
PATTERN RECOGNITION OF
MIXED SIGNALS USING

GUIDED UNDER-DETERMINED
SOURCE SIGNAL SEPARATION

A Thesis presented to the Faculty of the Graduate School

University of Missouri

In Partial Fulfillment

Of the Requirements for the Degree

Master of Science

by

LUIS ALBERTO RIVERA ESTRADA

Dr. Guilherme N. DeSouza, Thesis Advisor

DECEMBER 2011



The undersigned, appointed by the dean of the Graduate School, have

examined the thesis entitled

PATTERN RECOGNITION OF MIXED SIGNALS USING GUIDED

UNDER-DETERMINED SOURCE SIGNAL SEPARATION

Presented by Luis Alberto Rivera Estrada,

a candidate for the degree of Master of Science,

and hereby certify that, in their opinion, it is worthy of acceptance.

Dr. Guilherme DeSouza, Associate Professor, Dept. of Electrical and Computer
Engineering

Dr. Satish Nair, Professor, Dept. of Electrical and Computer Engineering

Dr. Chi-Ren Shyu, Professor, Dept. of Computer Science



To my family, my friends, and my country, Guatemala.



ACKNOWLEDGEMENTS

I would like to thank:

God, for all the blessings I have received throughout my life.

My parents Julio and Rosalinda, for their love and unconditional support; for being

such great role models; and for everything they have taught me.

My family, particularly my sisters, aunts, uncles, cousins, nieces and brother in law,

for always being there for me and for their affection.

My advisor, Professor Guilherme DeSouza, for his guidance and for everything he

has allowed me to learn, and for his encouragement and support for me to continue

with my studies.

Darren Gabbert and Dinal Andreasen, for their insights throughout the develop-

ment of this research. Also, for lending me the EMG switches that were used for the

tests.

All the test subjects and everyone else who helped me develop this work.

Fulbright and LASPAU Academic and Professional Programs for the Americas, for

giving me the opportunity to pursue my Master’s degree here at Mizzou.

Universidad Del Valle de Guatemala, its authorities, and my former teachers and
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ABSTRACT

In typical problems involving pattern recognition, the challenge lies in selecting a good

set of features and in devising a reliable algorithm to recognize any particular vector

of such features. In general, even when noise is present in the feature vectors, a single

pattern naturally emerges from the domain, and the goal becomes to find the class of

patterns that most resemble the observed vector. In many other cases, however, various

patterns emerge at the same time, and the complexity of the problem increases since

the patterns must now be separated before they can be classified. In this research, we

propose a new technique, called Guided Under-determined Source Signal Separation

(GUSSS), for recognizing patterns in mixtures of signals. Our proposed method is

not only capable of dealing with mixtures of signals, but it also requires a single mea-

surement to do so. Traditional techniques for signal separation, such as Independent

Component Analysis (ICA), require the number of measurements to equal the number

of sources. In our method, however, only one single measurement is required despite

the existence of multiple patterns mixed in the measurement. We tested our method

using two different frameworks: classification of chemical compounds using Terahertz

signatures; and recognition of hand gestures using surface Electromyographic signals

(sEMG) in Robotic Assistive Technology. Our experimental results demonstrate that

the proposed technique achieves very good results using a small number of features.

xii



Chapter 1

Introduction

1.1 Problem Statement

The ability to detect specific patterns in a signal is beneficial in many different areas

such as material detection and assistive technology. In material detection, being able

to recognize signatures indicating the presence of explosives or illegal substances is very

important. Much effort has been made to detect improvised explosive devices (IEDs) in

the fields, as well as drugs or hazardous substances in airports and other public places.

Terahertz technology has attracted the attention of researchers for many years, and

it has seen many advances over the past decades. Special interest for the use of this

technology is actually directed to the detection of illegal drugs, explosives and other

hazardous materials. These materials exhibit characteristic signatures at terahertz

wavelengths which may be used to identify them.

The human body generates various types of signals. For example, electromyographic

(EMG) signals are electrical signals generated when there is muscle activity. These

signals find applications in many areas such as rehabilitation, prosthesis and human-

machine interaction. Systems reliant on them require various forms of machine learning

algorithms for recognition of specific components or patterns. Those systems vary

in terms of the signal detection methods, the feature selection and the classification

algorithm used. However, in all those cases, the use of multiple sensors and complex

analysis and classification algorithms are constant requirements.

1



1.2. Approach and Contributions 2

In this work we develop a new technique for pattern recognition and signal separa-

tion named Guided Under-determined Source Signal Separation (GUSSS). Our tech-

nique is based on Independent Component Analysis (ICA), a popular method for Blind

Source Signal Separation. Traditionally, ICA is used to separate a number N of in-

dependent components that are linearly mixed in at least N different ways. A simple

example is having N microphones capturing sounds in a room where N sources are

emitting sounds simultaneously. The captured sound signals can be modeled as lin-

ear combinations (mixtures) of the source signals and ICA can be used to separate N

source signals using N mixtures.

1.2 Approach and Contributions

Our approach employs ICA to detect whether a particular source signal is present

given one single mixture of source signals, even when the mixture contains many other

unknown signals. In other words, we deal with an under-determined case where N

could be greater than one, but we only have one sensed signal.

We tested our method on two different areas. The first one is material detection

using Terahertz signatures. The method was tested using a public THz database,

achieving high true positive and true negative percentages. The second area is assistive

technology using surface electromyographic (sEMG) signals. We tested the method in

a power wheelchair control system that relies on a single sEMG sensor. Compared to

other approaches in the literature, the proposed technique relies on a much simpler

classifier and uses a very small number of features to achieve reasonable results.

To summarize, the contributions of this research are as follows:

• a new pattern recognition technique using signal separation that deals with an

extreme case of under-determination.

• a framework for material detection using Terahertz signatures, which could lead

to the development of systems capable of detecting hazardous materials, such as

RDX, TNT, drugs, etc.



1.2. Approach and Contributions 3

• a framework for classifying electrical signals generated by muscle activity from

hand gestures, eyebrows, etc., which can be used to interface with computers and

control devices such as power wheelchairs, etc.



Chapter 2

Background and Related Work

In this chapter we present an overview on the topics and techniques related to this

thesis. We begin with a classical problem known as the Cocktail Party Problem, which

illustrates some of the ideas that we further develop later on. We then discuss Blind

Source Signal Separation and Independent Component Analysis, both of which are key

method in our approach.

2.1 The Cocktail Party Problem

The cocktail party problem is the task of hearing a sound of interest in an environment

where many sources emit sounds concurrently. The sounds are added together gener-

ating the mixed signal that enters the ear (microphone, sensor). At different locations,

individual sounds would have different intensities [1, 2].

Consider 2 speakers and 2 microphones, as illustrated in Figure 2.1. Each sensor

captures a different fraction of the signals emitted by the sources. So, the sensed mixed

signals can be expressed as linear combinations of the sources:

x1 (t) = a11s1 (t) + a12s2 (t)

x2 (t) = a21s1 (t) + a22s2 (t)
(2.1)

where si (t) denotes the signals emitted by the ith source, xj (t) denotes the mixed

signal captured by the jth sensor, and the aij are the mixing coefficients of the lin-

4



2.2. Blind Source Signal Separation using Independent Component
Analysis (ICA) 5

ear combination model, which depend on the distances of the microphones from the

speakers.

Figure 2.1: Two independent sources (speakers) emit sounds that mix in air and reach
the microphones.

The important question becomes how to recover the original source signals si (t)

using the sensed signals xj (t). If there is a prior knowledge of the mixing coefficients,

the linear system in eq. 2.1 can be solved by classical methods. However, it is rarely

the case that information on the coefficients is available. The problem can then be

addressed by estimating the coefficients aij using some information on the statistical

properties of the signals si (t). Specifically, if these source signals are statistically

independent at each time instant, then it is possible to estimate the mixing coefficients

[2, 3].

2.2 Blind Source Signal Separation using Indepen-

dent Component Analysis (ICA)

Traditional Blind Source Signal Separation using ICA (BSSS-ICA) is a powerful tech-

nique for signal separation [3, 4]. It is assumed that sensed signals contain various

statistically independent components. It is important to notice that each component

actually originates from a different source. We present more details on statistical in-

dependence and how to measure its validity in section 2.3.
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Mathematically, the goal of BSSS-ICA is to recover N source signals,

S = [s1 (t) , . . . , sN (t)]T , which were linearly mixed, producing the observed signals

X = [x1 (t) , . . . , xM (t)]T . A typical example would be N independent sounds ema-

nating from different sources and being detected as mixed signals by M microphones

spread over the space [5]. Figure 2.1 depicts this example for N = 2 sound sources

M = 2 and microphones. Later, we explain how these same concepts can be applied

to Terahertz signals and the detection of chemical compounds.

A very simple, artificial example is shown in Figure 2.2. On the left there are two

mixed signals that could have been obtained from two sensors. On the right we see

two separated, independent signals recovered using BSSS-ICA. It is not difficult to

recognize the mixtures as having been produced by linear combinations of these two

source signals.

Figure 2.2: Out of two recorded mixture signals we obtain the original, independent
signals which generated the mixtures in the first place.

2.2.1 Definition of ICA

A general definition of Independent Component Analysis (ICA) as stated in [3] is the

following: ICA of the random vector X consists of estimating the generative model for

the data: X = AS, where the components si in vector S = [s1, . . . , sN ]T are assumed

independent and matrix A is a constant M ×N matrix, usually called mixing matrix.

The model being identifiable can be assured if (1) all the independent components

si, with the possible exception of one component, are non-Gaussian; (2) the num-
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ber of observed linear mixtures M is at least as large as the number of independent

components N , i.e M ≥ N ; and (3) the matrix A is full column rank [3].

Traditional ICA methods are able to separate the signals whenever M ≥ N . (If

M > N , the dimension of the observed vector X can always be reduced so that

M = N). In those cases, the source signals and the observed signals can be related

in a matrix form such as X = AS – where A contains the coefficients of the linear

combination of the sources. The methods can solve the (overdetermined) system of

equations through the expression S = A−1X = WX. The solution is found using a

constrained optimization algorithm that maximizes the independence of the signals in

S. We present some measures of independence and optimization algorithms in section

2.3.

2.2.2 Applications of ICA

As we have mentioned, blind source signal separation (BSSS) is a classical application of

the ICA model. The typical example is the cocktail party problem described in section

2.1, but BSSS-ICA has also been used for separation of electroencephalographic (EEG)

and magnetoencephalographic (MEG) data [2, 3, 5].

In financial data there are situations in which parallel time series are available,

such as currency exchange rates or daily returns of stocks, that may have some common

underlying factors. In [6], for example, ICA was used for decomposing parallel financial

time series of weekly sales into basic factors. The cash flow of several stores belonging to

the same retail chain was investigated, trying to find the fundamental factors common

to all stores that affect the cash flow data. The effect of the actions taken at the

individual stores and in its local environment could therefore be analyzed.

Noise reduction in natural images is another application discussed in [2]. A noise

cleaning result is presented there, comparing the results of the Sparse Code Shrinkage

method and classic wiener filtering to an ICA based noise filter.

ICA has also been used for feature extraction [3]. The columns of the mixing

matrix A would represent features, and si would be the coefficient of the ith feature in

an observed data vector X.
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Other areas where ICA can be applied include telecommunications, psychology and

other social sciences. ICA could be considered in applications where projection pursuit

and factor analysis are used.

2.3 Principles of ICA Estimation

In the previous sections we have mentioned the importance of the statistical indepen-

dence of the components (i.e. source signals). In this section we present formal details

on this key concept and the principles of an ICA estimation.

Let y1, . . . , yN be random variables. Let p (y1, . . . , yN) be the joint probability

density function (pdf) and let p1 (y1) , . . . , pN (yN) be the marginal pdfs of y1, . . . , yN ,

which can be obtained as

pi (yi) =

�
p (y1, . . . , yN) dy1 · · · dyi−1dyi+1 · · ·dyN

The variables y1, . . . , yN are said to be statistically independent if and only if the

joint pdf is factorisable as the product of the N individual marginal pdfs, i.e.

p (y1, . . . , yN) = p1 (y1) p2 (y2) · · ·pN (yN)

Two random variables yi, yj, i 6= j, are uncorrelated if their covariance is zero, i.e.

E {yiyj} − E {yi}E {yj} = 0

where E {�} is the expectation operator. It is well known that if two variables

are independent, then they are uncorrelated. However, the inverse implication is not

true. In general, uncorrelated variables are not necessarily independent. The equiva-

lence between independence and uncorrelatedness holds for Gaussian random variables,

though.

A restriction imposed in ICA is that independent components have non-Gaussian

distributions. The reason is that the distribution of any orthogonal transformation of

independent Gaussian variables yi, yj has the same distribution as the original yi, yj
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variables. Therefore, the ICA model can only be estimated up to an orthogonal trans-

formation. The mixing matrix A will not be identifiable for Gaussian independent

components. It must be pointed out, however, that if only one of the independent

components is indeed Gaussian, the ICA model can still be estimated [1–3].

2.3.1 Nongaussianity and Independence

According to the Central Limit Theorem, under certain conditions, the distribution of

a sum of independent random variables tends toward a Gaussian distribution. In other

words, the distribution of the sum of two independent variables is usually closer to a

Gaussian distribution than any of the distributions of the original random variables.

In [2] it is shown that maximizing the nongaussianity leads to finding component as

independent as possible. The basic ideas are the following. Consider a data vector X

distributed according to the ICA model X = AS, i.e. it is a combination of independent

components. Consider a component y = wT X =
∑

i wixi, where w is a vector that

needs to be determined. A is the mixing matrix, so if w was one of the rows of A−1,

then y would equal one of the independent components in S. However, there is no

prior knowledge of A, so there is a need for a good approximation.

Let z = AT w. Then, y = wTX = wT AS = zT S, a linear combination of the si. The

coefficients or weights are the elements zi of vector z. Due to the fact that the sum of

independent random variables is more Gaussian than the original variables, the variable

y = zT S is more Gaussian than any of the individual si. Conversely, y would be the

least Gaussian if only one of the elements zi was nonzero. This would be the case if y was

in fact equal to one of the si. So, it would be desired to find a vector w that maximizes

the nongaussianity of wT X. This maximization would provide one of the independent

components. In general, the optimization of nongaussianity in the N -dimensional space

of vectors w results in 2N local maxima, two for each independent component. Those

correspond to si and −si. This implies that the independent components can be

estimated only up to a multiplicative sign.

We have seen that nongaussianity is key to ICA estimation. So, there is a need for

a quantitative measure of the nongaussianity of a random variable. Next we present a
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brief review of some of these measures. It is important to mention that if a random

variable is centered (i.e. it has a zero mean) and has a unity variance, the calcu-

lations are simplified. Traditional ICA algorithms include pre-processing steps such

as centering and whitening so that the ICA estimation becomes simpler and better

conditioned [2, 3].

2.3.2 Measures of Nongaussianity

Kurtosis

The kurtosis of the random variable y is defined by

kurt (y) =
E

{

(y − µ)4
}

σ4

where µ is the mean and σ2 is the variance of y [7]. If y is a zero mean Gaussian,

then kurt (y) = 3, since E {y4} = 3 (E {y2})
2

= 3 (σ2 + µ2)
2

= 3 (σ2)
2

= 3σ4.

Some authors define the kurtosis so that Gaussians have kurtosis equal to zero.

In [2], kurtosis is defined as

kurt (y) = E
{

y4
}

− 3
(

E
{

y2
})2

With this definition, it is clear that kurtosis is zero if y is a zero mean Gaussian. It

is nonzero for most nongaussian random variables. It can be positive or negative. The

absolute value and the square of the kurtosis are typically used as a nongaussianity

measures. They have been used in ICA and related fields, mainly due to their simplicity:

both computational and theoretical. In simple terms, given a data vector X, the ICA

algorithm would search for the weight vectors w that maximize the absolute value of the

kurtosis of y = wTX . It is worth recalling that ICA algorithms pre-process the data

vector X to center it. An important drawback for the use of kurtosis is its sensitivity

to outliers and therefore, it is not a very robust measure of nongaussianity [2].
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Negentropy

The concept of entropy is very important in information theory. For a random variable,

the more unpredictable and unstructured (i.e. the more random) it is, the larger its

entropy is. For a discrete random variable Y , entropy is defined as

H (Y ) = −
∑

i

P (Y = ai) log [P (Y = ai)]

where ai are the possible values of Y . The generalization for continuous random

variables is usually called differential entropy, and is defined as

H (y) = −

�
p (y) log [p (y)] dy

where p (y) is the density function of the random variable y. It turns out that a

Gaussian variable has the largest entropy among all random variables of equal variance

[8]. Therefore, it could be used as a measure of nongaussianity.

A modified version of the differential entropy is the negentropy. It is defined as

J (y) = H (ygauss)−H (y)

where ygauss is a Gaussian random variable of the same covariance matrix as y.

Negentropy has the properties of being always non-negative, and being zero if and only

if y has a Gaussian distribution. As a measure of nongaussianity, negentropy is a well

justified by statistical theory. Nevertheless, the use of this measure is problematic in

practice, since it is computationally difficult to calculate. Therefore, approximations

of negentropy have to be used. A classical approximation of negentropy is

J (y) ≈
1

12
E

{

y3
}2

+
1

48
kurt (y)2

where y is assumed to be of zero mean and unit variance. This approximation has

similar problems to those of kurtosis, particularly the lack of robustness [2].

A more robust approximation is
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J (y) ≈

p
∑

i=1

ki [E {Gi (y)} − E {Gi (ν)}]2

with ki positive constants, Gi non-quadratic functions, ν is a standardized Gaussian

and y is assumed to be zero mean and unit variance also. This approximation allows

the construction of a measure with the properties of being non-negative and equal to

zero only for Gaussian distributions. If only one non-quadratic function G is used, then

J (y) ∝ [E {G (y)} −E {G (ν)}]2

Robust approximations of negentropy are obtained by using non-quadratic functions

that do not grow too fast. For example, the functions G1 (u) = 1

a1

log [cosh (a1u)],

1 ≤ a1 ≤ 2, and G2 (u) = −exp
(

−u2

2

)

have been used [2]. ICA algorithms have

been developed using these approximations of negentropy as objective functions to be

maximized. One such algorithm is the FastICA algorithm [9].

2.3.3 Mutual Information

Another measure of the dependence between random variables is mutual information.

For the random variables y1, . . . , yN , the mutual information I between them is defined

as

I (y1, . . . , yN) =
N

∑

i=1

H (yi)−H (~y)

where H (yi) is the differential entropy of the individual random variables and

H (~y) = H (y1, . . . , yN) is the “joint” differential entropy. I is non-negative and zero

if and only if the variables are statistically independent [2].

ICA can be defined by the mutual information. Given the data vector X, the goal

is to find an invertible transformation W that minimizes the mutual information of the

transformed components si, in the model S = WX. It turns out that ICA estimation by

minimizing mutual information is equivalent to maximizing the sum of nongaussianities

of the estimates when those estimates are constrained to be uncorrelated [2]. This is
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due to the following relationship between negentropy and mutual information:

I (y1, . . . , yN) = C −

N
∑

i=1

J (yi)

where it is assumed that the yi’s are uncorrelated and of unit variance. C is a

constant. It is worth mentioning that the uncorrelatedness constraint is not necessary,

but it simplifies the computations. As it has been mentioned before, ICA algorithms

include pre-processing steps of centering and whitening of the data, precisely to simplify

the calculations.

2.4 Under-determined BSSS

In the previous sections we presented principles of ICA. As we have pointed out, BSSS-

ICA is well suited for over and well determined cases (M ≥ N). For the under-

determined cases, that is, when the number of sensors is smaller than the number

of independent sources (M < N), methods for signal separation have been proposed

[10, 11] and referred to as Under-determined BSSS. However, these methods produce

losses in the recovered (separated) signals which increase with the reduction of the

number of sensors. This affects drastically the accuracy of any subsequent classification

of the source signals.

2.5 Concluding Remarks

In this chapter we provided a quick overview of the concepts required for the presen-

tation of the method proposed in this thesis, which we describe in the next chapter.

The main concept discussed here was Independent Component Analysis (ICA). As it

will be explained next, our method relies on this technique.

After the introduction of our method in chapter 3, we will present two frameworks

for using the method for two different applications. We will leave the background and

related work reviews on those areas for the corresponding chapters (5 and 6).



Chapter 3

Proposed Method

The main contribution of this thesis is the development of a method named Guided

Under-determined Source Signal Separation (GUSSS). This method handles an extreme

case of under-determination where the number of sensors is actually equal to one – i.e.

M = 1. Unlike BSSS-ICA, where the source signals to be separated are unknown, in

the proposed method, it is assumed that the source signals are one of a number of

expected signatures, hence the term “guided” in GUSSS.

3.1 GUSSS and GUSSS Ratio

In order to explain the proposed method, let x1 be a linear combination of N inde-

pendent components. That is, x1 represents a sensed signal from the single sensor of

a given system. Such a system can be an Improvised Explosive Device (IED) detector

trying to determine the presence of a hazardous substance, or a classifier of electrical

signals generated by muscle activity. Next, let sp be a particular known component,

or signature, that the system is trying to identify within the observed signal x1. Since

the sensor captures not only sp, but also various other components si, we should write:

x1 = c1s1 + c2s2 + · · ·+ cpsp + · · ·+ cNsN

= cpsp +
∑

i6=p

cisi

= cpsp + s̃

(3.1)

14
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where ci, i = 1, · · · , N are unknown mixing coefficients. It is assumed that ci ≥ 0.

The expression stresses the fact that x1 can be considered a linear combination of

the signature of interest and a set s̃ of scaled signatures of other components. Since

initially we are interested in separating or identifying only sp from the observed signal,

it is assumed that s̃ is independent from sp. This assumption is an obvious consequence

of the assumption that all N components are independent – i.e. if N components can

be regarded as independent, any linear combination of N −1 components must also be

independent of the remaining one. Moreover, the algorithm for GUSSS will successfully

identify sp within x1 whenever cp 6= 0. This could mean, for instance, that a chemical

compound associated with the signature sp is present in a scene. So, the question

remaining becomes how to determine cp.

As it has just been implied, two situations may arise: the desired signature is indeed

present in the mixed signal x1, or it is not. In order to distinguish between those two

situations, the algorithm creates a second synthesized signal xp by injecting a weighted

copy of the particular signature sp into the sensed signal x1. That is:

xp = w1x1 + wpsp (3.2)

where w1 and wp are arbitrarily chosen constants. Substituting eq. (3.1) in eq.

(3.2), we obtain:

xp = w1 (cpsp + s̃) + wpsp = w1s̃ + (w1cp + wp) sp (3.3)

which now allows us to write two equations instead of one. That is

x1 = s̃ + cpsp

xp = w1s̃ + kpsp

(3.4)

where kp = w1cp + wp. Finally, we can express these equations in matrix form as

Xp = AS

where
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Xp =





xT
1

xT
p





A =





1 cp

w1 kp





S =





s̃T

sT
p





The last step of the algorithm is to solve for S. Since we now have two independent

components and two linear equations on sp and s̃, we can apply any traditional ICA

algorithm to separate sp and s̃ from x1 and xp. Moreover, a sub product of the ICA

algorithm is the mixing matrix A, and the coefficients of such matrix can be used to

infer whether or not a particular signature was present in the originally sensed signal

x1. For example, if we consider the case when the particular signal sp is not present in

the mixture signal x1, the mixing coefficient cp should be in theory zero. On the other

hand, if sp is indeed present in the mixture x1, that coefficient must be greater than

zero.

In practice, mainly due to noise, the coefficient cp is never zero. However, it should

be very small whenever the particular signature is not present in x1 and it should be

large otherwise. We define the GUSSS ratio as:

rp =

∣

∣

∣

∣

1

cp

∣

∣

∣

∣

(3.5)

Finally, while what constitutes a “large” or a “small” value for the coefficient cp may

not be obvious, it is clear that the derived GUSSS ratio can be used as a criterion for

determining whether a particular signature is present or not in the sensed signal. It

can become a feature characterizing sensed signals. Note that the use of the absolute

value is due to the fact that the ICA can estimate the independent components up to

a multiplicative sign, as explained in section 2.3.1.
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3.2 Concluding Remarks

In this chapter we presented the GUSSS method and introduced the GUSSS ratio. In

the next few chapters we will propose frameworks for using them in very different areas:

material detection using Terahertz signatures, and assistive technology using muscle

activity signals. But first, in chapter 4 we present some preliminary experiments we

did on sound signals using the proposed method. For all our tests we used the FastICA

algorithm developed by [9].



Chapter 4

Preliminary Tests Using Sounds

The Cocktail Party problem was one of the first motivations for the method proposed

in this thesis. In section 4.1 we explain the experiments we designed to test the ability

of GUSSS to determine the presence or not of a particular sound signature. As we

show in section 4.2, the results obtained were very promising.

4.1 Description of the Experiments

We considered 9 different sound sources or signatures. Let s1, s2, . . . , s9 be those

signatures, which are shown in Figure 4.1. Assume there is only M = 1 microphone

(sensor) that can capture a sound signal. This signal is a combination or mixture of

the 9 source signatures, and it can be modeled as:

x = c1s1 + c2s2 + · · ·+ c9s9
(4.1)

The mixing coefficients ci represent the intensities that each individual signature

si has in the mixed signal, due to the different distances between the sources and the

microphone. Note that if a particular signature, say sp, contributed to the mixture x,

the corresponding coefficient cp is non-zero. If source p could not be detected when the

mixture was obtained, then cp = 0.

Our goal is: given a sensed mixture x, we want to determine if signature sp was

present or not within x. Since we have no knowledge of the mixing coefficients, but

18
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we do have knowledge of the signature sp, we can use the proposed GUSSS method

to estimate cp and thus the GUSSS ratio rp. The GUSSS ratio can then be used to

determine the presence or not of the signature in the mixture.
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Figure 4.1: Nine sound signatures used for the preliminary tests of the proposed
method. They correspond to: a police car’s siren (s1); a man speaking English (s2);
an old man speaking a foreign language (s3); a woman speaking English (s4); a band
playing classical music (s5); another man speaking a foreign language (s6); an opera
singer (s7); a woman speaking a foreign language (s8); a band playing pop music (s9).

4.1.1 Experiments #1: No Noise

We ran tests for each one of the 9 signatures available. For example, for each pth

signature sp as the target signature, i.e, the one we want to detect in a mixture, we

created 1000 test mixtures using arbitrary linear combinations of all signatures, as in

equation 4.2. Half of these test signals corresponded to mixtures containing the target
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signature sp. We refer to those 500 test signals as belonging to class “present”. As

we explained before, to guarantee that sp is present in the mixture, the corresponding

coefficient cp in the linear combination has to be non-zero. So we employed a lower

limit (ll) and an upper limit (ul) that satisfy 0 < ll ≤ ul ≤ 1. Then, the coefficient cp

is randomly chosen from a uniform distribution defined over the interval [ll, ul]. The

remaining coefficients were randomly chosen from a uniform distribution over the unit

interval [0, 1] and then normalized so that
∑

i6=p

ci = 1−cp. Note that ll can be interpreted

as a minimum percentage of the particular signature sp present in the mixtures.

The other half of the test mixtures belonged to class “not present”, that is, those

signals did not contain the target signature sp. Therefore, for each one of them the

corresponding coefficient cp was set to zero. The other coefficients were once again

randomly chosen from the unit interval and normalized as before.

For this first set of experiments we did not add any noise, as we will do in the next

set of experiments. For all the test mixtures we applied the proposed method injecting

the corresponding signature (section 3.1), and we calculated the GUSSS ratios and

plotted them. We present the results in section 4.2.

4.1.2 Experiments #2: Adding Noise

As in the previous set of experiments, we created 1000 test mixtures for each of the

signatures, divided into two classes (present and not present). This time we added

noise to the mixtures:

x = c1s1 + c2s2 + · · ·+ c9s9 + η (4.2)

Where η is Gaussian noise with zero mean and standard deviation σ. We tried

different noise levels by changing σ. The mixing coefficients were randomly chosen as

explained before. For the proposed method we used noisy versions of the signatures as

well. That is, we injected

šp = sp + ξ (4.3)
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to create the synthesized signal (eq. 3.2) and applied the method described in

section 3.1 to obtain the GUSSS ratios. We introduce the noise term ξ to simulate

situations when the available signatures are corrupted, or when they have been ob-

tained using noisy sensors. The term ξ is Gaussian noise with zero mean and standard

deviation σ/5. We use this smaller noise level because we expect the mixtures to be

noisier than the individual signatures available.

4.1.3 Experiments #3: Noise and Time Shifting

For the last set of experiments we created mixtures using shifted versions of the orig-

inal signatures, plus noise. Let ←→s 1,
←→s 2, . . . , ←→s 9 be horizontally shifted versions of

the original sound signatures. This shifting of the signatures represent delays in the

emission of the sounds by the sources or delays in the detection of those same sounds.

We created test mixtures as:

x = c1
←→s 1 + c2

←→s 2 + . . . + c9
←→s 9 + η (4.4)

As before, η is Gaussian noise. The amount of shift in each signature was random,

ranging from −τmax to τmax. In other words, each sound from a source is a delayed or

advanced version of the original signature, and the amount of delay or advance can be

as much as τmax. The amount of shift for each test mixture was made different.

Once again, 1000 test mixtures were created for each of the signatures: 500 in the

“present” class, and 500 in the “not-present” class. For calculating the GUSSS ratios

we injected noisy, non-shifted versions of the original signatures.

4.2 Results

In this section we present the results obtained for the three experiments described

above. Here, for each experiment we present plots of the GUSSS ratios obtained for

only 4 out of the 9 signatures used. The complete set of plots can be found in Appendix

A. For all the experiments we set the lower limit ll = 0.1 and the upper limit ul = 0.9.

Those limits indicate that in the cases when the target signature is present in the
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mixture, its contribution to the mixtures can be from 10% to 90%. We also show some

example mixtures and the recovered signals we obtained using our method.

4.2.1 Results Experiments #1

Figure 4.2 (a) illustrates a set of GUSSS ratios from one of the experiments #1, specif-

ically, the case where the target signature was s1 (the police car’s siren). The first 500

GUSSS ratios, shown in red, belong to the class “present”, i.e., the class of mixtures

for which signature s1 was present in the scene. The remaining 500 ratios, shown in

blue, belong to the class “not present”. The ratios are shown in log scale. All of the

following figures show similar plots as the one just described.

Note that in all the experiments shown here there is a significant difference between

the ratios of class “present” and the ratios of class “not present”. It would not be diffi-

cult to choose a threshold for separating the two classes, giving a perfect classification

rate.
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(a) Target signature: s1
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(b) Target signature: s3
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(c) Target signature: s7
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(d) Target signature: s9

Figure 4.2: GUSSS ratios corresponding to 500 mixtures containing a target signature,
and 500 mixtures without the target signature. The vertical line separates those two
groups. Y-axis (GUSSS ratio axis) is shown in log scale.

Figure 4.3 illustrates an example mixture containing a target signature (s4 in this

particular case), the signature itself, and the recovered signature we obtain using our

method. As explained before, no noise was added in this case. We note that the

original signature and the recoverd one are almost identical.
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Figure 4.3: A mixture of signatures, the target signature s4, and the recovered signal.

4.2.2 Results Experiments #2

For these experiments we used two different noise levels, σ = 0.01 and σ = 0.1. The

amplitudes of the original sound signatures are constrained to the interval [−1, 1] . As

we did for the experiments with no noise, we show the GUSSS ratios for 4 out of the 9

target signatures. The remaining cases using the remaining 5 signatures can be found

in Appendix A.

Noise with σ = 0.01:
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(a) Target signature: s2
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(b) Target signature: s5
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(c) Target signature: s6
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(d) Target signature: s8

Figure 4.4: GUSSS ratios corresponding to 500 noisy mixtures containing a target
signature, and 500 mixtures without the target signature. The vertical line separates
those two groups. Y-axis (GUSSS ratio axis) is shown in log scale. Noise level: σ = 0.01

For these cases we would also get a 100% correct classification rate with any clas-

sifier, even a simple threshold based one.

Noise with σ = 0.1:
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(a) Target signature: s2
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(b) Target signature: s5
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(c) Target signature: s6
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(d) Target signature: s8

Figure 4.5: GUSSS ratios corresponding to 500 noisy mixtures containing a target
signature, and 500 mixtures without the target signature. The vertical line separates
those two groups. Y-axis (GUSSS ratio axis) is shown in log scale. Noise level: σ = 0.1

We note that with this higher noise level the two classes come closer together.

In Appendix A it can be seen that there are some cases where the classes actually

overlap. Nonetheless, even with a simple hard threshold approach, the overall correct

classification rate is above 99%.
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As we did before, we illustrate an example mixture containing the target signature

s4, the signature itself, and the recovered signature (Figure 4.6). This time we added

noise with σ = 0.1. Note that the recovered signal is a noisy version of the original

signature.
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Figure 4.6: A mixture of signatures with noise level σ = 0.1, the target signature s4,
and the recovered signal.

4.2.3 Results Experiments #3

For these experiments we used a noise level of σ = 0.05 and a maximum time shift of

τmax = 0.01s. The original sound signals last for about 5s. Once again, we show here

4 of the 9 cases. The remaining cases are shown in Appendix A.
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(a) Target signature: s3
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(b) Target signature: s4
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(c) Target signature: s7
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(d) Target signature: s9

Figure 4.7: GUSSS ratios corresponding to 500 noisy mixtures with time shift contain-
ing a target signature, and 500 mixtures without the target signature. The vertical
line separates those two groups. Y-axis (GUSSS ratio axis) is shown in log scale.

Once again, we illustrate an example mixture of shifted signatures (including the

target signature s4), the signature itself, and the recovered signature (Figure 4.8). Once

again the recovered signal seems very good, although it is not as clean as in the case

without noise (Figure 4.3).
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Figure 4.8: A mixture of shifted signatures, the target signature s4, and the recovered
signal.

These experiments show that horizontal (time) shifts have an important effect on

the classification performance. Figure 4.7 (c), which corresponds to signature s7, shows

considerable overlapping of the two classes, which leads to a classification rate of around

75%. Still, with the exception of signature s6, in all the other cases we achieve classi-

fication rates above 90% with simple classifiers (see Appendix A).

4.3 Concluding Remarks

The results presented in this chapter suggest that the GUSSS ratio could be used as

a criterion to recognize when a signature of interest is present within a sensed signal.

Classes “present” and “not present” where clearly separated in the cases without and

with noise. In the cases with a higher noise level the classes seem to come closer to-

gether, but the effect was not considerable. In all these cases, a simple hard threshold

would be sufficient to discriminate between the two classes. In the last set of experi-

ments where the signals where time shifted, the two classes do overlap. However, the
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classes are almost completely separable for most of the target signatures. It must be

pointed out that it is important to sample the signals correctly, in order to reduce or

eliminate delays.

In the next chapters we present frameworks for using GUSSS and the GUSSS ratio

in two different areas such as material detection and assistive technology.



Chapter 5

Material Detection Using Terahertz

Signals

Terahertz technology (THz) has been greatly developed over the past decade. The

terahertz electromagnetic radiation lies between light and radio waves (0.1− 0.3 to 10

THz) [12–14]. It has attracted a lot of attention, especially because of its potential

in innovative sensing systems, ultra-fast wireless communication systems, devices for

medical examinations and detection of hazardous materials [15]. The main advantages

of this radiation are: the ability to penetrate many common barrier materials enabling

hidden objects to be seen; adequate spatial resolution for imaging or localisation of

threat objects due to short wavelengths; non-ionising properties; safe to use on people

at modest intensities; etc. [16].

Research on terahertz technology has focused on sources and sensors, as well as guid-

ing structures, quasi-optics, antennas, filters and submillimeter-wave materials [12].

This includes the development of semiconductor devices such as THz quantum cascade

lasers, THz-range quantum well photodetectors and high-precision tunable continuous

wave sources. Furthermore, efforts have been made to develop pulsed THz measure-

ment systems, to model and measure atmospheric propagation and to establish frame-

works to construct a materials database in the THz range, including standardization

of the measurement protocol [15].

Many objects and chemicals including explosives, illegal drugs, proteins and other

31
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biological materials have characteristic spectroscopic signatures at THz wavelengths

which can be used to identify them [15, 16]. The work presented in [13] describes a

method for the detection of explosives using THz pulsed spectroscopic imaging. In [17]

the authors propose a THz-wave device for the nondestructive detection of illicit drugs

and hazardous substances hidden in sealed envelopes.

In this chapter we present a brief review of terahertz technology, pattern recognition

techniques that can be applied to Terahertz (THz) signatures, and the framework

proposed and used to test GUSSS in this area. Such a framework could be used for

detection of Improvised Explosive Devices (IED), for detection of hazardous or illegal

substances in airports, etc.

5.1 Background on Terahertz Technology

The THz region in the electromagnetic spectrum is situated between infrared light and

microwave radiation. Common techniques usually applied to neighbouring bands have

not shown the same success for THz radiation [14]. So, for many years there has been

this “undeveloped gap” between the electronics of the microwave and the optics of

infrared [15]. Some decades ago THz technologies were mainly used in astronomy for

searching far-infrared radiation, in laser fusion for the diagnostic of plasmas [18] and

in chemistry for spectral characterization of rotational and vibrational resonances and

thermal-emission lines of simple molecules [14].

Currently, one of the main uses of Terahertz technology is in spectroscopy [18],

which allows investigating properties of materials as a function of frequency. Many

methods have been developed for performing THz spectroscopy, including: Fourier

transform spectroscopy (FTS); narrowband spectroscopy with tunable THZ source or

detector; and THz time-domain spectroscopy (THz-TDS). The latter, a more recent

technique, uses short pulses of broadband THz radiation typically generated using

ultra-fast laser beams [14]. It has various advantages over FTS, including being able to

calculate refractive indices and absorption coefficients from the phase and amplitude

of the waveforms, and being able to use information directly from the time domain
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waveforms [15].

The first demonstration of THz wave time-domain spectroscopy was in the late

1980’s, and after that there has been a series of significant advances thanks to improved

materials leading to more powerful THz sources and more sensitive detectors [14, 18].

The development of Quantum Cascade Lasers and Terahertz-Range Quantum Well

Photodetectors are of great impact [15]. All these advances have provided new oppor-

tunities for understanding the THz frequency range, allowing major technical devel-

opments, which in turn have greatly extended the potential of THz systems. The use

of THz radiation is now open to fields such as physics, chemistry, biology, materials

science and medicine [12, 14, 18].

A major interest for THz technology is the detection of explosive devices such as

improvised explosive devices (IED). The National Research Council has made recom-

mendations regarding the application of this technology for explosive detection tech-

niques and security screening. These recommendations are based on the fact that most

explosives exhibit strong absorption and dispersion in the THz frequency range [18],

and they exhibit characteristic spectroscopic signatures at THz wavelengths which can

be used to identify these explosives [13, 16, 19].

Several studies have reported the spectra of energetic compounds like RDX, PETN,

HMX and TNT, as well as commercial explosives based on those compounds [13,20–22].

Practical implementation of detection and security systems would need to operate

in reflection mode rather than in transmission mode because of the high absorption

coefficients of the explosives [13, 19].

There is also an interest to detect and identify other threat materials such as chem-

ical and biological warfare compounds, and illegal substances like drugs of abuse [19].

THz signatures of a number of drugs were identified in [23], and a THz-wave device for

nondestructive detection of illicit drugs and hazardous substances hidden in sealed en-

velopes was proposed in [17]. Detection of hidden objects depends on the transmission

of radiation through barrier materials. Envelopes and most of barrier materials such

as cloth, paper, cardboard and plastics are semi-transparent to THz radiation [19].

The interest in identifying materials by means of their THz signatures has led to
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the development of spectra databases. These are valuable to enlarge the range of

applications of terahertz spectroscopy by making it a popular measure of materials

[15]. There are several open databases for THz spectroscopy, including the result

of the European project “THz-Bridge: Tera-Hertz radiation in Biological Research,

Investigation on Diagnostics and study of potential Genotoxic Effects” [24], and the

public databases from Tera-photonics Laboratory, RIKEN Sendai and the National

Institute of Information and Communications Technology (NICT) [25,26] – which were

used in this research.

5.2 Pattern Recognition of THz Signatures

Most of the work done for identification and classification of materials using THz

technology use individual samples of the materials under study. In those scenarios, a

few pattern recognition and classification methods can be found in the literature. In [27]

the authors proposed a system for identification and classification of four explosive

and bio-chemical materials using THz spectroscopy. They used Principal Component

Analysis (PCA) for feature dimensionality reduction, a minimum distance classifier

and a neural network based classifier. In [28] the author discusses the Mahalanobis

distance classifier, the Euclidean discrimination matrix and Support Vector Machines

(SVM) and presents results of case studies for biomedical specimen identification using

those methods.

Unlike previous methods, the approach presented here aims to detect materials

even if they are mixed together with other materials. That is achieved by using the

GUSSS technique developed in chapter 3, which can be used to separate the different

signatures that may be present in a scene. In the following sections we discuss a

framework proposed to achieve that purpose.
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5.3 Proposed Framework for THz Technology

Imagine a scenario where a vehicle or person must navigate in a hostile environment

with potential IEDs hidden underground. A ground penetrating radar can be success-

fully utilized as a counter measure, but as such, it is desirable that only one sensor be

employed by the radar.

Now, imagine another scenario where the passengers luggage must be scanned in

search of illegal substances or explosives [29], [30]. Once again, the use of a single

sensor, even a portable one, can simplify immensely the job of security officers in

airports, schools, train stations, etc.

That is precisely our goal here. We propose a framework that requires only one

sensor. The main feature used for the learning and testing process is the GUSSS ratio

we defined in 3. It is calculated for training signals in the system, and it is used to

classify the testing signals, as we will explain in section 5.4. Next we describe two

approaches used with the GUSSS ratio as feature for classification.

5.3.1 Hard Threshold Approaches

Using a hard threshold is a very simple classification method for two-class, one dimen-

sional problems, such as the one with which we are dealing here. Figure 5.1 illustrates

a set of GUSSS ratios from one of the experiments we ran in this work. It is similar

to the figures presented in the previous chapter. The first 500 GUSSS ratios, shown in

red, belong to the class “present”, i.e., the class of sensed signals for which a certain

material with signature sp was present in the scene. Similarly, the remaining 500 ratios,

shown in blue, belong to the class “not present”. The ratios are shown in log scale.

As the figure indicates, it is not difficult to choose a threshold for separating the two

classes.

The first method for obtaining such a threshold is based on geometric means. We

calculated the geometric mean of the GUSSS ratios of each class (present and not

present), and then the threshold was simply the geometric mean of those two. Ob-

viously, if the number ratios is the same for each class, then the threshold is simply
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the geometric mean of all the ratios. We used geometric means instead of simple

(arithmetic) means because that fits better the distribution of the ratios.

A second method used relied on modeling the distributions of the ratios. Based

on preliminary observations, we determined that it was better to use the logarithm of

the ratios to learn the threshold. That is, given samples from both classes of GUSSS

ratios (signature present and not present), we calculated their logarithms. We assumed

these logarithms follow normal distributions and for each set of ratios we calculated

the sample mean and variance, so that we could find the intersections of the two distri-

butions. Since the variances are likely to be different, there should be two intersection

points. However, only one of them is of interest, namely the one closer to the midpoint

between the two sample means. Figure 5.2 illustrates this idea. Note that the ratio’s

axis was made horizontal (i.e. rotated with respect to Figure 5.1) for visualization

purposes. Now if we let ρ be the value of the intersection of interest and since the

parameters used to calculate the intersection corresponded to the base-10 logarithms

of the GUSSS ratios, the threshold can be obtained from: thr = 10ρ.
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Figure 5.1: Ratios corresponding to 500 mixture signals containing a particular signa-
ture of interest, and 500 mixture signals without the particular signature. The vertical
line separates those two groups. Y-axis (ratio axis) is in log scale.
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Figure 5.2: Obtaining the threshold approximating the logarithms of the GUSSS ratios
via Gaussian distributions. The ratios are the same as those in Figure 5.1, but in this
figure we plotted their base 10 logarithms, all on the same horizontal axis.

5.3.2 Support Vector Machine (SVM)

A third approach to train the system relied on a more sophisticated method than the

calculation of thresholds. We used Support Vector Machine (SVM) with Gaussian

Kernels to train and test the system. As before, we used the base-10 logarithm of the

GUSSS ratios as input for the SVM algorithms. With this approach we don’t actually

learn a threshold, but we get a set of support vectors that are later used for classifying

the testing ratios (their logarithms, to be exact).

SVM algorithms are convenient for two class problems. They rely on pre-processing

the data to represent patterns in a high dimensional space, typically much higher than

the original feature space. With an appropriate nonlinear mapping to a sufficient

high dimension, data from two categories can always be separated by a hyperplane.

SVM is therefore a machine learning method able to handle problems of nonlinear

classification. It is based on the rule of structure risk minimum. Therefore, it becomes

a decision machine as opposed to Bayesian learning methods that provide posterior

probabilities [31].
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5.4 System Implementation

In this section we discuss in more detail how the techniques presented earlier were

used in the proposed system. Figure 5.3 shows a block diagram illustrating the various

parts of the system and the flow of the process. We start with a collection of THz

signatures, which in the experiments ran for this work come from public databases. In

our approach we use time domain signals, so we need to transform the THz signatures

from the databases (IFFT block in Figure 5.3). Time signatures were used for training

the system, for creating test signals, and for obtaining the GUSSS ratios while testing.

We explain the details of each part of the system in the following subsections.

Figure 5.3: Proposed system.
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5.4.1 Database of THz Signatures

The experiments that we conducted rely on THz signatures obtained from two public

databases [25, 26]. These signatures are originally in frequency domain, but we apply

the methods and techniques described in section 5.3 to signals in time domain. There-

fore, we apply the Inverse Fast Fourier Transform (IFFT) to the original signatures

in frequency domain to obtain their time domain representations. This is a prelimi-

nary step of the system, as shown in Figure 5.3. Figure 5.4 illustrates three arbitrary

signatures from the THz database both in frequency domain and in time domain.

Next we describe how we use the signatures to create the signals necessary to train

and test the system.

0 2 4 6 8 10 12

x 10
12

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Frequency

T
ra

ns
m

itt
an

ce

Frequency domain, original signatures

 

 

Sign. 1

Sign. 2

Sign. 3

(a) Original signatures

0 10 20 30 40 50 60 70 80 90 100
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
Time domain

 

 

Signature 1

Signature 2

Signature 3

(b) Transformed signatures using IFFT

Figure 5.4: Arbitrary samples of a) Original THz signatures in frequency domain from
the database; and b) derived time domain signatures.
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5.4.2 Training the System

Let Y1, . . . , YN be a set of THz signatures, and let one of them, say Yp, be the signature

corresponding to a particular material or chemical that we are interested in detecting in

a sensed signal x. Let y1, . . . , yp, . . . , yN be the corresponding time domain signatures.

These signatures are inputs for the training module shown in Figure 5.3. The output

of this module are classification parameters later necessary for testing.

The training module uses the time signatures to create training mixed signals as

the following linear combinations:

x = c1y1 + c2y2 + · · ·+ cpyp + · · ·+ cNyN (5.1)

The mixing coefficients ci represent the intensities that each individual signature yi

has in the mixed signals. In other words, the training signals simulate sensed signals

we would get from a real THz sensor. So, we must create two classes of training signals.

The first class corresponds to signals containing the particular signature yp, i.e. class

“present”. To ensure that signature yp is present in the mixture, the corresponding

coefficient cp has to be non-zero. As we did for the sound signal tests presented in

chapter 4, we employed a lower limit (ll) and an upper limit (ul) that satisfy 0 < ll ≤

ul ≤ 1. Then, the coefficient cp is randomly chosen from a uniform distribution defined

over the interval [ll, ul]. The remaining coefficients are randomly chosen from a uniform

distribution over the unit interval [0, 1] and then normalized so that
∑

i6=p

ci = 1− cp. As

for the sound signals, ll can be interpreted as a minimum percentage of the particular

signature yp present in the mixtures.

The second class of training signals corresponds to “not present”, that is, signals

not containing the particular signature yp. Therefore, the corresponding coefficient cp

is set to zero. The other coefficients are once again randomly chosen from the unit

interval and normalized as before.

Next we apply the GUSSS algorithm described in section 3.1 to all training signals.
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That is, in equation (3.2) we let x1 = x be the sensed signal and sp = yp be the signature

to be injected. The weights w1 and wp are set to 1 (we tried some other values, but there

was no significant difference in the results). We obtain GUSSS ratios labeled “present”

and “not present”. Finally, we obtain the training parameter(s) that will be used later

to classify the test mixture signals. When using the hard threshold approaches the

parameters are simply the threshold. For the SVM approach, the training parameters

are the support vectors (see sections 5.3.1 and 5.3.2).

5.4.3 Testing the System (for Classification)

As we mentioned earlier, the goal of the system is to detect the presence of specific

materials among sensed mixtures. So, after training the system for the particular

signatures that we want to investigate, we use the signatures for testing.

Given a test signal, we want to determine if a certain material (i.e. a certain

signature) is present or not. As before, we assume that the test signal is a linear

combination of arbitrary time signatures. As Figure 5.3 shows, one of the inputs of the

GUSSS module is the test signal. The other input of this module is the signature of

the desired material. In other words, if we want to determine if the particular material

P1 with signature yp1
is present in the mixture signal, then we would inject a copy of

yp1
in the GUSSS module.

For the threshold-based approaches, the classification is achieved by direct com-

parison of the GUSSS ratio obtained for yp1
and the learned threshold for yp1

. For the

SVM-based approach we calculate the logarithm of the testing ratio and provide it as

input to an SVM classification function along with the learned SVM parameters. This

function determines whether a given ratio’s logarithm (and therefore the corresponding

test mixture) belongs to class “present” or class “not present”. Despite the decision

reached by the system for material P1, different materials Pi can be next tested for

their presence or absence, too.



5.5. Concluding Remarks 42

5.5 Concluding Remarks

In this chapter we propose a framework for material detection using the GUSSS method.

As we have pointed out, we designed several experiments using real terahertz signatures

of many materials, which we obtained from public databases. Further details on the

experiments and the results obtained are presented in chapter 7. In the next chapter,

we present another framework for using GUSSS, this time applied to robotic assistive

technology.



Chapter 6

Robotic Assistive Technology

In this chapter we present a brief review of Robotic Assistive Technology, with special

emphasis in the use of Electromyographic signals (EMG) for human-machine interac-

tion (HCI). We discuss some pattern recognition techniques that can be applied to

EMG signals, and then we present the proposed framework used to test GUSSS in

this area. Specifically, we propose using sEMG signals generated by muscle activity

to control a power wheelchair, but the same framework can be adapted to interface

with computers, cell phones, etc. Our method allows using few sensors and simple

classification schemes to detect and classify user movements such as hand movements,

which can then be related to commands for the wheelchair.

6.1 Background on Assistive Technology

Robotic Assistive Technology (RAT) is a field that addresses the development of sys-

tems to assist people with different levels of impairments in carrying out routine ac-

tivities [32]. People who have lost limbs or who have suffered strokes or spinal cord

injuries, patients engaged in physical therapy, elder people and people with any kind

of physical disabilities may benefit from advances in this field [32–34]. The range of

assistive devices that the technological advances have made possible is very wide. Re-

search in this field is multi-disciplinary and very active. Even though a lot of advances

have been made, there is constant need of finding better, faster, more reliable, more

43
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adaptable, user-friendlier and less expensive solutions.

In a more wider sense, Assistive Technology (AT) devices may be categorized under

the following types [34]: wearable devices, which may seek to monitor a person’s status

or activities, or which may provide some active support; ambient devices, which should

provide unobtrusive services; audio, video, GPS units; robotics, which may be in the

form of robot suits for mobility aids, mobile robots like intelligent wheelchairs, or

prosthetic limbs. AT devices may also be categorized based on generic applications

[34]: Event Driven, which encompass systems that are only required to react in case

of an event or accident (e.g. falls, fire, security breaches, etc.); continuous, which

refer to systems acting to aid assisted people in carrying out activities throughout

their daily lives (e.g. walking aids, communication, cognitive training, environmental

control); trend analysis, including systems for general monitoring of patients (vital

signs, medication, food intake, hygiene), and for location tracking/occupancy.

Stroke is a major cause of acquired adult disability. Motor impairment is perhaps

the most serious consequence of a stroke. Therefore, the restoring the walking ability of

these patients is the most important objective in post stroke rehabilitation [35]. There

is a lot of work on developing and evaluating AT systems for stroke patients. In [35]

a biofeedback cycling training system to improve gait symmetry was investigated. A

motion controlled gait enhancing mobile Shoe for rehabilitation was designed and tested

in [36]. There is also a lot of work focusing on upper limb rehabilitation of post

stroke patients. For example, [37] presents a haptic robot for hand movement therapy,

and [38] discusses effector force requirements to enable robotic systems to provide

assisted exercise for those patients.

Physical rehabilitation for people who have suffered an injury or have had surgery

is essential to recover normal function for daily activities. And assistive technology

can help in that process. For instance, [39] presents a knee orthopaedic device to

illustrate how robotic technology can improve the outcome in knee rehabilitation. Un-

fortunately, a lot of people do not have the possibility to fully recover. For instance,

people with degenerative diseases like progressive muscle dystrophy, Multiple Sclerosis

(MS), Alzheimer’s and Parkinson’s diseases; elder people with weakened muscles or
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degenerative joint diseases; blind, deaf or amputees, etc. There is a need for devices

and technologies to assist them. There are a lot of commercial devices available today,

but research continues. To illustrate, in [40] an electric lifting chair meant to aid in

standing up and sitting down is assessed; [41] presents a robot assisted rehabilitation

protocol designed to treat cerebellar and motor symptoms in subjects with MS; [42]

introduces an exoskeletal meal assistance system for progressive Muscle dystrophy pa-

tients; and [43] studies haptic and auditory interfaces that can help blind people to

interact with computers.

Intelligent AT systems and devices rely on different kinds of signals or features

coming from the environment or from the human users themselves. Temperature,

velocity, acceleration, orientation, force, torque and many other quantities are detected

and used. Audio and video signals are captured and analyzed, too. Some other signals

such as electrical signals generated by brain, cardiac or muscle activity are also used

for evaluating patients and for controlling AT devices. The method presented in this

thesis was applied to those electrical signals, specifically the ones generated by muscles.

In the next section we present a more specific background on them.

6.2 Background on EMG

Electromyographic signals collected at the surface of the skin (sEMG) have been

used in many applications, including rehabilitation, prosthesis, computer interfacing,

wheelchair control, etc. [44–46]. When it comes to rehabilitation, more specifically

for power wheelchair control, EMG signals have been often used as on/off switches.

In those cases, menu driven approaches [33], finite state machines [47], and combina-

tions of multiple muscles and sensors [48] are common techniques employed to provide

multiple dimensions in the operation to the interface.

Several sEMG-based systems that rely on more elaborated pattern recognition of

EMG signatures have also been proposed, including for exoskeleton robotics [49], and

they vary widely in terms of: the classification approach employed; the feature selection

criteria; and the number of sensors used. But, again, they constantly require multiple
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sensors and much investment on the feature extraction and classification algorithms.

Our goal in this work is instead to present a much simpler and yet effective technique

using a single EMG sensor, allowing for other muscles and sensors to be used in other

interfaces or to add modalities of operation to the interface.

As we mentioned above, sEMG-based systems vary widely and in terms of the clas-

sification algorithm, Artificial Neural Networks (ANN) [50–52], Fuzzy Logic and Fuzzy

Control systems [4,51], are possibly the most common methods used to classify muscle

activity – i.e. classify motor unit action potentials trains (MUAPT). The ability to

recognize MUAPT can be applied, for example, to hand gesture recognition, control of

electro-mechanical prosthesis, computer mouse movement, etc. [46]. One such example

can be found in [51], where an ANN was compared to a Fuzzy Inference System (FIS)

for classification in a hand prosthesis control. In this work, the authors concluded that

for their application the best performance was achieved using the FIS classifier, with

an 83% accuracy.

In another work presented in [52], several techniques for classification were employed

in order to identify hand gestures using sEMG signals extracted from the forearm

of human subjects. The authors reported good performance using ANN, Random

Forest (RF), 1-Nearest-Neighbor (1NN), Support Vector Machine (SVM), Decision Tree

(DT) and Decision Tree with Boosting (DT/B) as some of the different classification

techniques used. In that case, the ANN approach presented a better performance than

the other methods.

In terms of feature selection, the features can be extracted from the time or the

time-frequency domains [46, 50, 51]. These features typically include: number of Zero

Crossings (ZC), Mean Absolute Value (MAV), Slope Sign Changes (SSC), coefficients of

Auto-regressive models (AR) [50,51]; Absolute Maximum/Minimum, Maximum minus

Minimum, Median Value (Med), Variance, Waveform Length (WL) [46]; coefficients

of the Short Time Fourier Transform (STFT) [46]; Wavelets Transform (WT) [45,46],

etc.

Given the wide range of features and their large dimensionality, many systems also

employ dimensionality reduction techniques to the set of features. In those cases,
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Class Separability (CS), Principal Component Analysis (PCA), Analysis of Variance

(ANOVA) or Multivariate ANOVA (MANOVA) are the techniques frequently used.

In [51], for example, the authors developed a feature selection that employed CS and

PCA for dimensionality reduction. In that system, as well as in [52] where ANOVA was

the technique of choice, the main concern is always to reduce dimensionality without

affecting the classification in a significant manner.

Finally, in terms of number of sensors used, as far as we know all systems developed

to date have made use of two or more sEMG signals derived from multiple sensors.

For example, in [51], the authors reported using only two differential sEMG electrodes

placed on the forearm of the test subjects. As we mentioned earlier, their system

used multiple features and a FIS+PCA classifier to achieve 83% accuracy. A better

performance (93.3%) was obtained in [52], but with the cost of relying on more sensors

– 5 to be more specific – and using ANN as the classification algorithm.

As it can be inferred from the literature review, the use of multiple electrodes

and of sophisticated classification algorithms help coping with a major disadvantage

of surface EMG: the occurrence of cross-talk from adjacent muscles [44]. It is exactly

this cross-talk of MUAPTs that makes the use of a single sensor a quite challenging

problem.

Several systems have been proposed to control wheelchairs using EMG signals. To

illustrate, in [53], the authors developed a wheelchair controller for users with high-level

spinal cord injury. They used Fuzzy Min-Max Neural Networks to classify forward, left

and right movements, and rest. And they measured EMG signals from muscles in

each side of the neck. In [48] the authors used EMG signals from the neck and the

arm muscles to implement a “joystick-like” model to control a wheelchair. And in [47]

the authors presented a hands-free control system based on EMG signals recorded

from eyebrow muscle activity for directional control, and electro-oculography signals

detected from eye movements for speed control.

Once again, systems like the one above either rely on very complex processing and

classification algorithms, or use the EMG signals mainly as on/off switches. Moreover,

they seek patterns based on the simple presence and the frequency of the activation.
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In this thesis, we propose a system for operating a wheelchair that recognizes mus-

cle movements derived from hand movements or gestures. In our framework, we use

GUSSS on the “cross-talked” MUAPTs signals from a single sEMG electrode. Unlike

other methods based on ICA [4], our method relies on a single sEMG source. Finally,

our proposed method combined with a simple distance classifier was applied to the

control of a power wheelchair using three different hand gestures.

6.3 Proposed Method for Using GUSSS on sEMG

As we just mentioned, we propose a wheelchair control system based on the recognition

of hand gestures using GUSSS. The use of hand gestures was simply to illustrate the

fact that any EMG pattern or signature derived from a natural and repetitive muscle

activation can be employed by our system. Clearly, in the case of a person with severe

impairment, another natural movement such as an eyebrow or eyelid could be used

instead.

The proposed framework for our method is illustrated in Figure 6.1 and it consists of

three parts: 1) signal detection and acquisition; 2) feature extraction and classification;

3) command transmission to the wheelchair and execution.

As the name implies, the first module of our framework is responsible for detecting

and sampling the sEMG signal. The next module in the flow, as presented in Fig-

ure 6.1, extracts the features that are used for classification of the hand movements.

These features are the Mean Absolute Value (MAV) and the GUSSS ratio, which we

introduced in chapter 3. After the features have been extracted the classification takes

place. In order to demonstrate the power of the proposed GUSSS ratio as a classifi-

cation feature, we based our system on a simple distance classifier. A better classifier

using more features should lead to better accuracy and classification. The last mod-

ule in Figure 6.1 transmits a command to the wheelchair based on the output of the

classifier.
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Figure 6.1: Framework of the proposed classification system.

6.3.1 Identifying Multiple Signatures in a Sensed Signal

In chapter 3 we explained how a particular signature can be identified or separated from

a sensed signal, say x1. Recall from equation 3.1 that this sensed signal is considered

a linear combination of N independent components. In this case, the components are

electrical signals (MUAPT) originating from different muscles [44]. In other words,

as we mentioned earlier, the sensed signals are linear combinations of independent

MUAPTs that become mixed due to cross-talk inside the subject’s arm.

In order to identify the presence or not of all possible signatures, the framework

employs an iterative method. That is, first, we assume that the system needs to identify

N sEMG signatures corresponding to the N possible hand gestures (We will explain

how to obtain the signatures in Chapter 8). Next, from the test signal x1, we obtained

N ratios by injecting iteratively the desired signature into x1 – equations (3.2)-(3.5) .

That is, we find

xp = x1 + sp for p = 1 to N

and once again, we apply the ICA algorithm to each
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Xp =





xT
1

xT
p



 for p = 1 to N

to obtain the GUSSS ratios r1, r2, ..., rN . Finally, it should go without saying that

if ri is the smallest of the N ratios found by the GUSSS, it is likely that the sensed

signal x1 is the signature si, and thus, the hand gesture i is the one being sought.

6.3.2 Mean Absolute Value as a Classification Feature

We considered a second feature for the classifier: the Mean Absolute Value (MAV) of

the signals. The MAV of a signal x (t) is obtained by calculating the average of the

absolute values of x at all instants t. If x (t) is continuous in time, then

MAV =
1

T

�
T

|x (t)| dt

where T is the time interval for which x (t) is defined. If the signal is discrete, then

MAV =
1

K

K
∑

k=1

|x (k)|

where K is the number of samples that constitute x (k).

6.3.3 Classification Module

As we pointed out earlier, the goal of the GUSSS is to identify which signature is

present in the observed sEMG signal x1. In order to do so, the same signature must

be injected to synthesize a secondary signal xp. Our framework uses a training set of

sEMG signals to learn those signatures and in chapter 8 we will explain two approaches

used for this purpose. Here, we assume that the signatures are available.

Furthermore, from the training signals we also learn the average MAVs for the dif-

ferent signatures, i.e. for the different gestures or classes of gestures. In mathematical

terms, let µ1, µ2, ..., µN be the average MAVs obtained from the training set and corre-

sponding to N different gestures to be recognized. Let σ1, σ2, ..., σN the corresponding

standard deviations. Given the input signal x1, the algorithm calculates its MAV, m1,
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and based on this value, it computes the Mahalanobis distances to the average MAVs

of the gestures. That is:

dp =
|m1 − µp|

σp

for p = 1 to N

It should be noted that if x1 is the result of gesture i, it is likely that mi is similar

to µi. In that case, di would also be the smallest of the N distances above.

Using both the GUSSS ratios and the MAVs distances above, we can define the dis-

tance classifier. The only missing step is the normalization of both features. That is, we

define the normalized GUSSS ratio and the normalized MAV distance as, respectively:

r̄p =
rp

N
∑

j=1

rj

d̄p =
dp

N
∑

j=1

dj

Those features are grouped in the feature vector:

−→vp =





r̄p

d̄p





for p = 1, . . . , N , corresponding to each of the N gestures to be identified. The

classification is obtained by assigning x1 to that gesture (i.e. the class) for which the

corresponding feature vector −→vi is smallest. The reason for the normalization of the

ratios and distances is, of course, to allow both features to have the same weight in the

classification process.

6.4 Concluding Remarks

In this chapter we propose a framework for using GUSSS to classify sEMG signals.

We developed an interface to control a real wheelchair using different hand gestures.

Further details of the experiments and the results obtained are presented in chapter 8.



Chapter 7

Experimental Results in Material

Detection Using Terahertz

In this section we present experimental results of the proposed system for material

detection described in chapter 5. The THz signatures for our experiments were obtained

from two public databases [25, 26] containing THz signals for hundreds of different

materials or chemical compounds. We ran 18 tests, each divided into 11 different sub-

cases representing different combinations of materials from the databases. For each of

the 18 tests, we selected one material to be the target material – i.e. the one to be

detected. We used its signature and the signatures of 7 additional materials to train

the system and obtain the training parameters. Then, we created testing mixtures

using the same 8 THz signatures plus 2 additional ones. We introduce those two new

THz signatures to simulate situations when the target material is mixed with materials

for which no training had been provided – i.e. these 2 extra materials had never been

seen by the system before the tests.

After selecting the compounds for each of the 18 tests, we created 11 different

sub-cases representing different potential concentrations of the target compound in the

total mixture. We did that by randomly selecting the concentration of that target

material between a certain lower limit, ll, and an upper limit, ul. Finally, for each of

the 11 sub-cases in each test, we created 1000 mixture signals for training and another

1000 for testing. Half of the mixtures corresponded to cases when the target material
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is present, and the other half to cases when the material is not present. As explained

in section 5.4.2, the mixtures were created as linear combinations (eq. 4.2) of all 10

THz signatures in the test.

In section 5.3, we explained two ways of getting hard thresholds, and we discussed

SVM. For all the tests we tried the thresholds and the SVM approaches for training the

system and classifying testing mixture signals. The results obtained were similar, but

the best overall performance was obtained using the SVM approach. Next I present

the results from three of the tests. The complete set of tests is presented in Appendix

B.

7.1 Test #1: Manzeb

Our first test consisted of detecting Manzeb among 9 other compounds (7 of which

had been used during training and 2 had never been seen before this test). Table 7.1

shows the results obtained for this Test #1. The Table presents the results in the form

of True Positive (TP) and True Negative (TN) percentages, as well as total correct

classification percentages (CC). These results were obtained using the SVM approach.

The reader should notice that the classification performance is excellent for this

compound. Only the cases with the lowest lower limit (ll) values resulted in less than

perfect classification. The reason for that is mainly due to the distinct THz signature

associated with this compound. Figure 7.1 shows the original THz signatures obtained

from the databases for this test (left) and the transformed time domain signatures

(right) used by our system. The first two plots (top) correspond to the Manzeb, while

the remaining plots correspond to the other materials used in this experiment.

Another way to understand the excellent results of this test is provided by Figure

7.2, which illustrates the behavior of the GUSSS ratios for randomly selected values

of the lower limit ll, ranging from 0.1 to 0.8. The figure depicts in red and blue the

distributions of the logarithm of the GUSSS ratios corresponding respectively to the

cases when Manzeb is present and when it is not present. For this specific plot, we

set the upper limit (ul) equal to the lower limit (ll) in order to force the coefficient cp
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to be equal to that specific ll. Other than that, the training signals were created as

described in section 5.4.2, using the THz signatures mentioned in table 7.1. From the

figure, we can notice that the GUSSS ratios for the cases when the Manzeb is not present

remain approximately within the same range, independent of ll – i.e. the averages of

the logarithm of those GUSSS ratios are approximately constant throughout the plot.

However, for the cases when Manzeb is present in the mixtures, the GUSSS ratios are

smaller, and their values decrease further with the increase in the value of ll – i.e. with

increases in the concentration of Manzeb in the mixture. Finally, the figure shows that

the separation between the set of “not present” cases and the set of “present” cases

increases as ll increases, which again explains the classification performance shown in

Table 7.1.

As the discussion above already indicated, the distinct characteristics of a THz

signature vis-a-vis the other signatures in the mixture leads to almost perfect perfor-

mance by our proposed method. Also, the percentage of the target material in the

mixture (given by the lower ll and upper ul limits) and the separation of the two

classes “present” and “not-present” are also important factors in the performance of

our system. In the next two cases, we present the good performance achieved by our

system despite the relaxation of these two conditions.

Table 7.1: Target material: Manzeb. Training materials: ADP, Albumin, DAST, H2S,
HgS, Lumiflavin, MgO. Additional materials for testing: Glucose, SiN . All values
are percentages.

[ll, ul] TP TN CC

[0.10, 0.40] 99 99 99
[0.10, 0.75] 99 99 99
[0.20, 0.40] 100 100 100
[0.20, 0.75] 100 100 100
[0.30, 0.40] 100 100 100
[0.30, 0.75] 100 100 100
[0.50, 0.75] 100 100 100
[0.50, 0.95] 100 100 100
[0.70, 0.75] 100 100 100
[0.70, 0.95] 100 100 100
[0.80, 1.00] 100 100 100

Total 99 99 99
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Figure 7.1: In red, the signature of Manzeb (target material). In blue, the additional
signatures used for training. On the left: Frequency domain. On the right: Time
domain.
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Figure 7.2: Distribution of the logarithm of GUSSS ratios vs. lower limit (ll). Shown
are the GUSSS ratios for cases when the target material is present (red) and not present
(blue). The upper limits (ul) were set equal to the ll. Also shown by the continuous
lines are the averages of the logarithm of the GUSSS ratios. Target material: Manzeb.

7.2 Test #2: Talc

The second of the 18 tests performed used Talc as the target material. Table 7.2 shows

the result obtained for this test, which was carried out using all three approaches for

the classifier: that is, the SVM and the two threshold based methods. Overall, the

best performance was once again achieved using the SVM-based classifier.

The results obtained for Test #2 are still very good, but not quite as good as in

Test #1. Figure 7.3 shows the THz signatures and the corresponding time domain

signatures for all materials used in this test. As before, the THz signature of the Talc

in time domain seems mostly different from the signatures of the other materials, but

it retains some similar traces of these signatures. Those similarities should explain the

test results being slightly worse than the test using Manzeb.

Similar to the previous test, Figure 7.4 illustrates the logarithm of GUSSS ratios

versus various ll values. However, in this test, one can notice that the GUSSS ratios

of the two classes, present and not present, are closer when compared to the test using

Manzeb. Still, for the “present” class, the averages of the logarithm of the GUSSS
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ratios decrease as ll increase, leading to a better classification as the percentage of Talc

in the mixture increases. In fact, according to this plot, the classification should be

close to perfect for ll values greater than 0.5, which is exactly the case in Table 7.2.

Table 7.2: Target material: Talc. Training materials: Baking Soda, Caffeine, Cellulose,
Chalk, Coffee Ground, Equal, O2Si. Additional materials for testing: Ovalbumin,
Sodium Chloride. All values are percentages.

[ll, ul] TP TN CC

[0.10, 0.40] 66 83 75
[0.10, 0.75] 69 88 79
[0.20, 0.40] 77 82 80
[0.20, 0.75] 79 89 84
[0.30, 0.40] 82 81 82
[0.30, 0.75] 85 92 89
[0.50, 0.75] 94 95 95
[0.50, 0.95] 95 97 96
[0.70, 0.75] 98 99 98
[0.70, 0.95] 98 99 99
[0.80, 1.00] 99 99 99

Total 86 91 89

(a) SVM approach

[ll, ul] TP TN CC

[0.10, 0.40] 69 71 70
[0.10, 0.75] 75 82 79
[0.20, 0.40] 76 76 76
[0.20, 0.75] 88 84 86
[0.30, 0.40] 81 78 80
[0.30, 0.75] 89 83 86
[0.50, 0.75] 97 84 90
[0.50, 0.95] 98 94 96
[0.70, 0.75] 99 89 94
[0.70, 0.95] 98 95 97
[0.80, 1.00] 100 97 98

Total 88 85 87

(b) Threshold approach, Geometric
Mean

[ll, ul] TP TN CC

[0.10, 0.40] 85 48 66
[0.10, 0.75] 89 63 76
[0.20, 0.40] 87 60 73
[0.20, 0.75] 91 74 82
[0.30, 0.40] 89 66 77
[0.30, 0.75] 94 80 87
[0.50, 0.75] 97 91 94
[0.50, 0.95] 95 95 95
[0.70, 0.75] 99 98 98
[0.70, 0.95] 99 99 99
[0.80, 1.00] 99 99 99

Total 93 79 86

(c) Threshold approach, Intersection
of Gaussians



7.2. Test #2: Talc 58

0 2 4 6 8 10 12
0

0.5

1

T
ar

ge
t s

ig
n.

Original THz Signatures

0 2 4 6 8 10 12
0

0.5

1

T
r.

 s
ig

n.
 1

0 2 4 6 8 10 12
0

0.5

1

T
r.

 s
ig

n.
 2

0 2 4 6 8 10 12
0

0.5

1

T
r.

 s
ig

n.
 3

0 2 4 6 8 10 12
0

0.5

1

T
r.

 s
ig

n.
 4

0 2 4 6 8 10 12
0

0.5

1

T
r.

 s
ig

n.
 5

0 2 4 6 8 10 12
0

0.5

1

T
r.

 s
ig

n.
 6

0 2 4 6 8 10 12
0

0.5

1

T
r.

 s
ig

n.
 7

Frequency (THz)

0 50 100 150 200 250
−0.5

0

0.5

T
ar

ge
t s

ig
n.

Time Domain Signatures

0 50 100 150 200 250
−0.5

0

0.5

T
r.

 s
ig

n.
 1

0 50 100 150 200 250
−0.5

0

0.5

T
r.

 s
ig

n.
 2

0 50 100 150 200 250
−0.5

0

0.5

T
r.

 s
ig

n.
 3

0 50 100 150 200 250
−0.5

0

0.5

T
r.

 s
ig

n.
 4

0 50 100 150 200 250
−0.5

0

0.5

T
r.

 s
ig

n.
 5

0 50 100 150 200 250
−0.5

0

0.5

T
r.

 s
ig

n.
 6

0 50 100 150 200 250
−0.5

0

0.5

T
r.

 s
ig

n.
 7

Figure 7.3: In red, the signature of Talc (target material). In blue, the additional
signatures used for training. On the left: Frequency domain. On the right: Time
domain.
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Figure 7.4: Distribution of the logarithm of GUSSS ratios vs. lower limit (ll). Shown
are the GUSSS ratios for cases when the target material is present (red) and not present
(blue). The upper limits (ul) were set equal to the ll. Also shown by the continuous
lines are the averages of the logarithm of the GUSSS ratios. Target material: Talc.

7.3 Test #3: Baking Soda

Lastly, we now present in table 7.3 the results for the third of the 18 tests performed.

The material detected this time is Baking Soda. Once again, we show the results

for the threshold-based as well as the SVM-based approaches for the classifier. The

classification performance for this test was the lowest among all tests. As before, Figure

7.5 shows the THz signatures in frequency and time domain for all the materials used in

this test. However, as it can be observed from Figure 7.5, this time the time signatures

seem very similar to each other, which explains the results of this last test as being the

worst among all tests.

It is important to mention here that despite this test presented the worst results,

such results are still very reasonable, especially for ll values higher than 0.5. Besides,

our classifier is a very simple classifier when compared to typical system in the litera-

ture, and the performance of our system could be greatly enhanced by the inclusion of

more features or the use of an even better classifier. Our goal in this work, however, was

to show the excellent performance of our GUSSS method, even for simple classifiers.



7.3. Test #3: Baking Soda 60

As before, we show a plot of the logarithm of the GUSSS ratios versus ll in Fig-

ure 7.6. Here, it should be pointed out the much greater overlap of the two classes,

“present” and “not-present”, when compared with the previous two tests. This is

consistent with the classification performance obtained.

Table 7.3: Target material: Baking Soda. Training materials: Caffeine, Cellulose,
Coffee Ground, O2Si, Ovalbumin, Sodium Chloride, Talc. Additional materials for
testing: Equal, Trehalose. All values are percentages.

[ll, ul] TP TN CC

[0.10, 0.40] 58 80 69
[0.10, 0.75] 67 85 76
[0.20, 0.40] 62 84 73
[0.20, 0.75] 65 87 76
[0.30, 0.40] 71 83 77
[0.30, 0.75] 75 92 83
[0.50, 0.75] 81 90 85
[0.50, 0.95] 80 88 84
[0.70, 0.75] 81 93 87
[0.70, 0.95] 81 87 84
[0.80, 1.00] 77 89 83

Total 73 87 80

(a) SVM approach

[ll, ul] TP TN CC

[0.10, 0.40] 48 87 68
[0.10, 0.75] 60 93 77
[0.20, 0.40] 52 91 72
[0.20, 0.75] 65 95 80
[0.30, 0.40] 59 91 75
[0.30, 0.75] 72 95 84
[0.50, 0.75] 81 95 88
[0.50, 0.95] 80 97 88
[0.70, 0.75] 81 95 88
[0.70, 0.95] 80 95 87
[0.80, 1.00] 76 94 85

Total 69 94 81

(b) Threshold approach, Geometric
Mean

[ll, ul] TP TN CC

[0.10, 0.40] 67 72 70
[0.10, 0.75] 72 87 80
[0.20, 0.40] 71 74 72
[0.20, 0.75] 76 87 81
[0.30, 0.40] 71 86 78
[0.30, 0.75] 74 91 82
[0.50, 0.75] 80 96 88
[0.50, 0.95] 83 91 87
[0.70, 0.75] 80 96 88
[0.70, 0.95] 84 91 87
[0.80, 1.00] 88 88 88

Total 77 87 82

(c) Threshold approach, Intersection
of Gaussians
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Figure 7.5: In red, the signature of Baking Soda (target material). In blue, the ad-
ditional signatures used for training. On the left: Frequency domain. On the right:
Time domain.
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Figure 7.6: Distribution of the logarithm of GUSSS ratios vs. lower limit (ll). Shown
are the GUSSS ratios for cases when the target material is present (red) and not present
(blue). The upper limits (ul) were set equal to the ll. Also shown by the continuous
lines are the averages of the logarithm of the GUSSS ratios. Target material: Baking
Soda.

7.4 Overall Results and Discussion

As we mentioned before, we ran a total of 18 tests. Test #1 above corresponds to the

material for which we got the best performance (Manzeb). Test #2 corresponds to

a material with an average performance (Talc), while the third test shows the worst

overall performance (Baking Soda) among the 18 tests. As mentioned before, we do

not present the results for the remaining 15 tests in this chapter, but in Appendix B.

Nevertheless, we do present the average performance of all 18 tests in Table 7.4, next.
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Table 7.4: These results are the average percentages of all the experiments (18 mate-
rials).

[ll, ul] TP TN CC

[0.10, 0.40] 74 80 77
[0.10, 0.75] 81 87 84
[0.20, 0.40] 82 83 83
[0.20, 0.75] 86 89 88
[0.30, 0.40] 86 87 86
[0.30, 0.75] 92 92 92
[0.50, 0.75] 95 94 94
[0.50, 0.95] 94 94 94
[0.70, 0.75] 95 96 95
[0.70, 0.95] 94 95 94
[0.80, 1.00] 94 95 94

Total 89 90 89

(a) SVM approach

[ll, ul] TP TN CC

[0.10, 0.40] 79 74 76
[0.10, 0.75] 84 83 83
[0.20, 0.40] 85 78 81
[0.20, 0.75] 90 84 87
[0.30, 0.40] 89 80 85
[0.30, 0.75] 93 87 90
[0.50, 0.75] 96 88 92
[0.50, 0.95] 95 90 92
[0.70, 0.75] 97 88 92
[0.70, 0.95] 96 89 92
[0.80, 1.00] 95 89 92

Total 91 84 88

(b) Threshold approach, Geometric
Mean

[ll, ul] TP TN CC

[0.10, 0.40] 86 61 73
[0.10, 0.75] 88 75 82
[0.20, 0.40] 90 70 80
[0.20, 0.75] 92 81 86
[0.30, 0.40] 92 77 84
[0.30, 0.75] 93 86 90
[0.50, 0.75] 95 91 93
[0.50, 0.95] 95 90 93
[0.70, 0.75] 95 92 94
[0.70, 0.95] 95 90 93
[0.80, 1.00] 96 91 93

Total 92 82 87

(c) Threshold approach, Intersection
of Gaussians

In general, the threshold-based approaches led to a slightly higher index of True

Positives (TP) – and thus, to lower False Negatives (FN) – when compared to the SVM-

based approach. This result is quite desirable, especially for applications involving

explosive detection (e.g. airport security inspection, IED detection, etc.). However,
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the improvement in TP when compared to the SVM-based classifier came with a much

bigger price in terms of True Negatives (TN) and the complemented False Positives

(FP). So, the overall higher index of correct classification (CC) achieved with the

SVM-based classifier would justify its use for most applications where better correct

classification would be desired.

Another important observation to make is that the results show that in general

the performance increases with higher values of the lower and upper limits, ll and ul.

This makes perfect sense since those limits determine the concentration of the target

material in the mixture being tested. In an extremely ideal case, when that target

material is the only one present, the coefficient cp of equation 4.2 would be 1 and the

GUSSS ratio would be 1. In general, if the value of ll is high (close to 1), then the

coefficient cp would also be close to 1 and the GUSSS ratio would be relatively low. On

the other hand, when the target material is not present in the mixture, the coefficient

cp becomes close to 0 and the GUSSS ratio tends to infinity. Similarly, if the value

of ll is low (close to 0), then cp would also be low for a given mixture, and thus, the

corresponding GUSSS ratio would be large. Based on the previous analysis, it was

expected that the best classification performance resulted with the higher values of ll

and ul, which was confirmed by the experiments.

The mixing coefficients ci used to create the testing mixture signals were randomly

chosen. They represent how much of the ith material is present in a mixture. By exam-

ining those coefficients we gained some insights on the results obtained. Specifically, we

want to better understand the miss classifications. On the one hand we have the cases

when the material that we wanted to identify was present in a mixture signal, but the

system determined that that signal came from a mixture not including the material

sought for. These false negative (FN) cases may be due to lower concentrations of the

particular material.

On the other hand we have the false positive (FP) cases. In a FP case the system

classifies a testing signal as containing the material under investigation, when in fact

it was not present. This cases may be due to strong presence of materials with similar

time signatures (to the particular material being investigated) in a mixture. As shown
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in figures 7.3 and 7.5, there are materials with similar time signatures, which may be

confused in a certain degree. So, in order to confirm this hypothesis we examined the

mixing coefficients ci, i 6= p, which determine how much of each material different than

the material investigated is present in a mixture (since the material investigated is

not present, cp = 0). We found out that the larger coefficients of an FP test signal

corresponded to those materials which appear to have more similar signatures to the

signature of the material of interest. For instance, in the case of material Talc (see

Figure 7.3, right hand), Tr. signatures 3, 5 and 7 seem very similar to the signature

of Talc (in red). In general, those signatures had the largest coefficients in the testing

signals that ended up being FP cases. In contrast, for the true negative (TN) cases

(those when a test mixture is correctly classified as not containing the material of

interest) the larger coefficients corresponded to the time signatures more different than

that of the material of interest, whereas the “similar” signatures usually had the lower

coefficients.

7.5 Concluding Remarks

The results presented here and in Appendix B show a lot of promise for our method

in the area of material detection. In chapters 9 and 10 we present general conclusions

on the methods and experiments that we conducted for this work, and we comment on

improvements and further tests to be conducted in the future.



Chapter 8

Experimental Results with sEMG

Signals

In this section, we explain how we applied the proposed classification framework de-

scribed in chapter 6. For these experiments we used three different hand gestures each

time, i.e, we tested our method for classifying N = 3 possible movements. The sEMG

signals of interest are those generated in the transition from a rest position of the hand

to the actual gesture. All the sEMG signals were obtained using a Tinkertron EMG

switch [54]. This device consists of circuitry for detection and amplification of sEMG

signals. Since our framework relies on a single sEMG source, we placed a pair of dif-

ferential electrodes on the extensor carpi radialis muscle along the subject’s forearm.

The use of this muscle has been previously reported [50, 51]. We choose this muscle

for convenience and easy access. A reference (ground) electrode was also placed on the

wrist of the opposite arm.

Before implementing the wheelchair control illustrated in Figure 6.1, we first did

offline testings of the method. We described the tests and the results in section 8.1.

Then, in section 8.2 we present the results obtained for the actual wheelchair. We

conclude this chapter with a discussion of the results, the main problems we had, and

possible improvements for the framework.

66
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8.1 Offline Testing Using National Instruments Dig-

itizer

The main goal of the experiments was to test our proposed GUSSS method for clas-

sification of sEMG signals. Having an interface to control a wheelchair (or any other

robot or system) implies additional challenges, mostly technical ones. Therefore, the

first tests we ran did not involve the wheelchair. We collected sEMG signals offline

and under more controlled conditions. We processed and analyzed those signals to get

classification rates, leaving out the last part of the framework presented in section 6.3

(command transmission to the wheelchair and execution). A simplified framework for

the method is illustrated in Figure 8.1 and it consists of three parts: 1) signal acquisi-

tion and pre-processing; 2) feature extraction; and 3) classification. The features used

and the classification module implemented are as described in chapter 6, section 6.3.

Figure 8.1: Simplified classification system.

For these offline experiments, the signals from the Tinkertron were sampled using

a National Instruments digitizer. A typical signal recorded looks like the one in Figure

8.2. We need to process the signal before we can use it. First of all, in order to reduce

undesired noise coming from the power lines, we implemented a digital filter to remove

the 60 Hz component. Then, we need to extract the actual sEMG signal generated

when the subject performs the hand movement. Figure 8.2 shows an initial period

of time where there is only noise. Then comes the main part of the signal, the one

of interest. Finally, there is another period of time with noise. The pre-processing

module shown in Figure 8.1 consists of detecting where the main signal is so it can be
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extracted and then used in the next module. The details of the extraction algorithm

are presented in Appendix C.

Figure 8.2: Typical sEMG signal captured using a National Instruments Digitizer.

8.1.1 Training: Obtaining the Signature Signals and Other

Parameters

As we mentioned earlier, three different hand gestures were considered in our experi-

ments. As we have also explained in previous chapters, the proposed GUSSS technique

requires a signature associated to each of the gestures to be recognized. Before we

present the performance of our framework, we explain how we learn the signatures.

Signatures by Averaging Given a training set with 3×J samples – i.e. J samples

from each hand gesture, we did an averaging of the training signals grouped per hand

gesture. That is, each of the J samples belonging to the same gesture were averaged

creating a single time signal sp(t) = 1

J

J
∑

i=1

ypi(t) for p = 1, 2, 3.

Other Training Parameters As explained in chapter 6, section 6.3, the classifica-

tion module also needs the average MAVs and the standard deviations. All of them are

obtained by analyzing the set of training sample signals for each of the gestures. Once

the signatures, the mean average MAVs and the corresponding standard deviations are

learnt, an additional set of testing signals can be analyzed.
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It is important to mention that the training process is subject dependent. The

signatures, the average MAVs and the corresponding standard deviations would need

to be specifically calculated for each individual.

8.1.2 Experimental Results

Figure 8.3 illustrates the 3 hand gestures considered in the experiments. We collected

sEMG signals from three individuals. We used a subset of the signals to obtain the

signatures and the other parameters for each of the gestures. We then classified the re-

maining sEMG signals collected. Tables 8.1, 8.2, and 8.3 present the confusion matrices

for the classification results.

Figure 8.3: The hand gestures considered: a) Relax or resting position; b) “clench”; c)
“up” ; d) “finger tapping”.

Table 8.1: Confusion matrix for classification, test subject 1.

Assigned gestures
clench up tapping

Real clench 35 5 0
gestures up 3 32 5

tapping 1 8 31

Correct classification: 81.7%
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Table 8.2: Confusion matrix for classification, test subject 2.

Assigned gestures
clench up tapping

Real clench 33 3 4
gestures up 3 30 7

tapping 8 1 31

Correct classification: 78.3%

Table 8.3: Confusion matrix for classification, test subject 3.

Assigned gestures
clench up tapping

Real clench 29 2 9
gestures up 8 32 0

tapping 4 0 36

Correct classification: 80.8%

8.2 Controlling a Wheelchair

After testing our method offline, we developed a program to control a wheelchair using

the sEMG signals. Now, instead of using the National Instruments digitizer, we used

a TS-7250 embedded device from Technologic Systems to sample the signals from the

Tinkertron EMG switch. This is part of the first software module in Figure 6.1 –

Signal Detection and Acquisition. This module is constantly monitoring the sEMG

signals, waiting for their levels to cross a certain threshold. Once the threshold is

detected, the program stores the signal and then transmits the signal to the second

software module of the system for the purpose of feature extraction and classification.

This second module then sends the commands to the wheelchair, which then sends the

control signals to the wheelchair motors to actually move forward, turn or stop it. It

should be mentioned here that the two modules described above were implemented in a

client-server fashion and each can run on the same computer or not. In this experiment,
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the client – i.e. the Signal Detection and Acquisition module – ran on the TS-7250

as we just mentioned, while the server – i.e. the Feature Extraction and Classification

module – ran on a desktop computer. The original programs for the offline testing (and

for the sound and THz tests) were created using Matlab. For the wheelchair control we

needed to translate the programs to C. We experienced problems with the real time

functions for the TS-7250. Therefore, we ended up not using real time functions of the

embedded device.

As in the offline testings, three different hand gestures were considered in the ex-

periments (Figure 8.3). As we have also explained, the proposed GUSSS technique

requires a signature associated to each of the gestures to be recognized. Before the

subjects can use the wheelchair they need to go through a training process. The sys-

tem allows the user to repeat certain gestures a number of times and it associates each

gesture to any of the possible motions of the chair. The training signals obtained are

analyzed and processed to create the signatures, which are then stored in the server.

The signatures are obtained as described in subsection 8.1.1.

8.2.1 Experimental Results

Once again, three test subjects were asked to go through the training process. For each

subject, ten signals per movement were acquired in order to train the system. For these

experiments, the “clench” gesture (Figure 8.3 b) was assigned to the stop command,

the “up” gesture (Figure 8.3 c) was assigned to the forward command and the “finger

tapping” (Figure 8.3 d) was assigned to the turn command. After the training, the

test subjects were asked to perform a total of 150 movements, 50 for each command.

Tables 8.4, 8.5 and 8.6 show the confusion matrices for the classification results of these

experiments.

It is important to mention that the results presented below encompass all aspects

of the real time control of the wheelchair. In other words, the system must capture the

signal, localize the time window of muscle activity, extract the features and classify the

gesture correctly in order to be considered a successful classification. Therefore, the

accuracy of the classification calculated and presented on the tables can be affected by
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errors in any of these steps.

Table 8.4: Confusion matrix for classification, test subject 1.

Executed command
stop forward turn

Actual clench 43 7 0
hand up 7 37 6

movement tapping 0 19 31

Correct classification: 74%

Table 8.5: Confusion matrix for classification, test subject 2.

Executed command
stop forward turn

Actual clench 41 4 5
hand up 10 28 12

movement tapping 4 13 33

Correct classification: 68%

Table 8.6: Confusion matrix for classification, test subject 3.

Executed command
stop forward turn

Actual clench 29 6 15
hand up 1 32 17

movement tapping 2 5 43

Correct classification: 69%

8.3 Discussion and Concluding Remarks

The proposed classification framework was applied to a wheelchair control system based

on detecting specific hand gestures, using a single sEMG source. The classification
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accuracy obtained in these experiments was lower than the accuracy obtained offline

– that is, using the National Instrument acquisition equipment. In that case, the

accuracy was around 80%. We assume that the lower performance was caused by

hardware limitations of the AD converter on-board the TS-7250 embedded device and

the algorithm used to automatically locate the window containing the EMG signature

for classification. However, since both of these conditions are required for a real-life

application of our proposed GUSSS method to the wheelchair control, we thought

necessary to report the tests above.

Despite the problems with the embedded device, the results achieved here were still

quite reasonable if we take into account the use of fewer sensors, fewer features, and

a very straightforward classification algorithm. Other systems found in the literature

use multiple sEMG sources and elaborated algorithms for classification. The training

process that we used for this experiment was also very simple to be carried out – another

advantage of our method over other methods in the literature. A future improvement

of the system would be to upgrade the embedded device and take advantage of real

time features.



Chapter 9

Conclusion

This work presented a new method for pattern recognition, signal detection and separa-

tion called Guided Under-determined Source Signal Separation (GUSSS). The method

relies on Independent Component Analysis and it is useful when there is a need of

separating individual components from mixtures captured by only one sensor. Our

method differs from Under-determined Blind Source Signal Separation in that we use

prior knowledge of particular source signals (signatures) that might be present within

the sensed mixture signals. By incorporating that prior information we go from an

under-determined problem, where we have fewer sensed signals than components, to

a well determined problem, where we have two equations and two components that

we want to estimate. This allows the use of traditional ICA algorithms to estimate

the independent components and the mixing coefficients. Using those coefficients we

introduced the GUSSS ratio, which can be used to determine if a particular signature

is present or not in a sensed signal, or as a feature in a classification problem.

We first tested our proposed method with sound signals and we were able to detect

the individual source signals within mixtures as they would be captured by a micro-

phone. The results were very promising, even with noisy signals. After the sound tests

we applied our method in two very different areas: material detection using terahertz

signatures and assistive technology using sEMG signals.

To apply GUSSS to THz technology we proposed a framework for detecting the

presence of particular chemicals or materials in a mixture. We used THz signatures
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of various materials obtained from public databases for our simulations. Our method

presented very good results for detecting a variety of such materials under various as-

sumptions on the percentage of the target material in the scene. For these experiments,

we used three very simple classification schemes and only a single feature. Our goal

was to demonstrate the superior performance of the method when it relies solely on

the GUSSS technique.

Unlike other methods that emphasize the detection of individual compounds, the

results obtained demonstrated that the proposed approach allows the detection of ma-

terials within mixtures. The results also support the claim that the introduction of

GUSSS presents a very powerful tool for the separation and identification of patterns in

signals. We expect that our proposed approach will lead to the development of systems

capable of detecting hazardous materials, such as RDX, TNT, drugs, etc., enhancing

and simplifying law enforcement, anti-terrorism security, etc.

For the area of assistive technology we focused on classifying sEMG signals, which

can be used for controlling devices like a power wheelchair. In order to use GUSSS we

proposed a framework to detect and classify user movements such as hand movements,

which were then be related to commands for a wheelchair. Our method allowed using

few sensors and a simple classification scheme. The performance of our method with

sEMG signals was not as impressive as with the sound and THz signals. However, the

results were reasonable given the technical limitations and the simplicity of the feature

vectors and the classifier used.

Overall, this work shows that the GUSSS method has the potential to be a powerful

method for pattern recognition of mixed signals.



Chapter 10

Future Work

Future work in the area of Terahertz technology would consist of applying our method

to THz signatures of RDX and other hazardous materials. Despite having been tested

with real THz signatures from the public databases, the proposed framework should

also be tested in real world scenarios. Furthermore, a future implementation of the

proposed framework should benefit from the use of a more diverse set of features and

a more sophisticated classifier.

In the area of assistive technology, our method could be tested on other muscles.

For instance, people with severe disabilities may only be able to move face muscles like

eyebrows. So, the proposed framework could be used to learn and use patterns of the

eyebrow movements to control the wheelchair. Another area of investigation is to define

better ways of obtaining the signatures for the sEMG signals. The learning process of

those signatures could be enhanced by incorporating information coming from more

muscles. The inclusion of more features and the use of a better classification scheme

should lead to better performances, as for the THz framework. This should allow

discriminating more gestures or movements.

The method could also be applied to other types of signals, for example, Elec-

troencephalographic (EEG) or Electrocardiographic (EKG) signals. EEG signals, for

instance, are widely used for clinical assessment and neurological studies and research.

But collecting those signals requires a lot of sensors. The use of GUSSS may allow the

reduction of the number of sensors, making the process of data collection easier for the
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patients and doctors/researchers.

Future work should not be limited to the areas tackled in this work. The pro-

posed method could be applied, for example, to image processing and computer vision.

GUSSS could be used to detect specific patterns in an image or could be added to

background subtraction algorithms. In essence, GUSSS could potentially be used in

many applications where the concept of “signature” would fit.

In addition to extending the use of the method to other areas, work should be done

to improve and extend the method itself. One main aspect would be to generalize it to

any under-determined case, that is, when the number of sensors is still smaller than the

number of independent sources (M < N), but that number is not necessarily equal to

one. Moreover, the ICA algorithm used could be revised. Specifically, the optimization

methodology could be modified to somehow include the prior information available (i.e.,

the signatures). The iterative methods for finding the independent components and

the corresponding mixing coefficients need some initial values. Just like the signatures

are injected to create the artificial signal (chapter 3) and thus transform the under-

determined system into a determined system, it could be possible to produce a better

initialization for the optimization algorithm. This could help improving the results, or

at least could reduce computation time.

Finally, further tests should be conducted to have quantitative measures of the

success/failure of the GUSSS method and the proposed frameworks, in addition to

the qualitative results obtained and presented in this work. A major goal would be

determining the theoretical conditions under which the method would be successful,

and what its limitations are.
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Appendix A

Complete Set of Results of the

Sound Experiments

In this Appendix we show the complete set of results obtained applying the GUSSS

method to the sound signals, as described in Chapter 4.
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Figure A.1: Nine sound signatures used for the preliminary GUSSS tests described in
Chapter 4. They correspond to: a police car’s siren (s1); a man speaking English (s2);
an old man speaking a foreign language (s3); a woman speaking English (s4); a band
playing classical music (s5); another man speaking a foreign language (s6); an opera
singer (s7); a woman speaking a foreign language (s8); a band playing pop music (s9).
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200 400 600 800 1000
10

0

10
1

10
2

10
3

10
4

10
5

GUSSS ratios for N = 1000 test mixtures.

R
at

io
s 

(lo
g 

sc
al

e)

 

 
present
not present

(i) Target signature: s9

Figure A.2: GUSSS ratios corresponding to 500 mixtures containing a target signature,
and 500 mixtures without the target signature. The vertical line separates those two
groups. Y-axis (GUSSS ratio axis) is shown in log scale.
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(h) Target signature: s8
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Figure A.3: GUSSS ratios corresponding to 500 noisy mixtures containing a target
signature, and 500 mixtures without the target signature. The vertical line separates
those two groups. Y-axis (GUSSS ratio axis) is shown in log scale. Noise level: σ = 0.01
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(h) Target signature: s8

200 400 600 800 1000
10

0

10
1

10
2

10
3

10
4

10
5

GUSSS ratios for N = 1000 test mixtures.

R
at

io
s 

(lo
g 

sc
al

e)

 

 
present
not present

(i) Target signature: s9

Figure A.4: GUSSS ratios corresponding to 500 noisy mixtures containing a target
signature, and 500 mixtures without the target signature. The vertical line separates
those two groups. Y-axis (GUSSS ratio axis) is shown in log scale. Noise level: σ = 0.1
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(f) Target signature: s6
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(g) Target signature: s7
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(h) Target signature: s8
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Figure A.5: GUSSS ratios corresponding to 500 noisy mixtures with time shift con-
taining a target signature, and 500 mixtures without the target signature. The vertical
line separates those two groups. Y-axis (GUSSS ratio axis) is shown in log scale.



Appendix B

Complete Set of Results of the THz

Experiments

In this Appendix we present the results of all 18 THz tests. For each material tested we

show the tables with true positive (TP), true negative (TN) and Correct Classification

(CC) percentages, for the three approaches explained in chapters 5 and 7 (threshold

using Geometric Means, threshold using intersection of Gaussians and SVM).

Table B.1: Material Manzeb

90
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Table B.2: Material Talc

Table B.3: Material Baking Soda

Table B.4: Material ADP
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Table B.5: Material Glucose

Table B.6: Material DAST

Table B.7: Material Lumiflavin
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Table B.8: Material Cellulose

Table B.9: Material MgO

Table B.10: Material HgS
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Table B.11: Material Caffeine

Table B.12: Material Chalk

Table B.13: Material Sodium Chloride
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Table B.14: Material NAC

Table B.15: Material SiN

Table B.16: Material Albumin
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Table B.17: Material Ovalbumin

Table B.18: Material Trehalose

Table B.19: Overall Averages



Appendix C

Extraction Algorithm for sEMG

Signals

In this appendix we describe the extraction algorithm implemented for detecting and

extracting sEMG signals. As it was pointed out in chapter 8, before applying the

GUSSS method we first need to get the main sEMG signal out of a recorded signal.

Figure C.1 illustrates the problem of a recorded signal and the goal of the algorithm.

Note there is an initial time period when there is only noise. At one point, the muscle

activity generates the actual sEMG signal of interest. Then, when the muscle relaxes,

the sEMG signal vanishes and we record noise once more. We want to detect the

muscle activity and extract the corresponding signal.
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Figure C.1: Complete recorded signal and extracted sEMG signal.

The first signal is the recorded signal, consisting of 1 second worth of data. Note

that the actual sEMG signal starts after approximately 200 ms, and lasts for about 400

ms. The second signal shows how the signal values outside the detection or activation

time window are set to zero. The third signal is the extracted signal. It consists of 400

ms worth of data (this time window is a parameter of the algorithm).

C.1 Extraction Algorithm

Given a recorded signal y = y (t), we first obtain the rectified signal r = |y (t)|. Figure

C.2 illustrates both y and r.
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Figure C.2: Recorded signal and its rectified version.

We then compare r to a threshold value θ. This value is related to the noise level

detected over a period of time when no sEMG signal is present. In essence, we record

noise over a short period of time. Then, we calculate the maximum value of that noise,

nmax. The threshold is then calculated as θ = knmax, where k > 1 is a constant. The

top plot in Figure C.3 shows the rectified signal r and the threshold. The bottom plot,

called detection plot, shows the places where the rectified signal surpasses the threshold

level. This detection plot consists of zeros where r ≤ θ, and ones where r > θ. It can be

seen that there are gaps, because of the oscillating nature of the signal. There are also

isolated peaks greater than the threshold, which are most likely due to noise. These

are to be removed.
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Figure C.3: Rectified signal and detection points.

The next step is to determine the active time interval(s). A certain density of ones

in the detection values is required to consider a particular point (in y) to be part of the

actual sEMG signal. Figure C.4 shows the recorded signal and the active intervals (so

far) on top of it. The active intervals are there where there is a high density of ones,

over a certain minimum time interval. Note that the isolated peaks at the beginning

and the end of the bottom plot of figure C.3 were not considered for the active intervals.



C.1. Extraction Algorithm 101

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−0.1

−0.05

0

0.05

0.1

ex
tr

ac
te

d 
si

gn
al

 (
2n

d 
st

ep
)

time (sec)

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−0.1

−0.05

0

0.05

0.1

re
c.

 s
ig

na
l a

nd
 a

ct
. i

nt
s

Extracted signal after second step

Figure C.4: Active Time Intervals.

Finally, we use the active intervals to extract the sEMG signal. Note in the figure

above the small active interval on the right. In cases like that we consider them if

they are close enough to the main active interval, or if they are long enough not to

be regarded as noise. Otherwise, those small active intervals are ignored. Figure C.5

shows the final result of the algorithm. The small active interval was disregarded in

this case. Note also that the final active interval was a little extended on both sides

so to have a smoother extracted sEMG signal. With this we avoid sudden step-like

beginnings of the extracted signals, or suddenly interrupted ones, as can be observed

in the bottom plot in Figure C.4.
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Figure C.5: Final extracted sEMG signal.


