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ABSTRACT

For object detection, the state-of-the-art performance is achieved through supervised

learning. The performances of object detectors of this kind are mainly determined by two

factors: features and underlying classif cation algorithms. In this work, we aim at improv-

ing the performance of object detectors from the aspect of classif cation algorithm. Ob-

serving the fact that classif ers used for object detection are task dependent and data driven,

we developed a hybrid learning algorithm combining global classif cation and local adap-

tations, which automatically adjusts model complexity according to data distribution. We

divide data samples into two groups, easy samples and ambiguous samples, using a learned

global classif er. A local adaptation approach based on spectral clustering and propsed

Min-Max model adaptation is then applied to further process the ambiguous samples. The

proposed algorithm automatically determines model complexity of the local learning al-

gorithm according to the distribution of ambiguous samples. By autonomously striking

a balance between model complexity and learning capacity, the proposed hybrid learning

algorithm incarnates a human detector outperforming the state-of-the-art algorithms on a

couple of benchmark datasets [2, 1] and a self-collected pedestrian dataset. Besides , the

proposed Min-Max model adaptation algorithm also successfully improve the performance

of an off ine-trained classif er on-site by adapting the classif er towards newly acquired

data, without worries about the tuning the adaptation rate parameter, which affects the per-

formance gain substantially. Taking the object detection as a testbed, we implement an

adapted object detector based on binary classif cation. Under different adaptation scenar-

ios and different datasets including PASCAL, ImageNet, INRIA, and TUD-Pedestrian, the

proposed adaption method achieves signif cant performance gain and is compared favor-

ably with the state-of-the-art adaptation method with the f ne tuned adaptation rate.
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Chapter 1

Introduction

Among various approaches to object detection, the sliding window approach [3, 2] domi-

nates due to its good performance [4, 5, 6, 7, 8, 9], eff ciency [3, 10], parallelizability, and

easy implementation. The sliding-window-based detectors treat the object detection as a

classif cation problem: The whole image is densely scanned from the top left to the bottom

right with rectangular scanning windows of different sizes. For each possible scanned rect-

angle, certain features such as edge histogram, texture histogram, or wavelet coeff cients,

are extracted and fed to a off ine trained classif er using labeled training data. The classif er

is trained to classify any rectangle bounding an object of interest as a positive sample and

to classify all other rectangles as negative samples.

The performances of sliding-window-based detectors are mainly determined by two

factors: the feature and the underlying classif cation algorithm. In this work, we aim at

improving the performance of object detectors from the aspect of the underlying classi-

f cation algorithm. Many supervised learning algorithms such as various boosting algo-

rithms [3, 11, 12], SVM of different f avors including linear, kernel, multi-kernel, latent,

structured, etc. [2, 7, 9, 4, 8], and Convolutional Neural Networks (CNN) [13], have been

applied to object detection during the past decade.

However the performance of supervised learning algorithms heavily depends on the
1



labeled training dataset. For a specif c classif cation task, a generic classif er trained with

the data collected from various environments may only achieve fair performance because

it has to accommodate the extensive dataset. Whereas the classif er trained using only the

data sampled from the testing environment tends to overf t the training data and perform

poorly if the variation of the testing dataset is big. This is the trade-off we have to balance

in practical applications; we can adapt a generic classif er to a specif c task, but we have to

tune the adaptation rate according to different application scenarios.

Although the performance of an off ine-trained classif er can be improved on-site by

adapting the classif er, the performance gain is substantially affected by the adaptation rate.

Poor selection of the adaptation rate may worsen the performance of the original classif er.

Therefore, automatic model adaptation for classif cation tasks is an important problem with

great application value.

Various model adaptation approaches [14, 15, 16, 17, 18, 19, 20] have been proposed

under the scenarios of online learning for detection/tracking tasks. Zhang et.al. [21] ele-

gantly formulate the model adaption problem as an optimization problem on the combined

cost function of the old dataset and the new dataset. The cost function of the old dataset

is approximated with its second order Taylor expansion to alleviate the storage burden and

computational complexity. However, in their work, the adaption rate is an empirical pa-

rameter affects the adaptation performance signif cantly and demands careful f ne tuning.

To avoid tuning the important adaptation rate parameter, we propose a conservative

model adaptation method by considering the worst case during the adaptation process. We

f rst construct a random cover of the set of the adaptation data from its partition. For each

element in the cover (i.e. a portion of the whole adaptation data set), we def ne the cross-

entropy error function in the form of logistic regression. The element in the cover with the

maximum cross-entropy error corresponds to the worst case in the adaptation. Therefore we

can convert the conservative model adaptation into the classic min-max optimization prob-

lem: f nding the adaptation parameters that minimize the maximum of the cross-entropy

2



errors of the cover. Taking the object detection as a testbed, we implement an adapted

object detector based on binary classif cation. Under different adaptation scenarios and

different datasets including PASCAL, ImageNet, INRIA, and TUD-Pedestrian, the pro-

posed adaption method achieves signif cant performance gain and is compared favorably

with the state-of-the-art adaptation method [21] equipped with the f ne tuned adaptation

rate. Without the need of tuning the adaptation rates, the proposed conservative model

adaptation method can be extended to other adaptive classif cation tasks.

With the help of proposed Min-Max model adaptation algorithm, we move on to address

another learning problem: striking a good balance between model complexity and learning

capacity.To ensure the detector has enough learning capacity to learn from training data and

can be generalized well, people frequently resort to the Occam’s razor principle [22, 23]

to select underlying classif ers: we want to pick up a classif er, as simple as possible, with

good performance on training data. With a spectrum of classif ers with different model

complexity, is it possible to automatically pick up a classif er with appropriate complexity

and to learn the corresponding model parameters? When the distribution of data in the

input space is uneven, local learning algorithms can adjust the learning capacity locally to

improve the overall performance. Zhang et.al.[24] proposed SVM-KNN that successfully

tackles the problem of high variance of the data complexity in the input space, at the ex-

pense of high computational complexity. Similar idea was introduced in [25]. These local

learning algorithms are superior in adjusting the learning capacity according to the local

data distribution.

However, the local learning algorithms have three diff culties in real world applications:

First, probing the local data distribution is very expensive. For example, both of the local

learning algorithms [25, 24] rely on the K-Nearest Neighbor (KNN) algorithm to guide

the local classif er. This probing procedure limits the application of the local learning

algorithms in large scale learning practice such as object detection. Second, the localities

depend on data distributions: a region with a simple distribution should be covered with a

3



relatively small number of local classif ers whereas a region with a complicated distribution

should be covered with a large number of local classif ers. The “K” in KNN algorithm is

a constant and cannot fulf ll such an adaptive task. Third, the performance of a local

classif er relies on the population of the cluster. Complicated distributions may lead to

low-population clusters, making the corresponding local classif er under trained.

To tackle the diff culties above, we developed a hybrid learning algorithm combining

the global classif cation and the local adaptations, which automatically adjusts the model

complexity according to the data distribution. As sketched in Figure 3.1, we divide the

data samples into two groups, easy samples and ambiguous samples, using a learned global

classif er. A local adaptation approach based on spectral clustering and Min-Max model

adaptation is then applied to further process the ambiguous samples. The idea behind the

proposed hybrid algorithm is straightforward: 1) Easy regions do not need local learning;

2) The local classif er can leverage on global classif er to avoid under-training; 3) Data in

hard regions can be automatically clustered based on their aff nity matrix using acceler-

ated spectral clustering. Taking human detection as a testbed, under different scenarios and

datasets, including Caltech pedestrian dataset [1], self-collected large pedestrian dataset,

and INRIA dataset [2], the proposed hybrid learning method achieves signif cant perfor-

mance gain. Compared with 11 state-of-the-art algorithms [1] on Caltech, the proposed

approaches achieves the highest detection rate, outperforming the deformable part based

algorithm [4] 17% at FPPI=1. Additionally, without the need of tuning parameters, the

proposed algorithm automatically generates the optimum group (verif ed by brute force

enumeration) of local classif ers for different scenarios, which makes the algorithm easily

be extended to different object detection tasks.

Our contributions are in four-folds: 1) we propose a model adaptation algorithm that

Without the need of tuning the adaptation rates, the algorithm achieves signif cant perfor-

mance gain and is compared favorably with the state-of-the-art adaptation method with

the f ne tuned adaptation rate. 2) we develop a hybrid learning algorithm that enables the

4



application of local learning algorithm in large-scale tasks; 3) the proposed hybrid learn-

ing method can automatically adjust the model complexity according to the distribution of

the training data; 4) the proposed scheme of local adaptation from global classif er avoids

the common under-training problem for local classif er: we gain signif cant performance

enhancement in human detection over traditional algorithms, with very little increment in

computational cost.

5



Chapter 2

Min-Max Model Adaptation

2.1 Introduction

The performance of supervised learning algorithms including various f avors of SVM [22,

20], boosting [26, 27, 28, 3], neural networks [29, 13], heavily depends on the labeled

training dataset. For a specif c classif cation task, a generic classif er trained with the data

collected from various environments may only achieve fair performance because it has

to accommodate the extensive dataset. Whereas the classif er trained using only the data

sampled from the testing environment tends to overf t the training data and perform poorly

if the variation of the testing dataset is big. This is the trade-off we have to balance in

practical applications; we can adapt a generic classif er to a specif c task, but we have to

tune the adaptation rate according to different application scenarios.

Although the performance of an off ine-trained classif er can be improved on-site by

adapting the classif er, the performance gain is substantially affected by the adaptation rate.

Poor selection of the adaptation rate may worsen the performance of the original classif er.

Therefore, automatic model adaptation for classif cation tasks is an important problem with

great application value.

6



To solve this problem, we propose a conservative model adaptation method by con-

sidering the worst case during the adaptation process. We f rst construct a random cover

of the set of the adaptation data from its partition. For each element in the cover (i.e. a

portion of the whole adaptation data set), we def ne the cross-entropy error function in the

form of logistic regression. The element in the cover with the maximum cross-entropy

error corresponds to the worst case in the adaptation. Therefore we can convert the con-

servative model adaptation into the classic min-max optimization problem: f nding the

adaptation parameters that minimize the maximum of the cross-entropy errors of the cover.

Taking the object detection as a testbed, we implement an adapted object detector based on

binary classif cation. Under different adaptation scenarios and different datasets including

PASCAL, ImageNet, INRIA, and TUD-Pedestrian, the proposed adaption method achieves

signif cant performance gain and is compared favorably with the state-of-the-art adaptation

method with the f ne tuned adaptation rate. Without the need of tuning the adaptation rates,

the proposed conservative model adaptation method can be extended to other adaptive clas-

sif cation tasks.

The remainder of the paper is organized as follows. Sec. 2.2 formulates the adaptation

cost as the cross-entropy error function. Converting the adaptation in the worst case into an

classical min-max optimization problem is discussed in details in sec. 2.3. Experimental

results are presented and discussed in Sec. 2.4. Finally we draw the conclusion in Sec. 2.5.

2.2 Cross-Entropy Error as the Adaptation Cost

To train a classif er, positive and negative examples are given as a training dataset S =

{(xk, yk), k = 1, . . . , K, (xk, yk) ∈ X × Y)}, in which yk is the label of the example xk.

If xk is a positive example, yk = 1 and yk = 0 if it is a negative example. A parametric

learning algorithm is then applied on S , to f nd the decision function:

7



Z = F (X|w), (2.1)

where w is the parameter vector of the trained classif er. In Eq.(2.1), each z ∈ Z is a

mapped label of the corresponding example x ∈ X . Usually, w should be optimized

according to a cost function def ned to measure the classif er performance over the training

dataset:

C(Z,S) = C(F (X|w),S). (2.2)

During the model adaptation, the parameter vector of the classif er trained on old dataset

S(o) is used as the initial parameter vector, denoted as w(o). With a labeled dataset S(n)

(also called as adaptation dataset) collected from a new environment, we want to obtain

an adapted classif er with the updated parameter vector w(n), which performs better in the

new environment. That is to f nd the parameter vector minimizing the cost function on the

new dataset S(n):

w(n) = argmin
w

C(n)(w) (2.3)

There exist many formulations to def ne the cost function, among which we choose

logistic regression[30] for its good performance, applicability, and popularity. Specif cally,

for a data set S = {(xk, yk), k = 1, . . . K}, the likelihood of an example xk being a positive

example is:

pk =
1

1 + exp{−Score(xk,w)} , (2.4)

where the Score(xk,w) is the conf dence score of the example xk computed by the classi-

f er with the parameter vector w. Therefore, the likelihood function of the whole data set

8



can be written as:

P =
K
∏

k=1

pykk (1− pk)
1−yk . (2.5)

We def ne the cost function by taking the negative logarithm of the likelihood; this

def nition leads to the cross-entropyerror function:

C = − 1

K
lnP = − 1

K

K
∑

k=1

{yk ln pk + (1− yk) ln(1− pk)}. (2.6)

The entries of the gradient vector ▽C(w) and the Hessian matrix HC(w) of the cost

function can be computed as:

∂C

∂wj

=
1

K

K
∑

k=1

xk(j)(pk − tk), (2.7)

and
∂2C

∂wi∂wj

=
1

K

K
∑

k=1

pk(1− pk)xk(i)xk(j), (2.8)

where xk(i) is the ith entry of the feature vector xk.

2.3 Model Adaptation as Min-Max Optimization

The model adaptation problem aims at adapting a previously trained detector, to f t new

data with a distribution different from the one of the data used to train the original detector.

The distribution of the new data determines the adaptation rate. If the variation within

th new data is small, i.e. the new data are relatively similar to each other, we should

set a high adaptation rate. On the other hand, if the variation within th new data is big,

that means fast adaptation to the new data is risky since we cannot estimate the new data

distribution robustly; we have to set a low adaptation rate to avoid overf tting. But how do

we estimate the variation of new data? We can randomly split the whole new data in to

many overlapped subsets and watch the differences among these subsets: big differences
9



indicate large variation and vice versa.

2.3.1 Constructing a random cover from the adaptation dataset

To estimate the data variation of the adaptation set S(n), we randomly divide it into M

small partitions:

S(n) =
M
⋃

i=1

S(n)i , (2.9)

constrained by the non-intersection condition:

S(n)i ∩ S(n)j = ∅, for i 6= j, (2.10)

where i, j = 1, . . . ,M .

With this random partition, we construct an N -element random cover of S(n), denoted

as {G1, G2, . . . , GN}, as illustrated in Figure 2.1:

Gj =
⋃

i∈Ej

S(n)i , (2.11)

for j = 1, . . . , N − 1, and

GN = S(n) −
N−1
⋃

j=1

Gj, (2.12)

where Ej ⊂ {1, . . . , N} is a random subset.

This random cover construction avoids the complete enumeration of the power set of

the partition (i.e., the uniform sampling), which leads to huge computation.

2.3.2 Min-Max objective function

Since direct evaluate the data distribution on each element (i.e., each Gj) of the random

cover is very diff cult, we resort to evaluate the cost function on the Gj . We denote the cost
10



Figure 2.1: The construction of the random cover of the adaptation dataset. Each small block
represents S(n)i , an element of the partition. The Gj’s could have different size and overlap with
each other.

functions on the old dataset and the adaptation dataset as C(o)(w) and C(n)(w) respectively.

For each Gj , the corresponding cost function is denoted as Cj(w). Their logistic regression

formulation is given in Eq. (2.6).

Different from previous methods which update parameter vector w through minimiz-

ing the C(n)(w), we propose a conservative adaptation approach, to guarantee that the

adapted detector performs relatively well even when the adaptation dataset has scattered

data distribution. During the adaptation, we focus on updating the parameter vector w to

improve the detector’s performance on the Gj with the largest cost function, i.e., the biggest

cross-entropy error. Therefore, we formulate the conservative adaptation into a min-max

problem:

w = argmin
w

(

max
j

[

Cj(w)
]

)

. (2.13)

Do solve this min-max problem, at each adaptation iteration, we def ne the cost function

on the adaptation dataset as

E(w) = max
j

[

Cj(w)
]

. (2.14)
11



2.3.3 Min-Max optimization

Noticing the positivity of Cj(w)’s in Eq.(2.13), we can compute max[Cj(w)] as the inf nity

norm of the cost function vector, C(w) = (C1(w) C2(w) . . . CN(w))T . Therefore,

we have

max
j

[Cj(w)] = ||C(w)||∞ = lim
q→+∞

(

N
∑

j=1

[

Cj(w)
]q
)

1
q

. (2.15)

Therefore Eq. (2.13) can be approximated with a large q:

w = argmin
w

(E(w)) ≃ argmin
w

(

N
∑

j=1

[

Cj(w)
]q
)

. (2.16)

To update the parameter vector w, we use Newton-Raphson[30] method to compute

the minimizer of the cost function above:

w[i+1] = w[i] −H−1
E (w[i]) · ▽E(w[i]), (2.17)

where ▽E(w) and HE(w) are the gradient and the Hessian matrix of the cost function

E(w). They can be computed as:

▽E(w[i]) = q
N
∑

j=1

(

[

Cj(w
[i])

]q−1 · ▽Cj(w
[i])

)

(2.18)

HE(w
[i]) = q

N
∑

j=1

(

[

Cj(w
[i])

]q−1 ·HCj
(w[i])

+(q − 1)
[

Cj(w
[i])

]q−2 · [▽Cj(w
[i])]2

)

. (2.19)

We use the parameter vector w(o) of the classif er trained on the old dataset to initialize

the iterative optimization process: w[0] = w(o). The iterative optimizing process terminates
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at a certain threshold ξ:

√

▽E(w[i])
T ·H−1

E (w[i]) · ▽E(w[i]) < ξ. (2.20)

Our algorithm is summarized in Algorithm(1).

Algorithm 1: The Min-Max Based Adaptation
Input: Old detector with parameter vector w(o) , adaptation dataset S(n), and

threshold ξ.
Output: w(n) for adapted detector.
Based on Eq.(2.10), divide S(n) into M small subsets:
S(n) = S(n)1 ∪ S(n)2 ∪ . . . ∪ S(n)M ;
form N data covers G1, G2, . . . , GN refer to Eq.(2.11, 2.12), and get the cost
functions C1(w), C2(w),. . . , CN(w);
def ne cost function E(w) on S(n) using Eq.(2.13);
approximate E(w) as shown in Eq.(2.15);
set w[0] = w(o), T = ∞, i = 0;
while T >= ξ do

compute HE(w
[i]), ▽E(w[i]) as Eq.(2.18, 2.19);

compute w[i+1] refer to Eq.(2.17);

T =

√

▽E(w[i])
T ·H−1

E (w[i]) · ▽E(w[i]);
i = i+ 1;

w(n) = w[i];
return w(n);

2.4 Experiments

We now present experiments to evaluate the proposed model adaptation algorithm. The

model adaptation algorithm is test for two group of adaptation scenario: the f rst three ex-

periments are designed to adapt an original human detector trained on the same old dataset

to three different adaptation datasets; the last experiment emphasizes on the adapting a

general object detector. The good performance of the proposed adaptation algorithm is

validated by these experiments.
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Figure 2.2: From left to right, the f rst box gives the examples we use to train our generic human
detector , all coming from INRIA dataset; the second to the fourth boxes give positive examples
sampled from three adaptation dataset: the INRIA dataset, the TUD dataset, and the PASCAL
dataset.

The rest of this section consists of seven subsections: the f rst subsection describes

the features we use, and details the parameters used; the second subsection presents the

comparison of the adaptation methods; the third subsection introduces the generic human

detector we use and evaluates our method on part of the INRIA dataset [2]; the fourth sub-

section tests our algorithm on the TUD-pedestrian dataset [31]; the f fth subsection adopts

our method on adapting a “motorcyclist” detector, with data sampled from the PASCAL

dataset [32], and with the analysis on the effects of the related parameters; the sixth sub-

section focuses on regular object detector: adapting a Parrot detector from a generic bird

detector, in which training and test images come from ImageNet dataset [33]; the last sub-

section gives the computational complexity and a short experimental discussion.

2.4.1 Image representation and experimental setup

Shape and Texture descriptors. In all of the following experiments, we use integrated

HOG-LBP features [34]. HOG has been widely accepted as one of the best features to cap-

ture the edge or local shape information, whereas LBP is an exceptional texture descriptor.

Parameters setting. For all of the positive and negative examples, we f x their sizes

as 64 × 128 pixels. Thus, the HOG-LBP feature is a 5668 dimensional vector, which

makes the Hessian matrix in Eq.(2.17, 2.19) a 5668 × 5668 matrix. Considering the huge

computational cost in computing the Hessian matrix, we use a small positive number α =
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0.1 · I to replace the Hessian matrix in Eq.(2.20). To construct the random cover, we

f rstly split the adaptation set into 10 small subsets, and then form 5 data covers. In the

third experiment, we analyze the effect of data cover number N using PASCAL dataset.

As mentioned before, the q in Eq.(2.15) affects the approximation of our proposed cost

function. Theoretically, bigger q leads to better approximation. In our experiments, we

assign 3 to q and achieve quite good performance. The iteration threshold ξ is set 0.04.

2.4.2 Performance comparison between different adaptation methods

Taylor expansion adaptation with optimizing adaptation rate.Taylor expansion adap-

tation method proposed in [21] gives us a good way to adapt a generic classif er in a new

environment. The method uses Taylor expansion of the cost function on the old data as an

approximation, and then combines it with the cost function on the adaptation dataset:

J(w) ≈ C(o)(w
(o)) + ▽C(o)(w

(o) · (w −w(o)) +

1

2
(w −w(o))T ·HC(o)

(w(o)) · (w −w(o))

λ · C(n)(w) (2.21)

where J(w) is the overall cost function, and λ is the parameter controlling the adapta-

tion rate.

The adaptation rate λ is a very important parameter and requires careful tuning in [21].

The poor setting of λ will make the adapted detector perform worse than the original de-

tector. So we improve this algorithm using cross-validationto f nd the optimal λ. Shown

in Algorithm.(2), the improved version of [21] is used as a baseline to compare with our

conservative adaptation algorithm based on min-max.
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Algorithm 2: Taylor Expansion Adaptation With Optimizing Adaptation Rate
Input: Old detector with parameter vector w(o) , and adaptation dataset S(n)

Output: w(n) for adapted detector
divide S(n) into K same size partitions S1,S2, . . . ,SK ;
i = 1;
while i <= K do

take Si to validate, the rest parts to adapt;
for λ = 0 → ∞ do

use Eq.(2.21) to adapt. validate on Si, f nd the optimal λi

i = i+ 1;

λ̄ = 1
K

∑K

i=1 λi;
set λ = λ̄ in Eq.(2.21), do adaptation and get w(n);
return w(n);

2.4.3 INRIA dataset

The INRIA person dataset [2] now has become a standard to evaluate human detector on,

which provides 2416 positive samples and 1218 negative images for training, 1132 positive

samples and 453 negative images for testing. All the positive samples are set into 64× 128

pixels.

Looking at INRIA dataset, we f nd there exists one interesting point that the positive

samples from training and test set can be divided into two parts: pedestrian images and

cyclist images. So they could be separately used to train a generic pedestrian detector and to

adapt a cyclist detector. We pick up 246 cyclist positive examples from the whole dataset,

and take all the 453 negative images from test set, to build up the cyclist dataset. Then

using 116 positive examples and 79 negative images in it for adaptation, the rest positive

and negative for evaluation. In the INRIA dataset, the rest 3302 positive pedestrian samples

together with 1218 negative images from training set are used to train a generic pedestrian

detector. This detector is treated as the old classif er in experiment 1-3.

Fig. 2.5(a) shows that the old detector already works very well in the cyclist dataset.

When false alarm rate is 0.02, detection rate is already 99.3%. In certain point, it proves our

generic pedestrian detector performs well on norm person detection task, suitable to be used
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as old detector in experiment 1-3. Also, we could see our proposed adaptation algorithm

could further improve the detector rate, even when the old one already performs well.

However, experiment 1 is not quite able to show the good performance of our algorithm,

when comparing with the rest experiments.

2.4.4 TUD-pedestrian dataset

TUD-pedestrian dataset [31] is a new benchmark for pedestrian detection. In this dataset,

images are sampled from a long video sequence, which is collected by an on-board camera

from a driving car in urban environment. So this dataset is a realistic and challenging

pedestrian dataset for human detector. It contains 3552 positive samples with mirroring

and 192 negative image pairs for training and 508 test images with 1269 evaluation positive

examples.

As we mentioned before, the INRIA pedestrian images train an old detector. From

TUD dataset, we use 1000 positive samples with mirroring from training dataset and 1620

negative examples extracted from 81 frames(20 negative examples per image), to adapt the

old detector. Then we test our adaptation algorithm on the whole TUD testing dataset(1269

positive examples, 10160 negative examples from 508 images). From Fig. 2.5(b), it is

easy to observe that the detector adapted by our algorithm outperforms the old detector

by 15% − 20% detection rate in FPPW, and 7% − 10% higher comparing with the Taylor

expansion algorithm result with optimal parameter λ.

2.4.5 PASCAL dataset

PASCAL VOC [32] is probably one of the most diff cult and widely used reference datasets

in computer vision. The PASCAL VOC 2007 is the latest version having labels for both

training and test datasets. For the human detection specif c category, there are 2000+ im-

ages for training and 2000+ images for testing. Using our generic human detector on these,
17
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Figure 2.3: Evaluation of the effect of data cover number N in our algorithm, experiment is on
PASCAL dataset. We randomly set N , and draw the curve when N = 2, 4, 5, 10, 15, all comparing
with Taylor adaptation method with optimal λ.

we f nd the performance in “motorcyclist” images is bad. So we extract these images out,

constructing a motorcyclist dataset, containing 600 positive examples, and 200 negative im-

ages randomly selected from images which not contain person in PASCAL dataset. From

this small dataset, we take 92 positive samples, and 1440 negative samples extracted from

72 images(20 negative examples per image) as our adaptation dataset, the rest positive and

negative are all considered as test dataset.

Fig. 2.5(c) illustrates how badly the old classif er works on this motorcyclist dataset.

If using Taylor expansion method, we can improve it a lot, about 30% detection rate in

FPPW. While using our adaptation algorithm, the performance can be further improved

by 10% − 15%, and now the adapted detector turns out to be a good detector on this new

dataset.

Effect of data cover numberN In Fig. 2.5(c), there exists a STD bar(standard devi-

ation bar) in the curve of our proposed adaptation algorithm. It represents the effect of

different adaptation data cover number N to our algorithm. It is obvious that this effect is
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small and tolerable. Tuning N , the performance of our adaptation algorithm is always good

with slight f uctuation. This means, our algorithm is stable to parameters. So it doesn’t have

much troubles in tuning parameters. Fig. (2.3) presents more details.

Figure 2.4: First two rows show positive and negative examples to train our bird detector, all
extracted from ImageNet dataset; The third row gives some positive examples we labeled for our
parrot dataset

2.4.6 ImageNet dataset

ImageNet [33] is a huge image dataset designed according to the WordNet [35] hierar-

chy(recently only with the 8000+ nouns), in which each node of the hierarchy is described

with hundreds and thousands of images.

This dataset follows tree-like structure, while images of each concept in it own good

quality and provide some annotations. These characteristics make it able to train tons of

object detectors. Considering the time and labor consumption, training a generic detector

for node in low level and adapting this for node in high level(root node is treated as level

0) might be an optimal way to get detectors for different categories.
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Our proposed adaptation algorithm provides an eff cient, good and non-expensive method

to complete this job. We demonstrate this in bird category. From the ImageNet dataset, we

extract 2762 bird positive examples and 749 negative images from different other categories

to train a generic bird detector, which is regarded as old detector in this experiment. Then

we labeled a small parrot dataset, including 400 parrot positive examples, and 100 negative

images selected from other categories. 20% of the parrot dataset are used for adaptation,

the rest for test. In Fig. 2.5(d), we could see the adapted detector obtained by our algo-

rithm outperforms the old bird detector by 10% − 20%, the Taylor’s adapted detector by

5%− 10% in FPPW. So it proves our algorithm could make a norm generic detector adapt

into a good detector for certain specif c category.

2.4.7 Experiments discussion

Computational Complexity On a Core 2 Duo 2.8 GHz computer, when we adapt with

2000 examples which generate 5 data covers, the average adaptation time of our proposed

algorithm is 3 hours for 10000 adaptation iterations, which usually returns near-optimal

adapted detector.

These experiments indicate, f rstly the adapted detector generated by our algorithm

works well in different detector adaptation tasks and outperforms the old detector and the

Taylor expansion adaptation detector. Even when the old detector already performs very

well in certain environment, as shown in experiment 1, our adapted detector also further

improves the performance. Secondly, Comparing with the Taylor expansion adaptation

method, our adaptation method has much less “tuning parameter” troubles, which means

it’s easy and eff cient to apply for detector adaptation tasks. Finally, from the PASCAL ex-

periment, we f nd the adaptation data cover number N during division of adaptation dataset

affects less to our algorithm’s performance. In Figure(2.6), we sample some detection re-

sults from our experiments. Comparing with old detector and Taylor’s adapted detector,

the results from our adapted detector are mostly better. The positive and negative examples
20
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Figure 2.5: Evaluation of our method on multiple datasets, compared with other adaptation method.
In the curve of PASCAL dataset, the standard deviation bar represents the effect of data cover
number N on the performance of our algorithm.

2.5 Conclusions

We have proposed an object detector adaptation algorithm which has little worry about

tuning many parameters. This idea is to generate several adaptation data covers from the

adaptation dataset according to certain rules, and during each adaptation iteration, always

consider the worse data cover. The adaptation problem then changes into a Min-Max prob-

lem which could be solved by approximation of inf nite norm method. This algorithm
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has the ability to train performance-guaranteed detectors for different categories in various

environments. This characteristic of our algorithm is also demonstrated in experiments.

(a) INRIA dataset (b) TUD dataset

(c) PASCAL dataset (d) ImageNet dataset

Figure 2.6: Performance comparison between detectors, all the number are detection scores.The
f rst row is from old detector; the second row is from adapted detector generated by Taylor expansion
adaptation method with the optimal adaptation rate; the third row is from detector adapted by our
proposed algorithm. In each dataset, we samples 3 positive and 3 negative examples. The score
difference between positive and negative examples is larger, the performance is better.
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Chapter 3

Divide with Global Classifier, Conquer
with Local Adaptation

3.1 Introduction

Among various approaches to object detection, the sliding window approach [3, 2] domi-

nates due to its good performance [4, 5, 6, 7, 8, 9], eff ciency [3, 10], parallelizability, and

easy implementation. The sliding-window-based detectors treat the object detection as a

classif cation problem: The whole image is densely scanned from the top left to the bottom

right with rectangular scanning windows of different sizes. For each possible scanned rect-

angle, certain features such as edge histogram, texture histogram, or wavelet coeff cients,

are extracted and fed to a off ine trained classif er using labeled training data. The classif er

is trained to classify any rectangle bounding an object of interest as a positive sample and

to classify all other rectangles as negative samples.

The performances of object detectors of this kind are mainly determined by two factors:

features and underlying classif cation algorithms. In this work, we aim at improving the

performance of object detectors from the aspect of classif cation algorithm. Observing the

fact that classif ers used for object detection are task dependent and data driven, we de-
23



Figure 3.1: A Toy Example of Two-class (“o” vs “x”) Classif cation Using Our Approach:
A global classif er (blue solid line) and its boundaries (blue dotted lines) divide the data
space into easy regions and hard regions. The ambiguous data in hard regions are clustered
according to the data distribution, which automatically adjusts the model complexity. Each
cluster of samples are classif ed using locally adapted classif er that avoids under training.
The hybrid learning algorithm autonomously strikes a balance between model complexity
and learning capacity.

veloped a hybrid learning algorithm combining global classif cation and local adaptations,

which automatically adjusts model complexity according to data distribution. We divide

data samples into two groups, easy samples and ambiguous samples, using a learned global

classif er. A local adaptation approach based on spectral clustering and Min-Max model

adaptation is then applied to further process the ambiguous samples. The proposed algo-

rithm automatically determines model complexity of the local learning algorithm accord-

ing to the distribution of ambiguous samples. By autonomously striking a balance between

model complexity and learning capacity, the proposed hybrid learning algorithm incarnates

a human detector outperforming the state-of-the-art algorithms on a couple of benchmark

datasets [2, 1] and a self-collected pedestrian dataset. Compared with 11 state-of-the-art

algorithms [1] on the Caltech dataset, the proposed approaches achieves the highest de-

tection rate, outperforming the seminal and successful deformable model approach [4] by
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17% at FPPI=1.

Our contributions are in three-folds: 1) we develop a hybrid learning algorithm that

enables the application of local learning algorithm in large-scale tasks; 2) the proposed

hybrid learning method can automatically adjust the model complexity according to the

distribution of the training data; 3) the proposed scheme of local adaptation from global

classif er avoids the common under-training problem for local classif er: we gain signif cant

performance enhancement in human detection over traditional algorithms, with very little

increment in computational cost.

The rest of the paper is organized as follows. Sec. 3.2 describes our global classif cation

process for dividing the candidates into easy and ambiguous cases. Sec. 3.3 details our

clustering method for balancing model complexity and learning capacity. Sec. 3.4 presents

our local adaptation algorithm to further enhance learning capacity. Experimental results

are shown in Sec. 3.5 followed by conclusion and future work in Sec. 3.6.

3.2 Divide by Global Classification

Our approach starts with a global classif er learned using all of the training data. The

classif ed training data are then divided into two groups: easy samples and ambiguous

samples. The ambiguous samples are further processed using a local adaptation algorithm.

The learned global classif er partitions the input space into easy regions and hard re-

gions. Only the ambiguousdata in hard regions will be passed into the next stage and

handled by more discriminative local classif ers. Various general global learning algo-

rithms [36, 37, 4, 38] are suitable to this task. Since one role of global classif er is a f lter

to select hard regions for local learning/adaptation, we require the global classif er to be

eff cient and highly generalizable with a relative satisfactory performance. Linear SVM

meets our requirements. In order to locate the hard regions of ambiguousdata, we set up

the upper bound Θ1 and lower bound Θ2 based on the classif cation scores of the global
25



Postive Negative

Figure 3.2: Sample results of our automatic clustering on ambiguous sample data. Each
row corresponds to a particular cluster, showing similar shape, background, and appear-
ance.

classif er. The data bounded inside are ambiguous data, requiring local learning.

3.3 Clustering -Adjusting Model Complexity

After f ltering by the global classif cation, the remaining data (ambiguous data) are then

processed using an automatic clustering algorithm. This provides an eff cient and effective

way to probing the local data distribution for each sample. The number of clusters and

the population of each cluster are automatically adjusted. Together with a follow-up local

adaptation, it strikes a balance between model complexity and learning capacity. Specif -

cally we use a tailored spectral clustering algorithm to automatically divide the ambiguous

data into local regions in feature space. This essentially adjusts the model complexity au-

tonomously according to the data distribution.
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3.3.1 Distance Metrics

In order to effectively cluster the ambiguous data, we f rst def ne the distance metric be-

tween a pair of samples in the feature space. Different distance metrics may lead to dif-

ferent clustering on the data. Here for popular shape descriptor and texture descriptor, we

introduce several frequently used distance measures.

Crude distanceSeveral simple and yet good measures are frequently used for comput-

ing distance in feature space, such as L1-sqrt distance, L∞-Normdistance, and Euclidean

distance. These crude distance measures have been widely adopted as meaningful solutions

to distance computation.

Accurate distanceAlternatively, more costly “accurate” distance measures were de-

veloped. [39] proposes shape context distancethat matches the point sets of two shapes

and scores how different the shapes are; χ2 distance[40] maps the texture of each example

to a histogram of “textons”, then def nes distance as the Pearson’s χ2 test statistic between

the two histograms; Adapted from [40] , marginal distance [41] sums up the distances

between response histograms to measure the texture distance.

All these metrics may be used for clustering. In our experiments, crude distance already

yields reasonable results with low computational complexity. Specif cally we adopt the

Euclidean-like distance. For each sample, the features are normalized according to their L2

norm, then the Euclidean distances with others are computed. The normalization is critical

for f nding and setting proper clustering parameters.

3.3.2 Clustering Algorithm

Many clustering algorithms can be adopted for clustering the ambiguous data. One straight-

forward method is k-meanswith a given number of clusters k. However inappropriate k

may drastically deteriorate the performance of the system: if k is too small, certain lo-

cal clusters would contain too many samples resulting in over-complicated models; On
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the contrary, if k is too big, most local clusters may be sparsely populated and inevitably

suffer from under-training. Thus care must be taken to choose an appropriate k, which is

usually unknown beforehand. To f nd the appropriate value of k, one may need to exhaus-

tively search all possible k and check the associated performance, demanding formidable

computations.

Algorithm 3: Spectral Clustering with Eigen-Selection
Input: ambiguous data points {xi|xi ∈ R

d}ni=1; eigen-selection parameters α, β
(0 < α, β < 1).

Output: k partitions of the input data.
1. Form the aff nity matrix A with elements:

aij = exp(− ||Dis(xi,xj)||
2

2σij
2 ), i, j = 1, . . . , n ;

2. Compute diagonal matrix D with elements di=
∑n

j=1 aij;
3. Compute Normalized Laplacian matrix L:

L = D− 1
2 · (D − A) ·D− 1

2 ;

4. Compute eigenvalues of L and sort in descending order:

λi ≥ λi+1, i = 1, 2, . . . , n− 1

5. Get k by eigenvalue selection:
for i = 2 → n do

if λi ≤ α · λi−1 or λi ≤ β then
break;

k = i− 1;
6. Form normalized matrixS using k largest eigenvectors;
7. TreatingS’s row as point, cluster points by k-means;
8. Assign original data xi to cluster j if and only if row i of

the matrix S was assigned to cluster j;

To solve this problem, we adopt spectral clustering to effectively f nd appropriate value

of k and compute the clustering. Inspired by [42, 43] we search for certain drop in the

magnitude of the eigenvalues to decide the number of clusters. The clustering algorithm is

summarized in Algorithm (3).

In Algorithm (3), parameters α and β def ne the criterion for selecting number of clus-

ters, and Dis(xi, xj) is the distance between data points xi and xj . The scaling parameter
28



σij is a measure to decide whether two examples are similar, which can be specif ed by

self-tuning [44]:

σij =
√
σi · σj (3.1)

where,

σi = Dis(xi, xkth) (3.2)

In Eq.(3.2), xkth represents the k’th nearest neighbor of point xi, typically k=7. Although

Algorithm (3) produces high-quality clustering result, the computational complexity of

O(n3) limits its application to large-scale data. Note that usually the number of ambiguous

data is huge, so a fast approximation of spectral clustering should be applied, such as

KASP [45], explained in step 3–6 of Algorithm (4).

3.3.3 Parameter Selection& Fast Approximation

The spectral clustering algorithm helps effectively avoid exhaustive search for optimal

model complexity. To balance learning capacity, we determine the parameters of spec-

tral clustering, α and β, based on the accuracy of corresponding locally learned classif ers.

Specif cally, we randomly partition the ambiguous training data into M (typically M=10)

subsets for cross validation to f nd the optimal parameters. For each fold, we f rst apply

step 1–4 of Algorithm (3) on training set and sort the eigenvalues in descending order.

We search for drops between consecutive eigenvalues that are bigger than half of the prior

eigenvalue. The corresponding {α, β} are marked as candidate parameter sets. For each

candidate set, we then apply step 6–8 of Algorithm (3) to construct clusters. Local learning

algorithm (Section 3.4) is applied for each cluster and the detection rates are evaluated.

Among all candidate parameter sets, we use the one with the best detection rate as the

optimal parameters.

Given the clustering parameters α and β, we can apply Algorithm (3) to do clustering.

However as explained in Sec. 3.3.2, when the data set is large, directly applying Algo-
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Algorithm 4: Accelerated Automatic Clustering
Input: ambiguous data points {xi|xi ∈ R

d}ni=1.
Output: same as Algorithm (3)
1. Randomly split {xi}ni=1 into partitions {Pi}Mi=1 for
M -fold cross validation to f nd optimal parameters α, β:

for m = 1 → M do
1) Def ne training set Ptr and validation set Pva

Ptr = {xi}ni=1 −Pm, Pva = Pm;
2) Apply step. 1-4of Algorithm (3) on Ptr and get all

eigenvalues {λ′

i}n1
i=1, where n1 = |Ptr|;

3) Search candidate eigenvalue drops. Initialize T = 0:
for i = 2 → n1 do

if λ
′

i ≤ 0.5 · λ′

i−1 then
T = T + 1;
k

′

T = i− 1, α′
T = λ

′

i−1/λ
′

i, β′
T = λ

′

i;

4) Cluster and check performance for each candidate:
for t = 1 → T do

Apply step. 6-8of Algorithm (3) with k = k
′

t on
Ptr to get clusters C

′

t;
Learn local classif ers F′

t on each cluster of C
′

t;
Evaluate F′

t on Pva and get detection rate ε
′

t;
5) {αm, βm, km} = argmin

{α′

t,β
′

t,k
′

t}

{ε′

t}Tt=1

2. Set optimal parameters:
α = 1

M
· (∑M

m=1 αm), β = 1
M

· (∑M

m=1 βm)

3. Fix a k0, where k0 ≥ 20 · 1
M

· (∑M

m=1 km) and
k0 << n, then perform k0-means on {xi}ni=1 to get the
cluster centroids {yj}k0j=1 ;

4. Build a correspondence table to associate each xi with the
nearest cluster centroid yj;

5. Run Algorithm (3) on {yj}k0j=1 to obtain the k cluster
membership for each of yi;

6. Recover the cluster membership for each xi using that of
the associated yj by looking up the correspondence table.

rithm (3) is computationally prohibitive. We use a fast approximation KASP to speed up

this process. Specif cally, for the desired k clusters, we f rst apply k0-means and compute

the centroid {yj}k0j=1 of each cluster (k0 def ned in step 1–3 of Algorithm (4)). We then run

Algorithm (3) on {yj}k0j=1. The cluster membership of each sample xi is recovered using a

table of correspondences with yj .
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The complete proposed clustering algorithm with parameter selection and fast approx-

imation is summarized in Algorithm (4). It not only speeds up the original clustering

method in Algorithm (3), but also simplif es the query. During test, for each sample we

simply compute its nearest neighbor in the k0 centers, then use the correspondence table

to f nd its cluster membership. A sample of clustering results by our algorithm is shown

in Figure (3.2), where different rows correspond to different clusters. As we can see, the

proposed method works well: images from each row shares similar shape, background, and

appearance.

3.4 Local Adaptation - Enhancing Learning Capacity

After the ambiguous data being appropriately clustered, local learning is used to enhance

the learning capacity.

A straightforward local learning approach is to train a general classif er [38, 4] directly

using the data from each local cluster. Considering speed and performance, linear SVM

seems to be a good choice. However the disadvantage of direct learning is obvious: it

only uses limited samples in a local cluster and discards the information from the whole

dataset that are usually benef cial. Hence, the performance of generated local classif er

heavily relies on the population and data distribution of the cluster, and often suffers from

under-training.

To address this issue, we propose a model adaptation strategy that leverages on global

classif er for effective local learning. Though the global classif er F0 trained in the f rst

stage may not behave perfectly on each local cluster, it should not be too far from the op-

timum classif cation boundary. Furthermore, it contains non-negligible information about

global data distribution. Therefore, we treat the local learning problem as utilizing a coarse

global classif er F0 to adapt into different fine local classif ers. This effectively enhances

the learning capacity of our classif cation algorithm in each local cluster.
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Here we adopt Min-Max model adaptation [46] in our algorithm. Comparing with other

state of the art adaptation methods, such as [16, 20, 21, 19], the Min-Max is free of tuning

parameters(e.g., the adaptation rate) and able to adapt from general parametric classif er.

Thus F0 could be trained by various complicated methods such as [38, 4]. We summarize

our local adaptation approach in Algorithm (5).

Algorithm 5: Local Learning by Min-Max Adaptation

Input: Pre-learned global classif er F0 with parameters w0; K clusters {Sk}Kk=1

obtained using Algorithm (4); Min-Max adaptation parameters.
Output: Adapted local classif ers {F ′

k}Kk=1

for k = 1 → K do
1. Form N data covers{Gj}Nj=1 from data in Sk;
2. Build the cost functions {Cj}Nj=1 based on

logistic regression;
3. Def ne cost function E(w) on Sk:

E(w) =
(

maxj
[

Cj(w)
]

)

4. Approximate E(w) as ∞-Norm:

E(w) = ||C(w)||∞ ≈
(

∑N

j=1

[

Cj(w)
]q
)

1
q

5. Set w[0] = w0, T = ∞, i = 0;
while T >= ξ do

compute the gradient and Hessian matrix ▽E(w[i]), HE(w
[i]), and update w:

w[i+1] = w[i] −H−1
E (w[i]) · ▽E(w[i]);

T =

√

▽E(w[i])
T ·H−1

E (w[i]) · ▽E(w[i]);
i = i+ 1;

6. Set parameter for classif er F ′

k: w′

k = w[i];

3.5 Experiments

We evaluate our algorithm on pedestrian detection from images that is important and yet

challenging in practice. We compare our algorithm with state of the art single layer (non-

cascaded) detectors and demonstrate that our algorithm greatly improves the detection
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(a) Local learning with K-means by linear SVM
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(b) Local learning with Algorithm (4) by linear SVM
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(c) Local learning with Algorithm (4) by Min-Max adaptation
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(e) Local learning with Algorithm (4) by linear SVM
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(f) Local learning with Algorithm (4) by Min-Max adaptation

Figure 3.3: Evaluation of the proposed algorithm on In-House (1st row ) and Caltech (2nd
row) datasets. All results are plotted as miss-rate w.r.t. false-alarm-rate in FPPW. The f rst
column details performances of local linear SVM learning with k-means clustering, where
k varies from 1 to 2000; The second column shows performance achieved by proposed
clustering methods, compared with the best results in the f rst column; The f nal column
compares performances achieved by 2 different local learning methods.

rates. We also compare our approach with state of art using the same evaluation methodol-

ogy used in [1]. We show both qualitative and quantitative results on several challenging

datasets to conf rm the advantages of our approach.

The rest of this section consists of f ve parts: the f rst one explains the experiment design

and implementation details; the second part tests our algorithm on a large challenging

pedestrian dataset “In-House” collected by ourselves; the third and fourth parts respectively

evaluate our algorithm on two popular benchmarks: Caltech [1] and INRIA [2] datasets;

and f nally the algorithm eff ciency is discussed.
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3.5.1 Experimental Setup

Parameter setting. In Algorithm (3) the eigenvalue-selection parameters α, β are chosen

as discussed in Sec. 3.3.3. In our experiments, α=0.2 and β=0.01 yields the best perfor-

mance. This holds true over cross-validation experiments with the In-House dataset. Later

experiments conf rm that the same setting also applies for Caltech and INRIA datasets.

As stated before, the scaling parameter σij could be automatically decided by self-tuning,

which requires extra computation on neighbor searching to ensure good performance. In

practice we found the local-learning performance is similar to self-tuning when σij is be-

tween 2 and 5 and the performance is insensitive to different values of σij in that range.

Thus to speed up, σij can be simply set as a constant, e.g. 3. The Min-Max adaptation

parameters in Algorithms (5) are the same as [46].

Image representation.We test both shape (HOG [2]) and texture (LBP [34]) descrip-

tors with our learning framework, since HOG has been widely accepted as one of the best

features to capture the edge or local shape information and the LBP is an exceptional texture

descriptor. We use only the HOG descriptor for In-House and Caltech datasets, and HOG

together with LBP for INRIA dataset. Experimental results conf rm that our algorithm can

robustly f nd the clusters that yield good detection rates.

Experiments design and evaluation measure.First, to show the effect of clustering

on detection accuracy, we cluster every dataset by simple k-means with different values of

k. We then construct local classif ers for individual clusters by linear SVM and compare

the overall performance with respect to different values of k. Second, to show the effec-

tiveness of our clustering algorithm, we compare the performance of our clustering method

with the best result achieved by k-means approach. Finally, we compare the performances

improvement gained by two different local learning methods: directly learning by linear

SVM and local adaption with Min-Max, not only on detection rate but on speed. For all

three types of experiments, we plot detection curves in terms of FPPW instead of FPPI to

evaluate the performance of classif ers, since FPPW allows a better assessment of the learn-
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ing algorithm and isolates the impact of post-processing such as non-maximal suppression.

Additionally, in order to compare with 11 algorithms [1] presented in Caltech dataset [1],

we also present the accuracy of our detection system in FPPI for Caltech dataset.

3.5.2 In-House dataset

The In-House dataset is collected and labeled by ourselves, containing 5691 images with

f xed resolution at 320 × 240. Performing detection on this dataset is challenging due to

the fact that many of the pedestrians are small, partly occluded, and hardly identif able

from background even by human eyes. We randomly divide the dataset into 3 partitions for

3-fold cross-validation.

Firstly, we directly apply k-means clustering followed by local learning using linear

SVM with k varying from 1 to 2000. The results with different k are shown in Fig-

ure 3.3(a). k = 1 means considering all ambiguous data as a single cluster and training

for one classif er, similar to a re-training on the whole dataset. As we can see, when k

increases from 1 to 200, the performance improves logarithmically. However, if k exceeds

200, the performance starts to drop. The results at k=50 or 200 are similarly the best. Since

smaller number of clusters leads to better eff ciency in the testing stage, we take k=50 as

the optimal clustering. The results conf rm that an appropriate local learning would greatly

improve the detection performance. Compared with the traditional approach without local

adaptation, the miss rate at k=50 is signif cantly reduced by 25% at 10−5 and 16% at 10−4

False-Alarm rate in FPPW.

Secondly, we evaluate our local learning algorithm with the proposed clustering and

compare with the best results in the f rst experiment. With a proper k0=2000, the number

of clusters computed by Algorithm (4) is 55. We then perform local learning with linear

SVM on individual clusters. As shown in Figure 3.3(b), our method achieves the results

as good as the best on in the f rst experiment. It conf rms that our method autonomously

strikes a good balance between model complexity and learning capacity.
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Figure 3.4: Comparison between proposed algorithm and state of the art on Caltech training
dataset, adopting the same experimental setting and evaluation methodology as [1], plotted
as miss-rate w.r.t. FPPI. The precision values at FPPI=1 are shown for easy comparison.

Finally, we compare the two local classif cation methods. For fair comparison, we

learn classif ers based on the proposed clustering in the second experiment. The detection

performance of the two types of local learning algorithms are shown in Figure 3.3(c). As

we can see, the Min-Max adaptation method performs better, further reducing the miss rate

by 5% at 10−4 FPPW. Training the linear SVMs is much faster, 55 local classif ers taking

only half an hour to train, while Min-Max adaptation takes 1 day. Overall, the proposed

local adaptation algorithm achieves the best detection rates, reducing the miss rate by 30%

at 10−5 and 21% at 10−4 FPPW compared with the single global classif er.

3.5.3 Caltech dataset

Caltech dataset is currently one of the most challenging pedestrian datasets, since pedes-

trians appear from multiple viewpoints and with a wide range of scales. Additionally, lots
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of cars and buildings make the background very cluttered. The labeled Caltech training

dataset contains six sessions (S0-S5), each with multiple videos taken from a moving vehi-

cle. We follow the same 6-folder-cross-validation evaluation methodology as [1] and only

consider the “Reasonable” [1] pedestrians.

Following the same step as In-House dataset, we f rst evaluate the performance with k-

means where k varies from 1 to 2000. Figure 3.3(d) show our experiment results. We can

see that clusters with k=50 achieve the best result, outperforming the traditional methods

by 15% at 10−5 and 35% at 10−4 in FPPW. Then we test our method with the proposed

clustering, which automatically clusters data in 87 classes. The detection rate is similar to

the best case in the previous experiment, detailed in Figure 3.3(e). Finally, we compare

our local adaptation with direct local learning, as shown in Figure 3.3(f). Again Min-Max

model adaptation achieves about 10% higher detection rate at 10−4 FPPW while taking

longer time to train. Figure (3.6) show some example images.

Comparison with state-of-the-art Taking the same evaluation procedures as [1], we

show the comparison with 11 algorithms [1] on Caltech training dataset.From the FPPI

curves in Figure (3.4), our algorithm achieves the lowest miss rate at 1 FPPI, 6% lower than

the best in [1]. Our method only uses the HOG feature, while many of the 11 algorithms

combine several different descriptors. It tells more about the advantage of our method when

only comparing with methods using similar features, such as HOG [2], LatSVM-V2 [4],

HikSVM [7]. As shown in Figure (3.4), our method outperforms them by 13%, 17%, and

16% at 1 FPPI respectively.

3.5.4 INRIA dataset

INRIA [2] dataset is also popular for researchers to test human detectors. We evaluate on it

to show the advantage of our method and its robustness on handling complex backgrounds

and using different kinds of features.

Again, we start with testing the performance of k-means clustering. From Figure (3.5),
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Figure 3.5: Evaluation of local SVM learning after k-means clustering on INRIA dataset.
When k = 1 or 2 the performance increases slightly. However, further increasing k deteri-
orates the performance quickly.

we can see that when k=1 or 2, the performance has a little improvement than that with-

out local adaptation. However, when the cluster number increases, the performance drops

quickly. When k=10, the performance drastically decreases by 50% at 10−4 FPPW . Inap-

propriately divide them into smaller clusters will lead to under-training. It also conf rms

that carefully balancing between model complexity and learning capacity is critical for lo-

cal learning algorithm to achieve desired performance improvement. The reason is that, for

INRIA dataset, the traditional method (HOG+LBP) has already achieved an impressively

high detection rate, and the few remaining ambiguous data are diff cult to be clustered in

feature space (only 2% miss detection in 10−4 FPPW). Therefore, instead of gaining im-

provement in performance, forcing clustering and local learning would make it worse. In

such a case, the proposed clustering method is able to automatically identify the proper

number of cluster is 1, warning us over-increasing model complexity would break the bal-

ance with learning capacity and deteriorate the detection performance. It thus ensures
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reliable local learning.

(a) Without local learning (b) Local learning by lin-
ear SVM

(c) Local learning by adap-
tation

(d) Without local learning (e) Local learning by lin-
ear SVM

(f) Local learning by adap-
tation

(g) Without local learning (h) Local learning by lin-
ear SVM

(i) Local learning by adap-
tation

(j) Without local learning (k) Local learning by lin-
ear SVM

(l) Local learning by adap-
tation

Figure 3.6: Comparison of detection results on Caltech dataset, between one-stage global
classif er without local learning, local learning by linear SVM, and local learning by Min-
Max adaptation. The last approach achieves both the best detection rate and the lowest
false alarm rate.

3.5.5 Computational Complexity in Testing

Compared with one-stage learning methods, the only extra computation for our algorithm is

cluster query and classif cation by corresponding local classif er. Since we use hierarchical

k-means with cluster number k0 before fast spectral clustering, the cluster query computes

log (k0) times of distance, while SVM-KNN [24] needs at least log (ntrain) times (ntrain

is the number of samples in training set, where ntrain ≫ k0), and more cost on training

kernel SVM during test. From our experiments, adding the local-adaptive stage only takes

less than 10% extra time during test.

3.6 Conclusion and Future Work

We developed a hybrid learning algorithm combining global classif cation and local adap-

tations, which automatically adjusts model complexity according to data distribution. The
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proposed adaptation algorithm automatically determines model complexity of the local

learning algorithm according to the distribution of the training samples.

In term of classif cation algorithm, we have shown that our method effectively improves

the performance compared with the state-of-art methods, especially when using similar fea-

tures. On the other hand, the recently proposed features such as Integral Channel Features

[47] and Multi-Resolution Features [48] have been successfully used for pedestrian detec-

tion detection and achieved highly competitive results. We plan to incorporate such features

into our hybrid learning algorithm and believe this can further improve the detection per-

formance.
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Chapter 4

Conclusion

In the thesis, we have proposed two algorithms: 1) an object detector adaptation algo-

rithm which has little worry about tuning many parameters. This idea is to generate several

adaptation data covers from the adaptation dataset according to certain rules, and during

each adaptation iteration, always consider the worse data cover. The adaptation problem

then changes into a Min-Max problem which could be solved by approximation of inf nite

norm method. This algorithm has the ability to train performance-guaranteed detectors

for different categories in various environments. This characteristic of our algorithm is

also demonstrated in experiments.2)We developed a hybrid learning algorithm combining

global classif cation and local adaptations, which automatically adjusts model complexity

according to data distribution. The proposed adaptation algorithm automatically deter-

mines model complexity of the local learning algorithm according to the distribution of the

training samples.In term of classif cation algorithm, we have shown that our method effec-

tively improves the performance compared with the state-of-art methods, especially when

using similar features.
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