nebraska, South Dakota, and North Dakota)   

Class Value Class Type Percentage 

0 No Data 45.1779 % 

1 Non-Crop Land 11.1588% 

2 Other Crops 3.5765% 

3 Corn 1.7913% 

4 Soybean 0.8701% 

5 Winter Wheat 2.2974% 

6 Spring Wheat 0.9229% 

7 Scrubland 12.8683% 

8 Grassland 21.3368% 

 

In ENVI software, a decision tree was built to regroup all crop types in the CDL data into 

8 classes as listed in Table 2 (Fig.5). . Each class type in the decision tree is designed a 

unique color represented by a combination of red, green, and blue color values. Only 

grassland, corn, soybean, winter wheat and spring wheat were used in this research. 
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Figure. 5 The decision tree for extracting major class types in the Great Plains. R 

represents red, G represents green, and B represents blue band value, respectively. 

The re-grouped CDL images of the 10 states were then mosaicked and clipped to cover 

the Great Plains. To match this 56-m CDL mosaic with MODIS imagery, I applied a 7*7 

majority filter in ENVI software to resample the CDL mosaic image into 500-m pixel 

size.  

Finally, a mask layer was developed with this resampled CDL image to extract land 

covers that were not explored in this study (urban, wetland, forest, water, low-acreage 

Original CDL image 

Cropland 

Remains 

Remains 

Winter Wheat Remains 

Spring Wheat Remains 

Shurbland Remains 

Grassland Remains 

No data Area 

Soybean 

Corn 

Non Cropland 

R=255, G=211, B=0 

R=35, G=112, B=0 

R=216, G=175, B=107 

R=198, G=214, B=158 

R=232, G=255, B=191 

R=0, G=0, B=0 

R=255, G=211, B=0 
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crops, etc.). This mask was then applied to the annual 46-band MODIS NDVI series so 

that the MODIS data only contained major crops and grasslands that were of the primary 

interest in this research.  

 

3.2 Time-Series Analysis 

It has been well know that CSG and WSG grasses hold recognizable phenology 

differences along a growing season. The CSG grows earlier than WSG, probably started 

in late February, and WSG usually starts its growth one month later. These differences 

could be revealed from the MODIS time series of NDVI data. Therefore time-series 

analysis is one important part of the methodology design in my thesis.  

3.2.1 Spectral smoothing 

The 8-day NDVI time series are strongly affected by temporal atmospheric variations and 

cloud noises. Therefore, the 46-point NDVI trajectory of each pixel always faces 

atmospheric contaminations such as NDVI reduction or data loss due to cloud and snow 

covers. For this reason, sharp and jagged curves (peaks and troughs in a trajectory) are 

commonly observed in time-series NDVI trajectories (Dean Fairbanks et al., 2004).  

Spectral smoothing process was performed in the MATLAB program to reduce these 

noises. In previous chapter, I have introduced several image spectral smoothing 

approaches that were developed in past studies, for example the Kalman filter (R. E. 

Kalman, 1960) and the Maximum Likelihood Estimate (Macho, 2008). In this research, I 

adopted the Savitzky-Golay filter, a most commoly used filter because it is an adaptive 
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window size method to optimally reduce cloud noises (Abtaham Savitzky and J.E.Golay, 

1964 ). The equation of Savitzky-Golay smoothing filter is described as: 

  ∑                                                                               

 

    

 

Where   is the smoothed value,    indicates the original pixel value in images, and   is 

the filter window size that can be adjusted upon requirements. A 2nd-order polynomial fit 

in a window size of 4 is commonly accepted in the Savitzky-Golay filter (Jönsson et al., 

2002).  

I downloaded the TIMESAT program to perform Savitzky-Golay filtering and other 

simulation process of the NDVI time series (Jönsson et al., 2002). The TIMESAT 

program requires more than one year data as inputs. Here I doubled one year data and 

picked      as the first order in Savitzky-Golay smoothing. , the 2nd-order polynomial 

fit value is little larger than initial filter window size, I chose 5 to avoid important data 

missing. 

 

Figure 6. The function of Savitzky-Golay filter. 
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As shown in Figure 6, the Savitzky-Golay filter smoothed out the time-series trajectory 

and most of the noises are removed. At the same time, it remains the original trend of the 

trajectory. With the Savitzky-Golay filter program, the 46-band time-series NDVI image 

of each year (2001, 2003, 2005, 2007, and 2009) was smoothed for further analysis.    

3.2.2 TIMESAT: extracting phenology metrics 

In past studies of time series analysis, the smoothed trajectory curves are often simulated 

with theoretical functions to extract useful phenology metrics (Scott Menard, 1995; 

Jönsson et al., 2002; Saro Lee, 2004) results. In this research, I applied the TIMESAT 

program to extract one year growth period’s phenological parameters from the NDVI 

time series. The TIMESAT program could extract 11 phenological parameters below 

(Jönsson et al., 2002):  

1) Start of the season: the date in the left that is higher than user-defined starting 

date value. 

2) Time for the end of the season: time for right value lower than user-defined 

starting date value. 

3) Length of the season: from start date to end date. 

4) Base Level: left and right minimum value’s average in one growth period. 

5) Time for the middle of the season: the mean of all values in growth period. 

6) Largest data value for the fitted function during the season: peak value. 

7) Seasonal amplitude: difference value between peak and minimum. 

8) Rate of increase at the beginning of the season: calculated as the ratio between 

the values of start season and at the left 80 % level divided by the corresponding 

time difference. 
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9) Rate of decrease at the end of the season: calculated as the ratio between the 

values of end season and at the right 80 % level divided by the corresponding 

time difference. 

10) Large seasonal integral: indicates the season from start to end.  

11) Small seasonal integral: shows the season and base level from start to end. 

The simulated trajectory curve with an Asymmetric Gaussian function is demonstrated in 

Figure 7.  

 

Figure 7. The function of the Asymmetric Gaussian simulation. 

3.2.3 User-defined phenology metrics 

For a time-series curve with a relatively normal distribution (along a growing season), the 

Asymmetric Gaussian filter reveals its phenology variation well (as shown in Figure 7). 

However, no all crops grow in a normally distributed pattern. For example, winter wheat 

reaches peak greenness in early spring and its NDVI drops down rapidly in summer. The 

NDVI of winter wheat fields may remain low until re-planting in later fall, or follows a 

shift planting pattern to be replaced by soybean in fall. More specifically in this research, 
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WSG and CSG follow significantly different growth patterns from annual crops. With 

much longer growing season, their growing distribution cannot be simply normal 

distribution. The growth patterns of these major crop types are demonstrated in Figure 8.  

Vegetation types shown in Fig.8 are cool season grass, warm season grass, corn, and 

winter wheat.  

Therefore, the Asymmetric Gaussian simulation in the TIMESAT program does not 

satisfy all land covers in the Great Plains. Here I introduced several additional phenology 

metrics that I extracted from the NDVI time series in the ENVI Interface Description 

Language (IDL) programming environment. Applying CDL data as ground truth 

reference, I extracted a set of time series trajectories for the 4 annual crops (corn, soybean, 

winter wheat, spring wheat) and the 2 grasses (WSG, CSG). Based on these training data, 

I calculated three additional phenology metrics that are not extracted from TIMESAT.  

1) Peak NDVI value – The maximal NDVI value along a growing season. Higher 

value represents vegetation grows more luxuriant. It shows the information of 

vegetation energy absorbance and photosynthetic efficacy that could be applied 

for evaluating different vegetation. For example, annual crops often reach higher 

peak NDVI values than grass or shrub.       

2) Peak date – the date when NDVI reaches its peak value along a growing season.  

This value displays the various vegetative growth cycles and rate of growth, and 

is useful for pattern classification. For instance, corn arrives its peak date in 

September to October, while grass is in spring or early summer; therefore, corn 

and grass has different vegetative period and energy absorbance and circulatory 

system. 
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3)       value. It is the difference between the maximum NDVI value in spring 

and the minimum NDVI value in summer. In general, most of vegetation is 

assumed to reach peak growth in late spring or summer. But certain special 

vegetation, especially winter wheat, has separate rhythm that achieves the highest 

peak value much earlier. Therefore, it has the most NDVI dropdown between 

spring-early summer. This threshold plays an important role in identifying winter 

wheat.   

 

Figure 8. Different vegetation growth patterns in one year (an example of 2007). 

3.4 Regular Regression Classification 

The phenology matrixes extracted in previous section are the primary inputs for 

WSG/CSG grassland mapping in my research. Regular classifiers such as maximum 

likelihood) did not work well because it was not possible for me to collect enough ground 

truth data, which varied in different geographic locations over the vast area of the Great 
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Plains. Rather, it was recognized that each of the 6 class types had its unique phenology 

features, and their geographic variations had been understood well. For example, cool 

season grasses often grow in northern states while warm season grasses are common in 

southern and eastern states that were covered in the TallWSG Prairie. Winter wheat was 

more common in southern states while spring wheat was observed in northern states. 

These relationships could be better applied in regression classification methods. In this 

part, I have tested several different regression methods, such as logistical regression 

classification and regular regression classification.  Objectively and in nominal cases, 

logistical regression is powerful in estimating relationships between different variables 

and providing reasonable assessment results for pattern recognition (Rice.J.C, 1994). But 

my study is unique and demands a quantity of requirements or limitations. Firstly, this is 

a large-scale classification and is in lack of ground observations that could be used for 

training data sampling. The amount of my sample points is 216, lower than logistical 

regression basic demand, so serious deviation of the estimative function occurred in 

experiment when I implemented logistical regression. Next, I need multiple predicted 

classes after pattern classification. The logistical regression did not perform well due to 

the complicated vegetation growth features in large data set. After several tests, I choose 

the regular regression classification method to classify WSG, CSG and the major annual 

crops in the Great Plains, considering that these classes hold unique phenology features 

and common variations in the geographic contexts  

3.4.1 Training Data Collection 

The CDL products are used as reference to select reasonable sample points for annual 

crops. The training samples of TallWSG are mostly from the Flint Hills grassland, and 
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the samples of short WSG are randomly picked at the CPER. The method of picking 

sample points is basing on the information from Cropland Data Layers and predecessor’s 

works (Wang et al. 2010).  These training datasets are selected by referring to published 

resources as well as checking phenology patterns with MODIS time series to remove 

outliers. For example, past studies display that there are some CSG grasses growing in 

the west of TallWSG prairie, which locates in central North America and is in the 

northeast of the Great Plains (Wang et al. 2010). Meanwhile, warm season grasses widely 

exist in this area.  

The classes I tried to identify in this research include corn/soybean, winter wheat, spring 

wheat, cool season grass, tall WSG, and short WSG, CSG. The reasons that I combined 

corn and soybean into one group are: 1) I found that, compared to grass and wheat classes, 

they have very similar growth rhythm after spectral smoothing, includes peak NDVI 

value, vegetative cycle, and peak date; 2) Practically soybean and corn are alternative 

crops and small fields are often mixed in large agricultural lands, which result in mixed 

corn/soybean pixels in the MODIS image. Therefore corn and soybean are treated as one 

class in regression analysis.     

Training dataset is listed in table 3. Due to the vast coverage of the Great Plains, the 

geographic coordinate position factors (latitude and longitude) are also considered as 

input variables in this research. At each sample point, a total of 16 phenological features 

are used as inputs of the classification process:   

1) Time for the start of season  

2) Time for the end of the season 

3) Length of the season 
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4) Base level 

5) Time for the mid of the season: Peak Value. 

6) Largest data value for the fitted function during the season 

7) Seasonal amplitude 

8) Rate of increase at the beginning of the season 

9) Rate of decrease at the end of the season 

10)  Large seasonal integral 

11)  Small seasonal integral 

12)  Peak NDVI value 

13)  Peak data  

14)  The different NDVI value between early spring and summer peak value   

15)  Geographic coordinate: Latitude  

16)  Geographic coordinate: Longitude 

 

Table 3. Training sampling points for the 9 class types that will be classified in the Great 

Plains.  

Vegetation Type The number of samples 

Winter Wheat 44 

Spring Wheat 48 

Soybean/Corn 34 

CSG 28 
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Tall WSG 32 

Short WSG 30 

 

3.4.2 Regular regression classification approach 

The regression classification is implemented in the SAS software. The flowchart of the 

process is shown in Figure 9. The rules of the regression classification are to find the 

input variables (phenology features) that have the highest R-Square (coefficient of 

multiple determination for selected variables) and lowest AIC (Akaike Information 

Criterion) values. The AIC displays a tradeoff between the precision of fit and 

corresponding number of parameters used. In general, if we add one feature into the 

regression and the AIC value also increase, then this new feature cannot be used in 

classification (Hirotugu Akaike, 1974). In this sense, I selected the input parameters that 

have small AIC and large R^2. Using these selected features as independent variables, the 

SAS builds the regular regression equation (as shown in table 4) in the Analysis of 

Variance module. The classes to be identified are the dependent variables in the equation.   
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Figure 9. Work flow of the regression classification. 

In a multi-linear regression, one important precondition is that all variables must be 

independent. Without this premise, it cannot be called a rigorous regression classification. 

Hence, the next step is to test the independency of the selected input parameters. 

To test their correlation, I have randomly selected one sample (year in 2009) with 16 

phenological parameters from 6 individual class types (winter wheat, spring wheat, 

corn/soybean, CSG, TallWSG, and ShortWSG). Then put this 6 by 16 matrix into 

MATLAB to generate cross-correlation matrix. The cross-correlation coefficients of the 

16 features are calculated by dividing the phenological parameters’ standard deviations 

(Table4).  The coefficients in the table are quite low, indicating that these parameters are 

independent to each other. As a result, all phenological parameters are valid inputs of the 

regression classification in this research. 

Select high 
correlated 
features 

Put training dataset into 
SAS, use R-Square 
Selection Method 

calculate Coefficient of 
determination (𝑅 )  and 

p-values for every 
feature and 

corresponding class type 

Build 
classification 

model 

Apply selected feature 
into SAS “Analysis of 
Variance” module to 

find Parameter 
Estimates 

Establish classification 
equations. 

Run equation in 
MODIS Satellite 

Imagery 

After all testing dataset 
has been calculated, the 
final class type values 

will be shown in a 
single image. 
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Table 4. The cross-correlation coefficient between 16 phenological parameters, the example of 2009, described their relationship in 

individual class types. And these phenological parameters are represented by Var. 1 to Var. 16 in following table. 

 

 

Var. 
1 

Var. 
2 

Var. 
3 

Var. 
4 

Var. 
5 

Var. 
6 

Var. 
7 

Var. 
8 

Var. 
9 

Var. 
10 

Var. 
11 

Var. 
12 

Var. 
13 

Var. 
14 

Var. 
15 

Var. 
16 

Var. 1 0.036 0.076 0.040 0.000 0.055 0.001 0.001 0.000 0.000 0.021 0.012 0.001 0.318 0.000 -0.192 0.079 

Var. 2 0.076 0.177 0.101 0.001 0.124 0.003 0.002 0.000 0.000 0.056 0.033 0.003 0.771 0.000 -0.449 0.187 

Var. 3 0.040 0.101 0.062 0.001 0.069 0.002 0.001 0.000 0.000 0.034 0.021 0.002 0.453 0.000 -0.257 0.108 

Var. 4 0.000 0.001 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.000 -0.002 0.001 

Var. 5 0.055 0.124 0.069 0.001 0.088 0.002 0.001 0.000 0.000 0.037 0.022 0.002 0.533 0.000 -0.313 0.130 

Var. 6 0.001 0.003 0.002 0.000 0.002 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.014 0.000 -0.008 0.003 

Var. 7 0.001 0.002 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.010 0.000 -0.005 0.002 

Var. 8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 -0.001 0.000 

Var. 9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 

Var. 10 0.021 0.056 0.034 0.000 0.037 0.001 0.001 0.000 0.000 0.020 0.012 0.001 0.256 0.000 -0.141 0.060 

Var. 11 0.012 0.033 0.021 0.000 0.022 0.001 0.000 0.000 0.000 0.012 0.008 0.001 0.158 0.000 -0.084 0.036 

Var. 12 0.001 0.003 0.002 0.000 0.002 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.014 0.000 -0.008 0.003 

Var. 13 0.318 0.771 0.453 0.004 0.533 0.014 0.010 0.001 0.001 0.256 0.158 0.014 3.634 0.002 -1.988 0.843 

Var. 14 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 -0.001 0.000 

Var. 15 -0.192 -0.449 -0.257 -0.002 -0.313 -0.008 -0.005 -0.001 0.000 -0.141 -0.084 -0.008 -1.988 -0.001 1.150 -0.480 

Var. 16 0.079 0.187 0.108 0.001 0.130 0.003 0.002 0.000 0.000 0.060 0.036 0.003 0.843 0.000 -0.480 0.202 
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3.5 Results 

3.5.1 Regression equations 

With training data samples for each year, the regression equations were built in SAS. 

Besides, the location of training samples in 10 years has a slightly change to guarantee 

reliability of the classification. Table 5 shows the 2005 example of estimating equation’s 

parameters and machine selected features. The reason why I selected the variables in the 

following equation is the estimated error rates are very low. The regular regression 

equation is thus represented as: 

                                                          

                                                                                                     

X1 represents Intercept, X2 represents Length of the season, X3 represents Base Level, 

X12 represents The ∆ NDVI value, and X13 represents Longitude)   

Different variables were used in different years due to variations of vegetation’s 

phenological characteristics in the Great Plains in the 10-year period. For instance, the 

peak date of corn in 2005 was around 217 DOY (day of year), but in 2009 it was delayed 

to 255. Some parameters may become less important in the regression of certain year.      

3.5.2 Class maps 

The classified vegetation maps are displayed in Figure 11 to Figure 15 in the 5 years. 

From classification maps from 2001 to 2009, as shown in these maps, cropland areas 

have not changed much in these 10 years. Corn and soybean grow in the northeast of the 
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Great Plains, which is covered in the Corn Belt in the Midwest. Winter wheat keeps the 

zonal distribution in Oklahoma and Texas, and spring wheat always distributes primarily 

in the northern area – North Dakota. 

 

Table 5. The 2005 example parameters extracted from SAS 

Variable DF Parameter 

Estimate 

Standard 

Error 

t Value Pr >|t| 

X1: Intercept 1 27.18555         6.00737        4.53 <.0001 

X2: Length of the season 1 0.33488         0.05425        6.17       <.0001 

X3: Base Level 1 11.78207         4.13940        2.85       0.0049 

X4: Time for the mid of the 

season 

1 -0.07721         0.03007       -2.57       0.0109 

X5: Largest data value for fitted 

function during the season 

1 -2.72084         1.80019       -1.51       0.1322 

X6: Rate of increase at the 

beginning of the season 

1 5.27092         4.85194        1.09       0.2786 

X7: Rate of decrease at the end 

of the season 

1 6.77722         5.66073        1.20       0.2326 

X8: Large seasonal integral 1 -0.63220         0.14466       -4.37       <.0001 

X9: Small seasonal integral 1 0.35121         0.12841        2.74       0.0068 

X10: Peak NDVI value 1 0.18770         0.05010        3.75       0.0002 
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X11: Peak Date 1 -0.11758         0.02341       -5.02       <.0001 

X12: The   NDVI value 1 -0.97714         1.06436       -0.92       0.3596 

X13: Longitude 1 -2.65930         0.52194       -5.10       <.0001 

 

The grass patterns in the Great Plains that is consistent all over the 10 years. For example, 

TallWSG always dominates in Flint hills; ShortWSG mostly appears in the west. 

Temporal shifts of CSG, TallWSG and ShortWSG, however, are obvious in these class 

maps, especially in the central Plains that belonged to mixed prairie as defined in 

Chapter2. The CSG grasses dominate the cold areas such as South Dakota and Nebraska 

in 2001 and 2007, but were less dominant than TallWSG in other years. ShortWSG 

primarily existed in the western Great Plains and mixes with shrubs in most years, but in 

2005, its coverage dramatically declined. These temporal variations will be further 

examined in climate change analysis next chapter.  

3.5.3 Accurate assessment 

The CDL products provide fairly reasonable ground truth for annual crops. However, 

there has not any WSG/CSG product published in the Great Plains. It is also difficult to 

collect intensive ground observations of grass types in the vast area of the Great Plains. In 

lack of ground observations for these grass types, I could not run conventional accuracy 

assessment procedures such as Contingency table approach (Karl Pearson, 1904).  

To evaluate the accuracies of the class maps, I used three of the four focus sites of this 

research. Most of these focus sites are monitored by USDA or other agencies and 

programs and therefore, ground records are partially available. Class results in these sites 
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are compared with ground observations and records that are published online. The 

Sandhills grassland focus site was not examined because it is a typical mixed grass prairie 

covering all types of grasses: CSG, TallWSG, and ShortWSG. Percent covers in this area 

thus vary in different years, depending on changing climate conditions.  

The first site for accuracy assessment is the CPER, the Central Plains Experimental 

Range in Colorado. Upon the reports from the USDA Agricultural Research Service, blue 

Gramma, a typical ShortWSG species, is the primary grass type in CPER.  As shown in 

table 6, the results in this research agree with the ARS reports: in any year, the percentage 

of ShortWSG is much higher than other grass types.  

Table 6. The MODIS-derived percent covers of major grass types in CPER: 2001 to 2009. 

 2001 2003 2005 2007 2009 

cool season grass 8.85% 2.74% 12.24% 30.70% 16.95% 

shortWSG 46.69% 37.47% 38.31% 59.31% 68.28% 

tallWSG 39.48% 52.67% 27.02% 1.54% 11.85% 

shrub 4.98% 7.12% 22.43% 8.45% 2.92% 

 

Table 7. The MODIS-derived percent covers of major grass types from 2001 to 2009 in 

the Flint Hills prairie. 

 2001 2003 2005 2007 2009 

cool season grass 6.19% 0.76% 6.27% 35.88% 14.39% 
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shortWSG 2.66% 0.24% 12.37% 0.00% 0.97% 

tallWSG 90.28% 98.92% 67.30% 64.05% 79.65% 

shurb 0.87% 0.08% 14.06% 0.07% 5.00% 

 

The 2nd site is the Flint Hills prairie in Kansas. It is operated by Konza Prairie Biological 

Station (KPBS). According to their research projects, TallWSG species covers more than 

80% of this prairie. In my class maps of the 5 years, the percentage of TallWSG also 

dominates the prairie (Table 7). The TallWSG coverages in 2005 and 2007 are 

abnormally lower than the average, which is further examined by linking them to climatic 

factors in next chapter.   

The last focus site is the Montana Prairie in the north of the Great Plains. Without ground 

observation data in this area, the only way to perform accuracy evaluation of my results is 

to compare them with CDL data and to lay on basic phenological knowledge in this area. 

In cropland data layer this region belongs to grassland. In Montana’s official state 

website (http://mt.gov/), the Sandberg Bluegrass (Poa secunda) is a native cool season 

grass in this grassland. It is also understandable that temperature in Montana is cold 

enough so that only cool season grass could grow and its growth length is short due to the 

short growing season.  

I also noticed a unique phenomenon about grass growth in this site. In 2005 and 2007, 

during the classification process, there are clusters of cool-season grasses that displayed 

extremely short growing season (Figure 10). Compare Figure 10 with CSG and WSG 

curves, the short-term grass has similar phenological characters as CSG. Both grass types 
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could have two grow periods, one in spring and the other in fall, and have almost peak 

NDVI values. However, the growth length of short-term grass is much shorter than a 

typical CSG.  

In Table 8, we found that that CSG is the major grass type in the prairie and this special 

short-term grass only appeared in Montana prairie site and dominated the area in 2005 

and 2007. It should be strongly related to climate conditions that are further examined in 

next chapter.   

 

 

Figure 10. An example growth cycle of a special type of grass (short-term grass) in 2007. 

Table 8. The MODIS-derived percent cover of major grass type’s variation from 2001 to 

2009 in the Montana Prairie. 

 2001 2003 2005 2007 2009 
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cool season grass 86.32% 88.87% 36.26% 30.41% 84.30% 

tallWSG 12.72% 11.13% 16.54% 0.00% 14.69% 

Shurb 0.96% 0.01% 0.22% 0.01% 1.01% 

short-term grass 0.00% 0.00% 46.98% 69.58% 0.00% 

 

3.6 Discussion 

In my thesis research, I mapped vegetation distributions of several major vegetation types 

(corn/soybean, winter wheat, spring wheat, CSG, TallWSG, and ShortWSG). It is very 

time consuming.  I downloaded 10-year MODIS satellite imagery in 4 tiles (H09V05, 

H10V04, H10V05 and H11V04) and the cropland data layers in 10 states. I re-projected 

all images to orthophoto maps, calculated MODIS NDVI values, mosaicked and clipped 

MODIS satellite imagery to match the study area, regrouped attribute data, and resampled 

all images into 500-m resolution. It is a huge task for image processing. I have processed 

3680 MODIS images with total data size over 5 Terabytes. 

Via time series analysis, the information I extracted is rich. The MODIS time series 

reveal growth rhythms of major land cover types. These phenological differences built 

the foundation for classification process in my research, and it is significant on spectral 

values used in different classifiers. In this study, phenology information has less 

dependency of intensive training data, and insensitive to spatial heterogeneity of land 

cover types. Hence, the regular regression classification method is more adaptive to large 

coverage area than regular classifier, such as Maximum Likelihood Estimation.  
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Besides, in lack of ground observation data, the regular regression classification approach 

performs also better than general method, such as supervised and unsupervised 

approaches. One of the reasons for this advantage is geographic consideration put into my 

regular regression approach, although I have limited sample points. The geographic 

consideration came from: (1) sample points were measured dispersedly, not concentrated 

in one area; (2) vegetation represents slightly altering owing to distinct elevation, latitude, 

and other factors. Hence, the measurement standard cannot follow one permanent pattern; 

(3) the values of latitude and longitude were put into the estimation of regular regression 

parameters. Then all considerations were combined to reach the good results with limited 

sample points in this research.  

The regular regression classification approach has delineated the clear boundary and few 

confusion areas among vegetation. They are shown as Figure 11-15. This approach 

demonstrates the attempt to explore the large area image classification, proofs it could be 

applied into similar research studies. Given more time to investigate regression methods 

and parameter estimation the classification equation and results should be further 

improved.       

Classification maps in 2001, 2003, 2005, 2007, and 2009 show reasonable grass and 

annual crop distributions in comparison with USDA CDL products and ground records. 

Further discussion: Link variations in your class maps to climate change, which is studies 

in next Chapter.    
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Figure 11. The 2001 vegetation distribution map in the Great Plains.  
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Figure 12. The 2003 vegetation distribution map in the Great Plains.  
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Figure 13. The 2005 vegetation distribution map in the Great Plains.  
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Figure 14. The 2007 vegetation distribution map in the Great Plains. 
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Figure 15. The 2009 vegetation distribution map in the Great Plains. 
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CHAPTER IV: Linkage of grass distributions and climate variation 

 

 

 

It is found in previous chapter that the spatial distributions of major grass types (CSG, 

TallWSG, ShortWSG) in the Great Plains vary in 2001, 2003, 2005, 2007, and 2009. This 

variation may be related to the changing climate conditions in these years. This chapter 

explores climate data in the Great Plains and links it to the grassland distributions in the 

region. It could be treated as preliminary research in investigating grassland responses to 

climate change at a regional scale.  

4.1 Temperature and Precipitation Data in 2000-2009 

Climate data in the Great Plains in past years are downloaded from the PRISM 

(Parameter-elevation Regressions on Independent Slopes Model) program at the Oregon 

State University (http://www.prism.oregonstate.edu/). PRISM is the parameter-elevation 

regressions on independent slopes model (http://www.prism.oregonstate.edu/). The goal 

of this special knowledge-based system is to produce continuous monthly and yearly 

climatic parameters. The PRISM database provides various climate data records in the 

recent 20 years, primarily monthly products in United States from 1985 to present that 

include precipitation, average maximum temperature, average minimum temperature, 

average dewpoint, and anomalies. PRISM data also includes other yearly world-wide 

climate metadata, such as the 800-m climatology normal metadata in Pacific islands from 
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1971 to 2000. The PRISM products’ spatial format is ACSII GRID. This continuous data 

could be easily converted to raster image for climatic analysis.  

Climate data off the growing season is not analyzed in this research. To fit in the growing 

season in the Great Plains, I downloaded monthly precipitation and temperature data 

from March to October for each year (2000-2009). Further, to simplify the process and to 

reduce data redundancy, I re-grouped each climate data type into three seasons: spring 

(March to May), summer (June to August), and fall (September to October). In each 

season, four climate variables are re-calculated and regrouped after downloading the 

metadata: total rainfall, average precipitation, maximum temperature, and average 

temperature. Therefore, in total there are 12 climate factors are tested in the correlation 

analysis: Table 4 gives all parameters here (22 in total). 

4.2 Correlation analysis 

To link the variation of grass percent covers in the Great Plains to climate change in the 

past 10 years, I performed correlation analysis to find the climate factors that are highly 

correlated to the variation of grass distributions. While climate data are available each 

year in 2000-2009, percent covers of grasses are extracted for 5 years (2001, 2003, 2005, 

2007, and 2009). In correlation analysis, both percent cover of specific grass types and 

climate factors are analyzed in 5-point series (5 years). The correlation coefficient 

represents the normalized measure of the strength of linear relationship between two 

variables. Given variables X and Y, the correlation coefficient could be calculated as 

(Rodgers and Nicewander, 1988):  

                                                        =        

    
=               

    
                                          (8) 
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I firstly collected 12 climatic factors in three seasons from 2000 to 2009, and then 

calculated the percent cover of grasses and annual crops (CSG, TallWSG, ShortWSG, 

corn/soybean, winter wheat, and spring wheat) in the four study areas. For each year, I 

grouped these data into a 22 by 5 matrix and put it into MATLAB to run correlation 

coefficients with the module “corrcoef”. This module generates correlation coefficients 

matrix and returns a p-value matrix for the no-correlation hypothesis. At 95% confidence 

interval, when p-value is less than 0.05, the correlation is statistically significant. 

Therefore, if a climate factor corresponds to the highest r value and p-value less than 0.05, 

it is determined to be significantly related to the variation of grassland distributions in the 

Great Plains.        

 

4.3 Results  

The Great Plains covers different geographic divisions that vary from the Rocky 

Mountains in the west to the TallWSG Prairie in the east. The climate ranges from the 

cold, continental climate in the north to the sub-arid, hot climate in the south. Therefore, 

the geographical variations of climate conditions could be more dramatic than temporal 

variations in 5 years. For this reason, I did not run correlations analysis of the average 

climate factors all over the Great Plains. Rather, I performed detailed analysis in the 

selected 4 focus sites, assuming that climate conditions in these small sites are relatively 

stable in its geospatial context. 

Table 9. Correlation coefficients between climatic factors and grasses variations in four 

focus area (Montana Prairie, CPER, Central Prairie, and Flint hill grassland). The highly 

linked climatic factors will be selected for later analysis. 
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  Climatic Factors  CSG ShortWSG TallWSG short –term 
grass 

 
M

on
ta

na
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ra
ir

ie
   

   
 

 

spring total rainfall -0.836 0.922 -0.89 0.925 

summer total rainfall 0.107 -0.296 0.612 -0.357 

fall total rainfall -0.319 -0.224 0.519 -0.296 

spring average rainfall -0.728 0.87 -0.921 0.888 

summer average rainfall 0.232 -0.426 0.707 -0.481 

fall average rainfall -0.081 -0.395 0.466 -0.426 

spring max temperature  0.431 -0.044 -0.012 -0.021 

summer max temperature -0.386 0.549 -0.611 0.559 

fall max temperature -0.138 -0.11 0.38 -0.152 

spring average 
temperature 

-0.638 0.503 -0.209 0.447 

summer average 
temperature 

-0.137 0.382 -0.551 0.41 

fall average temperature -0.208 0.257 -0.332 0.26 

  
C

en
tr

al
 p

la
in

s e
xp

er
im

en
ta

l r
an

ge
 in

 C
ol

or
ad
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spring total rainfall -0.604 -0.515 0.606 N/A 

summer total rainfall 0.098 0.539 -0.357 N/A 

fall total rainfall -0.596 -0.521 0.616 N/A 

spring average rainfall 0.128 0.577 -0.398 N/A 

summer average rainfall 0.809 0.492 -0.597 N/A 

fall average rainfall -0.234 -0.655 0.544 N/A 

spring max temperature  0.557 0.201 -0.29 N/A 

summer max temperature 0.081 -0.424 0.211 N/A 

fall max temperature 0.084 0.433 -0.356 N/A 
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spring average 
temperature 

0.149 0.465 -0.404 N/A 

summer average 
temperature 

0.644 0.758 -0.623 N/A 

fall average temperature -0.086 -0.619 0.412 N/A 

 
C
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ie
 

spring total rainfall -0.142 0.484 0.254 N/A 

summer total rainfall 0.443 0.276 -0.07 N/A 

fall total rainfall 0.016 -0.074 0.155 N/A 

spring average rainfall -0.121 0.556 0.229 N/A 

summer average rainfall 0.353 0.156 -0.002 N/A 

fall average rainfall 0.016 -0.074 0.155 N/A 

spring max temperature  0.547 0.567 -0.311 N/A 

summer max temperature 0.253 0.636 -0.317 N/A 

fall max temperature -0.27 -0.307 0.287 N/A 

spring average 
temperature 

0.921 0.483 -0.936 N/A 

summer average 
temperature 

0.272 0.533 -0.403 N/A 

fall average temperature 0.069 0.412 -0.196 N/A 

 
Fl
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ie
 

spring total rainfall -0.239 -0.45 -0.303 N/A 

summer total rainfall 0.803 -0.435 -0.141 N/A 

fall total rainfall 0.057 -0.588 0.516 N/A 

spring average rainfall 0.789 -0.448 -0.274 N/A 

summer average rainfall -0.314 -0.468 -0.032 N/A 

fall average rainfall 0.177 -0.633 0.393 N/A 
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spring max temperature  -0.097 0.894 -0.35 N/A 

summer max temperature 0.361 0.869 -0.559 N/A 

fall max temperature 0.016 -0.131 -0.55 N/A 

spring average 
temperature 

0.675 0.318 -0.986 N/A 

summer average 
temperature 

0.125 0.956 -0.43 N/A 

fall average temperature 0.491 0.365 -0.929 N/A 

 

4.3.1 Montana Prairie 

As I described in the previous chapter, the Montana Prairie in the north of the Great 

Plains are mostly composed of cool-season grasses. The example of one year grass 

distribution shows in Figure. 16.  From this picture, the majority of the area is covered by 

grassland, but the percentage changed by temporal factors. The percent covers of grass 

types in the 5 years are summarized in Figure 17. It confirms that cool-season grasses in 

this site have short growing seasons in 2005 and 2007. This abnormally could be 

explained by examining climate variations in the past 10 years. 

Figure 18 shows the 2000-2009 variations of all climate factors in this area. With 

correlation analysis, I found that the climate factors that are highly correlated to grass 

covers were total precipitation and the average rainfall in spring. The R values of both 

factors are larger than 0.92. The linear trends of these two factors are show plotted in 

Figure 18.    
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Figure 16. The 2007 vegetation distribution map in the Montana Prairie. 

 

Figure 17. Column chart of grass covers in the Montana Prairie in the 5 years. 
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Figure 18. Climate conditions in 2000-2009 in the Montana Prairie.  

As shown in the top scatterplot in Figure 18, the total precipitation in spring (March-May) 

of 2005 and 2007 are much higher than other years. The average precipitation in May is 

also extremely high in these two years (the bottom scatterplot). The short-term grass 

growth cycle indicates that this type of grass reaches peak date around May. Therefore, 

we chould reasonably relate increased precipitation in spring to the expanded distribution 

of the cool season grass in this grassland.  
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Figure 19. Fall average precipitation variations from 2000 to 2009 in the Montana Prairie. 

However, the results indicates that the growth cycle of grasses in 2005 and 2007 are 

extremely short when comparing with cool season grasses in other areas, even though 

their phenological characteristics are similar. The only reason to explain this abnormity is 

that climate after spring must change abnormally, because cool season grass usually has a 

long growth length from early spring to middle fall.  In Figure 19, it shows that the 

average precipitation in August and September is lower than the medium value. Owing to 

lack of water, cool season grass cannot have a second growth period in fall. Oppositely, it 

was quickly dry down. As a result of this short growth, this area has short-term grass 

arisen in 2005 and 2007. 

4.3.2 Central Plains Experimental Range in Colorado (CPER) 

This site is a ShortWSG-dominated grassland in Colorado. As shown in the column chart 

in Figure 20, ShortWSG possesses the largest percentage of the site each year (except 
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2003), and it’s percent cover has an apparent increasing trend in the past 10 years. The 

increase of ShortWSG cover corresponds to the decline of TallWSG.  

 

Figure 20. Column chart of grass covers in the CPER in the 5 years.  

Upon correlation analysis, grass covers in this site highly correlate with average rainfall 

and temperature in summer. The R values of these two factors are higher than 0.88. In the 

scatterplots of these two climate factors (Figure 21), there is a slight decrease of average 

summer temperature from May to July in the past 10 years, which could be responsible 

for the decrease of TallWSG covers as shown in Figure 20. This result agrees with 

physiological development of warm-season grasses. WSG grows better in warmer 

circumstances, and the findings in my research demonstrate that TallWSG species relies 

on temperature during its growth season. It is also noticeable in Figure 21 that 

precipitation in the past 10 years increases, which could be related to increase ShortWSG 

distribution. It indicates that ShortWSG, another type of warm-season grasses in the west 

of Great Plains, is more sensitive to precipitation than temperature. 
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Figure 21. Climate conditions in 2000-2009 in CPER. 

4.3.3 Central Prairie - The Sand Hills Grassland 

Central prairie is typically mixed grassland. The Sandhills Grassland is located in 

Nebraska. In its column chart of grass covers (Figure 22), both CSG and TallWSG 

dominates the grassland, but CSG turns to decrease while TallWSG has an increasing 

trend in the past 10 years. Not much CSG and short warm season grass growing in this 

mixed grassland that both TallWSG and ShortWSG species are observed in this area. 
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The variations of TallWSG and CSG types from 2001 to 2009 are examined with climate 

data. Upon correlation analysis, I found that the average temperature in spring and total 

rainfall in summer are significantly correlated to grass covers. The R values of these two 

factors are higher than 0.921.    

 

Figure 22. Column chart of grass covers in the Sandhill grassland in the 5 years 

In the scatterplots of these two climate factors (Figure 23), spring temperature in this site 

slightly decreases in the past years. As CSG grasses green up early and reach their peak 

dates in early May, the low temperature in spring greatly influences its growth. It also 

shows in the figure that rainfall rises from 2000 to 2009 in this grassland. Meanwhile, 

although spring temperature decreases, the average temperature in May remains stable. 

As TallWSG species green up later and reaches peak growth in June-July, low average 

temperature in spring may not affect TallWSG growth as much than CSG. Abundant 

rainfall also favors the growth of TallWSG. All these climate influences explain the 

increased percent cover of TallWSG species in the Sandhills Grassland. 
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Figure 23. Climate conditions in 2000-2009 in the Sandhills Grassland. 

4.3.4 Flint Hills Prairie in Kansas 

Basing on ground survey data records from the Konza Prairie Biological Station (KPBS), 

the Flint Hills grassland in Kansas is extremely dominated with tallWSG species. In my 

results, this dominance is obvious in the column chart in Figure 24. The WSG percent 

cover remains dominant although a slight decreasing trend is observed in the 5 years. 
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CSG grass covers remain low expect 2007, in which CSG dramatically increases and 

possesses more than 15% of the whole site.  

 

Figure 24. Column chart of grass covers in the Flint Hills Prairie in the 5 years. 

Upon correlation analysis, I found that the average temperature in spring and total rainfall 

in spring are most sensitive to grass covers in this site. The R values of these two factors 

are higher than 0.893.  

We have discussed earlier that CSG is more depended on water availability, while WSG 

favors higher temperature. In Figure 25, precipitation reached a highest value in 2007, but 

summer temperature in this year was lower than the average. These climate conditions 

result in the increased CSG percentage cover in 2007 in this site. On the other hand, the 

descending trend of the average summer temperature (as shown in the bottom scatterplot 

in Figure 27) is responsible for the slight decrease of TallWSG cover in 2003-2009. 
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Figure 25. Climate conditions in 2000-2009 in the Flint Hills. 

 

4.4 Discussion and Conclusion  

In this chapter, I divide one year into three parts (spring, summer, and fall). Winter data is 

not applied in climate analysis. I downloaded the PRISM climate data and selected 

suitable climatic factors in every season, such as average temperature, and total 

precipitation. Then I chose the four focus areas to calculate percent covers of cool season 
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grass, TallWSG, and ShortWSG in 10 years. With these data I have found several 

abnormal phenomena existing in these regions. In Montana Prairie, a specific kind of 

short-term grass appeared and had a large amount in 2005 to 2007, and the percentage of 

cool season grass suddenly increased in 2007 at flint hill grassland.  

The abnormalities of these observations are examined with climate data in each focus 

area. In order to explain these phenomena and also predict the future change, I linked all 

percentage data with climatic factors to find their relationship. Water availability is the 

driving factor for grass variation in Montana Prairie and Flint hill grassland. The 

Montana’s rich spring rainfall during 2005 to 2007 leaded cool season grass growth 

quickly in the first half year, but the fall arid climate made the grass wilt soon. Therefore, 

the final classification map appears this short-term type grasses. In a similar way, 

abundant spring precipitation in Flint hill grassland also caused cool season grass 

increasing its occupancy. Similarly, ShortWSG appears flourishing with increased 

precipitation, which explains the continuous increase of ShortWSG distribution 

percentage in Central Plains Experimental Range in Colorado (CPER). TallWSG fits in 

warm environment and relies on temperature change more than soil moisture. This 

ecological feature leads to slightly downtrend of TallWSG occupancy in Flint hill 

grassland.  

My findings in the central prairie agree with the predictions from predictions of 

ecological models. The Winslow’s SAW model, put the result into bio-geospatial model 

to estimate the climate change, Seasonal Availability of Water Model is one kind of bio-

geospatial models. The SAW model predicts that cool season grass is now taking placed 
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by TallWSG (J.C. Winslow et al. 2003). It also shows in the 5-year trend of grassland 

distributions in my research.  

Finally, our findings indicate that precipitation in spring and summer play the most 

significant role in examining the responses of different grass functional types to climate 

change. With limited data source, other climate factors such as maximum temperature are 

not significant in most of the focus sites. More advanced climate data and analysis 

methods should be explored to enhance our understanding of the linkage between 

grassland growth and climate variations in the Great Plains. 
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CHAPTER V: CONCLUSIONS AND FUTURE WORKS 

 

 

 

 

The major goal of this study is to examine the large-scale vegetation distributions in the 

Great Plains and their sensitivities with climate change. This research was finished via 

the following analysis: 1) collecting 10- year MODIS TERRA Satellite imagery and 

Cropland Data Layers. 2) Image processing on all metadata. 3) Spatial and time-series 

analysis to extract 16 phenological parameters. 4) Established regular regression 

classification method to generate major annual energy crops and grasses distribution. 5) 

Correlation analysis to link grassland covers to climate variations in the four focus sites.  

Remote sensing data and techniques provide the fundamental basis of this research. The 

MOD09A1 surface reflectance product has 500-meter pixel resolution and 8-day scan 

frequency. For the purpose of delineating warm-season and cool-season grasses in the 

vast area of Great Plains, this product provides proper spatial resolution and temporal 

composite interval and therefore, it loses less data during cloud removal process and 

acquires important vegetation growth information along a growing season in each year.  

Time-series analysis is highly effective in extracting vegetation’s phenological features. 

Aside from the TIMESAT program that is publically available, time series analysis could 

be processed with high flexibility using thruster-interactive oriented objective language, 

such as IDL (Interfaced Description Language) in ENVI. Cool season grass is 



68 
 

demonstrated containing up to twice the growth period than warm season grass. Winter 

wheat could be identified with its unique early peak date when comparing with other 

vegetation types. It is also revealed via time series analysis that annual crops in general 

have higher photosynthesis activities in radiation absorption and reflectance, which result 

in much higher NDVI peak values than grasses in the Great Plains.  

The Regression Classification Analysis performs better than logistical regression as 

multiple classes are examined and more quantitative analysis is conducted. With limited 

sample points, I found that my phenological characteristics, which serve as independent 

variables in regression classification, have low cross correlation with vegetation types. It 

indicates that the requirement of training samples of the regression classification 

approach is less rigid than machine learning classifiers. This makes it superior to the 

commonly applied supervised and unsupervised classification, and decision tree methods, 

which require intensive ground observations as training data. Therefore, the regression 

classification method could serve as an optimal approach in large-area, multi-class 

applications. Moreover, the ability of coupling geographic information (latitude and 

longitude) in the regression classification process takes the temporal variations of 

phenology into consideration and thus improves the robustness its application in large 

geographic contents.  

The results of my research describe the general and creditable vegetation distributions 

and variations in the past 10 years. From the class maps, grass percent covers in the 

selected focus sites agree with ground survey data. Grass changes gradually from the east 

to the west of the Great Plains. Grasslands in the east (e.g. the Flint Hills) are primarily 

covered by TallWSG while those in the west (e.g. CPER) are by ShortWSG types. Grass 
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covers in the north of the Great Plains are mostly cool-season grasses. This information 

could improve the capability of grassland delineation in the CDL crop mapping products.  

In a preliminary analysis of climate data, my research also examines the abnormalities 

and change tendencies of grasslands in the Great Plains. It was found that water 

availability is the key factor leading to cool season grass increase and decline under other 

climate factor influences. It also affects ShortWSG species in the west prairie that appear 

flourishing in rich precipitation surroundings. Temperature change is more related to 

TallWSG variation because this grass is more suitable for warm environment. In addition, 

my prediction agrees with ecological models in past studies (Winslow et al. 2003), in 

which cool season grass is expected to constantly decreases if global temperature 

maintains rising. Warm-season and cool-season grasses are of the major concern in my 

thesis research. As these two grass functional types have distinct productivity, the 

variation of their distributions in central prairie is important for pasture management. 

Their different photosynthetic pathways results in different roles in carbon sequestration, 

which is also of great importance in climate change studies. In the future, the results of 

my research could be applied in these different research activities in regional grassland 

management and climate change studies. The approaches explored in my result could 

also be integrated into ecological and climate models to answer large-scale geographic 

questions in global environment changes.   
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