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ABSTRACT 

Nuclear thermal propulsion (NTP) is recognized as the only solution to human 

exploration of the near planets during the next several decades, but NTP currently 

receives little funding for development.  In order to foster interest in the technology, a 

mission architecture is presented that develops and flight-proves NTP on NASA’s 

planned 2018 Mars sample return mission with a relatively low cost of $100 million.  In 

order to facilitate the planning of similar round-trip Mars missions, a Differential 

Evolution (DE) trajectory optimization program is constructed.  DE tuning parameters are 

systematically studied in order to characterize DE performance and find the best 

parameter configurations for constrained and unconstrained trajectories.  A highly-tuned 

version of the algorithm is found to globally optimize Mars missions in less than three 

minutes for 30-year launch windows and less than two minutes for 3-year launch 

windows.
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CHAPTER 1: INTRODUCTION 

1.1  Nuclear Thermal Rockets 

1.1.1  Operation Principles 

Nuclear thermal propulsion (NTP) makes use of the great power output and power 

density of nuclear reactors.  The basic operating principle of a solid-core nuclear thermal 

rocket (NTR) is that a working fluid, often hydrogen, is pumped through flow channels in 

the core of a nuclear reactor.  In the flow channels, heat is transferred from the core to the 

fluid such that the fluid reaches temperatures up to 3,000 K by core exit.  Upon exit the 

fluid passes through a converging-diverging nozzle and exits the nozzle with an effective 

exhaust velocity approaching 9 km/s [1].  Figure 1.1 shows major components of a 

typical 1960s-era NTR [2]. 

 

Fig. 1.1  Diagram of 1960s NTR [2]. 

Two performance criteria typically used to describe propulsion systems are thrust 

and specific impulse Isp.  Specific impulse is a measure of efficiency for propellant 

systems—the thrust divided by the amount of propellant used per unit time, equivalent to 

the change in momentum produced per unit mass propellant expended.  Higher thrust 
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values allow fast acceleration for time-limited maneuvers such as manned orbit transfers, 

and increasing Isp yields more efficient use of propellant.   

Isp scales with the square root of exhaust temperature over propellant molecular 

weight [3].  While high-thrust chemical systems actually have higher exhaust 

temperatures than NTP, they require oxidation—which results in relatively high-mass 

propellants—to achieve those temperatures.  NTP, on the other hand, can directly heat 

and use low-mass H2.  Table 1.1 gives the in-space Isp of several notable chemical and 

nuclear thermal propulsion systems, showing that NTRs use propellant nearly twice as 

efficiently as the best chemical systems [3]. 

Table 1.1  Vacuum Isp of several notable propulsion systems [3]. 

 Manufacturer Engine Vacuum Isp (s) 

Chemical 

Aerojet AJ110 320 

Pratt & Whitney RL 10B-2 456 

Rocketdyne Space Shuttle (main) 426 

Rocketdyne RS-27A (Delta 2) 302 

NTP 
NERVA Pewee 845 

Pratt & Whitney TRITON (concept) 911 

The high temperatures and mass-flow rates achievable with NTRs make them the only 

propulsion system that is considered simultaneously high specific impulse and high 

thrust.  

1.1.2   Project Rover and the Nuclear Engine for Rocket Vehicle Application 

Program 

More than just a concept, NTRs were proven with flight-certified components 

during Project Rover from 1955-1972 and the Nuclear Engine for Rocket Vehicle 
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Application (NERVA) program from 1963-1972.  NERVA and Rover ran in parallel—

Rover developed graphite-fueled reactors and tested them at low power, and the NERVA 

program combined the reactors with propulsion hardware to create thermal rockets.  

Though limited to ground testing, NERVA progressed so rapidly in the 1960s that NASA 

Marshall Space Flight Center (MSFC) began using NTRs in mission plans with the 

primary focus on manned Mars missions [4].  By 1968, NERVA had developed NTRs to 

a Technology Readiness Level (TRL) of 6.  The TRL system provides a measure of the 

maturity of any technology.  Levels range 1-9 with TRL 1 corresponding to the initiation 

of applied research and TRL 9 corresponding to mission-proven technology [5].  TRL 6 

is the designation given to a system that has been proven in a relevant environment, fully 

demonstrating engineering feasibility.   

With NTRs designated TRL 6 in 1968, the Space Nuclear Propulsion Office 

certified that NERVA engines met the requirements for manned Mars missions, and 

NASA deemed the engines ready for incorporation into a spacecraft.  The high cost of the 

non-propulsive aspects of manned Mars missions became apparent during the early 

1970s, however, just as the space race was winding down.  With less public support for 

expensive programs, the Nixon administration was forced to cancel plans for the Mars 

mission due to budget priorities [6].  NERVA and Project Rover were subsequently 

terminated in 1972, because the manned mission had been the only near-term application 

for which NTP was deemed enabling.  In all, $1.4 billion in 1972 dollars, or $7.4 billion 

in 2011 dollars, was invested in the program [4].   

The NERVA program was considered a success overall.  It accomplished all of its 

goals and demonstrated the exceptional performance and reliability of NTRs.  Several 
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performance achievements of note are an Isp of 845 s (nearly twice that of today’s best 

chemical propulsion systems), thrust-to-weight—the ratio of engine mass to the thrust 

produced—of up to 4.8, power levels of up to 4.5 GW, and thrust up to 250 klbf [7].  The 

stability and reliability of NTRs were demonstrated by 28 restarts and over 1 hour of 

continuous runtime for a single engine:  the operation time during final tests was only 

limited by the size of the H2 propellant tank.  

1.1.3   Support and Development Since NERVA 

Widespread support for NTP has waxed and waned with political shifts since the 

termination of NERVA, but many in the space community have consistently 

acknowledged NTP as an enabling technology for human space travel beyond the moon.  

An Independent Review Panel was convened in 1999 to review propulsion technologies 

being considered in the NASA Advanced Space Transportation Program [8].  The review 

panel concluded that fission-based propulsion was the only technology of the 45 

presented which was “applicable to human exploration of the near planets in the near to 

mid-term time frame….”  In agreement with the panel’s findings, the last three 

incarnations of NASA’s Mars Design Reference Architecture (DRA), versions 3.0, 4.0, 

and 5.0, have called for the use of NTRs for all in-space propulsion of cargo and crew 

vehicles due to significant mass advantages [9].  DRA 5.0 was published in 2009 and is 

the manned mission architecture that NASA currently supports. 

Modern mission concept studies such as DRA 5.0 do not employ the original 

NERVA rockets but instead use contemporary designs that utilize the last several 

decades’ technological advancements in fuel fabrication and power generation [10].  One 

of the most important developments is the advent of combination ceramic-metallic 
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“cermet” fuels.   Cermet properties allow for higher operating temperatures and therefore 

higher efficiency thrust.  Cermet durability is also greatly superior to graphite and could 

potentially fix the problem of fuel degradation that occurred in NERVA rockets [11].  

Fuel degradation was reduced to an acceptable level by the end of NERVA, but it was 

one of the program’s most problematic issues [4].   

Advances in power generation have made the concept of bimodal NTRs more 

feasible.  Bimodal NTRs, as the name implies, are capable of operating in two different 

modes: propulsion and power.  When in power mode, bimodal NTRs use a closed-loop 

Brayton cycle with the reactor heat to generate modest amounts of power.  An example of 

a modern design is the TRITON by Pratt & Whitney, pictured in Fig. 1.2 [12].  The 

TRITON is a “trimodal” NTR that can provide high efficiency propulsion with H2 

propellant, high thrust with LOX-augmented H2 propellant, and electrical power through 

a closed-loop Brayton cycle.   

 

Fig. 1.2  Diagram of Pratt & Whitney “trimodal” Triton NTR [12]. 
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While NTP work since NERVA has almost entirely consisted of paper studies, the 

last several years have seen initiation of fuel fabrication research at MSFC, Idaho 

National Lab (INL), and the Center for Space Nuclear Research (CSNR).  These efforts 

are on track to fabricate and test prototypic fuel elements within the next year.  

Recognizing the necessity of NTP for human space exploration, MSFC and the CSNR are 

also making strong efforts to devise affordable development and qualification strategies 

[13,14].  The mission concept presented in this thesis was developed by the CSNR in an 

effort to create an affordable strategy for near-term development and implementation of 

NTP.   

1.1.4 Affordable NTR Concept 

Many NTP critics claim development costs up to $10 billion for the first 

functional NTR.  Instead of building an entirely new rocket design, the CSNR proposes 

that a useful, low-cost, and functional NTR can be developed and implemented by 

rebuilding the NERVA Pewee engine with only one major modification—substituting a 

W-Re cermet fuel for the NERVA graphite.  The 500 MW Pewee, tested in 1968 and 

shown in Fig. 1.3, was the culmination of much of NERVA’s research.  The W-Re 

cermet fuel proposed for substitution has been under study at the CSNR for several years, 

and fuels scientists are on track to fabricate a fuel element loaded with depleted uranium 

by the end of 2012. 
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Fig. 1.3  Pewee 2 reactor at Jackass Flats test site. 

At 2,570 kg mass, 27 klbf thrust, and specific impulse of 845 s Pewee’s 

performance greatly exceeds that of today’s comparably-sized chemical systems.  The 

CSNR is currently in the process of obtaining approximately 1,500 Pewee engineering 

drawings from Los Alamos National Laboratory, where they have been in storage since 

NERVA.  It is believed that with these drawings, two of which are shown in Figs. 1.4-

1.5, the original Pewee components can be rebuilt at relatively low cost. 
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Fig. 1.4  Schematic of top of Pewee core with gas manifolds [15]. 

 

Fig. 1.5  Schematic of bottom of Pewee core with fuel pins and reflectors [15].   

The “affordable” NTR strategy, by utilizing the extensive engineering knowledge 

gained from NERVA, argues that there is only the need to construct one test and one 

flight engine.  Qualification costs for NTR fuel are minimal when compared to terrestrial 

fuels, because thrust-only NTRs have a total operation time of less than two hours.  

Engine tests are conducted with the Subsurface Active Filtering of Exhaust (SAFE) 
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concept [16], shown in Fig. 1.6, in which exhaust gas is contained in bore holes at the 

Nevada Test Site.  The SAFE concept requires $15 million for facility construction and 

$1.8 million for each test.   

 

Fig. 1.6  NTR SAFE testing concept [16]. 

The total projected development, construction, and testing cost with 30% reserves 

for the two engines is approximately $700 million.  Once the first engine is flown in 

space, the infrastructure established for the development of the affordable NTR can then 

be used for the development of a more modernized design such as Pratt & Whitney’s 

TRITON for use on larger missions.  The proposed development plan is thus a cost-

effective means of restarting development of a technology that is necessary for missions 

with high performance propulsion requirements, i.e. large robotic or manned missions. 
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1.2  Mars Sample Return 

The next major step in the United States’ Mars exploration program is to return 

Martian samples to Earth for analysis.  Missions such as Viking, Mars Pathfinder, the 

Mars Exploration Rovers, Phoenix, and Mars Science Laboratory missions have or plan 

to analyze samples on the Martian surface, but samples have yet to be returned to Earth 

for analysis.  Returning samples to Earth allows for a virtually unlimited number of tests 

and much more in-depth analysis than can be performed on Mars.  Mars sample return 

(MSR) is also the next logical step before a manned Mars mission: the current U.S. space 

policy has the goal of landing humans on Mars by the mid-2030s [17].    

Sending a spacecraft to Mars and back requires several major propulsive 

maneuvers, explained briefly here as they are key to mission architecture planning.  First, 

the entire craft must be launched into a low-Earth orbit (LEO), just above Earth’s 

atmosphere, on a launch vehicle (LV) such as an Atlas V.  Once initial system checks are 

completed in LEO, a large propulsive burn provides the trans-Mars injection (TMI) to put 

the spacecraft on an intercept trajectory with Mars.  If a Mars orbit is the desired target 

upon arrival at Mars, the craft conducts a Mars-orbit insertion (MOI) burn when it 

reaches the desired orbital altitude.  Alternatively, if the goal is atmospheric entry for 

landing, the spacecraft can enter directly or perform a burn to slow to the desired entry 

speed.  To leave Mars, a trans-Earth injection (TEI) is conducted in the same manner as 

TMI.  At Earth, the spacecraft enters LEO with an Earth-orbit insertion (EOI) burn, 

conducts a burn to match the desired entry speed, or enters directly. 

The current U.S. MSR plan resulted from the 2010 NASA and NRC Planetary 

Science Decadal Survey (PSDS).  The 2010 PSDS investigated scientific mission 
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possibilities to bodies of interest in the solar system for pursuit in the 2013-2023 

timeframe.  The missions studied were required to be, above all, science-driven as well as 

financially feasible with the projected available funding.  Based on these requirements, 

the PSDS chose MSR as the top priority mission in the next decade [18].  The current 

MSR mission plan is a joint venture between NASA and the European Space Agency 

(ESA)—the two organizations are attempting to find a mutually satisfactory strategy to 

sharing development and launch costs [19].  The mission plan consists of separate 

launches for three different mission components:  1) a large science rover, 2) an 

orbiter/return vehicle, and 3) a lander that contains a Mars ascent vehicle (MAV) and 

small fetch rover.  Each package is launched with an Atlas V 531-551 with the first 

launch in 2018 and the last in 2024 [20].  The total cost of three Atlas V LVs is 

approximately $750 million. 

The planned NASA MSR mission is an ideal candidate for cost-effective, near-

term implementation of NTP.  This thesis proposes a PSDS-derived architecture that 

strictly adheres to the PSDS plan except for the methods of Earth launch and TMI.  

Minimal changes are made to other parts of the mission in order to maximize acceptance 

from the space community and efficiently utilize the vast analysis completed during 

original mission planning.  The architecture presented here combines the three original 

spacecraft packages into a single payload for TMI.  Instead of performing TMI burns 

with the Centaur 3
rd

 stage of each Atlas V as specified by original plan, a single TMI 

burn is performed by a Pewee-derived NTR.  The volume and mass of the NTR and its 

propellant are significantly lower than the combined Centaur stages, therefore reducing 

the requirements of the Earth LV.  Instead of three Atlas V’s, the initial ascent from 
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Earth’s surface to LEO is accomplished with a single SpaceX Falcon Heavy.  

Conservatively estimating $150 million for a Falcon Heavy launch [21], $600 million is 

saved in launch costs.  Thus, launch cost savings cover most of the development costs for 

a Pewee-derived NTR. 

1.3  Interplanetary Trajectory Optimization 

Launching payloads into space from Earth’s surface is extremely expensive.  The 

Atlas V 551, the largest LV considered in this study, achieves a cost of approximately 

$13,200 per kilogram for delivering its maximum payload of 18,814 kg to LEO [22].  For 

spacecraft that require large propulsive maneuvers to depart LEO for other planets or 

deep-space trajectories, it is common for propellant to make up the majority of the 

spacecraft mass in LEO.  Because propellant is such a large portion of the spacecraft 

mass, propulsive maneuvers are only performed at the most opportune times when the 

departure and arrival locations allow for minimum-energy transfers.  Propellant mass for 

these maneuvers can vary greatly with small differences in launch or arrival times: 

Deviating from the optimum by only a few days can increase the required propellant 

mass, and thus the injected mass to LEO (IMLEO), by as much as 10-20% for an Earth-

to-Mars transfer (as demonstrated in section 6.2).  Such an increase can consequently 

require the use of a larger LV, increase costs by millions of dollars, or make the transfer 

infeasible until the departure and arrival locations align once more.  Depending on the 

mission, realignment can take years to decades to occur. 

Because of the limitations and costs of launching mass into space, space missions 

of all types require extensive trajectory optimization to find optimal parameters for major 
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propulsive maneuvers.  Further, mission execution requires an extremely high degree of 

accuracy for all orbital maneuvers, as even slight errors in velocity or targeting can result 

in complete mission failure through unintended position errors, planetary flyby, 

atmospheric skip-out, or burn-up during entry.  Fortunately, preliminary mission planning 

can be accomplished with simplified, approximate trajectory models that have greatly 

reduced computation requirements.  This study utilizes the patched-conic method for 

initial trajectory assessments.   

The patched-conic method, as its name implies, reduces the trajectory model to a 

series of two-body dynamics problems.  At any one point in time, spacecraft motion is 

modeled simply as a Keplerian conic section about a single attracting mass.  When the 

spacecraft leaves the region of gravitational influence of one body and enters that of 

another, the two conic sections are “patched” together.  While such approximations 

cannot not yield truly accurate results, they are useful for determining approximate 

launch windows for feasibility assessments and starting points for more detailed 

optimizations [3]. 

The functions defining propulsive requirements for Earth-Mars transfers are 

riddled with local minima over the design space of departure date and time of flight.  

Earth and Mars have orbits of different periods, eccentricities, and inclinations; 

consequently, their relative positions and orientations repeat in a synodic period of near-

exactly every 79 years [9].  The relative positions repeat less exactly every 15 years and 

still less exactly every 2.1 years.  The 2.1-year periods occur because of the planets’ 

orbital periods about the sun, and the longer periods result because the phase-angle of 

Mars lags the phase angle of Earth.  Propulsive requirements can vary substantially for 
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each 2.1-year optimum, but these near-optimum solutions have been sufficient for past 

Mars missions such as the 2003 Mars Exploration Rover (MER), 2005 Mars 

Reconnaissance Orbiter, 2007 Phoenix, and 2011 Mars Science Laboratory.  Figure 1.7 

shows the Earth-to-Mars trajectory of the MER Spirit rover, planned at an optimal 2.1-

year minimum energy condition.  The eccentricities of Earth and Mars orbits are visible. 

 

Fig. 1.7  Earth-to-Mars trajectory of MER Spirit rover [23]. 

The goal of trajectory optimizations in this study is to minimize spacecraft 

volume and IMLEO, and thus launch costs, for round-trip Mars missions.  While 

numerous past studies provide optimal minimum energy transfer dates and propulsive 

requirements [24,25,26], it is desired to construct a preliminary design tool that 

incorporates constraints on trajectory parameters—such as transfer times and entry 

interface velocities, which are important due to physical limitations of spacecraft and 
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humans—specific to several different mission architectures.  This study builds on 

previous research, detailed in Section 1.4, and develops an algorithm that efficiently 

calculates optimal launch dates, flight times, and stay times for round-trip Mars missions.  

Global optima are found for each synodic period for constrained and unconstrained 

trajectories, enabling the construction of preliminary mission timelines, mass budgets, 

and cost estimates. 

1.4  Differential Evolution 

The algorithm chosen for trajectory optimization is Differential Evolution (DE).  

Invented by Storn and Price [27] in the mid-1990s, DE is a direct search metaheuristic 

global optimizer in the evolutionary algorithm family.  Requiring no special information 

or assumptions about a problem prior to optimization, DE has proven practically effective 

for global optimization of complex, noisy, and discontinuous functions [28].  DE’s 

strengths lie in its population differencing method as well as its relatively simple 

implementation when compared to similar methods such as Particle Swarm Optimization 

(PSO) and Genetic Algorithms (GA) [29].   

DE was first investigated for use in trajectory optimization in a University of 

Reading study that was sponsored by the European Space Agency (ESA) [29].   The 

study investigated the robustness and efficiency of various global optimization algorithms 

when applied to standard optimization benchmarking functions as well as trajectory 

problems of differing complexity.  The algorithms considered were the deterministic 

DIRECT and Multi-level Coordinate Search (MCS), the model-based stochastic 

Probabilistic Global Search Lausanne (PGSL) and Cross Entropy (CE), and the instance-
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based stochastic GA, PSO, Multiple Particle Swarm Optimization (MPSO), and DE.  The 

study analyzed three categories of trajectory problems: 1) bi-propulsive interplanetary 

transfers (BPIT), 2) multiple gravity assist (MGA) trajectories, and 3) MGA trajectories 

with deep space maneuvers (DSM).  Using default tuning parameters for each algorithm, 

DE proved to be the only algorithm that yielded satisfactory convergence and 

computation time for all trajectory problems.  MCS and MPSO outperformed DE on 

BPIT and MGA trajectories, respectively, but the authors deemed DE more suitable for 

further use because of advantages in robustness and ease of implementation.   

A second ESA-funded study conducted by the University of Glasgow [30] found 

DE to have only average performance when compared to algorithms such as Adaptive 

Simulated Annealing (ASA), Fast Evolutionary Programming, Evolutionary Predictive 

Interval Computation, and MCS.  The discrepancy between the two ESA studies can 

possibly be explained by the inconsistencies in the DE tuning parameters.  It is widely 

known in the optimization community that algorithm performance can be highly 

dependent on tuning parameters.  This knowledge and the discrepancy between studies 

serve as motivation for investigation of the effects of optimization algorithms’ tuning 

parameters on trajectory problems. 

Olds, Kluever, and Cupples [31] systematically investigated the relationship 

between DE performance and tuning parameters on various high-thrust trajectory 

problems that require parking orbit insertion and/or gravity assists.  Olds optimized for 

minimum ΔV, as was done in [29,30], but imposed more rigorous constraints on 

trajectory parameters.  By conducting sets of 1000-run trials for various combinations of 

tuning parameters the study showed that certain combinations yield rapid convergence 
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while others never converge to the desired solution.  Olds also showed that while some 

parameters generally perform well, performance varies between different types of 

problems.  The study found that DE tuning parameters do not follow any identifiable 

pattern and concluded that a probabilistic study of parameters is needed to maximize 

algorithm performance for each problem.   

Sentinella and Casalino [32] developed a hybrid algorithm that runs DE, GA, and 

PSO in parallel and allows the best individuals to migrate to other populations.  In 

optimizations of rendezvous missions, the hybrid always found optima in fewer function 

evaluations than the individual algorithms.  The hybrid also proved to be more robust 

through successful optimization with sub-optimal tuning parameters.  It is important to 

note, however, that [32] used a static set of DE tuning parameters and a relatively large 

population size of 60 for all optimizations.  It is possible that by tailoring tuning 

parameters to each problem and using a more reasonable population size, as in [31], DE 

could prove to be the more efficient algorithm.   

Vinkό et al. [33] benchmarked DE and other global optimization techniques on 

six different trajectory optimization problems.  Popular algorithms such as PSO, GA, 

ASA, GLOBAL, and COOP (a combination of PSO and DE) were applied to trajectories 

that require multiple gravity assists and deep space maneuvers.  While DE found more 

optimum solutions than any other algorithm on 3 of 6 problems, it only produced the best 

average solution on one problem.  Vinkό concluded that the COOP combination of PSO 

and DE gives superior performance on average when compared to standalone solvers.  

Note again that each algorithm in [33] used a set of non-optimal tuning parameters. 
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The CSNR has funded the development of a Mars mission trajectory optimization 

program (MMTOP) for use in preliminary planning of Mars missions of various 

structures.  It is desired to make the algorithm easy to implement and alter for users who 

are not familiar with numerical methods or interplanetary trajectories.  In addition to ease 

of use, it is desired that the algorithm allow for rapid optimization of trajectory 

parameters.  While it is highly probable that several of the algorithms studied in 

[29,30,333] could be extremely robust and efficient if tuning parameters are optimized, 

DE is chosen for its ease of implementation [27,29,31] and evidenced robustness with 

tailored tuning parameters [31].  Analysis of tuning parameters is carried out similar to 

[31], but this study focuses solely on round-trip Mars trajectories. 
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CHAPTER 2: PHYSICAL MODEL 

2.1  Major Assumptions 

Exact, high-precision spacecraft positions during interplanetary transfers are 

highly sensitive to small propulsive maneuvers and require direct integration of small 

perturbing forces such as solar radiation pressure, drag from sparse space matter, and 

gravity from distant celestial bodies.  Accounting for these forces is necessary for 

detailed mission analysis and execution, as even small errors in velocity direction and 

magnitude can lead to mission failure.  Mission failure in this sense can mean position 

errors of hundreds of kilometers at the conclusion of a mission or, for missions that 

require atmospheric entry or orbit insertion, unintended skip-out of atmosphere, burn-up 

during entry, or planetary flyby.  The level of accuracy needed to address these issues 

requires extremely computationally intensive calculations.  Fortunately, this accuracy is 

not necessary for preliminary mission design.   

The model used in this study makes several approximations that greatly reduce 

computation time.  Space is treated as a perfect vacuum, and all celestial bodies are 

treated as point masses.  The patched conic method is adopted for interplanetary 

transfers.  The method of patched conics assumes spacecraft motion occurs as a series of 

Keplerian conic sections, each one governed by the gravity of a single dominant body.  

The spacecraft can naturally transfer between regions that have different dominating 

bodies, so conic sections are “patched” together at boundaries of influence to form a 

continuous path of motion.  It is obvious that such approximations cannot yield 

completely accurate results, as spacecraft are always under the influence of multiple 
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celestial bodies; however, this level of accuracy is recognized as necessary and 

sufficiently accurate for preliminary mission planning and launch window determination 

[3].     

One tool for addressing trajectory errors is found in trajectory correction 

maneuvers (TCM).  Even with the most detailed simulations, planetary missions often 

require TCM to address targeting errors and unforeseen dynamics perturbations.  

Propellant contingencies for TCM are built into spacecraft designs, and propulsive burns 

are performed as needed throughout each mission.  Building on this technique, this thesis 

includes conservative TCM propellant contingencies in spacecraft mass calculations.  

Provisioning a larger-than-typical TCM propellant mass provides a safeguard against 

errors from approximate modeling and ensures that estimations of total IMLEO are not 

unrealistically low.   

2.2  Two-Body Motion and Conic Sections 

Two-body motion for systems with attracting mass M much greater than small-

body mass m, as is the case for the spacecraft-Sun or spacecraft-planet systems, is 

governed by  

 0
32

2 


 r
rdt

rd 
 (2.1) 

where μ is the gravitational parameter of M, and r


 is the vector from M to m.  Equation 

(2.1), derived from Newton’s Law of Universal Gravitation, makes the important 

implication of the concepts of conservation of energy and conservation of angular 
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momentum.  These two principles make it possible to calculate the position and velocity 

attributes of m at any point in its orbit.  The specific energy ξ for a spacecraft is 

 

ar

V

22

2 
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  (2.2) 

with velocity magnitude V, radius magnitude r from M, and semi-major axis a.   The 

spacecraft velocity vector V


 is simply the time derivative of r


.   

 rV 

  (2.3) 

The specific angular momentum is 

 Vrh


  (2.4) 

in vector form and 

  cosrVph   (2.5) 

as a scalar with flight-path angle γ between V


 and the local horizon.  Radius magnitude r 

can be calculated with  

 
cos1 e

p
r


  (2.6) 

for any true anomaly θ.  True anomaly θ is the angular displacement of the spacecraft 

from periapsis, the position of closest passage in an orbit, and it is measured in the 

direction of spacecraft motion.  The semilatus rectum p is  

  21 eap   (2.7) 

where r=p at θ=90° and θ=270°.  Important angular and positional parameters are shown 

for an elliptical orbit in Fig. 2.1.   



22 

 

 

Fig. 2.1  Orbital parameters for small mass m in orbit about mass M. 

Of particular interest for mission planning is the radius of periapsis rper.  Mission 

plans often specify periapsis as the point where orbit insertion burns take place, and thus 

rper is the desired orbital radius.  Alternatively, targeting rper below a planet’s atmosphere 

guarantees atmospheric entry and aids in calculation of entry parameters for a given 

approach. Radius of periapsis is calculated as 

  earper  1  (2.8) 

Note that Eqs. (2.2-2.7) are valid for all Keplerian conic sections: circular, 

elliptical, parabolic, and hyperbolic orbits.  The four Keplerian orbits are defined by e 

and   and are shown in Fig. 2.2. 
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Fig. 2.2  Keplerian motion of spacecraft about a mass M.   

2.3  Patched Conic, Zero Sphere of Influence Approximation 

The method of patched conics allows for the two-body model of motion by 

“patching” together different conic sections.  The patched conic method assumes that at 

any instance in time spacecraft motion is solely influenced by the gravity of a single 

dominant body, and the region of dominance is governed by the sphere of influence 

(SOI) approximation.  Consider the hypothetical system given in Fig. 2.3 with a 

spacecraft of mass m and two large bodies with masses M1 > M2.  If m is to transfer from 

an orbit about M1 to a position close to M2 it is clear that there will be a transition where 

the primary gravitational influence on m will switch from M1 to M2.  Transition of 

influence occurs at the SOI, defined as the locus of points where the gravitational 

influence of M1 and M2 on m are equal in magnitude.  In the example in Fig. 2.3, the 
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gravity of M1 is the dominating influence on m everywhere except inside the SOI, where 

the gravity of M2 dominates.  

 

Fig. 2.3  Hypothetical system showing the SOI concept. 

Transferring the SOI concept from the hypothetical system to the solar system, it 

is clear that the sun’s gravity is the most influential gravitational force throughout most of 

the solar system’s volume.  Each planet has an SOI with approximate radius 

 

5/2













sun

planet

SOI
M

m
Rr  (2.9) 

where R is the radial distance between the two bodies [3].  The rSOI of the major bodies in 

the solar system with respect to the sun are given in Table 2.1. 

Table 2.1.  SOI of celestial bodies with respect to the sun [3]. 

Body Mass ratio (sun-planet) rSOI (km) rSOI/R 

Mercury 6.0236 x 10
6 

1.12 x 10
5 

0.0019 

Venus 4.0852 x 10
5 

6.16 x 10
5 

0.0057 

Earth 3.3295 x 10
5 

9.25 x 10
5 

0.0062 

Mars 3.0987 x 10
6 

5.77 x 10
5 

0.0025 

Jupiter 1.0474 x 10
3 

4.88 x 10
7 

0.063 

Saturn 3.4985 x 10
3 

5.46 x 10
7 

0.038 

Uranus 2.2869 x 10
4 

5.18 x 10
7 

0.018 

Neptune 1.9314 x 10
4 

8.68 x 10
7 

0.019 

Pluto 3 x 10
6 

1.51 x 10
7 

0.0026 
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Notice that the rSOI/R ratio for each planet is always less than 10%.  For Earth and 

Mars, the only two planets involved in this study, this ratio is less than 1%.  Such small 

ratios indicate the sun’s gravity is the dominating force for all but a miniscule portion of 

the vast distances traveled during heliocentric Earth-Mars interplanetary trajectories.  The 

small size of the planets’ regions of influence allow for use of the “zero SOI” 

approximation, where the planetary positions and SOI are treated as coincident points 

during heliocentric trajectory calculations [34].   

2.4  Heliocentric Trajectories 

The first step in calculating the propulsive requirements of an interplanetary 

transfer is determining the structure of the heliocentric transfer orbit.  In the zero SOI 

model, the start and end locations of the transfer are readily defined as the two 

heliocentric planet positions  01 trP


 and  12 trP


, labeled as  00 tr


 and  11 tr


 in Fig. 2.4, 

respectively for the time of flight TOF=t1–t0.  However, defining a transfer also requires 

knowledge of the spacecraft velocities  00 tV


 and  11 tV


.  There is no closed-form 

solution for determining the orbital parameters given only two positions and a flight time, 

but the problem can be solved iteratively with either Kepler’s problem or Lambert’s 

problem.  Lambert’s problem requires three fewer design variables than Kepler’s problem 

[31], so it is the method chosen for further discussion and implementation in 

optimization.   
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Fig. 2.4  Schematic of orbit transfer to be solved with Lambert’s problem. 

Lambert’s theorem states that transfer time is a function of the form 

  acrrfTOF ,,10   (2.10) 

where a is the semi-major axis of the transfer orbit, and c is the chord length shown in 

Fig. 2.4 [3].  Because methods for solving Lambert’s problem are well documented a 

detailed algorithm is not presented here.  All optimizations in this thesis use a MATLAB 

code written by Dario Izzo of the ESA [35].  Izzo’s algorithm takes the form  

 
        Given:          Nttttrtrtrtr MPP ,,,, 0112110100 


 

        Find:        ,,,, 1100 patVtV


 
(2.11) 

where N is the number of revolutions and   is the transfer angle.  This thesis maintains 

N = 0 and  180  throughout optimizations as  180 is impractical for missions 

with restricted flight times, and the available simulation time prohibits exhaustive studies 

of tuning parameters for both conditions  180  and  180 , termed type 1 and 

type 2 transfers, respectively.  Planet positions are propagated from static ephemerides.  
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Higher fidelity ephemerides are available, but static ephemerides provide run-time 

savings and maintain a reasonable degree of accuracy for preliminary calculations [31]. 

The velocity of a spacecraft relative to a planet at SOI departure or arrival is 

V


 

or 

V


, respectively.  The “+” corresponds to departure, and “-” corresponds to arrival.  

These vectors are calculated with Eqs. (2.12-2.13) 

 

   010 tVtVV P




  

   121 tVtVV P




  

 (2.12) 

(2.13) 

Typically, shorter transfer times require higher energies, V


magnitudes, and V  

requirements.  Sections 2.5-2.6 will show that V —a velocity change imparted to a 

spacecraft by an orbital maneuver such as orbit insertion (OI) or a trans-planetary 

injection burn—is often a target for minimization, as it determines the propulsive and 

mass requirements for a spacecraft.  Section 2.5 details the calculation of V  

requirements for the propulsive tasks of the considered round-trip Mars missions, and 

section 2.6 details the calculation of mass budgets from the various V ’s. 

2.5  Planetocentric Trajectories 

 At planetary departure or arrival, the spacecraft has velocity V


 relative to the 

planet.  Note that for efficient interplanetary transfers the heliocentric  tV


 typically 

yields ξ < 0, i.e. circular or elliptical orbits.  Transferring  tV


 from the heliocentric 

transfer to a planetocentric frame, however, necessarily yields energies ξ > 0 and a 
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hyperbolic section about the planet.  For this reason, 

V


 are 

V


 often termed hyperbolic 

excess velocities.   

Three planetocentric events are possible in this thesis: parking orbit departure, 

parking orbit insertion, or atmospheric entry.  Analysis of these events is simplified by 

constraining motion to a plane P that contains the 
V


 vector and the planet center.  This 

constraint is appropriate because no plane-change maneuvers are conducted in this thesis.  

It is reasonable to assume that LVs can put spacecraft in the correct orbit for planetary 

departure, and 

V


 can be placed at any point on the SOI so as to achieve the desired 

entry or OI conditions.   

For parking orbit departure, the ΔV for the trans-planetary injection burn is 

calculated from the energy of the parking orbit and the energy desired at SOI exit.  Using 

the zero SOI approximation, the energy at the SOI is calculated with Eq. (2.2) and r=∞. 

 
2

2



 
V

  (2.14) 

Designating the parking orbit radius as rper and assuming impulsive propulsive burns, the 

velocity of the spacecraft at rper on the departure hyperbola becomes 
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
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V


2  (2.15) 

with the outgoing ΔV requirement  

 parkper VVV  
 (2.16) 

for a circular parking orbit velocity Vpark.  Circular speed Vpark comes from solving Eq. 

(2.2) with a = rper.  
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per

park
r

V


  (2.17) 

Figure 2.5 shows the parking orbit departure for an Earth-to-Mars transfer.  In this 

scenario, the parking orbit is LEO, and the propulsive burn conducts TMI with 

TMIVV


   from Eq. (2.16).  Note that having 


V


 and EV


 in the same direction 

maximizes the heliocentric velocity  0tV


 and energy of the spacecraft transfer  on the 

transfer for any imparted ΔV by utilizing the planet’s significant orbital velocity.  For the 

opposite case, orienting 


V


 and a planet’s velocity in opposite directions minimizes ΔV 

requirements for transfers with r0(t0) > r1(t1) by minimizing heliocentric energy for any 

given ΔV.  Low energy transfers, the main focus in this study, with r0(t0) < r1(t1) will 

always use orbits with 1Ptransfer    and 2Ptransfer    where P  corresponds to a planet’s 

specific energy.  Low-energy transfers with r0(t0) > r1(t1) likewise yield 1Ptransfer    and 

2Ptransfer   .   These energy relations explain relative orientation of planet velocities and 

V


 vectors in Fig. 2.5-2.8.  
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Fig. 2.5  Hyperbolic Earth departure for an Earth-to-Mars transfer. 

Parking orbit insertion is a similar operation to orbit departure but with reversed 

chronology.  Figure 2.6 shows the MOI operation with burn MOIV


  at a low-Mars orbit 

(LMO) radius rper.  The ΔV requirement is 

 parkper VVV  
   (2.18) 

for insertion into a circular orbit at periapsis.  For an MOI, MOIVV


  .   
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Fig. 2.6  Hyperbolic Mars arrival and orbit insertion for an Earth-to-Mars transfer. 

Diagrams for low-energy Mars-to-Earth transfers are given in Fig. 2.7-2.8.  Transfer 

departure and arrival locations are opposite from the transfer in Fig. 2.5-2.6, so the ΔV 

nomenclature changes to TEIVV


   and EOIVV


  for TEI and EOI, 

respectively.       

 

Fig. 2.7  Hyperbolic Mars departure for a Mars-to-Earth transfer. 
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Fig. 2.8  Hyperbolic Earth arrival and orbit insertion for a Mars-to-Earth transfer.. 

The other possible planetocentric event is entry, descent, and landing (EDL) upon 

planetary arrival.  Successful EDL requires meeting very strict conditions at atmospheric 

entry interface (EI), defined as the maximum altitude of discernible atmosphere.  The 

velocity VEI and flight-path angle γEI—the angle between the velocity vector and local 

horizon—at EI are two of the most important parameters.  Previous successful Mars EDL 

schemes have used γEI ranging -11.47° to -17° (measured positive above the local 

horizon) and VEI ranging 4.7 to 7.6 km/s [36].  Although values vary considerably 

between missions, error tolerances for individual missions are very tight:  Slight errors in 

VEI or γEI at rEI can lead to spacecraft burn-up, atmospheric skip-out, or large errors in 

landing site position.  The MER missions, which landed small rovers on Mars in 2004, 

required a 3-σ γEI error of ±0.25° [37].   

Fig. 2.9 shows the scheme for direct entry at Mars.  Notice that the hyperbolic 

approach targets rper below rEI.  The spacecraft does not follow the hyperbolic trajectory 
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to rper after EI, however, due to atmospheric drag.  Instead, the spacecraft follows the 

dash-dot descent trajectory to the planet surface.  Note that no illustration for Earth entry 

is given, because the process is identical to Fig. 2.9 if the planet title and LMO are 

respectively changed to Earth and LEO. 

 

Fig. 2.9  Direct entry at Mars. 

For atmospheric entry we introduce the B-plane which lies coincident with the 

planet’s center, normal to V


, and normal to the incoming hyperbolic asymptote.  Recall 

that V


 lies in plane P, and therefore P and B are perpendicular.  The hyperbolic miss 

distance β, also termed the B-plane offset, is the distance between the hyperbolic 

asymptote and the planet center, shown in Fig. 2.10 with a hyperbolic planetary flyby.  
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With the zero SOI model, β can be given any value in the interval (- SOIr , SOIr ) so as to 

target specific EI conditions. 

 

Fig. 2.10  Diagram showing B-plane and P-plane for hyperbolic flyby. 

One method to target entry conditions is to designate the desired VEI  and γEI, then 

calculate the necessary B-plane offset to achieve that entry trajectory.  Satisfactory EI 

targeting for this thesis is determined from energy and angular momentum equations.  

The energy at the SOI is calculated as in Eq. (2.14).  Because energy is conserved, the 

velocity at rEI  is 

 









 



EI

EI
r

V


2  (2.19) 

from Eq. (2.2).  From here, the angular momentum at EI is calculated for the specified γEI. 

 EIEIEIEI Vrh cos  (2.20) 

Finally, the hyperbolic miss distance is obtained from 
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

 Vhh SOIEI   (2.21) 

from Eq. (2.4) for β ϵ [0, SOIr ).  If β > SOIr  the spacecraft requires a ΔVbrake burn to slow 

down just before EI.  The braking burn is calculated as 

 target,EIEIbrake VVV  
 (2.22) 

for target EI velocity target,EIV , and 

EIV is the EI velocity from the approach hyperbola 

calculated with Eq. (2.19).  If the trajectory is designed to be unpowered, as is specified 

in this study, slowing burns are not permitted, β > SOIr  does not yield an acceptable 

solution.  For visualization purposes, the hyperbolic trajectory (neglecting drag) can be 

determined by calculating the B-plane offset that corresponds to a given perr  [3].  
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2.6  Mass Calculation 

 For the purpose of mass budget construction, a spacecraft can be divided into 

several different mass components: propellant mP, tankage mT, general spacecraft systems 

mS/C, and additional structure mS.  mS refers to structural support members, and mS/C 

includes all components that do not fit into the propellant, tank, or structural support 

categories.  The tankage mass is directly proportional to the stored propellant mass via 

tankage fraction ε.   

 
PT mm   (2.24) 

Similarly, mS is proportional to the remainder of the spacecraft mass through structure 

fraction η. 
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  TPCSS mmmm  /  (2.25) 

The total spacecraft mass before and after a propulsive maneuver, m0 and mf 

respectively, is calculated according to  

 
STPCS mmmmm  /0  (2.26) 

 
Pf mmm  0  (2.27) 

where mP corresponds to the propellant expended during the burn.  Assuming impulsive 

propulsion, the ΔV achieved from the expenditure of mP is given by the Tsiolkovsky 

rocket equation [34] 
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where ve is the effective exhaust velocity. 

 
spe gIv   (2.29) 

Equation (2.28) is useful for calculating arbitrary propulsive burns, but it is impractical 

for mission planning and mass budget formulation as it requires a priori knowledge of m0 

and mf.  The impracticality comes from the fact that mP is dependent on mT and mS, which 

are circularly dependent on mP as seen in Eqs. (2.24-2.25).  To solve this problem, Eq. 

(2.28) is rewritten as 

 
ev

V

f emm


0  (2.30) 

Substituting Eqs. (2.26-2.27) then yields 

 
  ev

V

STCSSTPCS emmmmmmm


 //  (2.31) 

Further, substituting Eqs. (2.24-2.25) and rearranging for mP gives 
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Equation (2.32) thus gives the propellant mass required for a burn of a given ΔV and only 

requires a priori knowledge of mS/C, ε, and η.  General spacecraft mass mS/C is readily 

available, as it is the first quantity calculated/assumed when constructing a mass budget:  

It includes the fundamental science, telecommunications, and power systems required for 

completion of the mission goal.  A structure mass fraction η=0.10 is typically used in 

preliminary calculations, and ε depends on the type of propellant. Solid rockets require 

10.0 , but cryogenic propellants such as LOX and H2 are more difficult to store and 

require heavier tanks with 15.0  [38].  

 Notice that Eq. (2.32) has a singularity when the denominator equals zero.  

Plotting the behavior for typical NTR parameters mS/C = 3 MT, ε  = 0.15, and Isp = 900 s, 

Fig. 2.11 shows that the singularity is encountered when km/s 9.13V .  mp, from Eq. 

(2.27),  is equal to the difference between the two curves. 
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Fig. 2.11  Singularity in Eq. (2.32) with typical NTR mass parameters. 

The singularity has the physical meaning that a given propulsion system has a maximum 

ΔV capability that is dependent on ε, η, and Isp; that is, past the singularity value ΔVsing, 

propulsion of tank and structure masses requires more propellant mass than the tank and 

structure can hold or support.  At this point mP → ∞, and increasing V is infeasible.  Note 

that the aforementioned guidelines for ε and η are not absolute for any system.  Creative 

designs and advances in propellant storage may allow for lower mass fractions, thus 

increasing ΔV capabilities for a given spacecraft.  Such capabilities are presented in Fig. 

2.12-2.13, which show the performance of spacecraft with mS/C = 3 MT and various ε, η, 

and Isp values. 
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Fig. 2.12  Performance of a spacecraft with η = 0.10 and Isp = 900 s for a range of ε. 

0 5 10 15 20
-100

-80

-60

-40

-20

0

20

40

60

80

100

V (km/s)

In
it
ia

l 
m

a
s
s
 (

M
T

)

 

 

 = 0.05

 = 0.075

 = 0.01

 = 0.125

 = 0.15

 

Fig. 2.13  Performance of a spacecraft with ε = 0.10 and Isp = 900 s for a range of η. 
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Fig. 2.14  Performance of a spacecraft with ε = 0.10  and η = 0.10  for a range of Isp. 

While the singularity locations are plain to see in Fig. 2.11-2.14, they are not 

obvious for any one set of ε, η, and Isp before mapping Eq. (2.32).  The unknown 

locations present difficulties in optimizations, as optimizing an objective function of 

unknown geometry allows for optimization to negative masses and infeasible transfers.  

Allowing calculations of negative masses is particularly troublesome for IMLEO 

minimizations, as solutions are driven to infeasible solutions with ΔV > ΔVsing.  Methods 

of addressing this issue are presented in section 5.2. 
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CHAPTER 3:  MISSION ARCHITECTURE 

3.1 Mars Sample Return 

The mission execution timeline for a simple, single-vehicle MSR architecture can 

be marked by the following events listed chronologically starting with liftoff from Earth:  

1) ascent from Earth’s surface to LEO, 2) transfer from LEO to Mars, 3) MOI, 4) EDL at 

Mars, 5) ascent from Mars’ surface to LMO, 6) transfer from LMO to Earth, 7) EOI, and 

8) atmospheric entry at Earth.  Steps 2, 3, 5, and 6 contain the major propulsive 

maneuvers for interplanetary transfers, whose optimization is the major focus of this 

thesis.  These maneuvers are burns for TMI, MOI, TEI and EOI as depicted in Fig. 2.5-

2.8.  If direct entry is desired upon arrival at transfer destination, the OI burns are either 

omitted or replaced by smaller burns for slowing the spacecraft to the desired entry speed 

as in Eq. (2.22). 

Most preliminary mission planning for ascent to LEO is satisfied by simply 

referencing publicly available Payload Planner’s Guides (PPGs) from LV manufacturers.  

PPGs give accurate data for launch vehicle payload and OI capabilities.  Payload and 

mission designers do not conduct detailed analysis of LV kinematics and trajectories; 

instead, launch services are contracted out to LV companies, which are tasked with 

delivering the payload to the desired orbit.  Preliminary planning for the purpose of this 

thesis extends no further than addressing the launch vehicle mass and payload fairing 

volume constraints given by LV manufactures.  Launch vehicle selection for the NTR-

augmented PSDS mission is further discussed in sections 3.2-3.3. 
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The Earth departure leg of the mission with the TMI burn takes place as detailed 

in Fig. 2.5.  Timeline events 1-4 and the propulsive burns for TMI and MOI are marked 

in Fig. 3.1 where t0 is the time of departure from Earth, and t1 is the time of arrival at 

Mars.  The vectors Er


 and Mr


 are the heliocentric positions of Earth and Mars.   

 

Fig. 3.1  Earth-to-Mars transfer (planet sizes not to scale). 

Similar to Fig. 3.1, Fig. 3.2 shows locations timeline events 5-8 and propulsive burns for 

TEI and EOI. 
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Fig. 3.2  Mars-to-Earth transfer (planet sizes not to scale). 

Figures 3.1-3.2 both depict low-energy transfers.  Notice that the planet, spacecraft, and 

hyperbolic excess velocities are nearly parallel for each planetary departure or arrival, 

thus making use of the planets’ orbital velocities and minimizing the need for plane 

change maneuvers.  Figure 3.3 gives the related visualization of the vectors from Eqs. 

(2.12-2.13). 

 

Fig. 3.3  Spacecraft, planet, and hyperbolic excess vectors for planetary departure 

and arrival with a low energy transfer. 
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Steps 1, 4, 5, and 8 are highly dependent on each mission’s particular goals and 

physical spacecraft designs.  Because this thesis limits analysis to PSDS-derived 

architectures, the detailed mission steps are omitted here and instead explained in 

sections 3.2-3.3.   

3.2  2010 Planetary Science Decadal Survey 

The 2010 NASA and NRC PSDS conducted a sweeping canvas of the planetary 

science community in order to assess, educate, and provide direction for its members.  

The survey aimed to determine the state of knowledge of the solar system, inventory top-

level scientific questions, decide which questions should guide flight and research 

programs, and make research recommendations for maximizing science return.  

Recommendations included a prioritized list of missions in the NASA New Frontiers and 

larger mission classes that should be pursued in the 2013-2022 timeframe, and detailed 

mission architectures were constructed for high-priority missions.  With approximately 

30 major missions investigated, the PSDS designated MSR are the top priority mission 

for the next decade [18].   

The MSR architecture decided upon by the PSDS is as follows.  The mission is 

carried out by three separate spacecraft packages.  The first package is launched aboard 

an Atlas V 531 in 2018 and contains a large science rover [20].  The rover’s mission is to 

traverse approximately 20 km of the Martian surface over 5 years, performing science 

experiments and collecting samples of interest.  For EDL at Mars, the rover uses the same 

“Sky Crane” propulsive/tethered descent system that will be used for the Mars Science 

Laboratory mission in 2012. 
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The initial PSDS plan called for two rovers—one each from NASA and ESA—

but revised budget estimates resulted in a call for the construction of a single, larger rover 

[39].   Current plans are to build the rover in Europe and outfit it with European and 

American instruments.  Construction will be largely based on preliminary designs for the 

ESA ExoMars rover, shown in Fig. 3.4. 

 

Fig. 3.4  ESA’s ExoMars rover [40]. 

Table 3.1 gives the PSDS mass budget for the first package [20].  For analysis purposes, 

this study assumes that the revised rover will have a mass comparable to the sum of the 

two original rovers. 

Table 3.1  Rover package mass budget. 

Component Mass (kg) 

MAX-C rover (NASA) 364.5 

ExoMars rover (ESA) 300.0 

Pallet 297.4 

Descent stage 802.9 

Entry stage 1,550.7 

Cruise stage 498.7 

Total 3,814.2 
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The second package is a Mars orbiter that provides telecom for the first and third 

packages, carries out the TEI burn with samples aboard, and aligns the sample-containing 

Earth entry vehicle (EEV) on the correct entry trajectory.  The spacecraft is launched into 

orbit and towards Mars in 2022 aboard via an Atlas V 551 [41].  Upon arrival at Mars, 

the craft inserts into a highly elliptical orbit and proceeds to aerobrake for 5-6 months 

until it achieves a 500 km circular orbit.  Aerobraking is a process in which a spacecraft 

uses drag to decrease its energy by skimming a planet’s atmosphere—this decrease in 

energy would otherwise need to be obtained from propulsive maneuvers, and thus 

aerobraking decreases ΔV and propellant requirements.   

The orbiter stays in orbit about Mars for approximately two years before the third 

package arrives at Mars.  Figure 3.5 shows the preliminary orbiter design used for 

analysis, and Table 3.2 gives the payload mass budget.  Note that Fig. 3.5 shows two 

EEVs while Table 3.2 only incorporates one.  This study calls for a single EEV, as the 

redundancy is unnecessary.   

 

Fig. 3.5  Preliminary PSDS orbiter design [41]. 
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Table 3.2  Orbiter mass budget. 

Component Mass (kg) 

Structure/mechanisms 339.2 

Propulsion (dry) 171.9 

Attitude control 35.1 

Power 128.4 

Telecommunications 32.9 

Thermal, data and command, etc. 235.4 

EEV 47.2 

Launch adapter 30 

Propellant with contingency 2,280 

Total 3,300.1 

The third package, launched in 2024 with an Atlas V 551 [42], is a lander that 

contains a small fetch rover as well as a 300 kg solid rocket Mars ascent vehicle (MAV).  

The lander configuration and condensed mass estimate are given in Fig. 3.6 and Table 

3.3, respectively. 

 

Fig. 3.6  Labeled configuration of lander platform [42]. 
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Table 3.3  Lander package mass budget. 

Component Mass (kg) 

Lander platform 553.7 

Fetch rover 157.3 

MAV 300 

Cruise stage 573.2 

Descent stage 721.5 

Entry stage 1905.3 

Total 4,211.3 

The lander utilizes the same Sky Crane EDL system as the first package, entering Mars’ 

atmosphere approximately five years after the science rover.  Once the package lands, the 

fetch rover traverses over 12 km round-trip in six months to collect the samples from the 

science rover and bring them back to the MAV.   

When the fetch rover completes its mission, the MAV launches into a 500-km 

Martian orbit and ejects the sample canister with significant separation velocity.  The 

orbiter then rendezvous with the sample canister and secures it in the EEV.  Next, the 

orbiter’s bi-propellant propulsion system performs the TEI burn to put the spacecraft on 

an impact trajectory with Earth.  After a 9-month transfer to Earth, it ejects the EEV on 

an impact trajectory for a hard landing at the Utah Test and Training Range, a site used 

for the previous Stardust comet sample return mission.  Once the EEV is ejected, the 

orbiter diverts away from Earth such that it will never enter the Earth’s atmosphere.  The 

samples are finally returned to Earth in 2027. 



49 

 

3.3  NTR-Augmented Architecture 

This study proposes an MSR mission architecture that mates the PSDS with the 

CSNR’s affordable NTR concept to create a low-cost, near-term, and practical NTP 

development plan.  The strategy only includes two major alterations to the original 

architecture: 1) All payloads are combined for Earth-to-LEO launch aboard a single 

SpaceX Falcon Heavy LV (as opposed to three Atlas V’s), and 2) TMI is carried out with 

a single Pewee-derived NTR instead of the three Atlas V Centaur stages.  After TMI, the 

NTR is discarded, and remainder of the mission is carried out as detailed in the PSDS.   

The combined payload with the NTR TMI stage is shown in Fig. 3.7 in the 

payload fairing of a Falcon Heavy LV.  The LV substitution is made possible by the 

volume and mass savings that come from using an NTR for TMI.  The substitution also 

results in launch cost savings of $600 million that can then be allocated to fund the 

majority of the $700 million NTR development program.   
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Fig. 3.7  Combined payload packages and NTR inside Falcon Heavy payload fairing. 

When designing an alternative to well-received architecture, it is desirable to 

minimize changes to the original mission design in order to maximize acceptance with 

the space community.  Specific to this study, it is desirable to only make changes to the 

original PSDS architecture that are necessary and enabling for incorporation of the 

Pewee-derived NTR.  The proposed architecture thus uses payload package hardware 

identical to the PSDS except for one alteration:  Cruise stages of the first and third 

packages are omitted.  Individual cruise stages are nearly identical in structure and 

purpose, so this study assumes that an enlarged version of the orbiter cruise stage is 

sufficient to fulfill the requirements of the combined configuration.  In order to 

conservatively estimate the mass of the enlarged system, mass budget calculations 

incorporate a 45% propellant contingency for all orbiter maneuvers and add the 

associated tank and structure masses as detailed in section 2.6.  The dry mass of the 

configuration excluding TMI and TEI tanks and structures is given in Table 3.4. 
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Table 3.4  Dry mass of TMI payload with NTR and shielding. 

Component Mass (kg) 

Rover package 3,315.5 

Orbiter package 1,020.1 

Lander package 3,638.1 

Pewee-derived NTR 2,550 

NTR shielding 500 

Total 11,023.7 

The VEI limits for the two Mars entry craft in this study—the science rover and 

lander entry capsules—are derived from historical missions.  To date, NASA has used 

Mars VEI ranging 4.70-7.26 km/s, with the largest velocity corresponding to Mars 

Pathfinder [37].  This study’s entry capsule masses and methods are similar to the 2,800 

kg MSL entry capsule which plans to use VEI=6 km/s; consequently, this study places the 

upper limit of VEI,max=6 km/s on Mars entry craft.   

The EEV VEI constraint is derived from the NASA Stardust mission which used 

entry methods and hardware very similar to the PSDS.  Stardust successfully returned a 

46 kg EEV to Earth with a VEI =12.9 km/s [43]—the greatest EIV  achieved by any 

mission to date.  To remain conservative with the 47.2 kg PSDS EEV, this study uses an 

upper bound of VEI,max=12.7 km/s. 

The proposed architecture also employs a LOX-augmented NTR (LANTR).  

LANTRs inject oxidizer-rich gases into the H2 flow stream in the supersonic section of 

the nozzle, downstream of the throat [12].  The heavier LOX increases the density of the 

exhaust gasses, effectively increasing thrust at the expense of Isp.  LANTRs are invoked 

by many modern NTP studies as a means to increase thrust of nominally H2-propelled 



52 

 

rockets [10]. In the case of this study, however, LOX augmentation is not necessary for 

thrust but for volume considerations.   

NTRs with pure H2 propellant result in the lowest-mass transfers, but, for 

propellant masses greater than several MT, the extremely low cryogenic H2 density of 

67.2 kg/m
3
 requires exorbitant tank volumes that do not fit in available LVs.  To address 

this issue, LANTR is employed with an O2/H2 (oxidizer/fuel, or O/F) mass ratio O/F=4 in 

order to reduce tank size to the maximum volume allowed by Falcon Heavy payload 

fairing.  Based on the calculated TRITON performance, O/F=4 yields Isp=522 s and 

increases thrust by a factor of 3 [44].  Even with this nearly 400 s decrease in Isp, the 

LANTR performance still exceeds the alternative chemical systems.  Figure. 3.8 shows 

that the cryogenic O2 density of 1,141 kg/m
3
 results in significant volume savings at the 

expense of Isp. for a range of O/F ratios.  

 

Fig. 3.8  Isp and density tradeoff for LANTR for the Pratt & Whitney TRITON [44]. 
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Table 3.5 gives the cost estimate of the affordable NTR plan as described in 

section 1.1.3.  The budget, developed by the CSNR, includes the major program aspects 

that need to be addressed.   

Table 3.5  Costs of NTR development activities [45]. 

Development activity Cost ($M in 2015) 

Fuel development and certification 85.53 

Fuel costs 21.24 

Engine development 238.01 

Engine testing 59.59 

Launch facility upgrades 11.18 

LV upgrades 31.12 

Security upgrades 11.72 

Education/outreach programs 23.15 

Project management 92.70 

Reserves 137.91 

Total 712.16 

Security and launch facility upgrades come from requirements for handling and storing 

nuclear material on each site.  LV upgrades are required for incorporating the NTR into 

launch ship, but incorporation should not be significantly more complicated than 

integrating the payload of any other mission.  The given budget also allocates funds for 

education and outreach in order to inform the public of the technology and its associated 

risks.    

Table 3.6 compares the cost of the PSDS and NTR-augmented PSDS 

architectures.  Note that the NTR-augmented version costs $82 million or 1.33% more 

than the original plan.  It is important to acknowledge that the affordability of the 

proposed mission relies heavily on successful test flights of the Falcon Heavy within the 

next several years, as the rocket has yet to be proven.  There is a possibility that test 
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flights will be unsuccessful, consequently invalidating the launch cost savings and the 

cost projections of the presented plan. 

Table 3.6  Costs of PSDS and NTR-augmented MSR missions, given as $M in 2015 

[20,41,42,45]. 

Mission aspect PSDS NTR-augmented 

Rover* 1,823.40 1,823.40 

Orbiter 805.17 805.17 

Lander 1,876.74 1,876.74 

Mars sample return and handling 475.74 475.74 

NTR development and testing 0 712.16 

Launch services 775.6 149.55 

Mission operations 341.5 338.02 

Total 6,099.15 6,180.78 

*Rover costs have changed with altered plans, but these changes do not affect absolute 

relative cost of the two missions 
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CHAPTER 4: DIFFERENTIAL EVOLUTION 

Differential evolution is a stochastic, population-based direct search method that 

optimizes using the principles of mutation, crossover, and selection from biological 

evolution.  DE was designed to meet four basic criteria: 1) compatibility with complex, 

nonlinear, non-differentiable, and multimodal cost functions, 2) parallelizability for 

computational efficiency, 3) ease of use with a minimal number of tuning parameters, 

and 4) robust convergence [24].  The algorithm’s stochastic method of population 

variation addresses the first and second criteria, and its self-organizing nature with only 

three control parameters addresses the third.  Multiple benchmarking studies [29,31,33] 

evidence robustness, even with non-optimal tuning parameters.   

The three major DE tuning parameters are population size NP, crossover 

probability CR, and differencing weight F.  Most studies discussed in section 1.4 use 

static, default tuning parameters for benchmarking trials.  As is true for any routine, 

though, convergence can be highly dependent on tuning parameter values.  Olds et al. 

conducted a systematic investigation of tuning parameters for trajectory optimizations 

and found that DE convergence for given set of tuning parameters varies between 

trajectory problems [31].  This thesis conducts analysis in a manner highly similar to [31] 

in order to facilitate comparison and conduct an exhaustive study over the entire range of 

possible parameter values.  

It is worth mentioning that a number of studies have developed methods for self-

adapting control parameters [46,47,48], but such methods are unnecessary for this study.  

This thesis aims to characterize DE behavior over wide ranges of tuning parameter 

values, not only to determine the best parameters for optimization of Mars missions but 
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also for the simple sake of characterization.  While adaptive methods have the potential 

to be extremely useful for optimizations of unknown objective function geometry, 

implementation for this study would counteract the goal of fully exploring the design 

space.  If the routine developed in this thesis is applied to trajectory problems of 

significantly different structure in the future, the author recommends implementing one 

of the more promising self-adaptation schemes such as those detailed in [47,48]. 

The first step in the DE routine is the initiation of a population of NP design 

vectors ix


 for all integers i ϵ [1,NP].  Each ix


 has D elements where D is the number of 

design variables of the optimization problem, and  jix


 references the jth design variable. 

Price recommends NP=10D, but [31] shows that alternate values can improve 

convergence time and success.  Consequently, this thesis tests a range of NP to determine 

the best values for the considered trajectory problems.  

For each ix


 of the first generation, elements are generated randomly from a 

uniform distribution over the design space defined by lower and upper bounds lbx


and 

ubx


, respectively.  After initialization, the DE algorithm carries out the mutation, 

crossover, and selection processes for each population member Gix ,


 for generations 

Glϵl[1,Gmax].  The default algorithm in [49] and all referenced studies use a default 

maximum number of generations Gmax=1000, so that value is maintained in this thesis to 

allow for valid comparison to previous studies.  

Mutation is completed through random vector differencing.  For each target 

vector Gix ,


, three random vectors Grx ,1


, Grx ,2


, and Grx ,3


 are selected from the population.  

The mutant vector 1, Giv


is then generated through the operation 
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  GrGrGrGi xxFxv ,3,2,11,


  (4.1) 

where F is the mutation scale factor.  If any elements of 1, Giv


 exceed the variable bounds 

the operation in Eq. (4.1) is repeated until variables fall within bounds.  Price originally 

suggested F ϵ [0,2], but revised studies indicate that randomly varying F on [0.5,1] for 

each generation or difference vector, a process called “dither,” can improve convergence 

[27,49].  In addition to testing with constant scale factor values, [31] conducted 

optimizations with F chosen randomly on F ϵ [-1,-1] for each difference vector and found 

that the random, uniform selection method produced the best convergence.  Once again 

building on [31] this thesis chooses F randomly from F ϵ [-1,1] for each difference 

vector.   

 The crossover process is carried out to create a trial vector Giu ,1


 by mixing the 

mutant and target vectors.  Crossover is controlled by crossover frequency CR ϵ [0,1].  

For each of the D elements of Gix ,


, a random number rand(j) ϵ [0,1] is generated and 

compared to CR to determine whether  j,1 Giu 


 takes on the value  j,Gix


 or  j1, Giv


.  

Figure 4.1 gives a visualization of the crossover operation. 
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Fig. 4.1  Crossover process for formation of trial vector [31]. 

Next, selection is performed by evaluating the objective function f at Gix ,


 and 1, Giu


, then 

choosing the better-performing vector to survive to the next generation G+1.  For 

minimization, selection is 

 
1,Gix







1,

,

Gi

Gi

u

x




 
if    1,,  GiGi ufxf


 

if    1,,  GiGi ufxf


                                

 (4.2) 

(4.3) 

Thus, mutation and crossover effectively search the design space by altering design 

variables over the entirety of their possible ranges, and selection self-sorts the population 

by only allowing superior vectors to survive to progress to future generations.    

In addition to the three primary tuning parameters, there are several ways in 

which DE can be altered that affect convergence.  For example, Gmax can be increased or 

decreased: Larger values allow for more variation and a more thorough search of the 

design space, but such values also require more computation time.  Compared to the 
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effects of tuning parameters, however, variations in Gmax have a negligible effect on 

convergence.  The aforementioned benchmarking studies [27,29,30,31] provide evidence 

that  Gmax = 1000 is sufficient for convergence, so variation in Gmax is not pursued in this 

study. 

Another method to customize DE is to change the differencing scheme.  The most 

common DE scheme used in previous studies [29,30,30,49], and consequently the 

scheme used in this thesis, is rand/1/bin.  The first term in rand/1/bin indicates that 

vector selection is random.  The second term means that only 1 vector is used for 

mutation, and the third time means crossover is determined by independent binary 

experiments.  Other schemes exist such as rand/2/bin, using 2 vectors for mutation, and 

rand/1/either-or, using 3-point recombination instead of differential mutation [49].  

Numerous studies in recent years have proposed alternate strategies for differencing and 

crossover, but a detailed study of those methods is beyond the scope of this thesis.  The 

success achieved with rand/1/bin in [29,31] especially when compared to alternate 

algorithms, does not provide the motivation necessary to investigate other differencing 

schemes.
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CHAPTER 5:  OPTIMIZATION PROBLEM 

5.1 Design Variables, Objective Functions, and Constraints 

 Optimization of the MSR trajectory requires the definition of an objective 

function  ixf


 that gives a measure of performance for any design variable vector ix


.  

Because the original DE code by Storn and Price is ill-equipped to handle constraints 

other than lower and upper bounds on design variables, this study uses penalty methods 

to enforce constraints on EI velocities. In place of traditional constrained optimization 

methods, penalty methods use a series of unconstrained optimization problems that 

nominally converge to the optimum of the constrained problem.  In this study, the penalty 

term Γ is directly proportional to constraint violations.  Γ is added to the nominally 

unconstrained performance function func, effectively enforcing bounds on the 

unconstrained routine by making undesirable constraint-violating solutions artificially 

costly.  The objective functions take the form 

    unci fxf


 (5.1) 

and are evaluated for each ix


 tested by the DE routine.   

 Solving for a conic section with the Lambert problem as detailed in section 2.2 

requires knowledge of departure time 0t , arrival time 1t , and radial positions  0tr


 and 

 1tr


.  Because  0tr


 and  1tr


 are purely functions of time, the Lambert problem in 

this study only has two variables per transfer: 10  and tt .  Solving the two-transfer MSR 

trajectory thus requires the specification of four instances in time.  For the Earth-to-Mars 

transfer, these instances are  
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00 Tt   (5.2) 

 
101 TOFTt   (5.3) 

with Earth-departure Julian date 0T  and Earth-to-Mars time of flight 1TOF .  Similarly, 

for the Mars-to-Earth transfer 

 
stayTTOFTt  100  (5.4) 

 
2101 TOFTTOFTt stay   (5.5) 

with stay time at Mars stayT  and Mars-to-Earth time of flight 2TOF .  Thus, the design 

variable vector for optimization is 

 



























2

1

0

TOF

T

TOF

T

x
stay

i


 (5.6) 

 With the goal of minimizing IMLEO, the objective function f can take one of two 

forms depending on the restrictions placed on design space.  The first, simple form stems 

from the behavior of Eq. (2.30):  It is plain to see that minimizing ΔV also minimizes m0.  

It then follows that the absolute minimum IMLEO for a two-transfer mission is obtained 

by solely using minimum ΔV burns.  This nullifies the need for mass calculations during 

optimization, and the objective function takes the form  

 
  



n

j

ji Vxf
1


 

(5.7) 

to minimize total ΔV for n transfers. 

The second form of the objective function  

    IMLEOixf


 (5.8) 
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is used to optimize IMLEO directly. This form is necessary because minimum V  burns 

are not always practical.  Manned mission architectures typically specify non-minimum-

ΔV transfers in order to achiever faster transfers that limit crew radiation exposure and 

time spent in zero gravity.  The DRA 5.0 for example, constrains 1TOF  and 2TOF  to less 

than 180 days, which prohibits global minimum energy transfers [9].   

For trajectories with constrained flight times, the minimum total ΔV solution often 

contains individual ΔV’s that are greater than their global optima.  Acknowledging that 

some maneuvers have greater influence on IMLEO than others—the propellant 

requirements of each burn are partially determined by the propellant requirements of all 

future burns—it can be seen IMLEO can be reduced from the minimum ΔV solution by 

decreasing the more influential ΔV’s at the expense of the less important ΔV’s.  For 

illustration purposes, consider the MSR mission from section 3.3 with transfer times 

constrained to 180 days.  Figure 5.1 shows the round-trip minimum ΔV and IMLEO 

solutions for a range of stayT  and freely varying 0T .    
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Fig. 5.1  Minimum ΔV  and IMLEO solutions for a range of stayT  with free variable 

0T  and fixed variables 1TOF  = 2TOF  = 180 days. 

Notice that the global minima of the two solutions do not correspond.  This is because, 

relative to the minimum total ΔV solution, the minimum IMLEO solution has a slightly 

lower ΔVTMI but larger ΔVTEI.  The lower IMLEO is achieved because the propellant mass 

saved from slight ΔVTMI reduction is greater than the propellant mass gained from the 

larger increase in ΔVTEI. 

The only constraints imposed in this study are upper bounds on EI velocities as 

detailed in section 2.6.  While the trajectory algorithm includes Eq. (2.22) to calculate 

burns that slow fast-moving entry capsules to the correct VEI, it is desirable to optimize to 

trajectories that do not require braking burns:  Eliminating braking burns eliminates the 

need for the large propulsive systems that perform those maneuvers, thus lowering 

spacecraft mass.  Here, penalty methods are employed to guide solutions away from 

trajectories that require braking burns.  Note that for missions with greatly reduced flight 
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times, the required high velocity transfers can make omitting braking burns impractical or 

completely infeasible.   

With penalty methods, it is possible for optimizations to converge on constraint-

violating solutions, because solutions that only slightly violate constraints have miniscule 

penalty magnitudes. To guide the optimization away from such solutions, this study 

assesses penalties when VEI > VEI,max-0.1 km/s.  Here, the imposed VEI limits are 

VEI,Earth,lim=12.6 km/s and VEI,Mars,lim=5.9 km/s at Earth and Mars, respectively.  The total EI 

penalty EI  is calculated as  

 
MarsEarthEI    

(5.9) 

where 

 

 
 

            0

lim,,,






EarthEIEarthEIpen

Earth VVC
 

lim,,,  if EarthEIEarthEI VV 

lim,,, if EarthEIEarthEI VV   (5.10) 

 
      

 






lim,,,

0

MarsEIMarsEIpen

Mars VVC
 

lim,,,  if MarsEIMarsEI VV   

lim,,, if MarsEIMarsEI VV   (5.11) 

with penalty constant Cpen.   

In addition to EI , penalties are assessed for infeasible, negative-mass maneuvers, 

as detailed in section 2.6, according to  

 
  

4

,lim,

i

iVV  
(5.12) 

for each propulsive maneuver i.  The penalty for each maneuver is 

 

 
 

            0
,








ipen
iV VC

 
  0   if  ip Vm

  0 if  ip Vm  (5.13) 

where propellant mass mp is calculated according to Eq. (2.32).  Assessing penalties in 

this manner makes the infeasible region artificially costly and thus drives the 
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optimization to the feasible region.  Adding the two types of penalty terms together, the 

total penalty term is  

  
lim, VEI   

(5.14) 

Penalty constants can have any magnitude, and their values greatly affect 

convergence of gradient-based optimization.  However, DE’s selection process makes 

convergence for this study relatively independent of the way Cpen shapes the objective 

function so long as the feasible, constraint-satisfying region of solutions is found.  

Finding the feasible region is not typically difficult for DE, as upwards of 10,000 

different ix


are evaluated for a single run with 1000-generations.  Due to DE’s 

independence from Cpen, this study uses Cpen=10
6
 for both objective functions and Eqs. 

(5.10-5.11) and Eq. (5.13).  Although fine tuning of Cpen could certainly improve 

algorithm performance, chapter 6 will shown that the given strategy is capable of 

producing satisfactory convergence. 

5.2 Computer Implementation 

The given Mars Mission Trajectory Optimization Program (MMTOP) is 

implemented through a series of MATLAB m-files.  The general procedure is given in 

Fig. 5.2.  The flowchart shows the order of operations from left to right, then top to 

bottom.  All sub-operations to the right of a box are completed before moving to the next 

box down; e.g. “Problem setup” and “Variable bounds” operations are completed under 

“Input” before moving on to “Optimization.” 
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Fig. 5.2  Functional organization of the presented trajectory optimization routine. 

 When the main program begins, “Main” calls “Input.”  The Input operations 

consist of establishing the DE parameters and defining ublb xx


  and .  Next, “Main” calls 

the “Optimization” subroutine which contains the core DE algorithm that performs the 

population generation, mutation, crossover, and selection operations.  For each generation 

G, “Optimization” calls the “Evaluation” subroutine for the NP number of design vectors 

 ix


 and evaluates the fitness of  ix


with an objective function in the form of Eq. (5.7) or 

Eq. (5.8).   

 “Evaluation” first calculates the event dates through Eqs. (5.2-5.5). Next, the 

planet states are calculated from static ephemerides.  Planet states are then given as 

inputs, along with TOF1 and TOF2, to “Lambert” which solves for transfer velocity 

parameters.  The “ V  budget” subroutine computes V requirements of each mission 

leg with the relations given in section 2.5.  If the objective function is Eq. (5.8), the 
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“Mass budget” subroutine calculates the mass requirements for each leg of the mission 

via Eq. (2.32) and the specified spacecraft masses from sections 3.2-3.3.  Mass 

calculations are carried out in reverse chronological order of the mission timeline, as the 

propellant requirements of each maneuver are dependent on the tank, propellant, and 

structure masses associated of all subsequent maneuvers. 

 The “Penalties” subroutine assesses penalties based EI requirements as detailed in 

section 5.1.  Velocity parameters of high energy trajectories can be so great that no 

feasible transfer exists that yields max,EIEI VV   unless a braking burn is employed.  In this 

case the algorithm will still run, but the objective function geometry will be distorted 

such that it no longer accurately depicts the V  or IMLEO requirements of any given ix


.   

 Once the maximum number of generations is reached, “Optimization” passes the 

best  ix


to “Output.”  The “Output” subroutine then calculates V and mass budgets for 

the mission, and it produces a video or static plot of each interplanetary transfer.  The 

mass budget includes STPCS mmmm   and , , ,/  for each propulsive maneuver as well as 

fmm   and 0  for each leg of the mission.  The V  budget includes each V  for trans-

planetary injection, OI, and braking burn as well as EIV
 
values that indicate the success of 

matching EI conditions. 
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CHAPTER 6: RESULTS 

6.1 Benchmarking 

 Before MMTOP can be applied to the MSR mission from chapter 3, MMTOP 

effectiveness must first be benchmarked by comparing the physical model and 

optimization routine with results of published literature.  Of the trajectory studies 

referenced thus far, [26]—which uses the Jet Propulsion Laboratory (JPL) QUICK 

mission analysis software—is the most appropriate for comparison due to similarities in 

mission design.  Table 6.1 presents optimization results from [26] and MMTOP for 

several mission variations.  The bounds used for MMTOP trials are 200 QUICKlb xx


 

and 200 QUICKub xx


 where QUICKx


 is the optimum solution from the JPL software.  

Because [26] optimizes for 3C  only, the MMTOP objective function is set to match:  

optimizing for 3C  is very similar to Eq. (5.7) without the penalty term and the OI burns. 
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Table 6.1  Comparison of QUICK and MMTOP results for selected architectures. 

Mission 

variation 
Parameter QUICK MMTOP 

1 

T0 (month, day, year) [9 23 2007] [9 23 2007] 

TOF1 (days) 209 210 

Tstay (days) 490 486 

TOF2 (days) 261 263 

Earth-to-Mars 3C (km
2
/s

2
) 18.8 18.8 

Mars arrival -
V  (km/s) 3.9 3.9 

Mars-to-Earth 3C (km
2
/s

2
) 9.4 12.3 

Earth arrival -
V  (km/s) 3.2 3.4 

2 

T0 (month, day, year) [12 27 2013] [12 27 2013] 

TOF1 (days) 208 208 

Tstay (days) 495 495 

TOF2 (days) 237 237 

Earth-to-Mars 3C (km
2
/s

2
) 9 9 

Mars arrival -
V  (km/s) 5.3 5.4 

Mars-to-Earth 3C (km
2
/s

2
) 5.6 5.7 

Earth arrival -
V  (km/s) 5.2 5.3 

3 

T0 (month, day, year) [5 17 2018] [5 17 2018] 

TOF1 (days) 235 235 

Tstay (days) 516 516 

TOF2 (days) 191 191 

Earth-to-Mars 3C (km
2
/s

2
) 7.7 7.7 

Mars arrival -
V  (km/s) 3.3 3.3 

Mars-to-Earth 3C (km
2
/s

2
) 11.4 11.5 

Earth arrival -
V  (km/s) 3.3 3.3 

 Table 6.1 shows that the optimized QUICKx


 and MMTOPx


 are very similar for each 

mission option.  Time variables never differ by more than four days, and 3C  and -

V  

values are nearly identical except for the return leg in the first mission variable.  The 
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closeness of the solutions shows that MMTOP produces results highly similar to industry 

software and is therefore acceptable for use with new mission architectures and timelines. 

6.2 MSR Design Space, Optima, and Model Verification 

MMTOP optimizations for V  and IMLEO are carried out for every combination 

of the four population sizes NP: 10, 20, 30, and 40 and the five crossover probabilities 

CR: 0.2, 0.4, 0.6, 0.8, and 1.  Each combination is tested on several different design 

spaces in order to test algorithm effectiveness with different mission structures.  The 

different design spaces considered are given in Table 6.2. 

Table 6.2  Optimization scenarios. 

  Design variable bounds 

Case Obj. function T0 (year)* TOF1 (days) Tstay (days) TOF2 (days) 

A ΔV [2026 2052] [60 1095] [1400 2500] [60 1095] 

B IMLEO [2020 2052] [60 1095] [1400 2500] [60 1095] 

C ΔV [2026 2029] [60 1095] [1400 2500] [60 1095] 

D IMLEO [2026 2029] [60 1095] [1400 2500] [60 1095] 

E ΔV [2026 2029] [60 180] [1400 2500] [60 180] 

F IMLEO [2026 2029] [60 180] [1400 2500] [60 180] 

G ΔV [T0,opt ± 5]** [TOF1,opt ± 5] [Tstay,opt ± 5] [TOF2,opt ± 5] 

H IMLEO [T0,opt ± 5]** [TOF1,opt ± 5] [Tstay,opt ± 5] [TOF2,opt ± 5] 

*The lower bound is Jan. 1
st
 of the first year, and the upper bound is Dec. 31

st
 of the second year. 

**Units in days.  All bounds for these trials are days 5optx


 where optx


 is the optimum for cases A-D 

(minimum energy transfers). 

The bounds on cases A-D and G-H allow for optimization to global minimum 

V  transfers, whereas cases E-F restrict the solution space to non-global minima.  Cases 
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A-B test over a 32-year timespan which contains two 15-year synodic periods.  Cases C-

F test over a 3-year timespan that contains the global optimum of the 32-year window—

Fig. 6.1 shows the approximate optima for missions with unconstrained flight times in 

each 2.1-year period in 2020-2050. 

 

Fig. 6.1  Approximate optima for unconstrained-TOF missions in each 2.1-year 

synodic period within the 2020-2050 timeframe. 

Cases G-H bound each design variable to ± 5 days from the optimum value from cases A-

D: the idea here is to use the results of one of the trials with large design spaces, i.e. cases 

A-D, to define bounds for cases G-H.   

In addition to judging success as convergence on the best-known minimum V  

or IMLEO, results are presented based on each solution’s proximity to the optimum optx


.  

The three success criteria are detailed in Table 6.3.   
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Table 6.3  Success criteria definitions. 

Designation Criteria 

D1 m/s 1 optrun VV  

D2 kg 1IMLEOIMLEO  optrun
 

D3     days 5
4

1


i

optrun ixix


 

Criterion D3 measures algorithm’s ability to locate the general location of the optimal 

solution.  Knowledge of D3 performance is extremely useful:  If an optimization trial 

over a large design space results in an trialx


 only a limited distance from optx


, then trialx


 

can be used to define a reduced design space with 5 optlb xx


 and 5 optub xx


 for a 

second optimization.  Because DE depends on random numbers to generate and vary its 

population, reducing the design space greatly increases the probability of creating a trial 

vector opti xu


 , i.e. successfully optimizing D1 and D2.  

The optx


 for each optimization scenario in Table 6.2 is given in Table 6.4, and 

detailed V  budgets are given in Table 6.5.  Notice that the global optimum launch 

opportunity for the [2020 2052] window is in 2026, and thus optx


 is identical for cases A-

D and G-H.  Also note that for the constrained cases E-F, the optimum IMLEO solution 

has a greater total V than the optimum V  solution. 
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Table 6.4  Optimum design variable configurations for design spaces in Table 6.2. 

 Performance measures Design variables 

Case 
ΔV 

(km/s) 
IMLEO (kg) 

T0 

(mo., day, year) 

TOF1 

(days) 

Tstay 

(days) 

TOF2 

(days) 

A 7.857 36,926 [11 11 2026] 271.6 1,998.2 217.4 

B 7.857 36,926 [11 11 2026] 271.6 1,998.2 217.4 

C 7.857 36,926 [11 11 2026] 271.6 1,998.2 217.4 

D 7.857 36,926 [11 11 2026] 271.6 1,998.2 217.4 

E 10.453 77,060 [12 13 2026] 180.0 2,079.7 180.0 

F 10.493 76,148 [12 18 2026] 180.0 2,074.7 180.0 

G 7.857 36,926 [11 11 2026] 271.6 1,998.2 217.4 

H 7.857 36,926 [11 11 2026] 271.6 1,998.2 217.4 

Table 6.5  V  budget for the optimum mission in each design space. 

Case A-D & G-H E F 

C3 (km
2
/s

2
) 10.502 30.947 37.254 

TMIV (km/s) 3.660 4.527 4.783 

MOIV (km/s) 2.212 3.813 3.598 

TEIV (km/s) 1.985 2.113 2.113 

EOIV (km/s) 0 0 0 

Total V (km/s) 7.857 10.453 10.493 

Recall that due to the time required to perform an exhaustive examination of tuning 

parameters and the impracticality of type 2 transfers with cases E-F, this thesis limits 

trajectories to type 1 transfers.   For cases A-D and G-H, it is likely that type 2 transfers 

would yield lower V  requirements [24,26]. 

The optimum trajectories for cases A-D and G-H are plotted in Figs. 6.2-6.3, and 

the optimum trajectories for case E are given in Figs. 6.4-6.5.  Plots for case F optima are 

not given, as they are visually indistinguishable from Figs. 6.4-6.5.   
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Fig. 6.2  Optimum Earth-to-Mars transfer for Cases A-D and G-H. 

 

Fig. 6.3  Optimum Mars-to-Earth transfer for Cases A-D and G-H. 
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Fig. 6.4  Optimum Earth-to-Mars transfer for Case E. 

 

Fig. 6.5  Optimum Mars-to-Earth transfer for Case E. 

In order to assess the accuracy calculated optima, it is desirable to compare 

optimization results to published trajectories.   The trajectories in cases A-D and G-H can 
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be compared to data from NASA’s Interplanetary Mission Design Handbook (IMDH) 

which uses the MIDAS patched-conic trajectory optimization program and coplanar 

injection maneuvers [24] similar to MMTOP.  The IMDH states that the optimal type 1 

Earth-to-Mars trajectory in 2026, identical to the conditions specified by case A in this 

study, has 0T =[11 14 2026], 1TOF =268 days, and C3=11.1 km
2
/s

2
:   

Although the C3 values from MMTOP and the IMDH differ by a non-negligible 

amount, the similarities between the two studies’ T0 and TOF1 solutions indicate 

agreement on the general location of the optimum.  The three-day discrepancy between 

solutions can possibly be explained by the MMTOP assumptions introduced in sections 

2.4-2.5 or the use of different planet ephemerides.  MIDAS and MMTOP both calculate 

planet states analytically from ephemerides, but the IMDH does not specify which 

particular set of ephemerides it uses.  NASA has published several sets of ephemerides 

over the past decade, some more accurate than others [50].  

Unfortunately, no suitable publications were found to validate the MMTOP model 

for cases E-F.  Several resources, such as a NASA Johnson Space Center Exploration 

Office study [25], give energies and entry speeds for round trip Mars missions, but the 

bounds placed on trajectories do not coincide with the bounds considered for this study.  

[24] gives an optimal C3=20.90 km
2
/s

2
 for a 180-day Earth-to-Mars transfer but allows a 

Mars EIV =7.76 km/s, well above the 6 km/s limit imposed in this study.  Such 

inconsistencies prevent direct comparison of the physical models of each study.   

While unable to validate the physical model for cases E-F, optimization routine 

effectiveness can be demonstrated by comparing the solution space mapping in Figs. 6.6-

6.8 with the MMTOP optima given in Table 6.4.  Figure 6.6 maps the IMLEO values of 
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the minimum IMLEO and V  solutions for trajectories with 180-day transfers, 

 2500,0stayT  days, and 0T  allowed to vary on the range [250,450].  Figure 6.7 shows 

an enlarged view of the global minima region from Fig. 6.6, and Fig. 6.8 shows V  

values of the same region.  The global minima in Fig. 6.6-6.8 are the same as the 

MMTOP optima given in Table 6.4, thus verifying the algorithm’s success. 
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Fig. 6.6  IMLEO of minimized IMLEO  and total V  missions with 180-day 

transfers. 
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Fig. 6.7  IMLEO of minimum IMLEO and minimum V  solutions with 180-day 

transfers. 
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Fig. 6.8  V  of minimum IMLEO and minimum V  solutions with 180-day 

transfers.  

6.3  DE Optimization Results 

Several operations in the DE routine rely on random uniform distributions, and 

consequently, the optimization results of a series of trials are not typically identical.  [31] 
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showed that results of separate 1000-trial runs are sufficiently similar, so the 1000-trial 

strategy is used here in all but cases E-F.  Unfortunately, due to an error found late in the 

compilation of this study, trials for cases E-F had to be repeated with only 100 trials per 

run.  While the limited run number decreases statistical accuracy, the results still give 

indications of the general performance. 

Optimizations are run for each tuning parameter configuration and mission case.  

Depending on the effectiveness of a given tuning parameter configuration, results of each 

set of 1000 trials can be characterized in several different ways.  Figures 6.8-6.10 show 

several typical outcomes.  Figure 6.8 shows results for a parameter configuration with 

good convergence: A large number of solutions are clustered near the best-known 

optimum.   
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Fig. 6.9  Histogram of IMLEO results for 1000 runs on case D with CR=0.2 and 

NP=30. 

The clustering near the optimum indicates that many trials successfully find the general 

location of the optimum but do not fully converge on it.  Table 6.6 shows that these 
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solutions may be very close to the optx


 as only minor deviations from optx


 can result in 

significant increases in IMLEO and V . 

Table 6.6  Sensitivity of objective functions to minor deviations from optimal design 

variation. 

T0 

(mo., day, year) 

TOF1 

(days) 

Tstay 

(days) 
TOF2 (days) 

IMLEO 

(kg) 

Total ΔV 

(km/s) 

[11 11 2026] 271.57 1998.16 217.45 36,926 7.8580 

[11 12 2026] 270.57 1998.16 217.45 37,099 7.8874 

[11 13 2026] 269.57 1998.16 217.45 37,208 7.9004 

[11 14 2026] 268.57 1988.16 217.45 37,321 7.9133 

[11 11 2026] 271.57 1998.16 216.45 36,927 7.8582 

[11 11 2026] 271.57 1998.16 215.45 36,930 7.8587 

Figure 6.9 shows typical optimization results for poor tuning parameters.  In this case, 

MMTOP fails to converge on the true optimum (see Table 6.6) in any trial, but a large 

number of trials converge on a local minima.   
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Fig. 6.10  Histogram of results for 1000 runs on case D with CR=0.8 and NP=20. 

Figure 6.10 shows results for a set of trials that completely fail to optimize to the 

problem.   
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Fig. 6.11  Histogram of results for 1000 runs on case D with CR=1 and NP=10. 

 Tables 6.7-6.22 present results for each design case.  Criteria D1 and D3 are 

applied to V  optimizations, and criteria D2 and D3 are applied to IMLEO 

optimizations.  With each criterion, performance of each set of tuning parameters can 

largely be judged by the time per trial trialT  and the success rate SP .  To combine the two 

terms into a more useful performance parameter we introduce %95T , the time required to 

optimize to a 95% confidence level.  The 95% confidence time is given by 

  
 S

trial
P

TT





1log

95.01log
%95  (6.1) 

The best parameter configurations yield low Ttrial, high SP , and thus low %95T . 

 Tables 6.7-6.8 give the performance for case A optimization for total V  over a 

32-year launch window.  To reliably optimize to the minimum total V , MMTOP 

requires a minimum of 18.13 minutes; however, the D3 criterion is met with 95% 

confidence in just 2.12 minutes. 
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Table 6.7  Performance data for case A with success criteria D1. 

CR NP = 10 NP = 20 NP = 30 NP = 40 

Frequency of success (%) 

0.2 1.9 - - - 

0.4 2.7 1.4 0.9 1.0 

0.6 1.6 1.7 - - 

0.8 0.9 2.2 - - 

1 - - 0.7 - 

Average time per trial (s) 

0.2 11.7 20.1 27.4 36.4 

0.4 9.8 19.9 29.8 39.7 

0.6 10.0 19.9 29.8 40.6 

0.8 10.0 19.9 29.8 39.8 

1 10.4 21.5 29.8 39.5 

95% confidence time (min) 

0.2 30.97 - - - 

0.4 18.13 70.00 161.14 203.46 

0.6 31.12 57.30 - - 

0.8 53.60 45.08 - - 

1 - - 212.09 - 

Table 6.8  Performance data for case A with success criteria D3. 

CR NP = 10 NP = 20 NP = 30 NP = 40 

Frequency of success (%) 

0.2 4.7 2.9 1.2 5.0 

0.4 20.6 20.0 25.4 30.5 

0.6 12.9 25.3 25.5 31.3 

0.8 6.1 22.1 20.6 31.4 

1 - 0.9 4.3 13.7 

95% confidence time (min) 

0.2 12.09 33.76 110.34 35.70 

0.4 2.12 4.44 5.09 5.46 

0.6 3.61 3.41 5.06 5.39 

0.8 7.98 3.97 6.44 5.28 

1 - 118.85 34.06 13.38 

Tables 6.9-6.10 give the performance for case B.  Reliably optimizing for minimum 

IMLEO over the 32-year timeframe requires 18.95 minutes, but locating the general area 

of the optimum only requires 2.21 minutes.   
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Table 6.9  Performance data for case B with success criteria D2. 

CR NP = 10 NP = 20 NP = 30 NP = 40 

Frequency of success (%) 

0.2 - - - - 

0.4 2.6 3.1 3.8 3.9 

0.6 1.4 0.8 - - 

0.8 - - - - 

1 - - 1.3 - 

Average time per trial (s) 

0.2 10.5 19.3 28.5 39.4 

0.4 10.0 20.0 30.4 46.2 

0.6 10.2 20.9 31.6 42.3 

0.8 10.4 20.5 30.5 40.9 

1 10.3 20.2 30.6 41.2 

95% confidence time (min) 

0.2 - - - - 

0.4 18.95 31.24 38.79 57.88 

0.6 36.85 125.14 - - 

0.8 - - - - 

1 - - 117.63 - 

Table 6.10  Performance data for case B with success criteria D3. 

CR NP = 10 NP = 20 NP = 30 NP = 40 

Frequency of success (%) 

0.2 0.7 - - - 

0.4 20.2 31.4 32.1 42.9 

0.6 8.6 24.3 38.3 52.7 

0.8 2.3 14.1 29.3 29.5 

1 - - 6.1 13.0 

95% confidence time (min) 

0.2 72.76 - - - 

0.4 2.21 2.65 3.93 4.13 

0.6 5.64 3.75 3.26 2.82 

0.8 22.30 6.73 4.38 5.84 

1 - - 24.18 14.80 

Tables 6.11-6.12 detail performance for case C.  Here, the design space is 

restricted to a single 2.1-year synodic period.  The smaller design space naturally yields 
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superior convergence to case A. Case C has a minimum 56.4%95 T  minutes for V  but 

a much lower 38.0%95 T  minutes for optimizing with criterion D3. 

Table 6.11  Performance data for case C with success criteria D1. 

CR NP = 10 NP = 20 NP = 30 NP = 40 

Frequency of success (%) 

0.2 7.2 19.0 19.4 23.6 

0.4 9.7 12.3 0.6 - 

0.6 7.0 3.5 - - 

0.8 5.8 8.6 - - 

1 - 1.4 9.2 5.1 

Average time per trial (s) 

0.2 10.3 19.9 28.2 37.5 

0.4 9.4 18.7 28.0 37.7 

0.6 10.6 19.9 28.2 39.9 

0.8 9.8 19.5 29.7 40.4 

1 9.9 19.7 29.7 42.1 

95% confidence time (min) 

0.2 6.85 4.74 6.56 6.94 

0.4 4.56 7.11 240.48 - 

0.6 7.36 27.82 - - 

0.8 8.21 10.83 - - 

1 - 69.24 15.32 40.27 

Table 6.12  Performance data for case C and success criteria D3. 

CR NP = 10 NP = 20 NP = 30 NP = 40 

Frequency of success (%) 

0.2 38.8 61.3 68.1 79.3 

0.4 52.7 91.4 99.6 100 

0.6 35.0 82.2 92.1 97.4 

0.8 20.1 72.1 84.2 86.9 

1 - 6.5 36.8 64.0 

95% confidence time (min) 

0.2 1.04 1.05 1.23 1.19 

0.4 0.62 0.38 0.47 0.63 

0.6 1.23 0.57 0.56 0.55 

0.8 2.18 0.77 0.80 0.99 

1 - 14.56 3.23 2.05 
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 Similar to the relationship between cases A and C, case D convergence is superior 

to B, locating the area of the general solution in just 0.66 minutes.  Note in Table 6.13, 

however, that IMLEO optimization for case D requires 7.01%95 T  minutes as opposed 

to 4.56%95 T   minutes for the case C V  optimization.  

Table 6.13  Performance data for case D with success criteria D2. 

CR NP = 10 NP = 20 NP = 30 NP = 40 

Frequency of success (%) 

0.2 3.6 6.8 17.5 11.2 

0.4 5.8 7.1 1.6 0.7 

0.6 5.2 2.7 0.6 - 

0.8 4.5 - - - 

1 - 0.8 12.5 4.5 

Average time per trial (s) 

0.2 9.2 18.0 26.9 37.0 

0.4 10.1 20.6 30.2 39.8 

0.6 9.8 19.6 29.5 39.3 

0.8 9.9 19.6 29.5 39.3 

1 9.8 19.6 29.6 43.1 

95% confidence time (min) 

0.2 12.58 12.73 7.01 15.54 

0.4 8.38 13.89 95.92 278.99 

0.6 9.16 35.69 240.77 - 

0.8 10.70 - - - 

1 - 126.69 11.06 46.73 
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Table 6.14  Performance data for case D and success criteria D3. 

CR NP = 10 NP = 20 NP = 30 NP = 40 

Frequency of success (%) 

0.2 31.4 40.2 52.7 54.1 

0.4 52.7 80.7 90.7 98.8 

0.6 28.2 68.4 80.8 90.2 

0.8 15.4 53.0 72.8 82.7 

1 - 4.8 30.7 65.3 

95% confidence time (min) 

0.2 1.62 2.34 2.40 3.17 

0.4 0.90 0.83 0.84 0.66 

0.6 1.99 1.15 1.20 1.14 

0.8 3.94 1.75 1.51 1.49 

1 - 27.32 5.34 2.71 

Cases E-F present some analysis difficulties, as there is no standard for validation 

of model accuracy.  Due to lack of literature sources that use similar trajectory bounds, 

Tables 6.15-6.18 should only be regarded as measuring the DE routine’s effectiveness 

with the adopted physical model.  The optima used for success definitions are taken from 

Fig. 6.5-6.7.  Using these definitions, Tables 6.15-6.18 show exceptional convergence 

with SP =100% and optimization to 95% confidence in just 9 seconds.   
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Table 6.15  Performance data for case E with success criteria D1. 

CR NP = 10 NP = 20 NP = 30 NP = 40 

Frequency of success (%) 

0.2 100 100 100 100 

0.4 92 100 100 100 

0.6 72 100 100 100 

0.8 93 100 100 100 

1 - - 18 59 

Average time per trial (s) 

0.2 9.2 17.9 26.9 35.6 

0.4 9.0 18.0 26.9 35.8 

0.6 9.0 17.9 26.9 35.6 

0.8 8.9 17.9 26.7 35.6 

1 9.0 17.9 26.8 35.8 

95% confidence time (min) 

0.2 0.15 0.30 0.45 0.59 

0.4 0.18 0.30 0.45 0.60 

0.6 0.35 0.30 0.45 0.59 

0.8 0.17 0.30 0.45 0.59 

1 - - 6.75 2.00 

Table 6.16  Performance data for case E and success criteria D3. 

CR NP = 10 NP = 20 NP = 30 NP = 40 

Frequency of success (%) 

0.2 100 100 100 100 

0.4 100 100 100 100 

0.6 100 100 100 100 

0.8 100 100 100 100 

1 18 32 75 93 

95% confidence time (min) 

0.2 0.15 0.30 0.45 0.59 

0.4 0.15 0.30 0.45 0.60 

0.6 0.15 0.30 0.45 0.59 

0.8 0.15 0.30 0.45 0.59 

1 2.25 2.31 0.97 0.67 
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Table 6.17  Performance data for case F with success criteria D2. 

CR NP = 10 NP = 20 NP = 30 NP = 40 

Frequency of success (%) 

0.2 90 100 100 100 

0.4 100 100 100 100 

0.6 100 100 100 100 

0.8 53 100 100 100 

1 - 9 44 61 

Average time per trial (s) 

0.2 9.6 78.8 27.2 36.5 

0.4 9.2 18.1 27.1 36.1 

0.6 9.1 18.1 27.1 36.1 

0.8 9.2 18.1 27.2 36.0 

1 90.0 18.0 27.0 36.0 

95% confidence time (min) 

0.2 0.21 0.31 0.45 0.61 

0.4 0.15 0.30 0.45 0.60 

0.6 0.15 0.30 0.45 0.60 

0.8 0.60 0.30 0.45 0.60 

1 - 9.53 2.32 1.91 

Table 6.18  Performance data for case F and success criteria D3. 

CR NP = 10 NP = 20 NP = 30 NP = 40 

Frequency of success (%) 

0.2 100 100 100 100 

0.4 100 100 100 100 

0.6 100 100 100 100 

0.8 68 100 100 100 

1 - 63 75 100 

95% confidence time (min) 

0.2 0.16 0.31 0.45 0.61 

0.4 0.15 0.30 0.45 0.60 

0.6 0.15 0.30 0.45 0.60 

0.8 0.40 0.30 0.45 0.60 

1 - 0.90 0.97 0.60 

 Tables 6.19-6.20 give the performance of cases G-H.  The favorable SP  and %95T  

again suggest the potential of using narrow-bounded optimizations after runs with large 

design spaces as discussed in section 6.2:  The optx


from large design spaces, such as 
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those in cases A-D, yield values from which lbx


 and ubx


 can be constructed for rapid, 

narrow-bounded optimizations similar to cases G-H.  Evidencing the rapid convergence 

in such optimizations, case G optimization to minimum total V  only requires 

%95T =0.88 minutes, and case H optimization of IMLEO requires %95T =0.90 minutes. 

Table 6.19 Performance data for case G with success criteria D1. 

CR NP = 10 NP = 20 NP = 30 NP = 40 

Frequency of success (%) 

0.2 42.9 36.4 7.3 - 

0.4 6.8 - - - 

0.6 48.4 - - - 

0.8 27.5 - - - 

1 15.2 26.1 8.5 - 

Average time per trial (s) 

0.2 9.8 18.1 27.5 38.0 

0.4 9.5 19.0 28.5 39.5 

0.6 9.7 19.4 29.1 39.7 

0.8 9.7 19.3 29.0 38.6 

1 9.6 19.3 28.9 38.6 

95% confidence time (min) 

0.2 0.88 2.00 18.06 - 

0.4 6.73 - - - 

0.6 0.73 - - - 

0.8 1.50 - - - 

1 2.92 3.19 16.20 - 
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Table 6.20 Performance data for case H with success criteria D2. 

CR NP = 10 NP = 20 NP = 30 NP = 40 

Frequency of success (%) 

0.2 40.1 35.6 7.0 - 

0.4 6.8 - 8.4 - 

0.6 23.7 - - - 

0.8 27.1 7.4 - - 

1 32.7 24.1 20.3 - 

Average time per trial (s) 

0.2 9.3 18.3 27.6 36.6 

0.4 9.8 19.7 29.6 39.3 

0.6 9.8 19.9 29.4 39.1 

0.8 9.8 19.6 29.3 39.4 

1 9.7 20.1 30.0 39.1 

95% confidence time (min) 

0.2 0.90 2.07 18.91 - 

0.4 7.00 - 16.81 - 

0.6 1.81 - - - 

0.8 1.56 12.71 - - 

1 1.22 3.64 6.61 - 

 Table 6.21 gives the best SP  and %95T  achieved for each optimization case and 

performance criteria.  Cases A-B prove the most difficult to optimize because of the 

larger design space; however, MMTOP reliably locates the basin of attraction in 2.12 

minutes and 2.21 minutes when optimizing for V  and IMLEO, respectively.  Further, 

the narrow-bounded cases G-H reliably optimize V  and IMLEO in 0.73 and 0.90 

minutes, respectively.  Again, pairing optimizations over the bounds in cases A-B with 

narrow-bounded trials like cases G-H, the global minimum energy trajectory in a 32-year 

launch window can be found in just 2.85 minutes when optimizing for V  and 3.11 

minutes when optimizing IMLEO.  If only optimizing over a 3-year launch window, then 

the optima are found in 1.09 and 1.56 minutes, respectively. 
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Table 6.21  Best results of all design space cases and success criteria. 

Performance 

measure 
Case D1 D2 D3 

PS (%) 

A 2.7 - 31.4 

B - 3.9 52.7 

C 23.6 - 100 

D - 17.5 98.8 

E 100 - 100 

F - 100 100 

G 48.4 - - 

H - 40.1 - 

T95% (min) 

A 18.13 - 2.12 

B - 18.95 2.21 

C 4.56 - 0.38 

D - 7.01 0.66 

E 0.15 - 0.15 

F - 0.15 0.15 

G 0.73 - - 

H - 0.90 - 

Table 6.22 gives the tuning parameter configurations that correspond to the %95T  

results in Table 6.21.  The settings NP=10 and CR=0.4 generally—but not always—yield 

the best performance.   



92 

 

Table 6.22  Best tuning parameter configurations for all design spaces and success 

criteria. 

Tuning 

parameter 
Case D1 D2 D3 

NP 

A 10 - 10 

B - 10 10 

C 10 - 20 

D - 30 40 

E 10 - 10 

F - 10 10 

G 10 - - 

H - 10 - 

CR 

A 0.4 - 0.4 

B - 0.4 0.4 

C 0.4 - 0.4 

D - 0.2 0.4 

E 0.2 - 0.2 

F - 0.4 0.4 

G 0.6 - - 

H -- 0.2 - 

The tuning parameter data in Table 6.22 disagrees with [31] that CR=0.6 yields the best 

results for a round-trip Mars mission, and CR=0.8 produces the best convergence overall.  

The disagreement can possibly be explained by two differences in analysis methods:  

Olds et al. only tested one trajectory problem with CR=0.4, and the problems tested 

generally had more than four design variables.  [31] also concluded that NP=28 was best 

for Mars missions, while this thesis found that the much lower NP=10 provided the 

fastest reliable convergence. 
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CHAPTER 7: CONCLUSION 

By combining the performance of test-proven nuclear thermal rockets, modern 

developments in fuel fabrication, a simplified solar system model, and the stochastic 

Differential Evolution optimization routine, a Mars sample return mission is designed and 

optimized.  The mission plan develops and flight-proves nuclear thermal rockets—which 

enable human exploration past the moon—at the relatively low cost of $100 million and 

completes a major goal of the U.S. space program. To aid mission design, the DE-based 

MMTOP is constructed to be a robust, efficient optimization tool for preliminary 

trajectory/mission planning.  In order to characterize performance capabilities and make 

MMTOP more useful for future mission planning, a thorough study of tuning parameters’ 

effects on convergence is conducted for constrained and unconstrained trajectories. 

Pairing the extensive engineering knowledge gained from the NERVA program 

with modernized fuels, a $700 million plan is presented for developing a Pewee-derived 

NTR.  The engine uses W-Re cermet fuel and is implemented on the near-term MSR 

mission as outlined by the 2010 PSDS.  Because the Pewee-derived engine roughly 

doubles the performance of the best chemical propulsion systems of today, using the 

NTR for TMI decreases IMLEO requirements to 36.9 MT:  The roughly 10 MT decrease 

in IMLEO from the PSDS architecture thus allows the NTR-augmented mission to 

employ a single SpaceX Falcon Heavy launch vehicle as opposed to the PSDS’s three 

Altas V’s.  The resulting $600 million savings in launch costs thus pays for the majority 

of the Pewee-derived NTR development.   
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MMTOP uses penalty methods and several physical model approximations to 

facilitate rapid, practical optimization. The patched-conic and zero sphere of influence 

dynamics models allow rapid trajectory computation with accuracy sufficient for 

preliminary planning.  After the initial trajectory computation, penalty functions are 

applied in order to make constraint-violating solutions appear artificially costly during 

the DE selection process; in this way, MMTOP disallows optimization to infeasible and 

impractical trajectories.  Benchmarking with JPL’s QUICK software shows that both the 

physical model and optimization routine of MMTOP are capable of producing results that 

are practically identical to industry optimization software.   

A thorough study of the effects of the main DE tuning parameters CR and NP 

found the overall—but not universally—best configuration for round-trip Mars missions 

has CR=0.4 and NP=10.  These results disagree with conclusions of Olds et al. that 

CR=0.6 and NP=28 yield the best convergence for Mars missions.  Discrepancies can be 

traced to differences in parking orbit specification and problem definition, but this further 

proves the idea that the effectiveness of a given tuning parameter configuration is highly 

dependent on the problem being solved.   

Running optimizations on a 3.2 GHz Intel i5 processor, CPU time is 

approximately equal to NP for DE runs of 1000 generations.  The best results achieved 

for each trajectory problem have success rates ranging 2.7-100% for direct optimization 

of the objective function and success rates of 31.4-100% for locating the basin of 

attraction of the global optima.  Generally, smaller design spaces yield much better 

convergence.  Using this knowledge, a strategy of conducting two MMTOP 

optimizations in series is proposed for fast, reliable optimization of large design spaces:  
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1) Run MMTOP once over the entire design space to locate the basin of attraction.  2)   

Run MMTOP a second time with narrow design space bounds that are defined by the 

results of the first run.  In this manner, MMTOP reliably optimizes V  in 1.09 minutes 

and IMLEO in 1.56 minutes for a 3-year launch window.  For a 32-year launch window, 

V  and IMLEO are reliably optimized in 2.85 and 3.11 minutes, respectively.   

While this study attempts to address the most major issues in mission design and 

DE trajectory optimization, there are still ways that MMTOP and the given mission 

design can be improved.  For future mission designs, the author advises specifying 

detailed parking orbit parameters, landing site latitudes, and other similar trajectory 

conditions, as such considerations can require propulsive burns that were not considered 

in this study.  For future implementation of MMTOP, convergence could potentially be 

improved by using alternate DE differencing schemes, larger maximum generation 

numbers, and adaptive parameter control methods:  The latter two options actually 

increase optimization time, but the algorithm robustness increases as well.  In 

optimizations of unknown design spaces, the importance of robustness greatly outweighs 

that of optimization time.   
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