
DATA CENTER RESOURCE MANAGEMENT WITH TEMPORAL DYNAMIC

WORKLOAD

A DISSERTATION
in

Computer Networking
and

Telecommunications Networking

Presented to the Faculty of the University
of Missouri–Kansas City in partial fulfillment of

the requirements for the degree

DOCTOR OF PHILOSOPHY

by
Haiyang Qian

M. S., Technical University of Denmark, Lyngby, Denmark, 2006
B. S., Nanjing University of Science & Technology, Nanjing, China, 2002

Kansas City, Missouri
2012

c⃝ 2012

Haiyang Qian

ALL RIGHTS RESERVED

DATA CENTER RESOURCE MANAGEMENT WITH TEMPORAL DYNAMIC

WORKLOAD

Haiyang Qian, Candidate for the Doctor of Philosophy Degree

University of Missouri–Kansas City, 2012

ABSTRACT

The proliferation of Internet services drives the data center expansion in both size

and the number. More importantly, the energy consumption (as part of total cost of owner-

ship (TCO)) has become a social concern. When the workload demand is given, the data

center operators desire minimizing their TCO. On the other hand, when the workload de-

mand is unknown while the requirements on quality (QoE) of experience of the Internet

services are given, the data center operators need to determine appropriate amount of re-

sources and design redirection strategies in presence of multiple data centers to guarantee

the QoE.

For the first problem, we present formulations to minimize server energy con-

sumption and server cost under three different data center scenarios (homogeneous, het-

erogeneous, hybrid hetero-homogeneous clusters) with dynamic temporal demand. Our

studies show that the homogeneous model significantly differs the heterogenous model in

iii

computational time. To be able to compute optimal configurations in near real-time for

large scale data centers, we propose aggregation by maximum and aggregation by mean

modes for different Internet service requirements. In aggregation by maximum mode,

the price of reducing computational time is over-provisioning (which causes extra energy

consumption). In aggregation by mean mode, the price is the degradation of the timeliness

of services. However, they still result in significant cost savings compared to the scenario

when all servers are on during the entire duration. We first introduce an intuitive aggre-

gation method: static aggregation. For each mode, dynamic aggregation is introduced

to alleviate their individual drawbacks. The dynamic aggregation by maximum results

in cost savings up to approximately 18% over the static aggregation by maximum. For

three random distributed workload cases, the dynamic aggregation by mean can save up

to approximately 50% workload reallocation compared to static aggregation. Dynamic

Voltage/Frequency Scaling (DVFS) capacity is further considered in our model. Our

numerical results show that adopting DVFS results in significantly reduction of energy

consumption.

For the second problem, the data center provides resources via the cloud com-

puting model. We propose a hierarchical modeling approach that can easily combine all

components in the data center provisioning environment. Identifying interactions among

the components is the key to construct such a model. In providing internet service by

cloud computing hosted in data centers, we first construct four sub-models: an outbound

iv

bandwidth model, a cloud computing (hosted by data centers) availability model, a la-

tency model and a cloud computing response time model. Then we use a data center

redirection strategy graph to glue them together. We also introduce an all-in-one barome-

ter to ease the QoE evaluation. The numeric results show that our model serves as a very

useful analytical tool for data center operators to provide appropriate resources as well as

design redirection strategies.

In addition, we study the redirection strategies (schemes) in a particular Internet

service, agent-based virtual private networks architecture (ABVA). It refers to the envi-

ronment where a third-party provider runs and administers remote access virtual private

network (VPN) service for organizations that do not want to maintain their own in-house

VPN servers. We consider the problem of optimally connecting users of an organization

to VPN server locations in an ABVA environment so that request denial probability and

latency are balanced. A user request needs a certain bandwidth between the user and

the VPN server. The VPN server may deny requests when the bandwidth is insufficient

(capacity limitation). At the same time, the latency perceived by a user from its current

location to a VPN server is an important consideration. We present a number of strategies

regarding how VPN servers are to be selected and the number of servers to be tried so that

request denial probability is minimized without unduly affecting latency. These strate-

gies are studied on a number of different topologies. For our study, we consider Poisson

and non-Poisson arrival of requests under both finite and infinite population models to

v

understand the impact on the entire system. We found that the arrival processes have a

significant and consistent impact on the request denial probability and the impact on the

latency is dependent on the traffic load in the infinite model. In the finite model, arrival

processes have an inconsistent impact to the request denial probability. As to the latency

in the finite model, arrivals that have a squared co-efficient of variation less than one is

consistently largest, followed by Poisson case, then the case that the squared co-efficient

of variation is more than one. Finally, a strength of this work is the comparison of infinite

and finite models; we found that a mismatch between the infinite and the finite model is

dependent both on the number of users in the system and the load.

vi

APPROVAL PAGE

The faculty listed below, appointed by the Dean of the School of Graduate Studies, have

examined a dissertation titled “Data Center Resource Management with Temporal Dy-

namic Workload,” presented by Haiyang Qian, candidate for the Doctor of Philosophy

degree, and hereby certify that in their opinion it is worthy of acceptance.

Supervisory Committee

Deep Medhi, Ph.D., Committee Chair
Department of Computer Science & Electrical Engineering

Khosrow Sohraby, Ph.D.
Department of Computer Science & Electrical Engineering

Appie van de Liefvoort, Ph.D.
Department of Computer Science & Electrical Engineering

Kenneth Mitchell, Ph.D.
Department of Computer Science & Electrical Engineering

Cory Beard, Ph.D.
Department of Computer Science & Electrical Engineering

CONTENTS

ABSTRACT . iii

ILLUSTRATIONS . x

TABLES . xiv

ACKNOWLEDGEMENTS . xv

Chapter

1 INTRODUCTION . 1

1.1 Data Center Cost Components . 2

1.2 Cloud Computing and Dynamics of Workload 2

1.3 Dynamic Provisioning . 4

1.4 Quality of Experience of Internet Services 7

1.5 ABVA FrameWork . 7

1.6 Scope and Contribution of this Dissertation 10

1.7 A Literature Survey . 12

1.8 Organization . 16

2 Energy-Aware Data Center Resource Management when Resource Require-

ments are Given . 17

2.1 Notions and Notations . 18

2.2 Problem Formulation . 19

2.3 Aggregating Demand to Reduce Computational Time 31

viii

2.4 Results and Discussions . 40

2.5 Conclusion and Future Works . 65

3 Data Center Resource Allocation with DVFS 67

3.1 Problem Formulation . 67

3.2 Evaluation . 70

3.3 Conclusion and Further work . 78

4 A Hierarchical Model to Evaluate Quality of Experience of Online Services

Hosted by Data Centers . 81

4.1 Background . 82

4.2 The Hierarchical Model . 86

4.3 Numeric Results . 97

4.4 Conclusion and Future Work . 104

5 Balancing Request Denial Probability and Latency in an Agent-Based VPN Ar-

chitecture . 112

5.1 System Models and Schemes . 115

5.2 Studies and Results . 124

5.3 Summary . 148

6 Conclusions and Future Research . 152

Appendix

REFERENCE LIST . 154

VITA . 164

ix

ILLUSTRATIONS

Figure Page

1 The number of arrivals (requests) of 5-minutes window of 4-week trace

from PhoneFactor authentication service 4

2 ABVA: basic conceptual framework . 8

3 Model-Het: Binary IP: heterogenous server scenario 22

4 The matrix representation of Model-Het 25

5 Model-Hom: IP: homogeneous server scenario 28

6 Model-HH: IP: heterogeneous homogeneous-server-cluster scenario . . . 31

7 An illustration of aggregating workload by maximum 33

8 An illustration of aggregating workload by mean 39

9 A sinusoid workload example when I = 100 44

10 The cost and computational time with respect to different number of servers

in a heterogeneous model with 96 time slots 47

11 The cost and computation time with respect to different number of slots

in a heterogeneous model with 100 servers 48

12 Computational time comparison of different models under different work-

load . 50

13 The optimal cost and computational time in static aggregation by maximum 54

x

14 The optimal cost and computational time in dynamic aggregation by max-

imum . 55

15 Comparison between static and dynamic aggregation 56

16 The energy costs due to over-provisioning in static (S) and dynamic (D)

aggregation in dynamic aggregation by maximum 57

17 The optimal costs and computational time in static aggregation by mean . 58

18 The optimal cost and computational time in dynamic aggregation by mean 59

19 Comparison between static and dynamic aggregation by mean 60

20 The amount of workload rearrangement in static (S) and dynamic (D)

aggregation by mean . 61

21 Varying cost component weight in 5000 server scenario adopting aggre-

gation by maximum . 63

22 Varying the cost component weight in 5000 server scenario adopting ag-

gregation by mean . 64

23 Binary IP: resource allocation with DVFS 71

24 Minimum cost in a 100 server cluster . 76

25 Relative improvement . 78

26 Scaling Factor Versus Minimum cost . 79

27 Redirection strategy graph . 94

28 Hierarchical model . 95

29 Unavailability (ϱ = 2e− 4) . 98

30 Success probability (c=0.9999) . 99

xi

31 Average time (c=0.9999) . 100

32 QoE (Tth = 1, λ = 10) . 105

33 QoE (Tth = 3, λ = 10) . 106

34 QoE (Tth = 5, λ = 10) . 107

35 QoE (Tth = 1, λ = 20) . 108

36 QoE (Tth = 3, λ = 20) . 109

37 QoE (Tth = 5, λ = 20) . 110

38 QoE w and w/o guided hunting against user request arrival rate 111

39 The topologies . 126

40 Request denial probability of analytic approximation and simulation in

the infinite population model with Poisson arrival 129

41 The mean step and latency in the simulated infinite population model with

Poisson arrival . 130

42 Penalty of different schemes in the infinite model with Poisson arrival

(legends are the same as that in Fig. 41) 133

43 Performance in the infinite model with non-Poisson arrivals 136

44 Request denial probability of CDH in the infinite model with different

arrivals . 138

45 The mean step and latency of CDH in the infinite model with different

arrivals . 139

46 Request denial probability in the infinite model with Poisson arrival under

different topologies . 141

xii

47 The mean step and latency in the infinite model with Poisson arrival under

different topologies . 141

48 Request denial probability in the finite model with Poisson arrival 143

49 The mean step and latency in the finite model with Poisson arrival 144

50 Penalty of different schemes in the finite model with Poisson arrival . . . 145

51 Request denial probability in the finite model with different arrivals in the

ring topology . 146

52 The mean step and latency in the finite model with different arrivals in the

ring topology . 146

53 Request denial probability in the finite model with Poisson arrival under

different topologies . 146

54 The mean step and latency in the finite model with Poisson arrival under

different topologies . 147

55 Request denial probability of CDH in the infinite model and finite model

with different number of users with Poisson arrival in the ring topology . 148

56 Request denial probability of CRH in the infinite model and finite model

with different number of users with Poisson arrival in the ring topology . 149

xiii

TABLES

Tables Page

1 Estimated average power consumption per server class (W/Unit) from

2000 to 2006 . 2

2 The energy cost components of a 50,000 server data center 2

3 Specification of the server CPU . 43

4 Optimal cost of different cases . 51

5 CPU frequencies, capacities and costs 73

6 Parameters of the hypothetical environment 101

7 Optimal schemes in the infinite model (“a→ b” vertically means that the

optimal scheme changes from a to b as the arrival rate increases) 137

8 Optimal schemes in the finite model (“a → b” vertically means that the

optimal scheme changes from a to b as the arrival rate increases) 142

xiv

ACKNOWLEDGEMENTS

I would like to thank my advisor Dr. Deep Medhi for all his guidance, mentoring

and support throughout my doctoral research. Dr. Medhi’s guidance covers all levels of

research: from forming the ideas all the way down to the scratch.

I sincerely thank all of the other members of my committee, Dr. Khosrow Sohraby,

Dr. Appie van de Liefvoort, Dr. Kenneth Mitchell and Dr. Cory Beard, for all their help

when I have approached them with questions. Their comments have helped to clarify and

improved this work a lot.

I am indebted to Dr. Kishor Trivedi from Duke University for his inspiring guid-

ance on the hierarchical model and tutoring on SHARPE package. I would like to thank

my master thesis advisor, Dr. Villy B. Iversen for his encouragement to pursue Ph.D.

degree.

I would like to acknowledge the support I received from National Science Foun-

dation under grant No. CT-08-31090 and CNS-09-16505. I would also like to thank all

the lab mates, faculty, staff, colleagues, friends because even a small exchange of smiles

may have enlightened my day.

Last and most importantly, I would like to thank my parents, QIAN Jinlong and

GAO Yanyun for their patience, understanding, encouragement, and support for these

years during my Ph.D. course. Their love has been and will always be my momentum to

move forward.

CHAPTER 1

INTRODUCTION

The computing clusters are becomes more and more efficient. Consequently, the

computational capacity provided by unit watt constantly rises [49], which conforms to

Moore’s Law [60]. However, driven by the the needs of society as well as the huge com-

mercial profits of successful precedents, the proliferating and continuously scaling up

Internet services, such as search(e.g., Google [4], Bing [2]), social-networking(e.g., Face-

book [3], Twitter [7], Linkedin [5]), online-gaming (e.g., Zynga [8]), real-time authenti-

cation products (e.g., PhoneFactor [6, 74, 75]), etc., demands more and more computing

capacity at a even higher speed. Therefore, the power drawn by data centers constantly in-

creases. Table 1 [49] presents estimated average power usage for three classes of servers.

The cost of data centers has become one of major social and economic concerns.

It has been reported that the power consumption in data centers has increased 400% over

the past decade [36]. Data centers consumed 61 billion kilowatt-hours of power in 2006,

according to a report of U.S. Environmental Protection Agency (EPA) in 2007 [84]. That

is 1.5 percent of all power consumed in the United States–at a cost of 4.5 billion U.S.

dollars. Moreover, data center energy cost is approaching overall hardware cost [12]. The

carbon footprint of data centers contribute to the global warming. People becomes more

and more aware of the needs of “go green” for data centers. From both economic and

environmental perspectives, reducing energy consumption in data centers is an ever high

1

Table 1: Estimated average power consumption per server class (W/Unit) from 2000 to
2006

Server Class 2000 2001 2002 2003 2004 2005 2006
Volume 186 193 200 207 213 219 225

Mid-range 424 457 491 524 574 625 675
High-end 5,534 5,832 6,130 6,428 6,973 7,651 8,163

appeal.

1.1 Data Center Cost Components

There are infrastructure expenditure (CAPEX) and operational expenditure (OPEX)

in a data center. The energy consumption belongs to OPEX. The energy is consumed by

multiple units in data centers, such as servers, cooling, power distribution loss. Table 2

presents a rough energy consumption cost guide given by [39] in a 50,000 server data

center. In this dissertation, we focus on minimizing the costs of servers, i.e., energy con-

sumption to run servers and CAPEX of servers.

Table 2: The energy cost components of a 50,000 server data center
Amortized Cost Component Sub-Components

45% Servers CPU, memory, storage systems
25% Infrastructure Power distribution and cooling
15% Power draw Electrical utility costs
15% Network Links, transit, equipment

1.2 Cloud Computing and Dynamics of Workload

The popular pay-as-you-go model adopted by many cloud computing providers

(e.g., Amazon EC2 [1], Rackspace CloudserversTM) is one of the most attractive features

2

for customers whose demands on resources vary over time. Just like consuming any other

utilities (e.g., water, gas), customers pay for what they have consumed. Cloud computing

providers use data centers as underlying infrastructure and provision resources to Internet

services [11, 42, 90].

The real-world data center workload trace reveals that the workload is highly dy-

namic [10,13,26,28,65]. The workload fluctuates over timescales of minutes, hours, days.

For example, the fluctuation of number of users logged on to Windows Live Messenger

can be about 40% of the peak load within a day [28]. The fluctuation can be repre-

sented by “peak-to-mean” ratio [55] or the characteristics of distributions, such as, mean,

variance and squared coefficient of variance(SCV) [74]. As another example from our

previous work to characterize the pattern of the number arrivals (requests) in PhoneFac-

tor [6] which is a double authentication service, a diary pattern was found. The weekends

have much less number of requests and peak load appears on the mid morning for week-

days. Fig. 1 depicts this pattern from a 4-week trace from the PhoneFactor authentication

service [74].

Nevertheless, the workload are very different from case to case due to the vari-

ety of Internet services synthesizing workload. The common point of Internet service

workloads is they all vary over time. By characterizing history workload trace, predicting

future workload demand pattern, the synthetic workload demand can be generated. There

are many works on predicting workload in the data center environments, e.g., [38, 86].

Thus we assume the workload is predictable in this dissertation. That is, we have the

full knowledge of the workload. In this dissertation, the workload demand is given at a

3

1st Week

2nd Week

3rd Week

N
u

m
b

e
r

o
f

A
rr

iv
a

ls

Sun. Mon. Tue. Wed. Thu. Fri. Sat.

4th Week

5 Minutes Window

Figure 1: The number of arrivals (requests) of 5-minutes window of 4-week trace from
PhoneFactor authentication service

5-minute interval. A 5-minute interval is called a time slot. The beginning of each slot

is referred to as the review point. In this dissertation, we define the workload at certain

time slot as the total amount of resources required by both new arriving jobs at the current

review point and jobs that arrivals in previous review points and are still being served.

1.3 Dynamic Provisioning

The data center operators have to provision enough resources to satisfy the peak

workload demand. Statically provisioning results in over-provisioning for off-peak work-

load demand. The the power needed at peak workload is called peak power. It has been

4

found that there is significant power consumption when the processor is idle (i.e., it is at

“base power” [65]). It is measured that idle servers consume more than 66% of the peak

power [28, 35]. The base power cannot be reduced unless unused hosts are powered off.

Processor (CPU) utilization can be used as an indicator of power consumption because the

I/O and memory activities are correlated to processor utilization and power consumption

is a monotonically increasing function with regard to processor utilization [20]. Many

processors have the capability of DVFS, which allows processors to scale the frequency

up or down as needed. The cubic relationship between the power consumption and fre-

quency is commonly used [29, 32]. This relationship is given by:

Power Consumption = Pfixed + Pf × (frequency)3, (1.1)

where Pfixed is the fixed component and Pf is the coefficient of frequency related com-

ponent.

Virtualization, such as, Linux VServer, Parallels, VMware, Xen, is the technol-

ogy that enables different services to run in a virtually isolated environment and allows

resources that are allocated to these services scale up and down transparently and seam-

lessly [24]. Cloud computing providers use one virtual machine (VM) (It is called in-

stance in Amazon EC2) as the finest granularity of resources to offer the service. Con-

solidation is the technology utilizes the capability of migration to consolidate workload

into minimum number of running servers and maximize the number of idle servers 1 [81].

VMware “Distributed Power Management” (DPM) in VMware’s VSERVER adopts the

1“Minimum number of running servers” does not refer to fully utilize the server since we may not fully
utilize servers on purpose to guarantee Quality of Service (QoS).

5

consolidation concept to improve the power efficiency [85]. The way of assigning servers

is called workload dispatching. Assigning resource (servers) in the Last-Released-First-

Used (LRFU) manner (equivalent to Last-Come-First-Served(LCFS) or Last-In-First-Out

(LIFO) can minimize the needs of migration for consolidation [55]. That is, we use the

server that is released most recently when the workload increases. We always assume

LRFU job dispatching in this dissertation.

Above facts suggest that data center operators consolidate jobs into minimum

number of servers and switch idle servers off. However, switching servers on/off re-

sults in wear-and-tear cost and consolidation cost. The hard disk is the most vulnerable

part in data center infrastructure – majority (78%) of hardware failure/replacement is due

to hard disks [87]. To represent the “wear-and-tear” costs of switching on and off, we

amortize the CAPEX of servers by dividing the average price of server by the average

number of switching on/off cycles of the hard disk. In addition, the source server need to

run additional time to keep the states of running application when applying consolidation.

This additional time consumes extra energy. The presence of relationships between the

states of adjacent time slots requires a global optimization framework in the entire plan-

ning horizon. We use integer programming to determine the optimal number of running

servers at review points such that the costs of energy consumption and CAPEX of servers

are minimized in the entire planning horizon. The optimal solution should be computed in

an approximately real-time manner, even for large scale data centers, such as, data centers

with thousands of servers.

6

1.4 Quality of Experience of Internet Services

The users are served by the Internet service providers (ISeP) who in turn is the

customer of the cloud computing service provider (CSP) [11]. And CSP use data centers

as their infrastructure. Quality of Experience (QoE) is critical for service providers since

their revenue depends on it. [48]. Being able to receive service and the time needed to wait

comprises QoE for online service users. ISeP desire to be able to predict the QoE of their

users. The service performance described in a service level agreement (SLA) includes

response time, utilization, throughput, and availability, just to name a few. [89]. However,

these aspects consist of a promised service level that is delivered from data center to

ISePs. None of these aspects is suitable to be used as a direct barometer of QoE of the

online service. Note the response time in a data center, however, does not necessarily

correlate to QoE since (a) the response time experienced by users is the summation of

Internet delay and the response time in the data center, (b) the redirection functionality

further complicates the QoE. In addition, it is desirable for ISePs to be able to evaluate the

QoE by a single metric which comprehensively addresses the service delivered by CSP

and underlying data centers, the Internet’s conditions, and redirection strategies.

1.5 ABVA FrameWork

The ABVA framework has been originally described in [57, 68]. A high-level

conceptual view of the ABVA framework with users, routers, RPs, and organizations is

presented in Fig. 2. The RPs are marked as RP1, RP2. Here, users U1(a) and U1(b) are

associated with organization ORG1, and user U2 with organization ORG2. The Internet

7

serves as the native network that has IP routers identified as R1, R2, and so on. When

user U1 wants to connect to organization ORG1 for remote-access VPN services, it is

actually connected to RP1, which in turn connects to organization ORG1; similarly, user

U2 connects to organization ORG2. The underlying path from the user to the RP is

over the Internet; thus, a user can access it from anywhere in the Internet. Certainly, the

Rendezvous Points must have presence in the Internet. We will interchangeably use the

terms, Rendezvous Points and VPN servers.

RP1
U1(a) U2R1 R2R3R4

RP2R6
ORG1

U1(b)
ORG2R5
R7 R8

Router (R) U1(a) User (U)Rendezvous Point(RP) Organization (ORG)U-to-RPRP-to-ORG Bandwidth of RP (Capacity)
Figure 2: ABVA: basic conceptual framework

The path from an RP to an organization can be over the public Internet or over a

private network; for ease of illustration, the figure shows only the former case. Usually,

this path is provided based on service level agreements between the ABVA provider and

8

the native Internet service provider, by specifying acceptable quality of service and band-

width guarantees. For instance, the path from an RP to an organization can be set up as

an MPLS tunnel that can provide such guarantees; or, private dedicated circuits may be

used between an RP and an organization.

With the above background, we are now ready to provide further clarity to the

latency and bandwidth denial aspects of the problem. Based on an arriving user’s request,

latency refers to latency for the segment between the user and the RP it is connected to;

the part from an RP to the organization is bounded by the SLA and is, therefore, not

required to be included in this consideration. Certainly, this part must be acceptable to

begin with. The latency from a user to an RP is important to consider for two primary

reasons: 1) the latency is entirely over the public Internet, 2) once connected, during the

entire duration of the session, this latency (with some acceptable fluctuation) is perceived

by the user; for example, when downloading a file, watching a video clip, or accessing

email on the agent-based VPN. It should be noted that in general, a user location is not

fixed; a user may move from a particular location to another overnight and access from

a different location (e.g., hotel instead of home), and thus, a particular user should not

always be tied to a specific RP. Since the bandwidth guarantee is to be ensured on the

path from an RP to the organization, it means that if a specific RP does not have the

ability to handle a request, the request will be denied. That is, bandwidth guarantee is

not factored in directly on the public Internet part (i.e., from the user location to an RP);

however, a user (and the organization it belongs to), if accessing from a particular access

technology, might have certain expectations. For instance, if the access technology is

9

DSL, the user would expect/perceive the bandwidth to be at a certain rate, as opposed

to a dial-up connection. Based on the above discussion as well as the agent-based VPN

service offering of [67], it is reasonable to build the system model by considering latency

from a user to an RP (VPN server) given bandwidth guarantee at the entrance of the RP

to the provider service. Thus, starting in the next section, we focus on the framework of

modeling this system.

1.6 Scope and Contribution of this Dissertation

In this dissertation, we focus on two aspects of data center resource management.

When the resource requirements are already given, how to manage the resource. It is

desired to minimize the total cost comprised by energy consumption of running servers

and CAPEX of servers in data centers. For sake of brevity, we call the total cost server

operational cost. The data centers operators can use our proposed methods to manage

resources (e.g., CPU resources) such that data center server operational cost is minimized.

The other one is when the data center operators only have knowledge of the re-

quirements on quality of experience (QoE) between the user and the Internet service

provider (ISeP). They want to determine how many resources are needed to to provide

to the ISeP to guarantee QoE. The cost in this problem is the abstraction of the resource

assigned to the service to achieve certain reliability, outbound bandwidth, et. al. Our pro-

posed modeling approach can help data center operators allocate resources to the services

in their geographically dispersed data centers such that QoE is guarantted by minimum

10

resources. 2 Both problems fall into data center resource management scope.

Understanding the characteristics of data centers as well as Internet services is

indispensable to solve both problems. Actually, the characteristics of data centers and

Internet services are challenging part of the work. In the following subsections we list the

characteristics of data centers and Internet services we need to be aware of to solve the

problems. The contributions of this dissertation are as follows.

• We formulate the data center server operational cost minimization problem in three

data center server environments: homogenous, heterogeneous, hybrid hetero-homogeneous

data centers when the resource workload requirements are temporally dynamic.

Workload demand aggregation is proposed to reduce computational time to solve

the problem. Part of this work has been published in [70].

• We further formulate the same problem with taking Dynamic voltage/frequency

scaling (DVFS) into considering. This work has been published in [72].

• We propose a hierarchical modeling approach to evaluate the QoE of users. This

model can be used to determine the amount of data center resources for a Internet

services. This work has been published in [73].

• We conduct a study on a particular Internet service, called agent-based VPN, and

propose redirection strategies (schemes) to balance the service denial probability

and latency. Based on this work, a conference paper was initially published in [68],

which was later extended with additional results for a journal paper [69].
2On the hand, Internet service provider can use our models to select data centers. These are two sides

of the same story.

11

1.7 A Literature Survey

A significant amount of work focuses on saving energy on servers in data cen-

ters [16–19,22,28,29,32,51,55,64,65], initiated by the pioneering work [27,65] a decade

ago. Aiming at reducing data center server operational cost, these works using different

techniques, such as mathematical programming, queuing theory, control theory, machine

learning to model the problem, develop algorithms and heuristics. A recent comprehen-

sive survey can be found at [15].

Reducing server energy consumption can be performed at different levels. Each

level has cost components associated with it. At the individual physical server level, the

capacity of server/its components is scaled according to load. The components can be

processor, memory or storage system. The load of processor is usually called as uti-

lization. As we have mentioned before, processor utilization can be used to indicate the

power consumption. Processors with DVFS capacity (e.g., Transmeta’s Crusoe processor

and Intel’s Pentium with SpeedStep) can scale the voltage/frequency in light with load

and therefore reduce the power consumption. Barroso and Hölzle proposed the term en-

ergy proportinality to refer to the energy consumption proportional to load [13]. The cost

associated with physical server level is the power consumption.

At the cluster level, the decisions are made regarding how many servers are needed.

Switching the server on and off as needed was originally proposed by Pinheiro et. al. [65]

(named as “VOVO” in their work) to save energy. The cost associated with cluster level

is the wear-and-tear cost.

12

At virtualization level, migration and consolidation are used to consolidate work-

load into less number of virtual machines, i.e., VMware’s Dynamic Power Manage-

ment [85]. The cost associated with virtualization level is consolidation cost.

Many works in the literature consider more than one level of factors. [65] uses the

Proportional-Intergral-Differential (PID) method based on the control theory to predict

the demand for next decision point. Basically, this method takes the current demand sta-

tus, previous accumulated demand status, and demand change speed into consideration

and gives different weights to decide the demand for the next decision point. Bichler et.

al. use mixed-integer programming to formulate the capacity planning problems for virtu-

alized servers [19]. They also identify the “static server allocation problem” as an instance

of bin packing problem. However, DVFS is not considered in their work. Their evaluation

is based on historical traces. Petrucci et. al. consider both turning on/off and DVFS to

formulate the so called “virtual server cluster configuration problem” by mixed integer

programming and present an algorithm to dynamically manage server clusters [62–64].

They propose to devise a control loop to periodically run the optimization problem to

adapt the time-varying incoming workload of multiple applications. They formulate the

problem in single time period and thus can only take the turning on/off cost based on

adjacent time periods into consideration, which results in a local optimum. Chen et. al.

first formulate the objective function, then predict the first and second moment of the

next interval arrivals and finally calculate the SLA constraint in terms of delay based on

G/G/mi queue [29]. They also propose an approach based on control theory and hybrid

approach of queueing and control theory as alternatives. Most of these works evaluated

13

their approaches based on a relatively small server cluster size (such as around 10), while

some have considered a cluster size around 100.

How the dynamic workload structure affects the optimal solution and how to use

the workload structure to determine the optimal solution has not been paid a lot of atten-

tion. [55, 71] decompose the workload into certain substructures and utilize the substruc-

tures to determine the optimal solution. Lu and Chen also presents method to solve the

problem when workload is unpredictable [55].

Garfinkel conducted a number of experiments to evaluate the Amazon’s Grid

Computing services. Li et. al. benchmarked different cloud services [52]. A number

of cloud computing hardware reliability issues are identified for future research in [87].

Kalyanakrishnan et. al. used collected data to study the host reliability from the perspec-

tive of the users [44]. Bodik et. al. discussed the affect of turning machines on and off on

reliability in [21].

In general, the Agent-based virtual private networks architecture (ABVA) forms

a service overlay network (SON). There has been significant research on SON in recent

years [30], [54]. Duan et al. [30] took QoS, traffic demand distributions and bandwidth

costs into account to study the bandwidth provisioning problem of a general service over-

lay problem. Liu et al. [54] studied content delivery service of SON and proposed al-

gorithms to place replicas to maximize the total throughput of the service delivery tree.

There have been a number of works on VPNs [37], [61], [78]. Duffield et al. [31] studied

the resource management problem of proposed “hose” VPN service model which simpli-

fies SLA for users while complicates resource management for providers compared with

14

traditional customer-pipe model. To the best of our knowledge, our work is the first one

to study system management problems in the ABVA environment.

Accessing nearby servers/caches for a variety of network environments to either

minimize delay or maximize the utilization of network resources has drawn attention for

many years [41], [80], [66], [66]. Guyton and Schwartz [41] analyzed the performance

of several techniques for locating nearby server replicas. Shaikh et al. [80] have pro-

posed using DNS servers as a redirection service to select the closest server. Locating

nearby server though an important problem, is separate from our main concern. Plaxton

et. al. [66] proposed an efficient algorithm with small additional memory for each node to

access the nearby copies of objectives that are continuously being created, replicated, and

destroyed. Krishnan et al. [50] presented algorithms on where to place caches to minimize

the overall flow or delay. The RPs in ABVA are static in the sense that their locations and

capacity are fixed and these information is priori known. We consider the dynamics of

user arrival and server service time in this work. It is not surprising that accessing nearby

servers has been widely applied to other SON optimization problems, such as Content

Distributions Network (CDN) [23], P2P network [82].

The service denial problem, due to capacity limitation, has been extensively stud-

ied in various loss models since the seminal work by A. K. Erlang [33], [34]. An SON

environment (i.e., ABVA) often forms a hybrid of loss and overflow models where a

user can not be served by one resource is overflowed to another resource and it might be

lost finally. However, traditional overflow model has the same pre-designated ordering

15

of primary resource, secondary resource and so on for all users [43]. In ABVA envi-

ronment, this ordering is different from user to user due to distributed manner of users

and servers. Furthermore, the delay caused by overflows is not considered in traditional

overflow models. Motivated by the hunting schemes used by circuits to carry traffic in

conventional telephone networks [43], we propose the hunting schemes used by users to

seek resource. Our work presented here focuses on balancing user request denial prob-

ability and latency in a capacitated ABVA environment considering a number of arrival

models for three different topologies.

1.8 Organization

The rest of this dissertation is organized as follows. Chapter 2 formulates the data

center resource allocation problem and present time slot aggregation methods to reduce

the computational complexity when solving the problem. DVFS is considered along with

switching servers on and off to formulate the problem in chapter 4. Chapter 5 introduces

the hierarchical model to evaluate Quality of Experience for Internet Services hosted in

data centers. Chapter 6 proposes the redirection schemes (strategies) in the agent-based

VPN. Chapter 7 concludes this dissertation.

16

CHAPTER 2

ENERGY-AWARE DATA CENTER RESOURCE MANAGEMENT WHEN

RESOURCE REQUIREMENTS ARE GIVEN

The proliferation of Internet services drives the data center expand in both size

and the number. The data centers desire minimizing their total cost of ownership (TCO).

More importantly, the power consumption (as part of TCO) becomes a social concern

now. We present formulations to minimize server energy consumption and server cost

under three different data center server models (homogeneous, heterogeneous, hybrid

hetero-homogeneous clusters) with dynamic temporal demand.

The contribution of our work is: (a) We formulate three models to determine op-

timal number of running servers that for three different data center types in terms of their

heterogeneity. (b) Workload aggregation methods are proposed to reduce the compu-

tational time of computing optimum. Two workload aggregation modes are introduced

for different needs of applications. To combat the pitfalls of static aggregations for both

modes, we further introduce dynamic aggregations.

The remainder of this chapter is organized as follows. The notions and notations

are introduced in Section 2.1. We present optimization formulations in Section 2.2. Two

aggregation modes: (a) aggregation by maximum and (b) aggregation by mean and two

aggregation methods: (a) static aggregation and (b) dynamic aggregation are presented

in Section 2.3. Our numeric studies are discussed in Section 2.4. Finally, Section 2.5

concludes this chapter.

17

2.1 Notions and Notations

We introduce the notions and notations used in this chapter in this section. The

rest of notions and notations will be introduced when they are used. There are two fonts

used to denote sets. We use blackboard bold font to denote conventional sets, for example,

R denotes the set of real numbers; Z denotes the set of integers. We use calligraphy to

denote sets of indexes, for instance, I denotes the set of server numbering index. We use

0, 1 to denote binary integer sets. We use R+ and R++ to denote the set of non-negative

real numbers and positive real numbers, respectively. Vectors are denoted by lower-case

boldface letters. An array of elements which are delimited by commas and embraced by

a pair of parentheses is a column vector. And an array of elements delimited by spaces

and embraced by a pair of square brackets is a row vector. For example, x1, x2, x3 ∈ R

are three elements, we have

(x1, x2, x3) = [x1 x2 x3]
T.

The set of real n-vector is denoted by Rn. The matrix is denoted by a boldface capital

letter and its elements are denoted by italicized lower-case letters having subscripts to

denote their positions in the matrix. A matrix A having m rows and n columns is referred

to as an m × n matrix. For example, A = [aij] is a notation of matrix by specifying the

general notation of its elements. If all elements in matrix A are real numbers, we say

A ∈ Rm×n.

18

2.2 Problem Formulation

There is a data center or a cluster in a data center with I servers. Let I denote

the set of servers, while the cardinality of this set is denoted by I (i.e., #(I) = I). This

optimization problem is considered in a duration of Υ hours. In practice, we expect Υ to

be six to eight hours during which the workload can be accurately predicted according to

history observations. There are many techniques can be used to achieve accurate predic-

tion, e.g., [38,86]. However, the prediction techniques are out of the scope this paper. The

duration Υ hours are divided into T equal time slots or periods1 and the duration of a time

slot, called slot size, is τ = Υ/T hours. We assume that workload on CPU is predicted

at the beginning of the planning duration. The servers are reconfigurable at the beginning

of time slots. These points are called review points. The capacity that server i at time slot

t can offer is denoted by vit. We assume the capacity offered by server i is the same for

all time slots. Thus, we have:

vit = vi, t = 1, · · · , T. (2.1)

We want to determine how to configure the servers at review points such that total cost of

energy consumption and server CAPEX is minimized over the entire planning period.

2.2.1 Heterogenous Server Model

In this model, we assume all servers to be heterogenous and this model is denoted

by Model-Het. The power consumption per time unit of running server i ∈ I is denoted

1The terms time slot and period are used interchangeably in this paper.

19

by cpit. We assume the energy cost are the same at all time slots. That is,

cpit = cpi , t = 1, · · · , T. (2.2)

Let binary decision variables xit denote if server i is turned on at time t. The

switching costs of turning server i on and off are denoted by cs+it and cs−it , respectively.

We assume the switching cost are the same at all time slots. Thus,

cs+it = cs+i , t = 1, · · · , T ; (2.3)

cs−it = cs−i , t = 1, · · · , T. (2.4)

xit = 1, 0 represent the states of server i is “on” and “off” at time slot t, re-

spectively. Let “1” represents state change while “0” stands for no change between

adjacent time slots. Then the state change from “on” to “off” can be represented by

xit · (xit − xi(t−1)) . Similarly, the state change from off to on can be represented by

xi(t−1) · (xi(t−1) − xit). Our objective is to minimize the energy cost as well as the cost of

switching servers on or off over the entire time horizon. Therefore, the objective function

is given by:

F =
∑
t∈T

∑
i∈I

cpi ·xit+
∑
t∈T

∑
i∈I

(cs+i ·xit ·(xit−xi(t−1))+ cs−i ·xi(t−1) ·(xi(t−1)−xit)) (2.5)

Next we consider the constraints. There is only one set of constraints in this

problem: the demand must be satisfied in every time slot t. Thus we have:

∑
i∈I

vi · xit ≥ dt, t = 1, 2, · · · , T (2.6)

20

We notice that the objective function (2.5) is a binary quadratic function. We can trans-

form this special form of quadratic function into a linear function by introducing addi-

tional variables and constraints without resorting to any approximation. We introduce

two binary variables x+
it and x−

it to represent switching on and off at review point of time

slot t. x+
it = 1 represents that server i is turned on at time t. Similarly, x−

it = 1 means

server i is turned off at time slot t. x+
it = x−

it = 0 indicates that the state of server i does

not change from time slot t− 1 to t. Thus, we have:

xit − xi(t−1) − x+
it + x−

it = 0, i = 1, 2, · · · , I; t = 1, 2, · · · , T. (2.7)

Because x+
it and x−

it cannot be both 1. we use following inequalities to enforce this re-

quirement:

x+
it + x−

it ≤ 1, i = 1, 2, · · · , I; t = 1, 2, · · · , T. (2.8)

With the aid of x+
it and x−

it , the original quadratic objective function (2.5) is transformed

to the following linear function:

F =
∑
t∈T

∑
i∈I

cpi · xit +
∑
t∈T

∑
i∈I

(cs+i · x+
it + cs−i · x−

it). (2.9)

Since we assume all servers are set to off status at the review point of time slot 0, we have

the initial set of conditions as follows:

xi0 = 0, i = 1, · · · , I. (2.10)

In Model-Het, the objective is to minimize (2.9) which is subject to (2.6), (2.7) and (2.8).

And the initial conditions are given by (2.10). It is a binary LP problem. This problem

21

constants
cpi energy consumption of server i in a time slot
cs+i cost of switching server i on
cs−i cost of switching server i off
vi capacity of server i
dt demand at t
xi0 = 0 initial (time slot 0) state of server i

variables
xit = 1 if server i is running at time slot t; 0, otherwise
x+
it = 1 if server i is turned on at the review point of time slot t; 0, otherwise

x−
it = 1 if server i is turned off at the review point of time slot t; 0, otherwise

objective
minimize F =

∑
t∈T

∑
i∈I c

p
i · xit +

∑
t∈T

∑
i∈I(c

s+
i · x+

it + cs−i · x−
it)

constraints∑
i∈I vi · xit ≥ dt, t = 1, 2, · · · , T

xit − xi(t−1) − x+
it + x−

it = 0, i = 1, 2, · · · , I; t = 1, 2, · · · , T
x+
it + x−

it ≤ 1, i = 1, 2, · · · , I; t = 1, 2, · · · , T

Figure 3: Model-Het: Binary IP: heterogenous server scenario

is a special case (the case without dynamic voltage frequency scaling) of our previous

work [72]. For sake of clarity, we summarize this model in Fig. 2.2.1.

It is easier to understand the physical meaning of the problem in normal repre-

sentation. However, matrix representation is more convenient to observe and explore the

structure of the problem. Hence, we present the matrix representations of the Model-Het.

The matrix representation for other two models can be derived in a similar way and are

special cases of the Model-Het. Therefore, we only derive and present the matrix repre-

sentation for Model-Het in this dissertation.

Let I-vector xt = (x1t, x2t, · · · , xIt) represent the status of servers at time slot

t. Then by column-wise concatenating T such I-vectors we obtain I × T -matrix x =

[x1 x2 · · · xT], which denotes the status of all servers at all time slots. The I-vector

22

cpt = [cp1t c
p
2t · · · c

p
It] is the coefficient vector of power consumption for 1 to I servers

at time slot t. And I × T -matrix cp = (cp1, c
p
2, · · · , c

p
T) is the coefficient vector of power

consumption for 1 to I servers from time slot 1 to T . As we can see, the server status

have two dimensions: one is server set I, the other one is time slot set T . If these

coefficients do not change over time, the subscript t can be dropped. We define I-column

vector x+
t = (x+

1t, x
+
2t, · · · , x+

It) to represent the state of turning on actions at (the review

point of) time slot t. Let I × T -matrix x+ = [x+
1 x+

2 · · · x+
T] denote the states of

turning on actions for all servers at all time slots. Similarly, I-column vector x−
t =

(x−
1t, x

−
2t, · · · , x−

It) is the status of the state of turning off actions at (the review point of)

time slot t. And I×T -matrix x− = [x−
1 x−

2 · · · x−
T] is the states of turning off actions for

all servers at all time slots. The variable matrix for the whole problem can be represented

by column-wise concatenation of x, x+ and x−. That is, x = [x x+ x−]. We denote

a′ = [1 0IT−1 − 1 0IT−1 1], a′′ = [−1 0I−1 a′]. We define matrix A as follows:

A =

a′ 0IT−1

01 a′ 0IT−2

.

0I−1 a′ 0I(T−1)

. .

a′′ 0IT−I−1

01 a′′ 0IT−I−2

.

0IT−I−1 a′′

(2.11)

We have integrated the state initialization (2.10) in A by partitioning it into two blocks.

23

The upper block is the coefficients for the states at first time slot. The lower block repre-

sents the coefficients of the states at the remaining (T − 1) time slots. Therefore, (2.10)

has already been implied. Hence we have following matrix presentation for (2.7):

Ax = 0, where A ∈ {−1, 0, 1}IT×3IT x ∈ {0, 1}3IT . (2.12)

To represent the (2.8) we define matrix G as follows

G =

0IT 1 0IT−1 1 0IT−1

.

02IT−1 1 0IT−1 1

 (2.13)

And (2.8) can be written as:

Gx ≼ 1, whereG ∈ {−1, 0, 1}IT×3IT x ∈ {0, 1}3IT . (2.14)

Let c = (cp, cs+, cs−). The matrix representation of (2.5) is

F = cx. (2.15)

For the set of demand constraints, we define I-row vector vt = (v1t, v2t, · · · , vIt).

Then we have T × IT capacity coefficient matrix V

V′ =

v1 0

v2

. . .

0 vT

 (2.16)

The matrix representation of (2.6) is given by:

V′x′ ≥ d, whereV ∈ R+
T×IT ,x′ ∈ {0, 1}IT ,d ∈ R+

T . (2.17)

24

constants
c ∈ R3IT

+ ,A ∈ {−1, 0, 1}IT×3IT ,G ∈ {−1, 0, 1}IT×3IT ,V ∈ RT×3IT
+

variables
x ∈ {0, 1}3IT

objective
minimize F = cx

constraints
Vx ≽ d
Ax = 0IT

Gx ≼ 1IT

Figure 4: The matrix representation of Model-Het

By appending a T × 2IT 0 matrix to matrix V′, we obtain a new matrix V

V = [V′ 0T×2IT] (2.18)

Then we have

Vx ≤ d, whereV ∈ R+
T×3IT ,x ∈ {0, 1}3IT ,d ∈ RT

+. (2.19)

The matrix representation of the Model-Het is summarized in Fig. 2.2.1.

2.2.2 Homogeneous Server Model

In the homogeneous server model, all servers are identical. This model is denoted

by Model-Hom. Although the heterogeneous model introduced in the previous section is

general enough to be applied to this model, we present a newly formulated model where

the number of variables and constraints are reduced significantly. Let cp be the power

consumption of running a server in a time slot. Let yt denote the number of running

25

homogeneous servers at time slot t. Therefore, we can reduce the I binary variables

in Model-Het to a single integer variable for each time slot in Model-Hom. The power

consumption for each server per time slot is denoted by cp. We have:

cpi = cp, i = 1, · · · , I. (2.20)

The cost of switching one server on and off is denoted by cs+ and cs−, respectively. We

have:

cs+i = cs+; cs−i = cs−, i = 1, · · · , I. (2.21)

The capacity of each server can provide is denoted by v. We have:

vi = v, i = 1, · · · , I. (2.22)

Performing workload dispatching is the overhead in this model. Because to achieve

this model, we need to use the resource in a “stack” (LIFO) manner. That is, the latest

released resource should be used first when receiving new requests. Implementing work-

load dispatching algorithms is out of the scope of this paper. It has been studied in [28,55].

However we need to keep in mind that this overhead happens for the homogeneous server

model as well as heterogeneous homogeneous server cluster model which will be intro-

duced in Sec 2.2.3.

We now formulate this problem. Similar to Model-Het, the first constraint is the

workload requirements:

v · yt ≥ dt, t = 1, · · · , T. (2.23)

Let y+t be the number of servers that are switched on at the review point of time slot t.

26

Then y+t should take the maximum between 0 and yt − yt−1. That is:

y+t = max{0, yt − yt−1}, t = 1, · · · , T. (2.24)

Let y−t be the number of servers that are switched off at the review point of time slot t.

Similar to y+t , we have:

y−t = max{0, yt−1 − yt}, t = 1, · · · , T. (2.25)

The objective is to minimize the total energy and switching on/off cost, which is given

by:

F =
∑
t∈T

(cp · yt + cs+t · y+t + cs−t · y−t). (2.26)

Because this is a minimization problem with the cost coefficient being non-negative, we

can substitute (2.24) by following two linear inequalities:

y+t ≥ yt − yt−1, t = 1, · · · , T. (2.27)

y+t ≥ 0, t = 1, · · · , T. (2.28)

Likewise, we can substitute (2.25) by following two linear inequalities:

y−t ≥ yt−1 − yt, t = 1, · · · , T. (2.29)

y−t ≥ 0, t = 1, · · · , T. (2.30)

The last constraints is the number of running servers should not be larger than total num-

ber of servers:

yt ≤ I. (2.31)

27

constants
cp energy consumption per server per time slot
cs+ cost of switching a server on
cs− cost of switching a server off
v capacity of a server
dt demand at t
y0 = 0 initial (time slot 0) state of servers

variables
yt ∈ N # of running servers at time slot t
y+t ∈ N # of servers switched on at time slot t
y−t ∈ N # of servers switched off at time slot t

objective
minimize F =

∑
t(c

p · yt + cs+ · y+t + cs− · y−t)
constraints

v · yt ≥ dt, t = 1, · · · , T
yt ≤ I, t = 1, · · · , T
y+t ≥ 0, t = 1, · · · , T
y+t ≥ yt − yt−1, t = 1, · · · , T
y−t ≥ 0, t = 1, · · · , T
y−t ≥ yt−1 − yt, t = 1, · · · , T

Figure 5: Model-Hom: IP: homogeneous server scenario

Because it is a minimization problem with the cost coefficient being non-negative, this

constraint can actually be omitted. Since all servers are off at time slot 0, we have the

initial condition:

y0 = 0. (2.32)

In the Model-Hom, we want to minimize (2.26) which is subject to (2.23), (2.27),

(2.28), (2.29) and (2.30). And the initialization condition is given by (2.32).

For sake of clarity, we summarize this model in Fig. 2.2.2

28

2.2.3 Heterogeneous Homogeneous-Server-Cluster Model

In a more realistic data center, there are different clusters of servers and each

cluster has a certain number of homogeneous servers while servers may be different from

one cluster to another. Thus, this is a hybrid of the afore-formulated two models, the

hybrid hetero-homogenous cluster model. This model can also be used when homogenous

servers are required to partition into multiple clusters for ease of management. We denote

this model by Model-HH. Denote the set of clusters by J and its cardinality, J = #(J),

where 1 ≤ J ≤ I , represents the number of clusters. Actually, two previous models

correspond to two extremes in this model: when J = 1, it is Model-Hom; when J = I , it

becomes Model-Het. Let the energy consumption of running a server in cluster j at a time

slot be zpj . Denote the number of servers in cluster j by Ij , where
∑

j Ij = I . We denote

the set of the number of running servers for cluster j byNj , which can be 0, 1, · · · , Ij . Let

zjt be the number of running servers in cluster j at time slot t. As we have mentioned in

Sec. 2.2.2, the workload need to be dispatched in the LIFO manner. The cost of running

a server in cluster j is denoted by cpj . The costs of switching a server in cluster j on and

off are represented by cs+j and cs−j , respectively. The capacity of a server in cluster j is

given by vj . Another way to look at this problem is to consider it as the superposition of

multiple homogeneous cases.

We now introduce constraints in this problem. First, the workload requirements

need to be satisfied all the time:

∑
j∈J

vj · zjt ≥ dt, t = 1, · · · , T. (2.33)

29

Secondly, the number of running servers cannot be larger than the total number of servers

in that cluster:

zjt ≤ Ij, j = 1, · · · , J ; t = 1, · · · , T. (2.34)

The third set of constraints is similar to (2.24) and (2.25) in Model-Hom. But they need

to be applied to each of J clusters. Let z+jt be the number of servers turned on in cluster j

at the review point of time slot t while z−jt be the number of servers turned off in cluster j

at the review point of time slot t. We use the same technique in Model-Hom to transform

the constraints to linear constraints:

z+jt ≥ 0, j = 1, · · · , J ; t = 1, · · · , T. (2.35)

z+jt ≥ zjt − zj(t−1), j = 1, · · · , J ; t = 1, · · · , T. (2.36)

z−jt ≥ 0, j = 1, · · · , J ; t = 1, · · · , T. (2.37)

z−jt ≥ zj(t−1) − zjt, j = 1, · · · , J ; t = 1, · · · , T. (2.38)

And the objective function is given by:

F =
∑
t∈T

∑
j∈J

(cpj · zjt + cs+j · z+jt + cs−j · z−jt) (2.39)

Because we assume at the beginning of planning period, the servers are all off, we have:

zj0 = 0, j = 1, · · · , J. (2.40)

Therefore, the objective is to minimize (2.39) which is subject to (2.33), (2.34), (2.35),

(2.36), (2.37) and (2.38). And the initial conditions are given by (2.40). We present our

formulation in Fig. 2.2.3.

30

constants
cpj energy consumption of a class j server in a time slot
cs+j cost of switching a class j server on
cs−j cost of switching a class j server off
vj capacity of a class j server
dt demand at time slot t
zj0 = 0 initial (time slot 0) state of class j server

variables
zjt ∈ Ij # of class j running servers at t
z+jt ∈ Ij # of class j servers turned on at t
z−jt ∈ Ij # of class j servers turned off at t

objective
minimize F =

∑
t

∑
j(c

p
j · zjt + cs+j · z+jt + cs−j · z−jt)

constraints∑
j vj · zjt ≥ dt, t = 1, · · · , T

zjt ≤ Ij, j = 1, · · · , J ; t = 1, · · · , T
z+jt ≥ 0, j = 1, · · · , J ; t = 1, · · · , T
z+jt ≥ zjt − zj(t−1), j = 1, · · · , J ; t = 1, · · · , T
z−jt ≥ 0, j = 1, · · · , J ; t = 1, · · · , T
z−jt ≥ zj(t−1) − zjt, j = 1, · · · , J ; t = 1, · · · , T

Figure 6: Model-HH: IP: heterogeneous homogeneous-server-cluster scenario

2.3 Aggregating Demand to Reduce Computational Time

The number of variables for the heterogenous case, the homogenous case, the

heterogeneous homogeneous-server-cluster case, presented above are 3×I×T , 3×T , and

3× J × T , respectively. Since the computational time grows with the number of integer

variables, the time complexity for the heterogenous and heterogeneous homogeneous-

server-cluster cases differs significantly for larger scale data centers.

To reduce the computational time, we need to either reduce the number of vari-

ables in the original problem or use a heuristic to approximate the original problem. In

31

this paper, we propose aggregating a certain number of continuous time slots into a single

aggregated slot to reduce the total number of time slots for workload. The value of work-

load demand on an aggregated time slot is decided by the workload of the original time

slots and the service-level agreement (SLA). Let T̂ denote the reduced number of time

slots.

2.3.1 Aggregation by Maximum

If an SLA stringently requires that the workload should be satisfied all the time,

then the workload of an aggregated time slot takes the maximum of the demand of original

time slots. For example, we want to aggregate [dk, dk+1, · · · , dk+ℓ] into one time slot; then

the new demand d̂k with ℓ times of the original slot size is given by:

d̂k = max{dk, dk+1, · · · , dk+ℓ}. (2.41)

This method introduces an artificial increase in the demand, which is not needed by users.

Increasing demand causes extra consumption of power energy. On the other hand, ag-

gregation smoothes out the “regularity” of workload which has effects on switching cost.

That is, we trade off the time complexity of running the model at the expense of extra cost

on energy consumption.

2.3.1.1 Static Aggregation

In this method, we aggregate every M contiguous time slots into one. We have

T̂ = ⌈T/M⌉. The slot size of the aggregated workload (except the last slot) is M times

of the slot size of the original demand. The slot size of the last slot is T −M × (T̂ − 1).

32

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
0

1000

2000

3000

4000

Time Slot

W
o
rk

lo
a
d

(a) Static Aggregation

Before Aggregation

After Aggregation

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
0

1000

2000

3000

4000

(b) Dynamic Aggregation

Time Slot

W
o
rk

lo
a
d

Figure 7: An illustration of aggregating workload by maximum

The aggregated workload ⌈t/M⌉ is given by (except the workload for the last slot which

is trivial):

d̂⌈t/M⌉ = max{d(⌈t/M⌉−1)·M+1, · · · , d(⌈t/M⌉−1)·M+M} (2.42)

The static aggregation is illustrated in Fig. 7(a).

33

2.3.1.2 Dynamic Aggregation

Although some waste of energy consumption is inevitable, we can alleviate waste

by using dynamic aggregation. Instead of aggregating workload in equal numbers of orig-

inal time slots statically, the adaptive aggregation method aggregates an arbitrary number

of time slots as long as the number of aggregated time slots is T̂ such that the sum of the

difference between aggregated workload and the original workload is minimized. That is,

we need to minimize

T̂∑
k=1

Tk∑
ℓ=1

(dmax
k − dkl), where dmax

k = max{dk1, · · · , dkTk
}, (2.43)

which is subject to
T̂∑

k=1

Tk = T. (2.44)

Fig. 7(b) illustrates an example of dynamic aggregation.

To this end, we need to choose T̂ − 1 review points out of T − 1, requiring
(
T−1
T̂−1

)
operations. This extra computational time complexity is contradictory to the purpose of

doing aggregation. Thus, we propose local smooth heuristics to implement this idea. We

aggregate the time slots that are locally “smoother” together. We first define the smooth

index of workloads. The smooth index is the absolute value of difference between the

workload demand of adjacent time slots (adjacent workloads for short). Therefore, we

obtain T − 1 smooth indices. Then we pick the smallest non-zero smooth index and

compare two adjacent workload associated with this smooth index. The smaller workload

are aggregated into maximum workload over these slots; the slot size of the aggregated

workload is the sum of two slot sizes of adjacent slots and the new workload for the

34

aggregated slot takes the maximum of these demands. The smooth index is updated for

the new aggregated demand series. We repeat this procedure until the target number of

slots is reached. We call this procedure the local smooth algorithm 2 (see Algorithm 1).

We can make further improvements. For this, denote the smooth index vector by si.

Scalar ap records the aggregation point. Vector ss, which is initialized to T ones, records

the size of each time slot. Let “InMin” be the procedure to find the index of minimum

value in a vector. “Max” is the procedure to find the maximum value while ”Mean” is

the procedure taking the average which is used in aggregation by mean. The value of the

workload in time slot i is denoted by d[i] here. The improved local smooth algorithm is

presented in Algorithm 2.

Algorithm 1 Local Smooth Algorithm
1: j ← T Initialization
2: while j > T̂ do
3: for i := 2→ j do
4: si[i− 1]← |d[i]− d[i− 1]| Compute smooth index
5: end for
6: ap← InMin(si) Find aggregation point
7: d[ap]← Max/Mean(d[ap], d[ap+ 1])
8: d[ap+ 1]← Max/Mean(d[ap], d[ap+ 1]) Aggregate
9: ss[ap]← ss[ap] + ss[ap+ 1] Compute the size of aggregated slots

10: if ap ̸= j − 1 then
11: for k := ap+ 1→ j − 1 do
12: d[k] = d[k + 1] Adjust the index of slots behind the aggregation point
13: ss[k] = ss[k + 1] Adjust the corresponding slot size
14: end for
15: end if
16: j ← j − 1 Decrease the number of slots by 1
17: end while
18: return d, ss

2This algorithm was conceived through discussions with Fu Li.

35

Algorithm 2 Improved Local Smooth Algorithm
1: j ← T Initialization
2: for i := 2→ j do
3: si[i− 1]← (d[i]− d[i− 1]) Compute smooth index
4: end for
5: while j > T̂ do
6: ap← InMin(|si|) Find aggregation point
7: d[ap]← Max/Mean(d[ap], d[ap+ 1])
8: d[ap+ 1]← Max/Mean(d[ap], d[ap+ 1]) Aggregate
9: si[ap− 1]← d[ap]− d[ap− 1] Update smooth index

10: si[ap]← d[ap+ 2]− d[ap+ 1] Update smooth index
11: ss[ap]← ss[ap] + ss[ap+ 1] Compute the size of aggregated slots
12: if ap ̸= j − 1 then
13: for k := ap+ 1→ j − 1 do
14: d[k]← d[k + 1] Adjust the index of slots behind the aggregation point
15: ss[k]← ss[k + 1] Adjust the corresponding slot size
16: if k < j − 1 then
17: si[k]← si[k + 1] Adjust the smooth index
18: end if
19: end for
20: end if
21: j ← j − 1 Decrease the number of slots by 1
22: end while
23: return d, ss

36

These algorithms are efficient to aggregate the workloads. In Algorithm 1, we can

achieve O(T 2). In Algorithm 2, we further improve the efficiency by recomputing two

smooth indexes adjacent to the selected aggregation point only and an O(T) complexity

is achieved. However, since it is based on the local information, there is no guarantee that

this method will reach the global optimal solution. In some rare cases, it is possible that

this solution is worse than static allocation in terms of the optimum. Note that the com-

putational time for the dynamic aggregation has no significant difference with its static

aggregation counterpart since they have the same number of variables and constraints. To

differentiate the proposed dynamic aggregation and implemented dynamic aggregation,

we call proposed dynamic aggregation as strict dynamic aggregation.

2.3.2 Aggregation by Mean

The workload demand of the aggregated time slot can also take a certain percentile

of workload demand of the original slots. “Aggregation by maximum” actually takes

100-th percentile of the original slots. For many long-live jobs which does not need to

executed on real-time, such as data warehousing, scientific computation, the workload can

be arranged over time as long as the average workload over time is satisfied. In this paper,

we introduce aggregation by mean: the workload demand of the aggregated time slot

takes the mean of the workload demand of the original slots. For example, We aggregate

[dk, dk+1, · · · , dk+ℓ] into one time slot, then the new demand d̂k with ℓ times of the original

slot size is given by:

d̂k = mean{dk, dk+1, · · · , dk+ℓ}. (2.45)

37

Compared with aggregation by maximum, aggregation by mean does not introduce the

artificial increase of the workload demand and smoothes out the regularity of the work-

load.

2.3.2.1 Static Aggregation

We aggregate every M continuous time slots into 1. The only difference is that

the aggregated workload takes the average of original workload:

d̄⌈t/M⌉ = mean{d(⌈t/M⌉−1)·M+1, · · · , d(⌈t/M⌉−1)·M+M} (2.46)

The application of method is based on the ability of re-arranging user request within

certain time limitation for some applications that do not requires real-time execution. In

the other words, the requested load can be either executed in advance or delayed in the

data center. An example of static aggregation by average is shown in Fig. 8(a).

2.3.2.2 Dynamic Aggregation

To improve the user experience, we need to avoid delay or advance workload as

much as possible. Therefore, we have the counterpart of dynamic aggregation of what we

have in aggregation by max. The objective function is to minimize:

T̂∑
k=1

Tk∑
ℓ=1

|dkl − d̄k|,whered̄k = mean{dk1, · · · , dkTk
} (2.47)

which is subject to (2.44).

Fig. 8(b) illustrates the dynamic aggregation by average. It is worthy to note

that although (2.43) and (2.47) look similar, the objectives of dynamic aggregation in

38

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
0

2000

4000

Time

W
o
rk

lo
a
d

(a) Static Aggregation

Before Aggregation

After Aggregation

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
0

2000

4000

(b) Dynamic Aggregation

Time

W
o
rk

lo
a
d

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
0

2000

4000

(c) Dynamic Aggregation and the Maxiumum number of Aggreation is 8

Time

W
o
rk

lo
a
d

Figure 8: An illustration of aggregating workload by mean

aggregation by maximum and aggregation by mean are different: 1) in aggregation by

maximum, it aims to reduce “wasted energy”; 2) in aggregation by mean, it targets to

reduce the movement of workload. Thus compared with static aggregation, in aggregation

by maximum, it results in less energy cost while in aggregation by average, the energy

cost is always the same.

However, the proposed dynamic aggregation method has no constraints on the

number of original slots for aggregated slot. In practical applications, the workload can

39

only be executed in advance or delayed for certain time. Let S be the maximum number of

continuous time slots that can be aggregated. Consequently, this problem is also subject

to:

max{s1, · · · , sT̂} ≤ S. (2.48)

The exact solution based on improve local smooth algorithms requires n! time. We sug-

gest a low complex approximation that relaxes the target number of aggregated workload

slots to guarantee the movement of workload is less than certain threshold. The modified

algorithm is given by 3. Fig. 8(c) presents an example of dynamic aggregation constrained

by S = 8. The problem with this implementation is that it may not have a solution. We

can swap line 22 and 23 in 3 to relax the target number of time slots to guarantee there is

a solution.

2.4 Results and Discussions

The aggregation methods are proposed to reduce the computational complexity

for large scale data centers. In practice, if the workload cannot be rearranged over time,

aggregation by maximum should be used; otherwise, aggregation by mean can be adopted.

The price of aggregation by maximum is over-provisioning which causes extra energy

consumption. The price of aggregation by mean is the workload rearrangement. Dynamic

aggregation is proposed to alleviate over-provisioning and workload rearrangement in

aggregation by maximum and by mean, respectively. In this section we quantitatively

study the pros and cons of proposed aggregation methods.

40

Algorithm 3 Improved Local Smooth Algorithm with Constraints on Advance and Delay
1: j ← T Initialization
2: for i := 2→ j do
3: si[i− 1]← (d[i]− d[i− 1]) Compute smooth index
4: end for
5: while j > T̂ do
6: if ss[ap] + ss[ap+ 1] ≤ S then
7: ap← InMin(|si|) Find aggregation point
8: d[ap]← Mean(d[ap], d[ap+ 1])
9: d[ap+ 1]← Mean(d[ap], d[ap+ 1]) Aggregate

10: si[ap− 1]← d[ap]− d[ap− 1] Update smooth index
11: si[ap]← d[ap+ 2]− d[ap+ 1] Update smooth index
12: ss[ap]← ss[ap] + ss[ap+ 1] Compute the size of aggregated slots
13: if ap ̸= j − 1 then
14: for k := ap+ 1→ j − 1 do
15: d[k]← d[k + 1] Adjust the index of slots behind the aggregation point
16: ss[k]← ss[k + 1] Adjust the corresponding slot size
17: if k < j − 1 then
18: si[k]← si[k + 1] Adjust the smooth index
19: end if
20: end for
21: end if
22: j ← j − 1 Decrease the number of slots by 1
23: end if
24: end while
25: return d, ss

41

2.4.1 Experiment Setup

In our study, the server CPU frequency set and power consumptions are adopted

from [29] except that we use the maximum frequency only. For ease of computation, the

capacity of each server is normalized to 1. Greenberg et. al. [39] use $.07 per killowatt-

hours (kWh) as the utility price. We use the same utility price. The server energy con-

sumption in a time slot is the product of the power consumption, the utility price and the

slot size. Table 3 presents the specifications of server CPU.

Google reported [14] that the personnel cost for each repair is $100 and the re-

placement cost is 10% of the server cost ($2000). We assume the lifetime for a disk to be

60,000 switching-on-and-off cycles. Using this, we arrive at 0.5 cents for the switching

cost per switching-on-off cycle. Out of 0.5 cents, we assume turning on to be a higher

cost than turning off; thus, we split this value to 0.3 cents and 0.2 cents for turning on and

turning off, respectively. We also assume that the power consumption for turning on and

turning off is 0.02 cents and 0.005 cents, respectively, since turning on draws much more

power than turning off in most cases. This analysis of the turning on/off cost is similar

to one in [29] except that we differentiate the cost of switching on and off. The cost of

switching on is 0.32 cents and the cost of switching off is 0.22 cents. When consolidation

is performed, the source server needs to run for additional time to sustain the state of

running applications. We assume the average extra time to be 77 seconds. We arrive at

0.015 cents per server switching off as the cost of consolidation. Therefore, the total cost

of switching off is 0.22 cents. We assume that the utilization of the data center is 20%.

Therefore, the average workload to the cloud is I×0.2. We also assume that the workload

42

Table 3: Specification of the server CPU

Frequency Power Consumption Power Cost Normalized Capacity
2.6GHz 100watts .7τ 1

can be perfectly forecasted and profiled every 5 minutes. Due to the diurnal behavior asso-

ciated with human beings’ working cycles, we chose the 8 hour work time as the planning

horizon where the dynamically changing workload from one time slot to another is gen-

erated for our study. Sinusoidal function and three different random distributions with the

same average are used to generate temporally dynamic demand. The three random dis-

tributions are Erlang-2 (smooth), exponential, and two-state hyper-exponential (bursty).

Each random distribution is generated 101 times using 101 independent random streams.

Note that for the demand over the maximum capacity, i.e., I , we truncate the demand to

I to make the problem feasible. We also want to study the workload that can be repre-

sented by certain deterministic cyclic functions. Assume that a day of workload can be

represented by a full cycle of Sinusoid function and the 8 hour workload is in the range of

0 degree and 120 degree. We first generate the value given by a “plain” Sinusoid function

in the range of 0 degree and 120 degree:

d̃t = sin(t× 2× π/3/96),∀t = 1, · · · , 96. (2.49)

Then the 8 hour workload load demand with average of 0.2× I is given by:

dt = (d̃t −
∑
t∈T

d̃t/96 + 1)× 0.2× I, ∀t = 1, · · · , 96. (2.50)

Fig. 9 presents an example of the 8 hour sinusoid workload derived from (2.50) given

I = 100. Compared with three workload generated by random distributions, since this

43

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96
5

10

15

20

25

30

Time Slot

W
o
rk

lo
a
d
 D

e
m

a
n
d

Figure 9: A sinusoid workload example when I = 100

44

workload is deterministic, we also call it deterministic sinusoidal workload. The sinusoid

workload is the most smooth one among all the workload cases.

However, the cost components may change due to the fluctuation of power cost

and technology advancements. We define a cost model to consider this factor. We weight

the utility price by β and the wear-and-tear cost by 1 − β. We define cost of running a

100-watt server for 5 minutes as β ·0.014·100/12. The switching on cost due to wear-and-

tear is defined by (1− β) · 0.6. The switching off cost due to wear-and-tear is defined by

(1−β)·0.4. The power consumption of switching a server on and off is defined by β ·0.04

and β ·0.01, respectively. The power consumption to do consolidation when switching off

a server is defined by β ·0.03. Thus we have cost of β ·7/60 for running a 100 watt server

for 5 minutes, cost of 0.6− 0.56β for switching a server on and 0.4− 0.36β for switching

a server off. Previously derived costs can be obtained by letting β = 0.5. Except for

studying the impacts of varying β, we fix β = 0.5. Note that β = 0.5 results in the above

derived parameters.

We ran the optimization model using CPLEX through Matlab on an Intel(R)

Core(TM)2 Duo CPU U9400 1.40GHz with 4GB memory. Due to the memory has limi-

tation to hold the matrixes, we were not able to run the scenarios that have a large number

of variables. Nevertheless, our goal here is to understand performance and cost savings.

2.4.2 Computational Complexity

We first study how the number of servers and the number of time slots of workload

affects computational time in Model-Het. We fix the number of time slots in workload as

45

96 and vary the number of servers from 10 to 100 with incremental step 10. The optimal

cost and computational time is shown in Fig. 10(a) and (b), respectively. The optimal

cost and computational time is both linear with respect to the number of servers. Then

we fix the number of servers to 100 and vary the number of time slots in workload from

10 to 100 with incremental step 10. The optimal cost and computation time is shown

in Fig. 11(a) and (b), respectively. Note that Fig. 11(b) is on log scale on y-axis. In

Fig. 11(a), the optimal cost is linear with respect to the number of number of slots. In

Fig. 11(b), the computational time is approximately exponential increasing with respect to

the number of slots3. The computational time increase linearly with respect to the number

of servers while exponentially with respect to the number of time slots because increasing

the number of servers does not increase the number of constrains while increasing the

number of time slots does.

To quantify the difference of computation time among three proposed models, we

run the same problem in three models. The cloud system consists of 100 identical servers

(i.e., I = 100). The workload with 96 time slots is generated according to four aforemen-

tioned distributions. This problem fits into Model Hom. To run Model Het, we “cheat”

that the servers are different. Thus we assign a binary variable for each server at each time

slot and model this problem by Model Het. By dividing the servers into 10, 20 and 50

clusters, we model these three problems by Model HH; these three cases are denoted by

HH-10, HH-20 and HH-50, respectively. Fig. 12 shows that the homogenous case has the

least computational time while the heterogenous case has the most computational time

3The pattern is really between linear and exponential. The reason is that the computational time is too
small to observe the pattern.

46

10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

(b) Computational Time V.S. # of Servers

of Servers

C
o
m

p
u
ta

ti
o
n
a
l
T

im
e
 (

S
e
c
.)

10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

of Servers

O
p
ti
m

a
l
C

o
s
t

(a) Optimal Cost V.S. # of Servers

Sinusoid

Erlang−2

Exp

Hyper−2

Figure 10: The cost and computational time with respect to different number of servers in
a heterogeneous model with 96 time slots

47

10 20 30 40 50 60 70 80 90 100

10
0

(b) Computational Time V.S. # of Slots

of Slots

C
o

m
p

u
ta

ti
o

n
a

l
T

im
e

 (
S

e
c
.)

10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

of Slots

O
p

ti
m

a
l
C

o
s
t

(a) Optimal Cost V.S. # of Slots

Sinusoid

Erlang−2

Exp

Hyper−2

Figure 11: The cost and computation time with respect to different number of slots in a
heterogeneous model with 100 servers

48

consistently for all four workloads. The computational time in the heterogeneous case is

in the order of a few of ten times more than that for the homogeneous case. It also shows

that a lesser number of clusters results in less computational time.

For the same workload distribution, all experiments end up with the same opti-

mum, which is summarized in Table 4. In Table 4, the Global Optimal represents the

optimal solution obtained from our method; the Static Configuration means the solution

obtained from statically keeping all servers running all the time; Local Optimum is so-

lution from the optimization where switching on and off cost is not considered. For the

cost of Local Optimum, we further decompose it into Switch Cost and Energy Cost. The

energy cost is supposed to be the same since the average of the workload is the same. The

energy cost of Hyper-2 distribution is slightly smaller than other three cases because the

workload in Hyper-2 is more likely to surpass the maximum offered capacity and thus is

truncated. Because sinusoidal workload is deterministic, there is no confidence interval

for the solutions of this workload. Note that Switch Cost portion includes the energy cost

of performing consolidation. Due the significance of Switch Cost, the result from Local

Optimum are even worse than that from Static Configuration in Exp and Hyper-2 cases.

The Switch Cost is correlated to the “regularity” of workload shape. By applying Global

Optimum, the cost savings over Static Configuration and Local Optimum are significant.

Compared with Static Configuration, we achieve approximately 78%, 51%, 40% and 27%

savings for sinusoid, Erlang-2, Exponential and Hyper-exponential-2, respectively. Com-

pared with Local Optimum, we achieve approximately 46%, 46% and 41% for Erlang-2,

49

Exponential and Hyper-exponential-2, respectively. It is interesting that the local opti-

mum is to the global optimum in sinusoid workload. It is because of the structure of this

sinusoid workload. Although we report results for four distributions here, understanding

the influence of different workload distributions on the optimal cost is outside the scope

of this paper. To the best of our knowledge, [71] is the first effort to decompose workload

into certain substructures and compute optimal solution by the substructures. A more

theoretical study are presented in [55].

Sinusoid Erlang−2 Exp Hyper−2
0

0.5

1

1.5

2

2.5

3

3.5

Workload

C
o
m

p
u
ta

ti
o
n
a
l
T

im
e
 (

S
e
c
.)

Homogeneous

HH−10

HH−20

Heterogeneous

Figure 12: Computational time comparison of different models under different workload

50

Table 4: Optimal cost of different cases

Workload Type Sinusoid Erlang-2 Exp Hyper-2
Global Optimum 123.5017 274.2851±4.3093 337.0227±6.8391 409.0129±8.5715

Static Configuration 561.1667 561.2562±0.1661 561.0864±0.1657 561.0731±0.2559
Local Optimum 123.5017 507.2604±8.1048 633.0925±12.8482 699.5993±19.5957

Switch Cost of Local Optimum 8.76 391.8281±7.1364 518.0794±11.4349 596.9251± 17.2464
Energy Cost of Local Optimum 114.7417 115.4359±1.4381 115.0131±1.7569 102.6741±2.5808

2.4.3 Insights of Aggregation

Before going to the results of aggregation, we discuss how aggregation influences

the optimal. We define the degree of aggregation as the ratio of the number of original

demands and aggregated demands. Denoting the degree of aggregation by α, we have α =

⌈T/T̂ ⌉. Aggregation by maximum always causes over-provisioning. Energy to keep more

than necessary servers running is wasted due to over-provisioning. On the other hand, the

aggregation by maximum smoothes out the regularity of the workload, i.e., the fluctuation

of workload is alleviated which loosens the switching requirements. Moreover, the higher

the degree of aggregation is, the more smooth the workload becomes. Strict dynamic

aggregation is better than static aggregation only in terms of avoiding as much over-

provisioning as possible. As to the second aspect of the cost: switching cost, we can not

tell whether dynamic aggregation is better than static aggregation or not. Consequently,

when considering the total of two cost components, it is possible that the total cost of

static aggregation is even less than dynamic aggregation. This happens in the case that

static aggregation gain more switching cost saving than dynamic aggregation and this

difference is larger than the gain of over-provisioning energy consumption of dynamic

aggregation over static aggregation. For the same reason, the optimal of high degree of

51

aggregation maybe better than that of low degree of aggregation. This is called Insight 1

for ease of reference.

It is also noted our local smooth implementation may not be better than static ag-

gregation in terms of avoid as much over-provisioning as possible since the implemented

algorithm is an approximation based on local information. However, this local smooth

implementation always favors smoothing workload and thus tends reduce switching cost.

We call this Insight 2.

In aggregation by mean, the static aggregation and dynamic aggregation end up

with the same level of average offered capacity since “mean” is used. That is, aggregation

by mean does not cause over-provisioning and thus the energy consumption of static and

dynamic aggregation by mean is equivalent. Thus which aggregation method costs less is

solely decided by the switch cost which is determined by the fluctuation of the workload.

This is called Insight 3.

2.4.4 Aggregation by Maximum

We now study the pros and cons of aggregating the workload by maximum. For

this study, we consider an example with 5,000 identical servers in a data center and the

servers are clustered into 50 100-homogenous-server groups for the purpose of manage-

ment. Thus this falls into Model-HH. We run the optimization for this system with differ-

ent degrees of aggregation i.e., α = 1, 2, 3, 6, 8, 12. Note that α = 1 means that there is

no aggregation.

We first do static aggregation. As shown in Fig. 13, the optimum rises while the

52

computational time decreases when the degree of aggregation augments in all workload

cases. The gradient of the computational time with regard to the degree of aggregation

decreases as the degree of aggregation goes up in all four cases. That means that the de-

gree of aggregation in a smaller range (e.g., 1-3 in this experiment) has more significant

affect than that in a larger range (e.g., 6-12 in this experiment). Compared with computa-

tional time for α = 12, the computational time for α = 1 increases more than 100 times

for all four workload cases. This also confirms the computational complexity increases

exponentially with respect to the number of time slots. On the other hand, the gradient

of the optimum, with regard to the degree of aggregation, does not change too much in

the whole observed range in all workloads. Compared with the optimal cost for α = 1,

the optimal cost for α = 12 only increases approximately 5%, 16%, 19%, 24% for Si-

nusoid, Erlang-2, exponential and hyper-exponential-2 cases, respectively. It is observed

that a small degree of aggregation reduces the computational time noticeably without sig-

nificantly increasing the overall cost. Computing the optimal solution by decomposing

workload is studied in [55, 71].

Now we do dynamic aggregation for the same example. The results are shown in

Fig. 14. The pattern of change and the order of magnitude of computational time is very

similar to that in the case of static aggregation since the number of variables and the num-

ber of constraints in dynamic aggregation are both the same as their counterparts in the

static aggregation case. The optimum of static aggregation consistently increases when

the degree of aggregation augments. However, this is not the case for some workloads

in dynamic aggregation. It does not always follow this pattern in three random workload

53

1 2 3 4 5 6 7 8 9 10 11 12
6000

6100

6200

6300

6400

6500

O
p

ti
m

a
l
C

o
s
t

Degree of Aggregation

(a) Sinusoid

0 2 4 6 8 10 12

1

2

3

4

5

T
im

e

1 2 3 4 5 6 7 8 9 10 11 12
1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7
x 10

4

O
p

ti
m

a
l
C

o
s
t

Degree of Aggregation

(b) Erlang−2

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

T
im

e

1 2 3 4 5 6 7 8 9 10 11 12
1.6

1.8

2

2.2
x 10

4

O
p

ti
m

a
l
C

o
s
t

Degree of Aggregation

(c) Exponential

0 2 4 6 8 10 12
0

0.5

1

1.5

T
im

e

1 2 3 4 5 6 7 8 9 10 11 12

2

2.2

2.4

2.6
x 10

4

O
p

ti
m

a
l
C

o
s
t

Degree of Aggregation

(d) Hyper−exponential 2

0 2 4 6 8 10 12
0

0.5

1

1.5

T
im

e

Figure 13: The optimal cost and computational time in static aggregation by maximum

cases. It is because our local smooth implementation of dynamic aggregation relies on

local information and this may not be able to achieve the global optimum of minimizing

energy cost but favors reducing switching costs as we have mentioned in Insight 1. It is

worthy to note (a) the violation of the pattern is relatively slight; (b) there is no statistical

difference due to the confidence interval overlap in most pattern violation events. More

importantly, as we can see in Fig. 15, the dynamic aggregation outperforms static aggrega-

tion in all cases excerpt for α = 48 in sinusoid, α = 2, 3, 4 in Hyper-exponential-2 (there

is no statical difference due to the confidence interval overlap). The energy consumption

of over-provisioning due to aggregation by maximum is presented in Fig. 2.4.4. For ran-

dom distributed workload cases, the implemented dynamic aggregation only reduces-over

provisioning when degree of aggregation is small (≤ 4 for Erlang-2 and Exponential,≤ 6

for Hyper-exponential. This also confirms that our implemented dynamic aggregation

54

helps reducing workload fluctuation. As we have shown early the computational time

is not related to how to aggregate. Therefore, our implementation of dynamic aggrega-

tion shows that it is a good choice over static aggregation in most cases. As we can see

in Fig. 15(b),(c),(d), the discrepancy between static and dynamic aggregation forms an

elliptical shape: it starts from 0 (no aggregation need to performed when α = 1), then

increases, then decreases and converges back to 0 (When α = 96, the number of time

slots is 1. Thus the aggregated workload demand becomes the largest workload demand

of all original time slots).

1 2 3 4 5 6 7 8 9 10 11 12
6000

6100

6200

6300

6400

O
p
ti
m

a
l
C

o
s
t

Degree of Aggregation

(a) Sinusoid

1 2 3 4 5 6 7 8 9 10 11 12
1.3

1.4

1.5

x 10
4

O
p
ti
m

a
l
C

o
s
t

Degree of Aggregation

(b) Erlang−2

1 2 3 4 5 6 7 8 9 10 11 12

1.6

1.8

x 10
4

O
p
ti
m

a
l
C

o
s
t

Degree of Aggregation

(c) Exponential

1 2 3 4 5 6 7 8 9 10 11 12
1.95

2

2.05

2.1

2.15

2.2

2.25

2.3

2.35
x 10

4

O
p
ti
m

a
l
C

o
s
t

Degree of Aggregation

(d) Hyper−exponential 2

0 5 10
0

1

2

3

4

T
im

e

0 5 10
0

0.5

1

1.5

T
im

e

0 5 10
0

0.5

1

1.5

T
im

e

0 5 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

T
im

e

Figure 14: The optimal cost and computational time in dynamic aggregation by maximum

55

1 2 3 4 6 8 12 24 48 96
6000

6500

7000

7500

8000

Degree of aggregation

O
p
ti
m

u
m

(a) Sinusoid

Static

Dynamic

1 2 3 4 6 8 12 24 48 96
1.2

1.4

1.6

1.8

2

2.2

2.4
x 10

4

Degree of aggregation

O
p
ti
m

u
m

(b) Erlang−2

1 2 3 4 6 8 12 24 48 96
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8
x 10

4

Degree of aggregation

O
p
ti
m

u
m

(c) Exponential

1 2 3 4 6 8 12 24 48 96
1.8

2

2.2

2.4

2.6

2.8

3
x 10

4

Degree of aggregation

O
p
ti
m

u
m

(d) Hyper−exponential 2

Figure 15: Comparison between static and dynamic aggregation

56

1 2 3 4 6 8 12 24 48 96
0

0.5

1

1.5

2

2.5
x 10

4

Degree of Aggregation

E
n
e
rg

y
 C

o
s
t
D

u
e
 t
o
 O

v
e
r−

P
ro

v
is

io
n
in

g

Hyper−exponential 2 (S)

Exponential (S)

Erlang−2 (S)

Sinusoid (S)

Hyper−exponential 2 (D)

Exponential (D)

Erlang−2 (D)

Sinusoid (D)

Figure 16: The energy costs due to over-provisioning in static (S) and dynamic (D) ag-
gregation in dynamic aggregation by maximum

57

2.4.5 Aggregation by Mean

Fig. 17 shows the optimal costs and computational time when we do static aggre-

gation by mean. In all three random distributed workloads, the optimal cost and compu-

tational time are both monotonically increasing with respect to the degree of aggregation

as we have explained in Insight 3. The gain for both optimum and time complexity comes

with the price of reallocating of workload demand.

1 2 3 4 5 6 7 8 9 10 11 12
6025

6030

6035

6040

6045

O
p

ti
m

a
l
C

o
s
t

Degree of Aggregation

(a) Sinusoid

0 2 4 6 8 10 12
0

1

2

3

4
T

im
e

1 2 3 4 5 6 7 8 9 10 11 12
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4
x 10

4

O
p

ti
m

a
l
C

o
s
t

Degree of Aggregation

(b) Erlang−2

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

1.2

T
im

e

1 2 3 4 5 6 7 8 9 10 11 12
0.5

1

1.5

2
x 10

4

O
p

ti
m

a
l
C

o
s
t

Degree of Aggregation

(c) Exponential

0 2 4 6 8 10 12
0

0.5

1

1.5

T
im

e

1 2 3 4 5 6 7 8 9 10 11 12
0

2

4
x 10

4

O
p

ti
m

a
l
C

o
s
t

Degree of Aggregation

(d) Hyper−exponential 2

0 2 4 6 8 10 12
0

0.5

1

T
im

e

Figure 17: The optimal costs and computational time in static aggregation by mean

We now present the optimal costs and computational time when applying dynamic

aggregation by mean in Fig. 18. We compare the dynamic aggregation with static aggre-

gation. For the computational time, the conclusions are very similar to aggregation by

maximum case. As to the optimal costs, the conclusions are totally different form ag-

gregation by maximum case. As shown in Fig. 19, the static aggregation outperforms

58

dynamic aggregation in all three random distributed workload cases. We have explained

in Insight 3, the target of dynamic aggregation in the aggregation by mean is to reduce

the reallocating workloads. Therefore, we also present comparative results of the amount

of workload rearrangement in both static and dynamic aggregation by mean in Fig. 20. F.

For all three random distributed workload cases, the amount of workload rearrangement

of dynamic aggregation is smaller than that of static aggregation while that of dynamic

aggregation is bigger than that of static aggregation in Sinusoid workload. This suggests

that the implemented dynamic aggregation is suitable to be used in the highly fluctuated

workload cases. As the degree of aggregation changes from 1 to 96, the gap starts from

0, then it increases to the largest value, then converges back to 0.

1 2 3 4 5 6 7 8 9 10 11 12
5900

5920

5940

5960

5980

6000

6020

6040

6060

O
p

ti
m

a
l
C

o
s
t

Degree of Aggregation

(a) Sinusoid

1 2 3 4 5 6 7 8 9 10 11 12
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4
x 10

4

O
p

ti
m

a
l
C

o
s
t

Degree of Aggregation

(b) Erlang−2

1 2 3 4 5 6 7 8 9 10 11 12
1.2

1.4

1.6

1.8
x 10

4

O
p

ti
m

a
l
C

o
s
t

Degree of Aggregation

(c) Exponential

1 2 3 4 5 6 7 8 9 10 11 12
1

2

3
x 10

4

O
p

ti
m

a
l
C

o
s
t

Degree of Aggregation

(d) Hyper−exponential 2

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3

3.5

4

T
im

e

0 2 4 6 8 10 12

0 2 4 6 8 10 12
0

0.5

1

1.5

T
im

e

0 2 4 6 8 10 12

Figure 18: The optimal cost and computational time in dynamic aggregation by mean

2.4.6 Impacts of Varying Cost Components

In addition, we want to understand the impact of cost components change. We still

use the 5000 server scenario used for previous aggregation study. Note that three models

59

1 2 3 4 6 8 12 24 48 96
5920

5940

5960

5980

6000

6020

6040

6060

Degree of aggregation

O
p

ti
m

u
m

(a) Sinusoid

Static

Dynamic

1 2 3 4 6 8 12 24 48 96
4000

6000

8000

10000

12000

14000

Degree of aggregation

O
p

ti
m

u
m

(b) Erlang−2

1 2 3 4 6 8 12 24 48 96
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

4

Degree of aggregation

O
p

ti
m

u
m

(c) Exponential

1 2 3 4 6 8 12 24 48 96
0.5

1

1.5

2

2.5
x 10

4

Degree of aggregation

O
p

ti
m

u
m

(d) Hyper−exponential 2

Figure 19: Comparison between static and dynamic aggregation by mean

60

. "" "~'hf ". . .,.
". ···f·· .. 1

t. !
--t ,.

". ' ".
, - " ~" - "'- '- ' - ' - ' - +'- ' - ' - ' .J: ," " ' •

. "" ".

:'"
r .. :

.
"'+"~"' - · -+" - , , l'-:,, -.•

i... ".
'+; " ..

~. ~'. '. '+',f..",
I:" ~

1 2 3 4 6 8 12 24 48 96
0

1

2

3

4

5

6

7

8

9
x 10

4

Degree of Aggregation

T
h

e
 A

m
o

u
n

t
o

f
W

o
rl
o

a
d

 R
e

a
ll
o

c
a

ti
o

n

Hyper−exponential 2 (S)

Exponential (S)

Erlang−2 (S)

Sinusoid (S)

Hyper−exponential 2 (D)

Exponential (D)

Erlang−2 (D)

Sinusoid (D)

Figure 20: The amount of workload rearrangement in static (S) and dynamic (D) aggre-
gation by mean

61

yields the same optimum (but different computational time), there is no difference for

these three models when only optimum is considered. We vary the weight (β) of utility

price from 0 to 1. That is, we consider the range from that the utility price is negligible to

that the wear-and-tear cost is negligible.

Fig. 21 presents the optimum obtained under aggregation by maximum. As we

can see in Fig. 21(a),(e), the optimum cost is almost linear to β for all degrees of ag-

gregation and both static aggregation and dynamic aggregation . The reason is that the

switching cost in the sinusoid workload is very small compared with the energy cost

since the sinusoid workload is very “smooth” . This is not the case for other three work-

load cases since their wear-and-tear cost is comparable to the energy cost . As shown in

Fig. 21(b),(c),(d),(f),(g),(h), the plots of the optimum with respect to β are concave curve.

The degree of concavity is negatively proportional to the degree of aggregation (α). As

the degree of aggregation goes bigger, the workload becomes more smoother and thus

causes the switching cost smaller. Therefore when the degree of aggregation does not

exceed certain threshold (the threshold depends on the workload distribution), the opti-

mum increases first then decreases with respect to the increasing of β. This important

observation suggests that if the weight of switching cost is high, we can use high degree

of aggregation to save computational time without compromising the optimum. The gaps

among different degrees of aggregation increases as β increases.

In aggregation by mean, we see similar pattern regarding the concavity (the op-

timum with respect to beta) and the degree of concavity with respect to the degree of

aggregation. Fig. 22 presents the same set of plots for aggregation by mean.

62

0 0.25 0.5 0.75 1
0

5000

10000

15000

(a) Sinusoid (S)

β

A
v
e
ra

g
e
 O

p
ti
m

u
m

0 0.25 0.5 0.75 1
0

1

2

3

4

5
x 10

4(b) Erlang−2 (S)

β

α=1

α=2

α=4

α=8

α=96

0 0.25 0.5 0.75 1
0

1

2

3

4

5

6
x 10

4 (c) Exp (S)

β
0 0.25 0.5 0.75 1

0

1

2

3

4

5

6
x 10

4(d) H−Exp 2 (S)

β

0 0.25 0.5 0.75 1
0

5000

10000

15000

(e) Sinusoid (D)

β

A
v
e
ra

g
e
 O

p
ti
m

u
m

0 0.25 0.5 0.75 1
0

1

2

3

4

5
x 10

4(f) Erlang−2 (D)

β
0 0.25 0.5 0.75 1

0

1

2

3

4

5

6
x 10

4 (g) Exp (D)

β
0 0.25 0.5 0.75 1

0

1

2

3

4

5

6
x 10

4(h) H−Exp 2 (D)

β

Figure 21: Varying cost component weight in 5000 server scenario adopting aggregation
by maximum

63

·

/Js.~~~"
.,">'

.~:<:'
-""

. "1:1' .

".x- "
... + ..
.. ·0·
... J!. ..

..If.'

.. '
/11.··· •• 0·····

.'};'~~ .. ::::;-1.:

0 0.25 0.5 0.75 1
0

2000

4000

6000

8000

10000

12000

(a) Sinusoid (S)

β

A
v
e
ra

g
e
 O

p
ti
m

u
m

0 0.25 0.5 0.75 1
0

0.5

1

1.5

2
x 10

4(b) Erlang−2 (S)

β

α=1

α=2

α=4

α=8

α=96

0 0.25 0.5 0.75 1
0

0.5

1

1.5

2
x 10

4 (c) Exp (S)

β
0 0.25 0.5 0.75 1

0

0.5

1

1.5

2

2.5
x 10

4(d) H−Exp 2 (S)

β

0 0.25 0.5 0.75 1
0

2000

4000

6000

8000

10000

12000

(e) Sinusoid (D)

β

A
v
e
ra

g
e
 O

p
ti
m

u
m

0 0.25 0.5 0.75 1
0

0.5

1

1.5

2
x 10

4(f) Erlang−2 (D)

β
0 0.25 0.5 0.75 1

0

0.5

1

1.5

2

2.5
x 10

4 (g) Exp (D)

β
0 0.25 0.5 0.75 1

0

0.5

1

1.5

2

2.5

3
x 10

4(h) H−Exp 2 (D)

β

Figure 22: Varying the cost component weight in 5000 server scenario adopting aggrega-
tion by mean

64

"'1:1' ,
,'. "'."

,- "'+"
" .••.. ",0"

, " ,J>."

Ii'''''

~Ii'"
" '

"

." " "
"

Jis.'
,1>." '

,Jis.",

,,6, "

2.5 Conclusion and Future Works

In this paper, we first introduce three formulations for different data center envi-

ronments: homogeneous data center, heterogenous data center, and heterogenous homogenous-

server-cluster data center. The computational time to obtain the optimum varies signifi-

cantly in these three cases. In order to achieve on-line (or close to on-line) computation

for large scale data centers, we propose to aggregate workload to fewer time slots. De-

pending on the requirements of applications, there are two types of aggregation modes.

Aggregation by maximum guarantees the workload demand of every time slot is satisfied

while aggregation by mean needs to delay or advance the workload demand. On the other

hand, aggregation by maximum causes over-provisioning while aggregation by mean does

not.

For each of aggregate modes, we propose two aggregation methods: static and

dynamic aggregation. Aggregating fixed number of time slots into one is called static

aggregation while aggregating with certain objective is named dynamic aggregation. In

aggregation by maximum mode, the objective of dynamic aggregation is to minimize the

over-provisioned capacity. In the aggregation by mean mode, the objective of dynamic

aggregation is to minimize the delay and advance workload demands. An approxima-

tion implementation of dynamic aggregation is introduced to alleviate the computational

overhead of implementing the exact algorithm.

Our numerical results show that aggregation is a efficient method to reduce the

computational time. Choosing appropriate degree of aggregation is a tradeoff between

the cost and the computational time. We observe that the dynamic aggregating method in

65

both modes can achieve significant gain compared with the static aggregation approach

in terms of their individual objective function. The study on varying of the cost compo-

nent weights shows that appropriate degree of aggregation also depends on the weights.

Although our current study is based on artificially generated workload using a number of

random distributions as well as a deterministic sinusoidal shape, the proposed methods

are general to apply to realistic workload.

We are working on decomposing workload and using the decomposed substruc-

tures of workload to determine optimal solutions. The other important direction we need

to pursue in the future is to explore the solutions for unpredictable, partially predictable

workloads. The partially predictability refers to: (a) we can only accurately predict cer-

tain length of time not the entire time horizon; (b) The predicted workload demand is not

accurate (for example, in certain range); (c) combination of point (a) and (b). The first

direction is actually the key to solve the second direction.

66

CHAPTER 3

DATA CENTER RESOURCE ALLOCATION WITH DVFS

In this chapter, we present an optimization model over a time horizon by consider

it as a multi-time period problem with demand changing over time, where we address

optimizing the energy consumption and server cost based on both switching on and off

and DVFS methods in data centers. The aggregation by maximum discussed in Chapter 2

is applied. We show the impact of the degree of aggregation and CPU frequency options

on optimal solutions. The dependence of the degree of aggregation on cost parameters

sheds a light on how to choose the degree of aggregation. We show that it is indispensable

to put the problem in the multi-time period framework. Although we use hypothetical

demand distribution in our numeric study, our approach is applicable to arbitrary demand

distribution.

The rest of this chapter is organized as follows. We present the optimization for-

mulation in Section 3.1. In Section 3.2, the evaluation environment setup and results are

presented. Section 3.3 discusses conclusion and further work.

3.1 Problem Formulation

For sake of clarity, we introduce our notations used in this chapter. The CSP data

center has I servers. Let I denote the set of the servers. Let J (i) be the frequency

option set for server i. In a homogeneous server cluster case, J (i) = J ,∀i. There are J

67

frequency options in J . Server i running at j-th frequency option can offer a capacity of

vij while satisfying the SLA. The power consumption of running server i at j-th frequency

is denoted by cpij per time unit. The wear-and-tear cost of turning server i on and off is

denoted by cs+i , cs−i , respectively. Let K be the set of the services that is using the data

center infrastructure consisting of K services. We divide the time horizon Υ hours into

T equal time slots and the duration of a time slot (slot size) is then τ = Υ/T hours

(usually, we refer to the slot size in minutes). Let T be the set of these slots. At the

review point, the number of active servers and their frequencies is configured. Let binary

decision variables yijt denote if server i is running at frequency option j at time slot t.

The continuous variables xijkt (0 ≤ xijk(t) ≤ 1) represent the proportion of service k

hosted by server i that is running at frequency option j at time slot t.

There are a number of constraints in this problem. Usually, a server can only be

operated at a specific frequency in a time slot—this can be represented as follows:

∑
j∈J

yijt ≤ 1, i = 1, · · · , I; t = 1, · · · , T. (3.1)

The second constraint is that the total utilization of any running server must not be more

than 1 and that of any “off” server must be 0.

∑
k∈K

xijk(t) ≤ yij(t), i = 1, · · · , I, j ∈ J , t = 1, · · · , T. (3.2)

The third constraint is the demand requirement of each service over the entire planning

horizon: ∑
i∈I

∑
j∈J

vij · xijk(t) ≥ dkt, k = 1, · · · , K; t = 1, · · · , T. (3.3)

68

The constraint (3.3) is a combined constraint of assigning servers to services and satisfy-

ing the demand of each service. We do not consider the assignment/allocation problem in

this chapter although the service assignment problem is an important one [59]. Enabled

by virtualization and consolidation, (3.2) and (3.3) can be combined as the aggregated

demand constraint:

∑
i∈I

∑
j∈J

vij · yijt ≥
∑
k∈K

∑
i∈I

∑
j∈J

vij · xijkt ≥
∑
k∈K

dkt. (3.4)

Let
∑

k∈K dkt = dt; then, the demand constraint reduces to:

∑
i∈I

∑
j∈J

vij · yijt ≥ dt, t = 1, · · · , T. (3.5)

We next consider the objection function. The objective is to minimize the operational cost

of running servers over the entire horizon that can be represented by

∑
t∈T

∑
i∈I

∑
j∈J

cpij · yijt +
∑
t∈T

∑
i∈I

(
cs+i ·

∑
j∈J

yijt · (
∑
j∈J

yijt −
∑
j∈J

yij(t−1)) +

cs−i ·
∑
j∈J

yij(t−1) · (
∑
j∈J

yij(t−1) −
∑
j∈J

yijt)
)
. (3.6)

This objective function is a quadratic function. Given that yijt are decision variables, we

can reduce the quadratic function to a linear function (by introducing additional variables

and constraints) without resorting to any approximation. To do this, we introduce two

binary variables y+it and y−it to represent turning on/off at review point of time slot t.

y+it = 1 means server i is turned on at time t. Conversely, y−it = 1 means server i is turned

off at time t. 0 indicates no change from time slot t− 1 to t. Thus, we have:

∑
j∈J

yijt −
∑
j∈J

yij(t−1) − y+it + y−it = 0, i = 1, · · · , I; t = 1, · · · , T. (3.7)

69

Since y+it and y−it cannot be both 1 at the same review point, we use the following inequal-

ities to force this requirement:

y+it + y−it ≤ 1, i = 1, · · · , I; t = 1, · · · , T. (3.8)

With the aid of y+it and y−it , the original quadratic objective function can be transformed to

the following linear function:

∑
t∈T

∑
i∈I

∑
j∈J

cpij · yijt +
∑
t∈T

∑
i∈I

(cs+i y+it + cs−i y−it). (3.9)

Since we consider the planning horizon to be the entire time period Υ, we make

the assumption that at the beginning of this period, a reshuffling is done. In other words,

all servers are reset at the beginning of the time horizon. In our case, we use:

yij0 = 0, i = 1, · · · , I; ∀j ∈ J . (3.10)

This then forces the new binary variables in the following way:

y+i1 =
∑
j∈J

yij1, i = 1, · · · , I, y−i1 = 0, i = 1, · · · , I. (3.11)

For sake of clarity, we rewrite the entire problem formulation in Fig. 3.1

In this formulation, the number of decision variables is (J+2) ·I ·T . The number

of constraints is (3I+1) ·T +2I , where J = #(J), I = #(I), T = #(T) (#(·) denotes

cardinality of the set).

3.2 Evaluation

In this section, using the optimization model, we focus on understanding: (a) the

impact of the degree of aggregation on optimal solutions, (b) to what extent DVFS can

70

constants
cpij energy consumption of server i running at frequency option j in a time slot
cs+i cost of switching server i on
cs−i cost of switching server j off
vij capacity of server i running at frequency j
dt demand at t
yi0 = 0 initial (time slot 0) state of server i

variables
yijt = 1 if server i is running at frequency option at time slot t; 0, otherwise
y+it = 1 if server i is turned on at time slot t; 0, otherwise
y−it = 1 if server i is turned off at time slot t; 0, otherwise

objective
minimize

∑
t∈T

∑
i∈I

∑
j∈J cpij · yijt +

∑
t∈T

∑
i∈I (c

s+
i y+it + cs−i y−it)

constraints∑
j∈J yijt ≤ 1, i = 1, · · · , I; t = 1, cdots, T∑
i∈I

∑
j∈J vij · yijt ≥ dt, t = 1, · · · , T∑

j∈J yijt −
∑

j∈J yij(t−1) − y+it + y−it = 0, i = 1, · · · , I; t = 1, · · · , T
y+it + y−it ≤ 1, i = 1, · · · , I; t = 1, · · · , T
y+i1 =

∑
j∈J yij1, i = 1, · · · , I

y−i1 = 0, i = 1, · · · , I

Figure 23: Binary IP: resource allocation with DVFS

improve the optimum, and (c) how the relative change in the wear-and-tear cost compared

to the power consumption cost impact on the optimal solution. In order to do these studies,

we start with our evaluation setup and parameters values considered.

3.2.1 Evaluation Setup

In our study, we consider a server cluster of 100 identical servers. The CPU fre-

quency set and power consumptions are adopted from [29]. The capacity of a server (v′j)

is assumed to be a linear function of frequencies (Fj) with a fixed cost that is calculated

71

as follows:

v′j = α+ Fj, ∀j ∈ J , where α ∈ R, α > −Fj. (3.12)

There are different units that can be used for server capacity such as processors requested,

HP computon, or SAPS. Without loss of generality, we can simply use numeric values

to convey this information while assuming that the demand is using the same unit. We

capitalize on α to make our model represent different measurements. For ease of compu-

tation, we normalize the capacity at j to be the capacity at the maximum frequency. That

is,

vj = v′j/(α+ FJ). (3.13)

Note that to keep the problem consistent, we scale the demand by the same normalization

factor:

dt = d′t/(α+ FJ). (3.14)

Like what we adopt in Chapter 2, We use $.07 per kWh as the utility price. The energy

cost in a time slot is the product of the power consumption, the utility price and the slot

size. Google reported [14] that the personnel cost for each repair is $100 and the replace-

ment cost is 10% of the server cost ($2000). We assume the lifetime for a disk to be

60,000 turning-on-and-off cycles. Using this, we arrive at 0.5 cents for the wear-and-tear

cost per switching-on-off cycle. Out of 0.5 cents, we assume turn on to be a higher cost

than turning off; thus, we split this value to 0.3 cents and 0.2 cents for switching on and

switching off, respectively. We also assume that the power cost for switching on and turn-

ing off is 0.02 cents and 0.005 cents, respectively, since switching on draws much more

72

Frequency Option j 1 2 3 4 5 6 7 8
Frequency (GHz) Fj 1.4 1.57 1.74 1.91 2.08 2.25 2.42 2.6

Normalized Capacity vj .5385 .6038 .6692 .7346 .8 .8645 .9308 1
Power Consumption (watts) Pj 60 63 66.8 71.3 76.8 83.2 90.7 100

Power Cost (cents) cj .42τ .441τ .4676τ .4991τ .5376τ .5824τ .6349τ .7τ

Table 5: CPU frequencies, capacities and costs

power than switching off in most cases. This analysis of the switching on/off cost is simi-

lar to that in Chapter 2 except that the consolidation cost is not considered. We summarize

the cost parameters in Table 5. The normalized capacity shown in Table 5 is an instance

based on (3.13) given α = 0 that makes the relative difference of capacities for different

frequencies the largest. Therefore, this is the case that yields the upper limit of the the

benefits that DVFS can contribute. Since the maximum capacity per server is normalized

to 1, the maximum cluster capacity is equal to the number of servers. We assume that

the demand profile is forecasted and profiled every 5 minutes based on traces of demand

on the CPU. Due to the diurnal behavior associated with human beings’ working cycles,

we chose the 8 hour work time as the planning horizon where the dynamically changing

demand from one time slot to another is generated for our study. We consider 5 different

degree of aggregation: α = 1 (5 minutes), α = 3 (15 minutes), α = 6 (30 minutes), and

α = 12 (60 minutes). We statically aggregate the demand by maximum. Refer to (2.41)

in Chapter 2 for more information about static aggregation by maximum.

To study the benefits of DVFS on the optimal solutions and provide some insights

for the CPU frequent management, we evaluate three schemes: 1) The CPU does not

have DVFS capability and always runs at maximum frequency; this scheme serves as the

baseline study and will be denoted by “Max”; 2) The CPU can scale only at the minimum

73

and the maximum frequencies — this is denoted by “PingPong”; 3) The CPU can scale in

the full spectrum of 8 frequency options — this is denoted by “Full”. To show the benefits

of our approach, we also present two baseline cases: 1) All servers are always on and run

at maximum frequency, that is, no optimization and cost management is employed — this

is referred to as ”Baseline-I”, 2) Optimization is done independently at each time slot —

this is referred to as ”Baseline-II”.

We ran the optimization model using CPLEX through its integer programming

solver on an Intel(R) Pentium(R)IV 3.00GHz with 2GB memory. Through preliminary

runs, we observed that the overall cost does not improve if we allow 2,000 branch and cut

nodes in CPLEX; thus, in our study, we set the branch and cut nodes limit to 2,000.

3.2.2 Results and Discussions

Fig. 24 depicts the minimum cost in a 100-server cluster with 20% utilization

where the demand distribution is assumed to be exponential. The upper three curves

show the minimum cost when the switching on/off cost is considered while the lower

three curves show the minimum cost when the turning on/off cost is not considered.

We start our discussion for the case that assumes no switching on/off cost, i.e.,

when cs+i = cs−i = 0. From Fig. 24, we can see that the degree of aggregation has

significant impact on the optimum. By increasing the time slot size from 5 minutes to 60

minutes, the minimum cost increases by more than 200% for all three schemes. This is

not surprising since aggregations result in over-provisioning. Please refer to Chapter 2 for

detail analysis on how the degree of aggregation impacts optimal solutions.

74

In the case when the switching on/off cost is considered, the Full scheme results

in the minimum cost but only slightly less than the PingPong scheme while both of these

schemes outperform the Max scheme significantly. The intrinsic reason for performing

optimization periodically, instead of continuously, is the overhead caused by optimization

and resulting operations. This overhead of DVFS is much smaller than that of switching

on/off.

Consider next the relative differences between the case with the switching on/off

cost and the case without. The degree of aggregation has a similar impact on optimum

as the case that assumes no switching on/off cost. But the increase in the slope of the

minimum cost is much less than in the case without switching on/off cost. By taking this

factor into consideration, lower degree of aggregation requires more frequent optimization

operations, which cause more switching on/off operations. This cost cancels out part

of the savings brought by less degree of aggregation. Essentially, our approach intends

to seek an optimal operating point for the accurate provisioning to the demand profile

to reduce the power consumption cost and to minimize switching on/off operations (to

reduce the wear-and-tear cost).

Fig. 24 also includes the optimal solutions for Baseline-I and Baseline-II. Note

that the switching on/off cost is considered in these two baseline cases. Recall that, in

Baseline-I, the configuration is static where servers are always operated at the maximum

frequency and only the turning on cost incurs at the beginning of the first time slot. We

define the ratio of relative difference between Baseline-I and our approach, considering

75

0 5 15 30 60 70
100

200

300

400

500

600

700

Time Slot Size (min.)

M
in

im
u
m

 C
o
s
t

Max

PingPong

Full

Baseline−I

Baseline−II

W/O turning on/off costs

With turning on/off costs

Figure 24: Minimum cost in a 100 server cluster

switching on/off cost, as the relative improvement. As shown in Fig. 25, the relative im-

provement is significant; clearly, the lower degree of aggregation of the time slot size,

more than the frequency options, helps to reduce the minimum. In Baseline-II, optimiza-

tion is done independently for each time slot. In the presence of the turning on/off cost,

this local optimization can mislead the global optimum. As we can see from Fig. 24, in

the case of 5 minute time slot size using Full scheme, the optimal solution obtained in

Baseline-II is even worse than Baseline-I. When the time slot size is small, Baseline-II

minimizes the server power consumption in each time slot independently and causes too

76

1"+' ,-0-,
-M-

many turning on/off operations that outweigh the savings in power consumption. The rel-

ative improvement of our approach compared with Baseline-II is shown in Fig. 25. As the

degree of aggregation becomes higher, the improvement diminishes gradually. For large

time granularity, the frequency of turning on/off operations is low; thus, the difference of

optimizing for each time slot independently and multiple time slots considered together is

small. This also explains that the optimum becomes lower as the time slot size granularity

becomes larger, as shown in Fig. 24 as the switching on/off cost in Baseline-II cancels out

the gain of the savings in the power cost by finer time slot size granularity. In essence,

this also shows the value of the multi-time period framework.

The relative difference between the cost of switching on/off and the server power

consumption cost also can have a different impact. To see this, we scale the switch-

ing on/off cost by factor R and study the impacts of relative difference in cost. Fig. 26

presents the optimal solutions for the cases whose switching on/off cost is scaled from

1 to 9 compared to the server power consumption cost. As we can see, the discrepancy

of different granularity of time slot size becomes smaller along with the scaling factor

increasing from 1 to 9. This trend is consistent for all 3 frequency schemes. Depending

on the overhead, lower degree of aggregation does not always gives the optimal solution.

If the switching on/off cost is negligible compared with the energy consumptions for all

frequencies, this case can be regarded as equivalent to the case without considering the

switching on/off cost; this would suggest that the lower degree of aggregation the best

option. However, if the power consumption cost is negligible, we may avoid switching on

and off operations and, instead, choose higher degree of aggregation.

77

Max PingPong Full
0%

20%

40%

60%

80%

Relative imporvement compared with Baseline−I

Max PingPong Full
0%

20%

40%

60%

80%

Relative improvement compared with Baseline−II

5 min

15 min

30 min

60 min

Figure 25: Relative improvement

3.3 Conclusion and Further work

Similar to Chapter 2, we use the wear-and-tear cost and power consumption to

capture the server cost in data centers. The demand is considered to be dynamically

changing over a time horizon. Data center operators desire to offer capacity just as

needed to avoid over-provisioning; however, capacity re-assignment incurs the wear-and-

tear cost. Leveraging two well-known methods, switching servers on/off and DVFS in a

synchronous manner, we presented a multi-time period mathematical programming model

78

1 3 5 7 9
0

200

400

600

800

Max

M
in

im
u

m
 C

o
s
t

1 3 5 7 9
0

200

400

600

800

PingPong

Scaling Factor

1 3 5 7 9
0

200

400

600

800

Full

 5 min

15 min

30 min

60 min

Figure 26: Scaling Factor Versus Minimum cost

to optimize the server. The evaluation study shows that our approach can significantly re-

duce the server operational cost compared with static capacity allocation (baseline-I) and

when optimized locally (baseline-II); we found that the degree of aggregation has pro-

nounced effects on the optimal solutions. To make our cost assumptions general, we

study how the optimal time slot granularity is impacted by the relationship between two

kinds of costs. Our aggregation methods introduced in Chapter 2 can be applied to this

case with DVFS as to reduce the computational complexity. Actually aggregation is a

more keen need in the case with DVFS since the computational time of case with DVFS

is much more compared with the case without DVFS given other settings are the same.

The intrinsic reason for performing optimization periodically, instead of continu-

ously, is the overhead caused by optimization and resulting operations. This overhead of

DVFS is much smaller than that of turning on/off. In our current model, the two methods

operated in a synchronous manner. It would be worthwhile to consider a model that is

able to asynchronously use these two methods. We consider the problem for a known set

79

-c=J -

of forecasted demand over a time horizon. A model that addresses uncertainty in demand

over the time horizon would reflect a more realistic situation.

80

CHAPTER 4

A HIERARCHICAL MODEL TO EVALUATE QUALITY OF EXPERIENCE OF

ONLINE SERVICES HOSTED BY DATA CENTERS

As Internet services utilize data centers to host their service via cloud computing

model, they are challenged by evaluating the quality of experience and designing redi-

rection strategies in this complicated environment. We propose a hierarchical modeling

approach that can easily combine all components of this environment. Identifying in-

teractions among the components is the key to construct such models. In this particular

environment, we first construct four sub-models: an outbound bandwidth model, a data

center availability model, a latency model and a data center (cloud computing) response

time model. Then we use a redirection strategy graph to glue them together. We also

introduce an all-in-one barometer to ease the evaluation. The numeric results show that

our model serves as a very useful analytical tool for Internet service providers to evaluate

data centers and design redirection strategies.

The main scope of the chapter is how to evaluate Quality of Experience (QoE) in a

cloud computing environment where Internet service providers (ISePs) are the customers

of the cloud computing service providers (CSPs) while CSPs use data centers as their

infrastructure. As it turns out, it is extremely hard to build a monolithic model for this

purpose; furthermore, such a model becomes intractable even for a small problem. The

main contribution of our work is a unique and non-standard hierarchical model to ana-

lytically evaluate QoE that solves an otherwise intractable model. In addition, our model

81

includes failure/repair as well as contention for resources (performability), response time

distribution, and retry attempts. Our model provides flexibility to allow arbitrary changes

or to add model components. Tackling each small piece (sub-model) of the model sepa-

rately is much easier without ignoring the interactions among sub-models.

We present a model that helps ISePs analytically evaluate the QoE of their users

and provides design insights, such as the selection of data center, and redirection strate-

gies. The contributions of this chapter are as follows: (a) We identify various causes of

user request failures in this environment; (b) We use a single metric with a secondary

metric as supplement to evaluate QoE; and (c) We propose a hierarchical model for this

environment.

The remainder of the chapter is organized as follows. We introduce background

in Section 4.1. In Section 4.2, we present the details of the hierarchical analytical model.

Numeric results are presented in Section 4.3. This chapter then ends with a conclusion

and future work.

4.1 Background

4.1.1 Success Probability as an All-in-One Barometer

The performance of most Internet services have constraints on latency, such as

VoIP, video streaming, podcast and search. For most Internet services, the outbound

traffic to the data center (the service traffic) is dominant compared with inbound traffic

(the request traffic) [91]. Thus, we concentrate mainly on the outbound bandwidth and

SLAs usually bound on the latency from the data center to the users. Typically, when a

82

user requests service, the ISeP serves from the data center then delivers to the user via

Internet. If a QoE is within the bound of the SLA between users and the ISeP (that is,

the user request is accepted and served within the promised latency in SLA), the request

is deemed as a success. In this particular environment, there are four causes that can

possibly make the request unsuccessful:

1. All virtual machines (VMs) assigned to the service fail in the data center of cloud

computing provider.

2. If the service requires a constant bit rate (CBR) and the outbound bandwidth allo-

cated to this service is used up, the data center will not be able to serve any more

users. This is a classic circuit switch style loss model. The loss model affects the

success probability by directly adding one more possibility of rejecting a request

for service. If the service shares the bandwidth instead, a processor sharing (PS)

model should be adopted. Therefore, latency perceived by users is a monotonically

increasing function of the number of users sharing the link. The PS model affects

the success probability by introducing more user experienced latency.

3. The buffer spaces allocated to the ISeP are used up.

4. A user request, though being accepted, cannot be served within promised latency.

Based on the observation of a congested system, it is likely to become worse. In

such a situation, a user should be pre-maturely directed to the next available data

center with service replication when the waiting time exceeds a certain threshold.

83

We can categorize the causes of failure into two causes: one is “hard” rejection failure,

the other one is latency-unsatisfactory (“soft”) failure. The redirection strategy graph that

will be discussed in Section 4.2.5 is the glue to combine these two kinds of failures into

the all-in-one barometer: success probability. In the case that the success probabilities are

the same or very close, the average time to complete is used to measure the QoE. Thus,

we use the average time to complete as a secondary performance metric here.

4.1.2 Cloud Computing Availability

Cloud computing availability is comprehensively decided by the reliability of all

the elements in the data center. In a data center, the causes of failure span software

related errors (including Internet service software, cloud computing level management

software), configuration faults, human and networking related errors, and hardware errors

(in decreasing order in terms of percentage) [14]. On the other hand, the nature of large

scale server clusters in a data center causes the mean time between failure (MTBF) to be

much less than that of a single server. In an example given in [14], it was pointed out that

a cluster of 10,000 servers sees approximately 100,000 times less MTBF than a single

server does. A mega data center has on the order of tens of thousands or more severs

and a micro data center has on the order of thousands of servers [39]. Thus, hardware

failure is the norm rather than an exception [14]. Unavailability caused by these failures

degrades QoE. Therefore, it is indispensable to use redundancy to improve availability of

cloud services.

We are interested in the relationship between the number of redundant VMs and

84

availability. To model availability, we first need to fit failure and repair characteristics to

distributions in such large scale computer clusters and then apply modeling techniques.

However, this requires considering complex combinations of heterogeneous components,

complicated softwares, and onerous data mining. Recently, Vishwannath and Nagappan

took the first step to characterize and understand cloud computing hardware faults that

cause server failure [87]; rather, developing reliability/availaibility models for the whole

data center and its servers remains an ongoing effort [87] and is outside the scope of our

work. Instead, we will use a simplified availability model and a number of empirical

assumptions to illustrate our idea. In this dissertaion, we consider the failure of service

regardless of causes.

Another significant difference between a server cluster (cloud computing) and a

single server is the ubiquitous dependency in server clusters. Because of this dependency,

a server that is down can bring the entire cluster down. We will take this factor into

consideration in our model. The ISePs usually use more VMs than necessary to prevent

single-point-of-failure. Thus, we use redundancy to improve availability in this disserta-

tion.

4.1.3 Redirection as an Enabling Mechanism

Serving users from a nearby data center can significantly reduce the latency. There-

fore, the cloud provider desires to replicate the service across multiple geographically

dispersed data centers. User requests can be directed to any one of these data centers as

85

needed using parallel serving techniques e.g., DNS redirection. This idea has been com-

monly used in Content Distribution Networks (CDNs) [45]. OSPs also need to implement

a function similar to the distributor in CDN. A user sends a DNS query to the authorita-

tive DNS server of the ISeP, the ISeP replies with an IP address of a replicated service

hosted by a data center, such as RTT between the user and data centers. We now consider

one more step. What if a user is turned down by the given replicated service? The ISePs

should render a list of locations (IP addresses) of all replicated services. This behavior

will be further analyzed by the redirection strategy model in Section 4.2.5. Redirection is

an enabling mechanism here. Mining user location patterns is the crux to decide where

and the amount of resource in terms of the number of VMs. Agarwal et. al. revealed

statistical information of client/user location information by studying the workload traces

of two Internet services, Live Mesh and Live Message [9]. We assume that the service

provider has done a similar study so that the data center location and required resource

have been determined. Note that the overhead of redirection itself is not considered in

this thesis since it is negligible compared with gains of using it, which will be discussed

in 4.3.3.

4.2 The Hierarchical Model

We assume that an ISeP wants to migrate its service into cloud computing. The

ISeP asks the CSP to replicate their services across multiple geographically dispersed

data centers. Which user should request service from which data center is decided by the

redirection strategies of the ISeP. User requests can be directed to any one of these data

86

centers as needed using parallel serving techniques e.g., location based DNS redirection.

The ISeP also wants to use more VMs than necessary to prevent the single-point-of-

failure, that is, to improve availability. We present below the modeling approaches for

each subsystem. At the end of this section, we summarize our approach and its limitations.

4.2.1 Cloud Computing Availability Model

We assume that data center j has Mj VMs. For brevity, we will discuss the avail-

ability model by dropping the subscript j for now, thus denoting the number of serving

nodes as M . We assume that the time to failure of a VM is exponentially distributed with

rate γ and the repair time of each serving node is also exponentially distributed with rate

τ . Denote the ratio of failure rate and repair rate by ϱ = γ/τ . Let c be the coverage

probability that a VM going down does not bring all other VMs in the data center down.

Let π(a)
k denote the steady state probability when this data center has k VMs assigned to

the service are in operation. The Markov chain of this availability model and the equi-

librium equations, which are omitted here, are described in [83]. The cloud computing

availability, A is the probability that at least one VM in the data center is in service. The

unavailability of the cloud computing, denoted by π
(a)
0 is the complementary part of A.

That is, π(a)
0 = 1− A.

4.2.2 Outbound Bandwidth Loss/PS Model

Let binary variable ã indicate either for loss model (ã = 1) or PS model (ã = 0)

is used for outbound bandwidth. We show the loss model in detail then briefly discuss

the PS model. We then show how these models can be plugged in the redirection strategy

87

graph. The idea of the redirection strategy graph is originated from the user behavior

graph [25, 88].

We denote the bandwidth of the bottleneck link by X . We assume that users

demand the same CBR; that is, we consider the homogeneous case. For the homogeneous

case where the demanded bandwidth of each request is fixed at Y , the effective bandwidth

of the outbound bandwidth allocated to this service has the capacity of H = ⌊X/Y ⌋. We

assume that the arrival process of the user requests is Poisson with rate λ and the time to

transmit the content is exponentially distributed with rate µ. The system then becomes the

classical Erlang loss model. Note that the arrival processes and content size distributions

are dependent on the types of services; see, for example, [26]. The techniques to calculate

the blocking probability of the loss model with different traffic characteristics, i.e., the

heterogeneous case, are well known. We use the simplest model here for the purpose

of illustration as part of the overall hierarchical model. Specifically, in the homogeneous

case, the probability of outbound bandwidth being used is given by Erlang-B loss formula:

B = π
(b)
H =

(λ/µ)H/H!∑H
i=0((λ/µ)

i/i!)
. (4.1)

The result can be extended to the case when user demanded CBR requests have different

bandwidth requirements (the heterogeneous case) by using the Kaufman-Roberts formula

[46,77]. If the PS model is used, instead of blocking probability, we need to calculate the

transmission latency that will be fed into the latency model.

88

4.2.3 Cloud Computing Response Time Model

We use the same assumptions that we made in Section 4.2.2. That is, the data size

is exponentially distributed and the user request arrival process is Poisson with rate λ. We

assume that the processing speed of all serving nodes is constant. Thus, the service time

of a server site, that is the ratio of data size and processing speed, follows the exponential

distribution. The justifications of these assumptions have been discussed in Section 4.2.2.

The effective rate of arrivals, λ′, to the service is given by:

λ′ = (1− ãB)λ. (4.2)

Let ν be the service rate of a data center. We model a server site as an M/M/m/K

system, where m is the number of VMs assigned to the service provider and K is the

configured capacity for the service provider; this means that b = K − m is the waiting

room capacity (buffer size). Solving for the steady state probability,

π
(c)
k =

ρk mk

k!
π
(c)
0 , k = 0, · · · ,m− 1,

ρk mm

m!
π
(c)
0 , k = m, · · · , K,

(4.3)

where ρ = λ′/(mν) and

π
(c)
0 =

[∑m−1
i=0 ρi m

i

i!
+
∑K

i=m ρi m
m

m!

]−1

. (4.4)

The probability of all configured capacity used up is:

C = π
(c)
K . (4.5)

The cumulative distribution function (CDF) of the response time of M/M/m/K system

89

is given by [40]:

F (R)(t) =
∑m−1

i1=0 π
(c)
i1
(1− exp(−νt))

+
∑K

i1=m π
(c)
i1

{
(m
m−1

)i1−m+1(1− exp(−νt))
− 1

m

∑i1−m
i2=0 (

m
m−1

)i1−m−i2+1·
[1− exp(−mνt)

∑i2
i3=0

(mνt)i3

(i3)!
]
}
.

(4.6)

4.2.4 Latency Model

The latency experienced by users consists of the data center (cloud) response time,

the Internet delay, and the user computer processing time. The time of handing over a task

from a failed VM to an available one, in case of VM failure, is taken care of by the CSP

and considered as seamless. The service response time is the time used by a VM to process

the requested data to be ready to transmit such as for packetization and scheduling. The

network delay is the time consumed by the network transmission process. The user node

processing time is considered too small and hence, negligible.

The network delay is comprised of transmission delay, queueing delay, propaga-

tion delay and nodal processing delay. We consider the delay occurring at the outbound

link of the data center since the outbound bandwidth is part of the SLA between the ISeP

and the CSP. The delay occurring at the rest of links in the path from the data center to

users is dependent on the SLA between the CSP and ISePs, which is not considered in

this thesis. The transmission delay of a particular link is the ratio of the data size and the

bandwidth of this link. The queueing delay is a random variable that can be modeled as

the response time of an M/M/1 system [83]. As mentioned in Section 4.2.2, there is no

queueing delay if the loss model is applicable. If the PS model is used, the queueing delay

90

of the PS model needs to be taken into account; however, the response time distribution of

the PS model is a non-trivial exercise. The propagation delay is proportional to the path

length. The routing processing delay is comparatively much smaller and can be ignored

in a network where routers do not sniffer the packet content. Out of the non-negligible

components, some are factors that remain constant such as the transmission delay and the

propagation delay for a particular link speed; others are random such as, the service re-

sponse time and the queueing delay. Let tc and tr be the constant factors and the random

component, respectively. For the rest of the work, we use the loss model as illustration.

That is, the service response time is the only random variable.

Waiting for a certain long time indicates a highly crowded system and users are

more likely to wait for even longer time according to queueing observations. In order to

optimize QoE, the ISeP needs to prematurely terminate such requests and redirect users to

other available replications. This way, the users are more likely to get better QoE. So an

ISeP can define a latency threshold, Tth, as the maximum time that the ISeP allows users

waiting for the service from one data center. The probability that this bound is satisfied is

F (R)(Tth − tc), where F (R) is given by (4.6).

4.2.5 Redirection Strategy Model

We are now ready to present the success probability without considering redirec-

tion strategies. Let N data centers have replicated services. We will now put the subscript

j back to refer to data center j, and use the subscript k to indicate VM k at a data cen-

ter. Let qj be the probability that a user request is accepted by data center j (j ≤ N).

91

F
(R)
jk (Tth− tc) becomes the probability that the threshold is satisfied with k VMs assigned

to the service at data center j.

We denote the four events that can cause the user requests to be denied by: 1) Φ1,

all assigned VMs fail. 2) Φ2, the outbound bandwidth of the data center is used up. 3)

Φ3, the buffer assigned for the service in the data center is full. 4) Φ4, user experienced

latency exceeds the threshold. Therefore, the possibility of a user request being denied by

the data center j is the summation of the following:

1. The probability that all assigned VMs fail:

P (Φ1) = π
(a)
j0

2. The probability that at least a VM of data center j is available but the outbound

bandwidth is used up:P (¬Φ1 · Φ2) = (1− π
(a)
j0) · ã ·Bj .

3. The probability that at least a VM of data center j is available and the outbound

bandwidth is sufficient, but the assigned buffer is full:P (¬Φ1·¬Φ2·Φ3) =
∑Mj

i=1 π
(a)
ji ·

(1− ã · Bj) · Cji. Note that we use subscript i in Cji to indicate that Cji is subject

to the number of available VMs i.

4. The probability that at least a VM of data center j is available and the outbound

bandwidth is sufficient and the assigned buffer is not full, but the user experienced

latency exceeds the threshold: P (¬Φ1 · ¬Φ2 · ¬Φ3 ·Φ4) =
∑Mj

i=1 π
(a)
ji · (1− ã ·Bj) ·

(1 − Cji) · (1 − F
(R)
ji (Tth − ℓ)). Note that F (R)

ji is also subject to the number of

available VMs at site j.

92

P =

0 1− q0 0 . . . 0 q0 0
0 0 1− q1 . . . 0 q1 0
...

...
...

...
...

(1− qN−1)r 0 0 . . . qN−1 (1− qN−1)(1− r)
0 0 0 . . . 0 1 0
0 0 0 . . . 0 0 1

(4.8)

The probability of an unsuccessful request to data center j, 1− qj , is then equal to:

P (Φ1) + P (¬Φ1 · Φ2) + P (¬Φ1 · ¬Φ2 · Φ3) + P (¬Φ1 · ¬Φ2 · ¬Φ3 · Φ4) (4.7)

The ISeP can implement any redirection functionality. Therefore, the ISeP can utilize

redirection strategies to increase success probability. In this chapter, we discuss three

strategies for illustration: 1) Retry: retry probability, denoted by r, is an adjustable param-

eter to fine-tune this strategy. 2) Limited Try (LT) strategy, denoted by a binary variable t̃:

t̃ = 1 means a user is allowed to try N number of server sites, whilst t̃ = 0 means a user

can try any number of server sites. 3) Guided Hunting (GH) strategy, denoted by a binary

variable h̃: h̃ = 1: the ISeP provides the list of replicated service in the order of nearest to

furthest ; h̃ = 0: the ISeP provides the list of replicated service in a random order. Note

that these are simple redirection strategies to illustrate how they can be incorporated in

our hierarchical model.

The promised QoE decides how to apply these strategies. Such as the product of

the number of maximum number of tries and the time threshold (without considering retry

probability) should be bounded by the user tolerable latency. Optimizing the redirection

strategies is out of the scope of this chapter. We use the redirection strategy graph to

93

�

�

�

���

�

�

������ ������ �������������������
���������

Figure 27: Redirection strategy graph

model these strategies. As shown in Fig. 27, an ISeP sends a user request to the data

center (replicated service) 0 with probability q0 of success and probability 1−q0 of failure.

If the user is not successfully served, the ISeP then redirects the request to data center 1

with probability q1 of success and so forth, until reaching the maximum number of data

centers (if LT strategy is on). Then, the request can be redirected to the data centers that

have been visited with the probability of r · (1− qj) for j = 0, 1, · · · , N , where (1− qj)

is given by (4.7).

This redirection strategy graph is a discrete time Markov chain (DTMC) with two

absorbing states, S and F . The transition probability matrix, P, of the redirection strategy

graph is given by (4.8), where qj is given by (4.7). In a compact form, matrix, P, in (4.8)

94

���������
����������

�������������

 ����� �!"����#�
$%���������&�
�����

λ

λ

Μ

 ����� �!"����#�
'��"�����(�!�������

)���&������

!

'���*�+�������*���#&������

" #

!

Figure 28: Hierarchical model

can be partitioned so that:

P =

 Q C

0 I

 , (4.9)

where Q is an N by N matrix, I is a 2 by 2 identity matrix and C is an N by 2 rectangular

matrix, where 2 indicates the number of absorbing states in the chain with N + 2 states.

For an absorbing DTMC with 2 states, the expected number of visits Vk to state

k before absorption (entering failure or success states) can be computed by solving the

following system of linear equations [83]:

Vk = s′k +
∑N−1

i=0 q′ikVi, k = 0, 1, · · · , N − 1, (4.10)

where s′k is the probability that a user tries to connect from node k and q′ik is the transition

95

+

probability from state i to state k. Where

q′ik =

{
1− qi, k − i = 1.

(1− qN−1)(1− r), i = N − 1, k = 0.
(4.11)

The average time for a request being accepted or denied is therefore given by:

t̄ =
∑N−1

i=0 Vi(t̄ri + tci), (4.12)

where t̄ri is the average response time of the service at data center i and tci is the rest

latency component. Finally, let A = [ak1,k2] be the matrix that ak1,k2 is the probability

that a user request starting at data center k1 ends at absorbing state k2. It can be shown

that A = (I −Q)−1C [58]. Then, the element (1,1) of A gives us the result for the user

request failure probability.

4.2.6 Summary and Limitations

We have presented a hierarchical approach to model the environment that cloud

computing hosts services for ISePs. Redirection strategies are the key to improve QoE.

With this model, we can further calculate the success probability and average time to

complete.

This model is built from the bottom up. As shown in Fig. 28, there are two mod-

els side to side at the bottom layer. The left side one is the outbound bandwidth loss

model (sub-model 1). The right side one is the cloud computing availability model (sub-

model 2). The cloud computing response time model is at the middle layer (sub-model 3).

According to the arrival requests with rate λ′ filtered by sub-model 1 and the number of

available serving nodes (M) which are subject to sub-model 2, sub-model 3 calculates

96

the probability that the response time of the cloud computing exceeds the threshold in-

corporated with the latency model (sub-model 4). At the top layer of this model, the

redirection strategy graph (sub-model) which is constructed according to the redirection

strategies used sums up all the possibilities that a request being denied (A,B, and C) from

the sub-models under it.

As mentioned earlier, our assumptions of request content size, request arrival pro-

cess, VM failure and repair distributions, may not be realistic. Instead, our focus here is

showing how to construct a hierarchical model in this complicated environment to serve

as an overall framework. For example, the PS model for the outbound bandwidth is much

more common than the loss model for Internet service while we use the loss model here

for illustration. The redirection strategies used here are also simplistic. Thus, there are a

number of ways to include additional details or more complicated sub-models within the

context of the overall model proposed here.

4.3 Numeric Results

In this section, we present a set of numeric results derived from our model to

understand the different implications in this environment. This model is implemented in

the SHARPE package [79].

4.3.1 Unavailability of Cloud Computing

We consider the unavailability of the cloud computing by considering both the

coverage probability (c) and the number of VMs (M). Fig. 29 presents the optimum

number of VMs in terms of unavailability for various values of c when ϱ is fixed at 1/5000.

97

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

-2 0 2 4 6 8

U
n
av

ai
la

b
il

it
y

of VMs

c=0.9
c=0.99

c=0.999
c=0.9999

c=0.99999
c=0.999999

Figure 29: Unavailability (ϱ = 2e− 4)

The unavailability decreases at first, but increases when we continue to increase VMs.

We can obtain the optimum number of VMs in terms of unavailability. The optimum is

subject to coverage probability. Note that the optimum does not necessarily give the best

experience for the users because more VMs always reduce the response time although

the availability may decrease. As the coverage probability approaches 1, which means

any VM down does not mean all VMs down, the optimal number of VMs converges to 3.

We vary the ratio of failure rate and repair rate (ϱ) from 1/5000 to 1/50000. It is not a

surprise that the unavailability increases as ϱ increases. We find that the basic pattern of

unavailability remains the same, while the optimum is subject to ϱ.

98

,w-

B . ~

B

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 1 2 3 4 5

S
u
cc

es
s

P
ro

b
ab

il
it

y

The Buffer Size of a VM

M=5
M=4
M=3
M=2
M=1

Figure 30: Success probability (c=0.9999)

99

 0

 5

 10

 15

 20

 25

 30

 0 1 2 3 4 5

A
v
er

ag
e

T
im

e
to

 C
o
m

p
le

te

The Buffer Size of a VM

M=5
M=4
M=3
M=2
M=1

Figure 31: Average time (c=0.9999)

100

Table 6: Parameters of the hypothetical environment

sub-model1 sub-model2 sub-model3 sub-model4 sub-model5
γ τ λ µ H ν N tc r Tth

2e-4 1 10 2 10 5 4 0.1 + 0.1∆ 0.2 3

4.3.2 Data Center Configurations

Next, we study how data center hosting cloud computing configurations (the num-

ber of VMs, the buffer size, and the coverage probability) affect QoE. We use a hypothet-

ical environment to illustrate how to use our model. For the same reason, we do not give

units for the parameters. We assume that the latency of tc is evenly incremented from the

nearest data center (replicated service) to the furthest. Let ∆ represent this order. The

parameters we used are given in Table 6.

We find that the coverage probability within our considered range has no signif-

icant impact on the user perceived performance. So we only present the results given

c = 0.9999. Fig. 30 and Fig. 31 depicts the QoE for a different number of VMs (M) and

buffer size (b). It is clear that the larger number of VMs always improves both the success

probability and the average time to complete. Because we only consider very small values

of repair-to-failure rate ratio, the VMs are highly reliable. Note that we earlier observed

that the optimum number of VMs in this scenario is the optimal for the cloud comput-

ing availability, but not for QoE. If we enlarge the buffer size, the success probability is

improved at first but goes down after a turning point. The turning point increases as the

number of VMs increases. As the buffer size is enlarged, acceptance probability of user

requests become higher. But due to added congestion, the response time is more likely to

101

exceed the threshold.

4.3.3 Redirection Strategies

To study how redirection strategies affect the QoE, we consider the same setup

given in Section 4.3.2, except that the number of VMs and buffer size (M = 3, b = 2)

are given while retry probability and the maximum number of allowed tries are variables.

We consider normal and heavy traffic load cases. Fig. 32, Fig. 33, and Fig. 34 are for the

normal traffic load case where λ = 10. Fig. 35, Fig. 36, and Fig. 37 are for the heavy

traffic load case where λ = 20. Since OSPs need to guarantee more than 99% success

probability in most cases, our study focuses on the range above 99%. We observed that

increasing the maximum number of tries (N) always results in improving the success

probability and the average time to complete and it becomes marginal after either the

maximum number of tries or the retry probability reached a certain big number.

Note that for the average completion time, it is only true when the success prob-

ability is high. When the success probability is low, increasing N increases the average

time to complete. Because when the success probability is low, more user requests are

likely to be rejected. Increasing N does improve the success rate but prolongs the time

to complete on average. It is reversed until N reaches a certain number, which causes

the success probability to reach a certain level. Increasing retrial probability improves

success probability while prolonging the average time to complete, which is more signif-

icant at a high retry probability and a low maximum number of tries. Setting Tth higher

(i.e., at Tth = 3 and Tth = 5) yields a better performance than Tth = 1; the performance

102

difference is more significant at a low retry probability and low maximum number of tries

for the normal traffic load. In addition, we observed that the improvement of performance

from Tth = 3 to Tth = 5 is not significant in both scenarios. We noticed that the success

probability converges to 1 as the retry probability approaches 1 for the high traffic load

case and the price paid for that is the significant increase of the average time to complete.

On the other hand, for the normal traffic load case, the retry probability need not be high

to achieve a high level of success probability. By comparing these figures, we need to

choose from increasing the maximum number of trials (N), increasing retry probability

(r) or increasing Tth to guarantee the success probability when the traffic load increases.

We use the following example to show the importance of being aware of the loca-

tion of users. We still focus on the range that the success probabilities are above 99%. We

follow the set up in Section 4.3.2 and we set the number of VMs and buffer size (M = 4,

b = 3). We compare the redirection strategy that has guided hunting with that which

has not. Fig. 38 shows that the success probabilities with guided hunting and without

guided hunting are the same while the guided hunting mode shows its advantage in the

average completion time. Increasing ∆ increases the average completion time and does

not affect the success probability. Increasing the arrival rate degrades both aspects of the

user perceived performance. While these observations are not surprising, we show how

our model can quantify the benefits using a better strategy which of course costs some-

thing else, such as, collecting and updating the priori information in the guided hunting

strategy.

103

4.4 Conclusion and Future Work

We introduced a hierarchical model to analytically evaluate QoE for ISePs which

use data centers to host their services by cloud computing model. The nature of hierarchy

is suitable for rich interactions in this environment. Another advantage of this model is

any component or identified component is easy to change or added. The results of model-

ing can help data center operator efficiently quantify the resources (i.e., higher reliability,

more outbound bandwidth) need to acquire higher performance and implementing more

complicated redirection strategies (i.e., maximum number of tries, direction hunting,)

while maintaining QoE.

There are several directions for future research efforts. The outbound bandwidth

PS model can be used instead of the loss model. Secondly, we use the redirection strat-

egy graph to quantify QoE. Analytically, optimizing the redirection strategies is another

direction to pursue. Evaluation of the hierarchical model with non-Poisson arrival and

non-exponential service time distribution would allow further understanding of the im-

pact of distribution on the accurate determination of QoE. The availability model of data

center is very rough. In the future, we want to develop more detailed availability model.

Finally, in the long run, we wish to collect traces such as user arrivals, user locations,

service time, and work load from ISePs and running environment set up from CSPs to

identify the realistic distributions parameters in order to apply our approach on the same

trace and compare with the logged QoE.

104

 0.98

 0.985

 0.99

 0.995

 1

 0 0.04 0.08 0.12 0.16 0.2

S
u

cc
es

s
P

ro
b

ab
il

it
y

Retry Probability

(a)The success probability(Tth=1)

N=5
N=4
N=3
N=2

 0.36

 0.38

 0.4

 0.42

 0.44

 0 0.04 0.08 0.12 0.16 0.2

A
v

er
ag

e
T

im
e

to
 C

o
m

p
le

te

Retry Probability

(b)The average time to complete(Tth=1)

Figure 32: QoE (Tth = 1, λ = 10)

105

 0.99

 0.992

 0.994

 0.996

 0.998

 1

 0 0.04 0.08 0.12 0.16 0.2

S
u

cc
es

s
P

ro
b

ab
il

it
y

Retry Probability

(a)The success probability(Tth=3)

N=5
N=4
N=3
N=2

 0.36

 0.38

 0.4

 0.42

 0.44

 0 0.04 0.08 0.12 0.16 0.2

A
v

er
ag

e
T

im
e

to
 C

o
m

p
le

te

Retry Probability

(b)The average time to complete(Tth=3)

Figure 33: QoE (Tth = 3, λ = 10)

106

 0.99

 0.992

 0.994

 0.996

 0.998

 1

 0 0.04 0.08 0.12 0.16 0.2

S
u

cc
es

s
P

ro
b

ab
il

it
y

Retry Probability

(a)The success probability(Tth=5)

N=5
N=4
N=3
N=2

 0.36

 0.38

 0.4

 0.42

 0.44

 0 0.04 0.08 0.12 0.16 0.2

A
v

er
ag

e
T

im
e

to
 C

o
m

p
le

te

Retry Probability

(b)The average time to complete(Tth=5)

Figure 34: QoE (Tth = 5, λ = 10)

107

 0.96

 0.97

 0.98

 0.99

 1

 0.8 0.84 0.88 0.92 0.96 1

S
u

cc
es

s
P

ro
b

ab
il

it
y

Retry Probability

(a)The success probability(Tth=1)

N=5
N=4
N=3
N=2

 0.72

 0.76

 0.8

 0.84

 0.88

 0.92

 0.8 0.84 0.88 0.92 0.96 1

A
v

er
ag

e
T

im
e

to
 C

o
m

p
le

te

Retry Probability

(b)The average time to complete(Tth=1)

Figure 35: QoE (Tth = 1, λ = 20)

108

 0.96

 0.97

 0.98

 0.99

 1

 0.8 0.84 0.88 0.92 0.96 1

S
u

cc
es

s
P

ro
b

ab
il

it
y

Retry Probability

(a)The success probability (Tth=3)

N=5
N=4
N=3
N=2

 0.68

 0.72

 0.76

 0.8

 0.84

 0.88

 0.92

 0.8 0.84 0.88 0.92 0.96 1

A
v

er
ag

e
T

im
e

to
 C

o
m

p
le

te

Retry Probability

(b)The average time to complete(Tth=3)

Figure 36: QoE (Tth = 3, λ = 20)

109

 0.96

 0.97

 0.98

 0.99

 1

 0.8 0.84 0.88 0.92 0.96 1

S
u

cc
es

s
P

ro
b

ab
il

it
y

Retry Probability

(a)The success probability(Tth=5)

N=5
N=4
N=3
N=2

 0.68

 0.72

 0.76

 0.8

 0.84

 0.88

 0.92

 0.8 0.84 0.88 0.92 0.96 1

A
v

er
ag

e
T

im
e

to
 C

o
m

p
le

te

Retry Probability

(b)The average time to complete (Tth=5)

Figure 37: QoE (Tth = 5, λ = 20)

110

 0.9955

 0.996

 0.9965

 0.997

 0.9975

 0.998

 0.9985

 0.999

 0.9995

 1

 10 12 14 16 18 20

S
u
c
c
e
s
s
 P

ro
b
a
b
il
it
y

The User Request Arrial Rate

(a)The success probability of user Request

∆=0.1 w GH

∆=0.4 w GH

∆=0.1 w/o GH

∆=0.4 w/o GH

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 10 12 14 16 18 20

A
v
e
ra

g
e
 T

im
e
 t
o
 C

o
m

p
le

te

The User Request Arrival Rate

(b)The average time to complete perceived by users

Figure 38: QoE w and w/o guided hunting against user request arrival rate

111

CHAPTER 5

BALANCING REQUEST DENIAL PROBABILITY AND LATENCY IN AN

AGENT-BASED VPN ARCHITECTURE

Virtual Private Network (VPN) services have seen significant growth over the

years. There are many forms of VPN services. A common one is the remote-access

VPN in which an employee of an organization can use the VPN service to access the

intranet of the organization from an off-site location through the public Internet by estab-

lishing a VPN tunnel. While such VPN services are often deployed with each organization

installing a VPN server (“gateway”) on its premise, this model does not serve well for or-

ganizations that do not often have the IT expertise to install and maintain VPN servers

on a day-to-day basis. Many small organizations would want to have a hassle-free VPN

service for their users if it can be provided and maintained by a third party and the service

is cost-effective. Such a service is also appealing if it is flexible and adaptable to chang-

ing organizational and technological requirements. An Agent-Based VPN Architecture

(ABVA) is a third-party approach that fits into a need. In this approach, one or more VPN

agents (or brokers) are located outside the organizations that serve as Rendezvous Points

(RP), where users and their associated organizations meet; the Rendezvous Point (RP)

service is provided by a third party (ABVA provider) for multiple organizations while

maintaining separate virtual tunnels for each organization. The agent-based remote ac-

cess VPN service has been available from third-party providers for several years [67]; this

service is sometimes also known as the hosted VPN service.

112

From the perspective of an ABVA provider, there are challenging design and man-

agement problems since customers want a certain quality-of-service as part of service-

level agreements (SLAs), for example, a user’s connectivity latency, bandwidth guaran-

tee, and acceptable rate of successful connectivity. In order to address this, a question

arisesas to how many different RPs are attempted if the user cannot connect to the first

RP attempted? When the arrival of users seeking this service is stochastic, and the band-

width guarantee during the session and the tolerable acceptance rate of service are the

primary factors, then this problem looks similar to a loss system. On the other hand, the

geographic diversity of RP locations as well as the latency perception of users make this

problem fundamentally different than a pure loss system. It is further complicated by the

fact that a user might travel from one city to another around the globe and logon; thus, the

proximity of an RP for any user is not easily known. For instance, if a user is connected

to a far-off RP, then it might be able to provide the bandwidth guarantee while the latency

perceived is beyond the SLA-specified value. On the other hand, a user might locate a

nearby RP, but this RP might be already heavily loaded and unable to accommodate this

user, thus denying this user. Therefore, a service management problem for an ABVA

provider is a trade-off between request denial probability and latency, in order to connect

to an optimal RP location. A software client can be loaded to a user’s device (such as a

laptop computer) that is configurable to contain a proximity of RPs from the user’s loca-

tion; distributed protocols can be used to push additional information that can be cached

to the devices based on previous logon location.

Our work focuses on balancing user request denial probability and latency in a

113

capacitated ABVA environment (the server location is already given while the user has

flexibility to choose which one to connect to). To the best of our knowledge, how to

effectively provide user connectivity and minimize the latency in ABVA over IP-based

networks has not received attention in the literature (see Section 1.7 for related work). In

an earlier work, the overall latency minimization problem was formulated as an assign-

ment problem assuming user arrivals and service time are static while providing band-

width guarantees when the location and the number of the users are known and fixed [57].

Using this formulation, the lower bound on the overall system latency was obtained and

it was observed that bandwidth guarantee was the dominant factor in a highly loaded en-

vironment, while connection to the closest RP was important in a lightly to moderately

loaded environment. [68] relaxed the static user arrival process to Poisson assuming a fi-

nite population model while a limited study was conducted. This work extends [68] by

presenting a comprehensive study that considers a number of different arrival processes

under both finite and infinite population models for a number of different topologies.

The remainder of this chapter is organized as follows: in Section 5.1, the system

model and a number of schemes are presented. In Section 5.2, numerical results are

presented and studied. Concluding remarks along with future work and limitations are

presented in Section 5.3.

114

5.1 System Models and Schemes

5.1.1 System Models

Consider an ABVA provider with N RPs and an overall capacity of c. Assume

that each RP has the capacity cn, n = 1, 2, · · · , N , for providing bandwidth to users; for

simplicity, we assume that all servers have the same capacity, i.e., cn = c/N . We also

assume that all users belong to a single organization. Note that in the multiple organiza-

tion case, the capacity at RPs can be partitioned for each organization according to their

SLAs; thus, each organization can be managed independently, which is preferable, since

each can have separate SLAs with the ABVA provider. In other words, without loss of

generality, we consider a single organization for the study of ABVA. A user connection

request is accepted if the VPN server at an RP attempted has the capacity to accommo-

date this connection at the instant of the request arrival; otherwise, it is a candidate for

rejection. We do not rule out the possibility that a user may try one or more VPN servers

at other RPs if she cannot get through the first one. This will be further discussed later on.

Without loss of generality, we assume that the duration of a session is exponen-

tially distributed with unit mean, i.e., µ = 1. We consider two user population models:

1. The population of users is large enough to be treated as infinite. For brevity, this

will be referred to as the infinite model.

2. The population of users is not large enough to be considered as infinite. For brevity,

this will be referred to as the finite model where the RPs support u users.

Note that in the infinite model, we define the user inter-arrival time as the time

115

interval between two continuous arrivals of arbitrary users, while for the finite model, we

define this as the time interval between two continuous arrivals of the same user. Let λ

be the arrival rate in the infinite population model and γ be the arrival rate of each user

(which is referred to as arrival rate for brevity) when the user is idle in the finite model.

The arrival rate in the infinite model is the limit case of the finite model:

lim
u→∞ γ→0

u · γ = λ. (5.1)

In general, each user’s arrival request may have different data rate requirements. For

simplicity, we assume all users have a unit data rate requirement, i.e., we consider the

homogeneous case here.

5.1.2 User Connection Schemes

We assume that the user arrival process is Poisson. The Poisson arrival assump-

tion is reasonable because the connection request is initiated by human beings, which is

similar to call arrivals in the telephone network. However, we cannot rule out the possi-

bility of traffic showing non-Poisson behavior. Thus, we also wish to see how the results

are impacted when arrival processes are non-Poissonian through simulation; this will be

elaborated further in Section 5.2.

5.1.2.1 The Centralized-All Scheme–The Baseline

An agent-based VPN provider can deploy all agent servers at a monolithically

single RP. This case will be referred to as the centralized-all scheme (CAS). The latency

is static and there is no possibility to optimize latency for any user. The request denial

116

probability in CAS can be analytically calculated. In the infinite model with Poisson

arrival, the request denial probability for the CAS, BM, is given by the Erlang-B loss

formula:

BM(λ, c) =
λc

c!∑c
ℓ=0

λℓ

ℓ!

. (5.2)

In the finite model, the request denial probability, denoted by BM, is given by Engset’s

formula: [43, 47]

BM(γ, u, c) =

(
u−1
c

)
· γc∑c

ℓ=0

(
u−1
ℓ

)
· γℓ

. (5.3)

5.1.2.2 The Clustering Scheme

An agent-based VPN provider can deploy VPN servers over multiple RPs that are

geographically distributed. Since the client software associated with a user’s computer

is programmable, a distributed caching concept can be used. For instance, if a subset of

users is likely to stay within a region (referred to as a cluster), they can then be assigned

to the RP in that region. For a user, the RP assigned to her is referred as her home RP

and all others are referred as guest RPs. Thus, we can consider a cluster-based approach

in which each user is associated with a home RP and users are only allowed to access

their home RPs. By this way, the latency is minimized because providers are aware of

the proximity information of users and locate VPN servers on the premise of clusters. Of

course, the cluster assignment is subject to the change of user locations. Planning VPN

server locations deliberately can achieve uniform distribution of all users over the clusters.

In the finite model, each cluster has u/N users. That is, for the cluster based

approach, the population and VPN server capacity is reduced by factor N and becomes

117

u/N and c/N , respectively. We use superscript “(1)” to denote this cluster-based scheme.

Therefore, the request denial probability for the Poisson case in the finite model becomes

B
(1)

M(γ, u, c,N) = BM(γ,
u

N
,
c

N
) =

(u
N
−1
c
N

)
· γc∑ c

N
ℓ=0

(u
N
−1

ℓ

)
· γℓ

. (5.4)

In the infinite model, the population of each cluster is still infinite because the number of

clusters is finite. If we create a cluster for each RP, the user arrival rate for each cluster

becomes λ/N . The request denial probability of the Poisson case in the infinite model is

given by

B
(1)
M (λ, c,N) = BM(

λ

N
,
c

N
) =

λ
N

c
N

c
N
!∑ c

N
ℓ=0

λ
N

ℓ

ℓ!

. (5.5)

Due to multiplexing gain, the CAS has a lower request denial probability than the cluster-

based scheme does, i.e.,

BM(λ, c) < B
(1)
M (λ, c,N); (5.6)

note that (5.6) also applies to the infinite model. For CAS and the aforementioned cluster-

based scheme, all requests only visit one RP, thus, the mean step for these schemes is

always one. As we have mentioned before, the average latency of CAS is clearly larger

than that of the cluster-based scheme.

5.1.2.3 The Hunting Scheme

Expanding on the clustering notion, and in order to reduce request denial proba-

bility, a hunting feature can be added. This means that if a user’s request is denied by

the home RP, then it is automatically forwarded to a guest RP; if denied again, the user’s

request is forwarded to another guest RP until a maximum allowed number k, 1 ≤ k ≤ N

118

of RPs are attempted. In order to do that, the user’s client software would need to store the

location information of possible guest RPs; out of these possibilities, one RP is randomly

chosen and attempted. Note that this hunting feature introduces additional delay during

set up. However, this delay can be neglected and is usually very small. For brevity, this

clustering with random hunting scheme for attempting up to k RPs will be denoted as

CRH-k. A variation of CRH-k is hunting for the next RPs based on the distance informa-

tion. Once a request is denied by its home RP, the selection of the second RP can be the

next nearest server. This distance (locality) information can be provided to the user either

by the home RP at the time of request (as part of the denial response message), or a priori

information through a system configuration update message. Obtaining this information

certainly burdens the system. Ideally, the cost of obtaining this information should be

counted as another contributor besides request denial probability and latency to the total

cost. However, this cost is not included in our work. The clustering with directional hunt-

ing scheme is called CDH-k for short. We can see that the original cluster-based scheme

is actually CD(R)H-1. Increasing the maximum number of steps can always decrease the

request blocking probability and increase the mean step and latency for both CDH and

CRH. Thus, k, the maximum number of allowed RPs serves as the functions to balance

the request denial probability and the latency. Since the CDH-k for k > 1 scheme takes

the location information into account when choosing the second server, CDH-k results

in less average latency than CRH-k does while CDH-k requires a locality knowledge of

servers.

119

5.1.3 Comments on the Analytical Formulae and Approximations

In the context of clustering, we assume that the arrival process of each cluster is

independent and identically distributed. Only the first k elements (RPs) in the hunting

sequence are active in the CRH-k or CDH-k schemes. A special case is that the users and

all active RPs can form an autonomous system (no traffic from or to the outside of this

system). It means that all the users only attempt the RPs within the autonomous system,

and all the RPs are attempted at least once by one user and are attempted only by the users

within the autonomous system. Thus, the users take the superposition of the capacity of

all the RPs as the capacity of this autonomous system. On the other hand, the RPs take

the superposition of all the user arrivals within the autonomous system as the arrivals of

the system. We can see that if the CDH or CRH scheme can form an autonomous system

when it comes to request denial probability, this system is equivalent to an aggregated

system with the sum of all RPs in the autonomous system as its capacity and the sum

of all user arrivals as its arrivals. For example, when a CDH/CRH-k scheme forms an

autonomous system, the arrival rate becomes kλ/N and the capacity becomes kc/N in

the infinite model, while the arrival rate for each user is still γ and the capacity becomes

kc/N in the finite model.

Theorem 5.1.1. If a CDH-k or CRH-k scheme forms an autonomous system and the

arrival process is Poisson, the request denial probability in the infinite population model

is given by

B
(k)
M (λ, c,N) = B

(k)
M (λ, c,N) = BM(

kλ

N
,
kc

N
), (5.7)

120

and in the finite population model, it is given by

B
(k)

M (γ, u, c,N) = B
(k)

M (γ, u, c,N) = BM(γ,
ku

N
,
kc

N
). (5.8)

Note that CRH/CDH-1, CRH-N , and CDH-N naturally form autonomous sys-

tems. Therefore, the analytical request denial probabilities in these cases can be given

by (5.7) or (5.8). However, for CRH-k, CDH-k for k ̸= 1, N , whether an autonomous

system can be formed or not, depends on the topology of the network. Most often, an

autonomous system cannot be formed in CRH-k and CDH-k. In this chapter, we use

(5.7) and (5.8) as approximations of analytical request denial probabilities for the infinite

and finite models, respectively. The accuracy of the approximations will be assessed in

Section 5.2.

We next comment on the Erlang load equivalency. Given µ = 1, the Erlang load

in the infinite population model is

A =
λ

µ
= λ (5.9)

while in the finite population model, it is

A =
uγ

µ+ γ
=

uγ

1 + γ
. (5.10)

We deliberately align the Erlang load in the infinite and finite models to make the per-

formance of these models comparable. In addition, if we vary the number of users in the

finite model and still keep the Erlang load the same, we need to vary the arrival rate γ

accordingly. If we change the number of users from u to nu, the arrival rate γ′ is given by

γ′ =
γ

γ(n− 1) + n
. (5.11)

121

We also explore both the smooth and the bursty traffic beside Poisson traffic due

to the dynamic nature of the traffic in the agent-based VPN; specifically, we consider

the inter-arrival time distribution being Erlang-k and hyper-exponential. For simplicity,

they are referred to as the Erlang-k arrival and the hyper-exponential arrival. Here we

choose Erlang-4 distribution (C2 = 1/4) as the smooth traffic, and hyper-exponential

distribution with C2 = 25 as the bursty traffic. In the infinite model with a general arrival

process under CAS, the system is actually a G/M/m/m loss system. The general arrival

process can be represented by the matrix-exponential distribution [53]; then, the request

denial probability can be analytically calculated using an algorithmic approach described

in [56]. Calculating accurate analytical result sfor non-Poisson arrivals is outside the

scope of this study. The following relation is known for the infinite model with Poisson

arrival under the CAS scheme:

BE < BM < BH (5.12)

where BE and BH represent the request denial probability under Erlang-k distribution

and the hyper-exponential distribution, respectively. We seek to understand how arrival

processes impact performance when schemes such as CDH and CRH are used, and how

much they differ; this result will be reported in Section 5.2.

We have understood that the clustering approach causes the arrival traffic to be

partitioned over VPN servers. We now comment on how the arrival process to each cluster

changes by dividing the traffic in the infinite model. According to Raikov’s decomposition

theorem [76], if we split a Poisson arrival process over N clusters, the subprocess of each

cluster is still Poisson. More generally, if we generate a sub-process by randomly splitting

122

an arbitrary point process by choosing an event with probability p, then the sub-process

has the squared coefficient of variation C2
p [43]:

C2
p = 1 + p · (C2 − 1), (5.13)

where C2 is the squared coefficient of variation of the original process. Based on (5.13),

it is easy to show that
1 < C2

p < C2 if C2 > 1

C2
p = 1 if C2 = 1

C2 < C2
p < 1 if C2 < 1

. (5.14)

(5.14) indicates that by randomly and uniformly splitting the traffic, the irregularity of the

traffic does not change, but the degree of irregularity of the traffic changes toward the op-

posite direction of its original irregularity except for Poisson traffic (it remains as Poisson

traffic where C2 ≡ 1). In other words, the smooth traffic (C2 < 1) becomes more bursty;

the bursty traffic (C2 > 1) becomes more smooth. Because we split the traffic uniformly

over N cluster in the infinite population model, p ≡ 1/N . By plugging p and C2 of each

distribution model in (5.13), we obtain that C2
p = 1 for Poisson arrival; C2

p = 1− 3
4N

for

Erlang-4 distribution with C2 = 0.25, and C2
p = 1 + 24

N
for the hyper-exponential distri-

bution with C2 = 25. Therefore, after splitting non-Poisson traffic in the infinite model,

the traffic characteristics of each cluster are different from the original traffic. The traffic

characteristics have influence on the performance, which will be presented in Section 5.2.

5.1.4 Composite Metric–Penalty

So far, we have discussed request denial probability. The second measure of in-

terest in the agent-based VPN architecture is the latency perceived by users. We next

123

elaborate how we measure the latency between users and RPs in this work. First, we in-

troduce the mean number of RPs users needed to inquire in ABVA, which is referred to

as the mean step. However, this metric cannot precisely reflect the latency because it only

tells the number of steps and ignores the diversity of the distance from users to different

RPs. Since these are logical connections over the complex underlying overlay networks,

the actual latency is comprehensively decided by the status of the underlying networks

and the chosen path. It is hard to model exact latency. Therefore, we introduce a more

straightforward measure for latency. For simplicity, we define latency by the physical

distance between the user and the RP, which is sufficient for understanding our proposed

schemes and identifying the trade-off between the request denial probability and latency

in ABVA. The latency can be simply adjusted based on the needs within our framework.

In order to understand the trade-off between the request denial probability and the

average latency together, we introduce a composite metric called penalty as follows:

P = η × request denial probability + latency, (5.15)

where η is the weight factor used to to balance the two factors. The low value of η implies

that the dominant factor is latency while the high value of η implies that the dominant

factor is the request denial probability.

5.2 Studies and Results

In the previous section, we presented the following different schemes: 1) centralized-

all scheme (CAS), 2) clustering with randomized hunting (CRH-k), and 3) clustering with

124

directional hunting (CDH-k). While we have presented analytical solutions or approxi-

mations for computing the request denial probability, there is no direct analytical method

to determine mean step and latency. Thus, in this section, we present simulation results

to verify the analytical solutions, to determine accuracy of the analytical approximation

with regard to request denial probability. Through simulation, we quantify the average

latency perceived as well as the average number of steps. We further seek to determine

the optimal scheme balance between request denial probability and latency.

Since one of our goals is to understand the clustering approach in different topolo-

gies, we consider two topologies, ring and grid, for our studies. The ring topology is

depicted in Fig. 39(a); it consists of 16 RPs (N = 16) that are evenly distributed on a

circle with a radius of 100 units. Each VPN server has 25 units of capacity where the

request data rate bandwidth requirement is assumed to be one unit; thus, the effective

capacity of a VPN server is 25. Each VPN server is at the center of a smaller circle with a

radius of one unit. In the infinite population model, user locations are randomly selected

from 360 possible locations that are evenly distributed on the semicircle of the smaller

circle on the left side of the directional line connecting the center of the big circle and

that of the smaller circle. In the finite population model, users reside on n locations that

are also evenly distributed on the smaller semicircle on the left side of the directional

line connecting the center of the big circle and that of the smaller one. This specialized

arrangement guarantees that users belong to the same cluster and have the same hunting

sequence in the CDH-k schemes.

Now consider CDH in this topology. Because of the user location being in the

125

19

5

13

2

3

46

7

8

16

15

1412

11

10

left semicircle right semicircle

5
Direct hunting order:

5, 6, 4, 7, 3, 8, 2, 9, 1,

10, 16, 11, 15, 12, 14, 13

Direct hunting order:

5, 4, 6, 3, 7, 2, 8, 1, 9

16, 10, 15, 11, 14, 12, 13

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

(a) The ring topology (b) The grid topology

7

top left

quarter circle

bottom left

quarter circle

top right

quarter circle

bottom left

quarter circle

Figure 39: The topologies

semicircle, in the case of multiple-step directional hunting, the attempts alternate be-

tween the nearest higher and lower numbered neighboring clusters. For example, if a user

belongs to cluster i, then in CDH-2, it will try the server in cluster i followed by cluster

(i+ 1)modN . Note that server “0” which is resulted by above algorithm refers to server

“N”. In the case of multi-step directional hunting, a user, after being denied by its cluster

server, will try servers in its neighboring clusters in the following order:{
(i+ 1, i− 1, · · · , i+N/2)modN if N = 2M

(i+ 1, i− 1, · · · , i− ⌊N/2⌋)modN if N = 2M + 1

where M ∈ Z+.

(5.16)

Finally, given this ring topology, we still want to consider centralized-all scheme

(CAS) to serve as the base case for our study; in this case, all servers are assumed to be

located centrally in the VPN server numbered 1.

126

At a first look, the ring topology and the centralized all case appear to be highly

specialized; this is close to a situation that is often faced in reality. Suppose that an ABVA

provider starts with a centralized RP location on the middle part of North America; now,

its customers with users located around the globe continue to grow. Thus, the ABVA

provider would want to expand by adding new server RP locations in the east and the

west coasts in North America, and then expand eastward to Europe and westward to Asia,

and eventually completing the circle around the globe. This then forms a “ring-like”

topology. The specific distribution of users within their cluster is also very close to the

reality. RPs are deployed in the center of the area with high density users and thus forms

clusters; sparse users are assigned to nearest clusters. It is possible to design the clusters

so that each cluster has about the same number of users. In addition, the distance of users

within a cluster is much less than the distance of clusters. Therefore, the distance cost

within a cluster can be neglected. Moreover, we can always manually set the hunting

orders for users to form this specific ring topology.

It is still possible that a ring topology is not well planned and the provider does not

want to manually set the hunting orders. This change results in the users within a cluster

having different directional hunting orders. Note that it has no impact on random hunting

orders. Therefore, the request denial probability and mean steps will not change for CRH

and CAS schemes. In addition, the impact on the latency of changing user locations within

their clusters is negligible as long as the directional/random hunting orders remain the

same. Thus, the impact upon latency under CRH and CAS schemes is negligible because

the hunting order for CRH is random and that there is only one server location for CAS.

127

Clearly, it is the directional hunting orders that may influence the performance of CDH

schemes. Distributing users in the full circle instead of semicircle forms such a variation.

This topology is referred to as full ring. The consequence of this variation is that the users

in the same cluster have two different hunting orders for CDH (1 < k ≤ N): (i, i+1, i−

1, · · · , i+N/2)modN for users at the left semicircle, (i, i− 1, i+1, · · · , i−N/2)modN

for users at the right semicircle when N is even; (i, i + 1, i − 1, · · · , i − ⌊N/2⌋)modN

for users at the left semicircle, (i, i− 1, i+ 1, · · · , i+ ⌊N/2⌋)modN for users at the right

semicircle when N is odd. As an example, the hunting orders for users in cluster 5 are

given in Fig. 39(a).

We next use the grid topology as an example to study the topology that is not well-

planned in reality. It also consists of 16 servers that are distributed on a 4× 4 grid where

the grid distance is 100 units. Each server has 25 units of capacity where the request

data rate bandwidth requirement is assumed to be 1 unit; thus, the effective capacity is

25. Each server is at the center of a smaller circle with a radius of 1 unit. The user

location on the smaller circle is the same as that in the full ring topology. The topology is

depicted in Fig. 39(b). We keep all other settings as same as those in the ring topology. In

this topology, users have different directional hunting orders and the number of different

directional hunting orders are different for different clusters. For example, users at cluster

7 have 4 different hunting orders as illustrated in Fig. 39(b).

Since we consider both the infinite and the finite models, we want their loads

given by (5.9) and (5.10), respectively, to be comparable. In particular, in order to un-

derstand system performance and trade-offs for different loads, we vary the λ from a low

128

10
-3

10
-2

10
-1

 360 365 370 375 380 385

R
e
q
u
e
s
t
d
e
n
ia

l
p
ro

b
a

b
ili

ty

Arrival rate

365.7143 370.9091 375.6522 384

CD(R)H-16(CAS)-A
CDH-16
CRH-16

CAS
CD(R)H-5-A

CDH-5
CRH-5

CD(R)H-2-A
CDH-2
CRH-2

CD(R)H-1-A
CD(R)H-1

Figure 40: Request denial probability of analytic approximation and simulation in the
infinite population model with Poisson arrival

129

~.

~~~~~. 

l ~ _B 
~ 

~~~~~~~~~~ 

~~~~~~~ 

-8 

,--
--,,----------------

'_-B~ 
i __ ~---------------~ ;:=: 

,------------------- r--~---------------
~ -----~ 

, .--------------------
,-~----

~------
~ 

--<>-
-+-
~ 

~ 
7 

---0---

---0---
__ ->0-__ 

----11---

----e---
--- .... ---

- -0-----

- -e-----



 0

 100

 200

 300

 400

 500

 600

 360  365  370  375  380  385

M
e
a

n
 l
a

te
n
c
y

Arrival rate

b)The mean latency vs. arrival rate

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 360  365  370  375  380  385

M
e
a
n
 s

te
p
s

Arrival rate

a)The mean steps vs. arrival rate

CDH-16
CRH-16

CAS
CDH-5
CRH-5
CDH-2
CRH-2

CD(R)H-1

Figure 41: The mean step and latency in the simulated infinite population model with
Poisson arrival

130



arrival rate, 360, to a high arrival rate, 384, in the infinite model. According to (5.9)

and (5.10), arrival rate per user, γ, is set from 3 to 4 in the finite population model. For

ease of following, we clarify the scenarios we have simulated. All performance metrics

are plotted against the arrival rate, λ in the infinite population model and the arrival rate,

γ in the finite population model. We consider the following strategies: centralized-all

scheme(CAS), CD(R)H- 1, CRH- k,CDH- k. We study Poisson arrival as well as non-

Poisson arrival under three different topologies for both infinite and finite models. We

will consider the topologies in the following order: the ring topology, followed by the full

ring topology, and finally the grid topology. For each topology, we study three different

arrival processes as mentioned in Section 5.1; among these, we use Poisson arrival as a

baseline study.

5.2.1 Infinite Model

Fig. 40 shows the request denial probability of simulation and the analytical results

under different schemes for Poisson arrival; this is shown in log scale to avoid losing

details at small values. We can see that the analytical results of request denial probability

are accurate for CD(R)H-1, CRH-16 and CDH-16. These observations are consistent with

Theorem 1 and form autonomous systems. With regard to CRH-k and CDH-k for 1 <

k < 16, we tested several different values. Here, we report results for k = 2, 5 to show the

main differences. First, we note that the analytical approximation BM(kλ
N
, kc
N
) (for 1 <

k < 16), overestimates the request denial probability compared to simulation, although

the gap is marginal at lower arrival rates; that is, the analytical approximation serves as an

131



upper bound for the systems that cannot form autonomous systems. Furthermore, from

simulation, we can see that the request denial probability of CRH-k is consistently smaller

than that of CDH-k for k = 2, 5. It is not surprising that increasing the maximum allowed

steps (k) reduces the request denial probability.

In Fig. 41, we present results on mean step and latency in the infinite model

with Poisson arrival. Although, the mean step for both CD(R)H-1 and CAS is always

1, CD(R)H-1 is much better than CAS in terms of latency, because the clustering based

scheme divides the server capacity into multiple RPs and the users only try the home

RPs that are closest to them in CRH-1/CDH-1. In multiple step clustering based scheme

cases, as the traffic load becomes heavier, the average number of steps increases because

users (on average) need to go through more steps to find an available VPN server. As the

maximum number of allowed steps k is increased, this trend becomes more pronounced

because users are allowed to try more VPN servers. Likewise, the latency increases as

traffic load becomes heavier and increasing k causes higher latency for the same cluster-

ing scheme. The advantage of CDH over CRH is significant in terms of latency. CDH-k

always has less latency than CRH-k does when k > 1. CDH-k and CRH-k have very

close mean step except for k = 16. The reason is that users randomly choose RPs instead

following a static order in CDH to connect which gives the whole system more freedom

and it is pronounced at large k.

It is noted that CD(R)H-1 has the least latency, but it sacrifices request denial

probability, especially at high arrival rates. On the other hand, CDH, CRH, and CAS have

the smallest request denial probability, but their latency is sacrificed. In Fig. 42, we plot

132



 0

 50

 100

 150

 200

 250

 360  365  370  375  380  385

P
e

n
a
lt
y

Arrival rate

(a) η=100

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 360  365  370  375  380  385

P
e

n
a
lt
y

Arrival rate

(b) η=500

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 360  365  370  375  380  385

P
e
n
a
lt
y

Arrival rate

(c) η=1000

 0

 100

 200

 300

 400

 500

 600

 700

 360  365  370  375  380  385

P
e
n
a
lt
y

Arrival rate

(d) η=5000

Figure 42: Penalty of different schemes in the infinite model with Poisson arrival (legends
are the same as that in Fig. 41)

133

-,,"""---- ----'>------ - -
~~~ 

________ ~-------k------~-----~------·
__ -'> _____ ' ___ "'" _______ • _____ " ,A;------

j - : ; - : -- ; ~::~ :
- - - - - - -i} - - - - --€J

_______ -0 ________ 8------ -& ______ 0------
8

the penalty for four different values of η in (5.15). From the viewpoint of the penalty,

CDH is always better than CRH because the advantage of latency of CDH outweighs the

advantage of the request denial probability of CRH. We notice that four different schemes

with the lowest penalty are shown for four different values of η: they are CD(R)H-1,

CDH-2, CDH-5, CDH-16 for η = 100, 500, 1000, 5000, respectively. As we expect, the

optimal scheme shifts towards the larger number of k as η is increased. Due to the non-

linearity of request denial probability as well as latency with regard to the traffic load,

the penalty is also subject to traffic load. For example, in the case of η = 500, the

difference between the optimal scheme, CDH-2 , and the suboptimal scheme, CD(R)H-1

becomes marginal as the traffic load increases. The same convergence happens between

the optimal scheme, CDH -5 and the suboptimal scheme, CDH-2 for η = 1000. The

suboptimal solution becomes optimal at even higher traffic loads in these two cases.

We consider the performance of these schemes with non-Poisson arrivals. Fig. 43

gives the performance of Erlang-4 (C2 = 1/4) and hyper-exponential (C2 = 25) inter-

arrival time distribution. By comparing the analytical approximation and simulation re-

sults of the request denial probability on the two non-Poisson arrival cases, we find that

the analytical model overestimates the request denial probability for the Erlang-4 case

and this overestimation is more significant than that in the Poisson case. However, the

analytical model for the Poisson case underestimates the request denial probability for

the hyper-exponential cases. This phenomenon is explained by 1) the analytical approxi-

mations are made for the Poisson case, 2) (5.12) also holds for non-autonomous system,

CDH/CRH- k for k = 2, 5 besides the autonomous system, CDH/CRH -k for k = 2, 5.

134

CDH-k results in higher request denial probability than CRH-k for k = 2, 5 in these

non-Poisson cases. The mean steps for CDH and CRH scheme are very close, especially

when the maximum allowed number of steps are small. We can see that CDH-16 has

higher mean steps than CRH-16 has. The reason is the same as we have stated in the

Poisson case. However, directional hunting schemes show significant advantages over

random hunting schemes in terms of latency. In addition, we find that the simulation re-

sults for the non-Poisson case of CD(R)H-1 is closer to the analytical models made for

the Poisson case than that of CDH-16/CRH-16; this is more clear in non-log plots, which

are not shown here. This phenomena can be explained by (5.14). (The C2 of CD(R)H-1

is closer to one (Poisson case) compared with that of CDH-16/CRH-16 in non-Poisson

cases). Other observations that are consistent with those in the Poisson case are omitted.

We use the same method to combine two performance metrics into one as we do for the

Poisson arrival case.

Since the penalty of CDH schemes is always less than CRH schemes, we focus on

CDH schemes, specifically CDH-2 and CDH-5, to compare the performance of different

arrival processes. Fig. 44 and Fig. 45 re-plot the request denial probability, mean steps

and latency under CDH-2 and CDH-5 with three different arrival processes. It is clear

that the arrival processes have significant impact on the request denial probability. For

CDH-5, the request denial probability of the hyper-exponential case is more than one

time higher than that of the Poisson case, and for CDH-2, this diverge becomes more

than seven times higher. Since mean step and latency discussed here does not include

the requests being denied, higher request denial probability does not necessarily cause

135

10
-4

10
-3

10
-2

10
-1

 360 365 370 375 380 385

R
e

q
u

e
s
t

d
e

n
ia

l
p

ro
b

a
b

ili
ty

Arrival rate

365.7143 370.9091 375.6522 384

CD(R)H-16(CAS)-A
CDH-16
CRH-16

CAS
CD(R)H-5-A

CDH-5
CRH-5

CD(R)H-2-A
CDH-2
CRH-2

CD(R)H-1-A
CD(R)H-1

 0

 100

 200

 300

 400

 500

 600

 360 365 370 375 380 385

M
e

a
n

 l
a

te
n

c
y

Arrival rate

b)The mean latency vs. arrival rate

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 360 365 370 375 380 385

M
e

a
n

 s
te

p
s

Arrival rate

a)The mean steps vs. arrival rate

CDH-16
CRH-16

CAS
CDH-5
CRH-5
CDH-2
CRH-2

CD(R)H-1

The Erlang-4 case

10
-1

 360 365 370 375 380 385

R
e

q
u

e
s
t

d
e

n
ia

l
p

ro
b

a
b

ili
ty

Arrival rate

365.7143 370.9091 375.6522 384

CDH-16
CRH-16

CAS
CD(R)H-5-A

CDH-5
CRH-5

CD(R)H-2-A
CDH-2
CRH-2

CD(R)H-1-A
CD(R)H-1

 0

 100

 200

 300

 400

 500

 600

 360 365 370 375 380 385

M
e

a
n

 l
a

te
n

c
y

Arrival rate

b)The mean latency vs. arrival rate

CDH-16
CRH-16

CAS
CDH-5
CRH-5
CDH-2
CRH-2

CD(R)H-1

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 360 365 370 375 380 385

M
e

a
n

 s
te

p
s

Arrival rate

a)The mean steps vs. arrival rate

The hyper-exponential (C2 = 25) case

Figure 43: Performance in the infinite model with non-Poisson arrivals

136

__ ..10---

L:--~__::.g----e--- _a-___ -'0

-a----'0

η 100 500 1000 5000

C2 Ring FullRing Grid Ring FullRing Grid Ring FullRing Grid Ring FullRing Grid
CDH-1 CDH-1 CDH-1 CDH-2 CDH-2 CDH-1 CDH-5 CDH-5 CDH-2 CDH-16 CDH-16 CDH-16

1/4 ↓
CDH-1

CDH-1 CDH-1 CDH-1 CDH-2 CDH-2 CDH-1 CDH-5 CDH-5 CDH-2 CDH-16 CDH-16 CDH-16
1 ↓ ↓

CDH-1 CDH-5
25 CDH-1 CDH-1 CDH-1 CDH-1 CDH-1 CDH-1 CDH-2 CDH-2 CDH-1 CDH-5 CDH-5 CDH-5

Table 7: Optimal schemes in the infinite model (“a→ b” vertically means that the optimal
scheme changes from a to b as the arrival rate increases)

higher mean step and latency. Therefore, the order from highest to lowest of mean step

and latency is ranked as hyper-exponential, Poisson, Erlang-4 at light traffic load, and

the order changes to Erlang-4, Poisson, hyper-exponential at heavy traffic load. Namely,

accepted Erlang-4 requests need the least mean step/latency to find an available server at

low load while accepted hyper-exponential requests need the least mean step/latency at

high load. However, the switch points for mean steps and latency are different because

mean step ignores the distance information. As we can see from the summary of optimal

solutions in Table 7, changing C2 of arrival processes from high to low may change

optimal solutions, because the variation of the optimal solution is dependent on whose

change can dominate the change of the penalty—request denial probability or latency.

The request denial probability consistently increases while the latency increases at low

traffic load then decreases at high traffic load as C2 reduces. Note that CD(R)H-1 is

written as CDH-1 for short in Table 7. It is not surprising that CDH always outperforms

than CRH in the absence of the cost of obtaining server location information in CDH.

Fig. 46 and Fig. 47 compare the performance of three topologies in the infinite

model with Poisson arrival. Since the number of steps of CD(R)H-1 and CAS for any

topology are always one, these known results are not shown in Fig. 47. We can see that

137

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 360 365 370 375 380 385

R
e

q
u

e
s
t

d
e

n
ia

l
p

ro
b

a
b

ili
ty

Arrival rate

365.7143 370.9091 375.6522 384

H-CDH-2
H-CDH-5

CD(R)H-2-A
CDH-2

CD(R)H-5-A
CDH-5

E-CDH-2
E-CDH-5

Figure 44: Request denial probability of CDH in the infinite model with different arrivals

138

-~===~=~ •. -------------- ,

-------Q,---
_fr ______ - - - - - - 1;::.

---ft--
-8-----

-------0--- -.8--------

_ .-.L:r ~~"---.:. --

~ I

- - - -- -- -- -- -- -- -- --
0---------------- -0--

,

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 360 365 370 375 380 385

M
e

a
n

 l
a

te
n

c
y

Arrival rate

b)The mean latency vs. arrival rate

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 1.55

 1.6

 360 365 370 375 380 385

M
e

a
n

 s
te

p
s

Arrival rate

a)The mean steps vs. arrival rate

H-CDH-2
H-CDH-5

CDH-2
CDH-5

E-CDH-2
E-CDH-5

Figure 45: The mean step and latency of CDH in the infinite model with different arrivals

139

-------8---

---&.---- ----8

- -

- -
_ '"'"~-...b--.~~-k-C~:-t"--:--~--:-:-·!

. , . , . , , ,

topology going from ring to full ring has no impact on any metrics. The topology going

from ring to grid only significantly augment the latency, which is caused by the the dis-

tance difference of users to RPs between these two topologies. With regard to the mean

step, going from the ring to the grid has some influence on CDH schemes while no in-

fluence on CRH scheme. It can be again explained by the more freedom that CRH has

than CDH does. Changing topology from the ring to the grid does not change the random

hunting orders but changes the directional hunting order. The reason why the mean step

of CDH does not change when going from the ring to the full ring is that the hunting

orders are evenly distributed among users in full ring topology which is not the case in the

grid topology. Nevertheless, the difference for CDH schemes is so small that it can be ig-

nored. Just like the ring topology, CRH schemes in other two topologies result in slightly

higher request denial probability due to the freedom of random hunting. The advantage

of CDH over CRH in terms of latency is significant for all three topologies. The clus-

tering schemes can effectively balance the request denial probability and latency in these

topologies. Therefore, as shown in Table 7, going from ring to full ring has no affect on

penalty because changing locations within a cluster has little impact on the performance

metrics, while going from ring to grid may cause the k of the optimal solution, CDH-k to

decrease to alleviate the increase of latency.

The observation of comparing performance in different topologies for non-Poisson

cases is consistent with the Poisson cases. The clustering schemes also play the role of

balancing the request denial probability and latency. As shown in Table 7, we can see that

140

the above conclusion regarding the influence of optimal schemes caused by changing ar-

rival process in full ring and grid topologies and caused by changing topology for Poisson

cases also holds for non-Poisson cases.

10
-2

10
-1

10
0

 360 365 370 375 380 385

R
e

q
u

e
st

 d
e

n
ia

l p
ro

b
a

b
ili

ty

Arrival rate

CD(R)H-1

Ring
FullRing

Grid

10
-2

10
-1

 360 365 370 375 380 385

Arrival rate

CDH-2

10
-3

10
-2

10
-1

 360 365 370 375 380 385

Arrival rate

CDH-5

10
-3

10
-2

10
-1

 360 365 370 375 380 385

Arrival rate

CDH-16

10
-3

10
-2

10
-1

 360 365 370 375 380 385

R
e

q
u

e
st

 d
e

n
ia

l p
ro

b
a

b
ili

ty

Arrival rate

CAS

10
-2

10
-1

 360 365 370 375 380 385

Arrival rate

CRH-2

10
-3

10
-2

10
-1

 360 365 370 375 380 385

Arrival rate

CRH-5

10
-3

10
-2

10
-1

Arrival rate

CRH-16

Figure 46: Request denial probability in the infinite model with Poisson arrival under
different topologies

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 360 365 370 375 380 385

M
e

a
n

 s
te

p

Arrival rate

CDH

2-Ring
2-FullRing

2-Grid
5-Ring

5-FullRing
5-Grid

16-Ring
16-FullRing

16-Grid

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 360 365 370 375 380 385

M
e

a
n

 l
a

te
n

c
y

Arrival rate

CDH

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 360 365 370 375 380 385

M
e

a
n

 s
te

p

Arrival rate

CRH

 50

 100

 150

 200

 250

 300

 350

 360 365 370 375 380

M
e

a
n

 l
a

te
n

c
y

Arrival rate

CRH

Figure 47: The mean step and latency in the infinite model with Poisson arrival under
different topologies

141

η 100 500 1000 5000

C2 Ring FullRing Grid Ring FullRing Grid Ring FullRing Grid Ring FullRing Grid
CDH-1 CDH-1 CDH-1 CDH-5 CDH-5 CDH-1 CDH-5 CDH-5 CDH-5 CDH-16 CDH-16 CDH-16

1/4 ↓ ↓ ↓
CDH-2 CDH-1 CDH-1

CDH-1 CDH-1 CDH-1 CDH-5 CDH-2 CDH-1 CDH-16 CDH-16 CDH-5 CDH-16 CDH-16 CDH-16
↓ ↓ ↓

1 CDH-2 CDH-5 CDH-2
↓

CDH-1
CDH-1 CDH-1 CDH-1 CDH-5 CDH-5 CDH-2 CDH-16 CDH-16 CDH-5 CDH-16 CDH-16 CDH-16

25 ↓ ↓ ↓ ↓ ↓ ↓
CDH-2 CDH-2 CDH-1 CDH-5 CDH-5 CDH-2

Table 8: Optimal schemes in the finite model (“a → b” vertically means that the optimal
scheme changes from a to b as the arrival rate increases)

5.2.2 Finite Model

We start studying the finite model with the case that the arrival process is Poisso-

nian and the topology is ring. According to (5.9) and (5.10), we equate the Erlang load of

the finite model to the infinite model by setting the user arrival rate in the range of 3 to 4

in the finite model. Fig. 48 shows the simulation and analytical results of request denial

probability. Fig. 49 depicts the mean step and latency. The observations are consistent

with the finite model. It is noted that the analytical models for the infinite case are also ac-

curate for CD(R)H-1, CDH-16, CRH-16 and CAS, which is also consistent with Theorem

1. In regard to CDH-k and CRH-k, when k = 2, 5, we find that analytical approximation

B
(k)

M , overestimates request denial probability compared to simulation. For sake of space,

we do not repeat other observations that are similar in the infinite model. The penalty

for different values of weight factor, η is depicted in Fig. 50. As shown in Table 8, the

optimal schemes depend on the weight factor as well as traffic load (arrival rate).

Fig. 51 and Fig. 52 compare the performance among three different arrival pro-

cesses in the ring topology. Unlike the finite model the changes of the request denial

probability as arrival processes change have no consistent pattern in the finite model. As

142

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 3 3.2 3.4 3.6 3.8 4

R
e
q
u
e
s
t
d
e
n
ia

l
p
ro

b
a
b
ili

ty

Arrival rate

CD(R)H-16(CAS)-A
CDH-16
CRH-16

CAS
CD(R)H-5-A

CDH-5
CRH-5

CD(R)H-2-A
CDH-2
CRH-2

CD(R)H-1-A
CD(R)H-1

Figure 48: Request denial probability in the finite model with Poisson arrival

143

 0

 100

 200

 300

 400

 500

 600

 3 3.2 3.4 3.6 3.8 4

M
e
a
n
 l
a
te

n
c
y

Arrival rate

b)The mean latency vs. arrival rate

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 3 3.2 3.4 3.6 3.8 4

M
e
a
n
 s

te
p
s

Arrival rate

a)The mean steps vs. arrival rate

CDH-16
CRH-16

CAS
CDH-5
CRH-5
CDH-2
CRH-2

CD(R)H-1

Figure 49: The mean step and latency in the finite model with Poisson arrival

144

 0

 50

 100

 150

 200

 250

 3 3.2 3.4 3.6 3.8 4

C
o

m
p
o

s
it
e
 S

c
o

re

Arrival Rate

(a)η=100

CDH-16
CRH-16
CDH-5
CRH-5
CDH-2
CRH-2

CD(R)H-1

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220
 240

 3 3.2 3.4 3.6 3.8 4

C
o

m
p
o

s
it
e
 S

c
o

re

Arrival Rate

(b)η=500

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220
 240

 3 3.2 3.4 3.6 3.8 4

C
o
m

p
o
s
it
e

 S
c
o

re

Arrival Rate

(c)η=1000

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 3 3.2 3.4 3.6 3.8 4

C
o
m

p
o
s
it
e

 S
c
o

re

Arrival Rate

(d)η=5000

Figure 50: Penalty of different schemes in the finite model with Poisson arrival

to the mean step and latency, Erlang-4 case is consistently the largest, followed by Pois-

son case, then by the case of hyper-exponential(C2 = 25) for all multiple-step clustering

schemes. The optimal schemes for these cases are summarized in Table 8.

Fig. 53 and Fig. 54 compare the performance of three topologies in the finite

model with Poisson arrival. We find that the influence of changing topologies on optimal

schemes in the finite model is very similar to that in the infinite model. For sake of space,

the comparison plots of changing topology for non-Poisson cases that are consistent with

the Poisson case are not shown in this thesis. We conclude that our schemes work for dif-

ferent arrival processes. The optimal solutions for these cases are summarized in Table 8.

145

--+
~

---0--
__ -iO- __

--- .. --
--- -

-_ -------'

.",: :...-.-

~//

/ ///k/

~/~ .1..-------'
.t.--------

.... -----_.-

10
-2

10
-1

10
0

 3 3.2 3.4 3.6 3.8 4

Re
qu

es
t d

en
ia

l p
ro

ba
bi

lit
y

Arrival rate

CD(R)H-1

Erlang-4
Poisson

Hyper-exp(C
2
=25)

10
-2

10
-1

10
0

 3 3.2 3.4 3.6 3.8 4

Arrival rate

CDH-2

10
-4

10
-3

10
-2

10
-1

 3 3.2 3.4 3.6 3.8 4

Arrival rate

CDH-5

10
-6

10
-5

10
-4

10
-3

10
-2

 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4

Arrival rate

CDH-16

10
-6

10
-5

10
-4

10
-3

10
-2

 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4

Re
qu

es
t d

en
ia

l p
ro

ba
bi

lit
y

Arrival rate

CAS

10
-2

10
-1

 3 3.2 3.4 3.6 3.8 4

Arrival rate

CRH-2

10
-4

10
-3

10
-2

10
-1

 3 3.2 3.4 3.6 3.8 4

Arrival rate

CRH-5

10
-5

10
-4

10
-3

10
-2

 3.2 3.4 3.6 3.8 4

Arrival rate

CRH-16

Figure 51: Request denial probability in the finite model with different arrivals in the ring
topology

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 1.2

 1.22

 3 3.2 3.4 3.6 3.8 4

M
e
a
n
 s

te
p

Arrival rate

Maximum step=2

 0

 20

 40

 60

 80

 100

 120

 3 3.2 3.4 3.6 3.8 4

M
e
a
n
 l
a
te

n
c
y

Arrival rate

Maximum step=2

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 3 3.2 3.4 3.6 3.8 4

M
e
a
n
 s

te
p

Arrival rate

Maximum step=5

D-C
2
=1/4

D-C
2
=1

D-C
2
=25

R-C
2
=1/4

R-C
2
=1

R-C
2
=25

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220

 3 3.2 3.4 3.6 3.8 4

M
e
a
n
 l
a
te

n
c
y

Arrival rate

Maximum step=5

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 3 3.2 3.4 3.6 3.8 4

M
e
a
n
 s

te
p

Arrival rate

Maximum step=16

 0

 50

 100

 150

 200

 250

 3 3.2 3.4 3.6 3.8 4

M
e
a
n
 l
a
te

n
c
y

Arrival rate

Maximum step=16

Figure 52: The mean step and latency in the finite model with different arrivals in the ring
topology

10
-2

10
-1

10
0

 3 3.2 3.4 3.6 3.8 4

Re
qu

es
t d

en
ia

l p
ro

ba
bi

lit
y

Arrival rate

CD(R)H-1

Ring
FullRing

Grid

10
-2

10
-1

10
0

 3 3.2 3.4 3.6 3.8 4

Arrival rate

CDH-2

10
-4

10
-3

10
-2

10
-1

 3 3.2 3.4 3.6 3.8 4

Arrival rate

CDH-5

10
-5

10
-4

10
-3

10
-2

 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4

Arrival rate

CDH-16

10
-5

10
-4

10
-3

10
-2

 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4

Re
qu

es
t d

en
ia

l p
ro

ba
bi

lit
y

Arrival rate

CAS

10
-2

10
-1

 3 3.2 3.4 3.6 3.8 4

Arrival rate

CRH-2

10
-4

10
-3

10
-2

10
-1

 3 3.2 3.4 3.6 3.8 4

Arrival rate

CRH-5

10
-5

10
-4

10
-3

10
-2

 3.2 3.4 3.6 3.8 4

Arrival rate

CRH-16

Figure 53: Request denial probability in the finite model with Poisson arrival under dif-
ferent topologies

146

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 1.2

 3 3.2 3.4 3.6 3.8 4

M
e

a
n

 s
te

p

Arrival rate

Maximum step=2

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 3 3.2 3.4 3.6 3.8 4

M
e

a
n

 l
a

te
n

c
y

Arrival rate

Maximum step=2

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 1.55

 1.6

 3 3.2 3.4 3.6 3.8 4

M
e

a
n

 s
te

p

Arrival rate

Maximum Step=5

CDH-Ring
CDH-FullRing

CDH-Grid
CRH-Ring

CRH-FullRing
CRH-Grid

 0

 50

 100

 150

 200

 250

 300

 350

 3 3.2 3.4 3.6 3.8 4

M
e

a
n

 l
a

te
n

c
y

Arrival rate

Maximum step=5

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 3 3.2 3.4 3.6 3.8 4

M
e

a
n

 s
te

p

Arrival rate

Maximum step=16

 0

 50

 100

 150

 200

 250

 300

 350

 3 3.2 3.4 3.6 3.8 4

M
e

a
n

 l
a

te
n

c
y

Arrival rate

Maximum step=16

Figure 54: The mean step and latency in the finite model with Poisson arrival under
different topologies

5.2.3 Comparison of Infinite and Finite Models

In order to understand how the number of users change the performance in the

finite model and compare finite model with infinite model as the number of users increases

while keeping the Erlang load the same, we set the number of users in each RP in the finite

models to a number of different users ranging from 30 to 180. We calculate the arrival

rate for different number of users based on (5.11) so that the Erlang load remains the

same. Fig. 55 depicts the request denial probability of these three finite models and the

infinite model with Poisson arrival in the ring topology for CD(R)H-1, CDH-2, CDH-5

and CDH-16. Note that the x-axis is the total Erlang load for ease of comparison. Fig. 56

presents the request denial probability of these three finite models and the infinite model

with Poisson arrival in the ring topology for CRH-2, CRH-5 and CRH-16.

From Fig. 55(d) and Fig. 56(c), we note that there is a significant difference in

performance between the infinite model and the finite model with up to 40 users per

cluster. We found that, at high load, the relative difference between the infinite and the

finite models is only about 2% when the number of users per cluster is 90 or higher; this

means that the infinite model can be used to approximate the finite model at high load.

147

~ ~

On the other hand, when the load is low, we found that the relative deference can be as

high as 24% when comparing the infinite model and the finite model with 180 users per

cluster. This suggests that at a low load, it is better to use the finite model to get more

accurate understanding of the system performance.

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 0.16

 0.17

R
e
q
u
e
s
t
d
e
n
ia

l
p
ro

b
a
b
ili

ty

Erlang load

(a) CD(R)H-1

360 365.7 370.9 375.7380 384

of user=30
of user=35
of user=40
infinite users

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

R
e
q
u
e
s
t
d
e
n
ia

l
p
ro

b
a
b
ili

ty

Erlang load

(b) CDH-2

360 365.7 370.9 375.7380 384

of users=30
of users=35
of users=40
infinite users

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

R
e
q
u
e
s
t
d
e
n
ia

l
p
ro

b
a
b
ili

ty

Erlang load

(c) CDH-5

360 365.7 370.9375.7380 384

of users=30
of users=35
of users=40
infinite users

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

R
e
q
u
e
s
t
d
e
n
ia

l
p
ro

b
a
b
ili

ty

Erlang load

(d) CDH-16

360 365.7 370.9375.7380 384

of users=30
of users=35
of users=40
infinite users

Figure 55: Request denial probability of CDH in the infinite model and finite model with
different number of users with Poisson arrival in the ring topology

5.3 Summary

In this chapter, we consider the offering of an agent-based VPN service where or-

ganizations and their users utilize Rendezvous Points for remote-access VPN services. In

148

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

R
e
q
u
e
s
t
d
e
n
ia

l
p
ro

b
a
b
ili

ty

Erlang load

(a) CRH-2

360 365.7 370.9 375.7380 384

of users=30
of users=35
of users=40
infinite users

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

R
e
q
u
e
s
t
d
e
n
ia

l
p
ro

b
a
b
ili

ty

Erlang load

(b) CRH-5

360 365.7 370.9375.7380 384

of users=30
of users=35
of users=40
infinite users

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

R
e
q
u
e
s
t
d
e
n
ia

l
p
ro

b
a
b
ili

ty

Erlang load

(c) CRH-16

360 365.7 370.9375.7380 384

of users=30
of users=35
of users=40
infinite users

Figure 56: Request denial probability of CRH in the infinite model and finite model with
different number of users with Poisson arrival in the ring topology

149

11.11 -

- -- -- -- -
.. ,1 .. 11 III

particular, we study the systems management problems of an ABVA provider to balance

request denial probability and latency perceived by users. The models with assumption

of both infinite number of users and finite number of users are discussed and compared

in this chapter. Analytical results for request denial probability for Poisson arrival were

discussed; results for non-Poisson arrival (with C2 = 1/4, 25) are presented through sim-

ulation. Furthermore, the latency perceived is studied by considering ring, full ring, and

grid topologies. In the infinite model, we found that the arrival processes have significant

and consistent impact on the request denial probability and the impact on the latency is

dependent on the traffic load. In the finite model, the arrival processes have inconsistent

impact on the request denial probability. As to the latency in the finite model, Erlang-4

case is consistently largest, followed by Poisson case, then by hyper-exponential case.

To consider the case of VPN servers being located at multiple Rendezvous Points,

we have identified a number of schemes for server selection that includes a concept based

on clustering. In particular, we find that clustering with directional hunting is the best

option if the goal is to balance request denial probability and latency in the condition that

the cost of obtaining directional information is free. The optimal schemes are decided by

multiple factors: arrival process, topologies, traffic load, and the weight factor. Tables 7

and 8 are included to provide a comprehensive summary in this regard.

Finally, a strength of this work is that we compared finite and the infinite models;

such comparison is commonly ignored in the literature. We found that the request denial

probability of the finite model converges to that of the infinite model at the high load as

long as the number of users of each cluster is higher than 90 and the arrival process is

150

the same under CAS, CDH-16 and CRH-16. However, at low load, there is a marked

difference in the result between the infinite model and the finite model (even with up to

180 users per cluster). These observations serve as a guideline to use the finite model in

the low load case and the infinite model as a good approximation in the high load case.

There are a number of limitations of this work. First, we consider arrival mod-

els that may not reflect reality. Due to the unavailability of a traffic data set, we could

not consider an accurate arrival model; instead, we resorted to standard Poisson and non-

Poisson models to gain some understanding of the problem. Secondly, our work is limited

to considering ring, full ring, and grid topologies. While we point out later that the ring

topology is fairly realistic, additional realistic topologies would be worthwhile to con-

sider, especially to see how the hunting schemes perform. Thirdly, we considered a loss

system for arriving requests if the requested bandwidth request cannot be provided; in

reality, the system can allow some more requests to be admitted while somewhat down-

grading the bandwidth for existing users; this brings up another trade-off factor, which is

not addressed in this chapter. In future work, it would be worthwhile to pursue how to

overcome these limitations.

151

CHAPTER 6

CONCLUSIONS AND FUTURE RESEARCH

This dissertation has solved two data center resource management problems. The

first one is to answer how to minimize server operational cost by leveraging switching

servers on/off and DVFS when resource requirements (workload demand) is given. The

dynamics of the workload demand must be aware of in this particular problem to avoid

local optimum. We formulate this problem in this dissertation. Our evaluation shows that

our approaches can save significant energy as well as the data center CAPEX. To alle-

viate the computational complexity to solve the problem, this dissertation has proposed

aggregation workload demand. The numerical results shows that aggregation workload

over time slots is efficient with small overhead for dynamic aggregation method. We are

working on decomposing workload demand into special substructures and developing al-

gorithms to compute optimal solutions according to the substructures. The substructure

based algorithms are more efficient than the mathematical programming based method.

The other one is to answer how many resources data center operators should allo-

cate to ISePs such that user QoE is guaranteed. This dissertation has built a hierarchical

model to evaluate QoE considering data center reliability, allocated outbound bandwidth,

allocated buffer size, data center redirection strategies, request arrival and service pattern,

etc. We plan to develop a more realistic data center availability model considering com-

ponents with different availability with different request dynamics (i.e., user arrival and

152

service pattern). We propose ”heuristic style” redirection strategies for agent-based VPN

service.

Ultimately, we want to combine these two problem into a uniform data center

resource management framework.

153

REFERENCE LIST

[1] Amazon EC2. http://aws.amazon.com/ec2/.

[2] Bing. http://www.bing.com.

[3] Facebook. http://www.facebook.com.

[4] Google. http://www.google.com.

[5] Linkedin. http://www.linkedin.com.

[6] PhoneFactor. http://www.phonefactor.com.

[7] Twitter. http://www.twitter.com.

[8] Zynga. http://www.zynga.com/games.

[9] Agarwal, S., Dunagan, J., Jain, N., Saroiu, S., Wolman, A., and Bhogan, H. Volley:

Automated Data Placement for Geo-Distributed Cloud Services. In NSDI’2010

(2010).

[10] Arlitt, M., and Jin, T. Workload Characterization of the 1998 World Cup Web Site.

Tech. rep., IEEE Network, 1999.

[11] Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R. H., Konwinski, A., Lee,

G., Patterson, D. A., Rabkin, A., and Zaharia, M. Above the Clouds: A Berkeley

View of Cloud Computing. Tech. rep., EECS Department, University of California,

Berkeley, 2009.

[12] Barroso, L. A. The Price of Performance. Queue 3, 7 (Sept. 2005), 48–53.

154

[13] Barroso, L. A., and Hölzle, U. The Case for Energy-Proportional Computing. Com-

puter 40, 12 (2007), 33–37.

[14] Barroso, L. A., and Hölzle, U. The Datacenter as a Computer: An Introduction to

the Design of Warehouse-Scale Machines. Morgan and Claypool Publishers, 2009.

[15] Beloglazov, A., Buyya, R., Lee, Y. C., and Zomaya, A. A Taxonomy

and Survery of Energy-Efficient Data Centers and Cloud Computing Systems.

http://arxiv.org/abs/1007.0066, September 2010.

[16] Berral, J. L., Goiri, Í n., Nou, R., Julià, F., Guitart, J., Gavaldà, R., and Torres, J.

Towards Energy-Aware Scheduling in Data Centers using Machine Learning. In

e-Energy ’10: Proceedings of the 1st International Conference on Energy-Efficient

Computing and Networking (New York, NY, USA, 2010), ACM, pp. 215–224.

[17] Bertini, L., Leite, J. C. B., and Mossé, D. Power optimization for dynamic configu-

ration in heterogeneous web server clusters. J. Syst. Softw. 83, 4 (2010), 585–598.

[18] Bianchini, R., and Rajamony, R. Power and Energy Management for Server Sys-

tems. IEEE Computer 37 (2004), 2004.

[19] Bichler, M., Setzer, T., and Speitkamp, B. Capacity Planning for Virtualized Servers.

In Workshop on Information Technologies and Systems (WITS) (Milwaukee, Wis-

consin, 2006).

[20] Blackburn, M. Five Ways to Reduce Data Center Power Consumption,

2008. http://www.greenbiz.com/research/report/2009/03/10/five-ways-reduce-data-

center-power-consumption.

[21] Bodik, P., Armbrust, M. P., Canini, K., Fox, A., Jordan, M., and Patterson, D. A. A

Case for Adaptive Datacenters To Conserver Energy and Improve Reliability. Tech.

rep., EECS Department, University of California, Berkeley, 9 2008.

155

[22] Bohrer, P., Elnozahy, E. N., Keller, T., Kistler, M., Lefurgy, C., McDowell, C., and

Rajamony, R. The case for power management in web servers. Kluwer Academic

Publishers, Norwell, MA, USA, 2002, pp. 261–289.

[23] Borst, S., Gupta, V., and Walid, A. Distributed Cache Algorithms for Conten Distri-

bution Networks. In Proc. of IEEE INFOCOM (2010).

[24] Brey, T., and Lamers, L. Using Virtualization to Improve Data Center Efficiency.

http://www.thegreengrid.org/ /media/WhitePapers/Whiteng2009.

[25] Calzarossa, M., and Ferrari, D. A sensitivity study of the clustering approach to

work-load modeling. Performance Evaluation 6 (1986), 25–33.

[26] Chandra, K., and Eckberg, A. E. Traffic Characteristics of On-line Services. In 2nd

IEEE Symposium on Computers and Communications (July 1997), pp. 17–21.

[27] Chase, J. S., Anderson, D. C., Thakar, P. N., and Vahdat, A. M. Managing Energy

and Server Resources in Hosting Centers. In In Proceedings of the 18th ACM

Symposium on Operating System Principles (SOSP (2001), pp. 103–116.

[28] Chen, G., He, W., Liu, J., Nath, S., Rigas, L., Xiao, L., and Zhao, F. Energy-aware

server provisioning and load dispatching for connection-intensive internet services.

In Proceedings of the USENIX NSDI’08 (Berkeley, CA, USA, 2008), USENIX

Association, pp. 337–350.

[29] Chen, Y., Das, A., Qin, W., Sivasubramaniam, A., Wang, Q., and Gautam, N. Man-

aging server energy and operational costs in hosting centers. SIGMETRICS Perform.

Eval. Rev. 33, 1 (2005), 303–314.

[30] Duan, Z., Zhang, Z.-L., and Hou, Y. T. Service overlay networks: SLAs, QoS, and

bandwidth provisioning. IEEE/ACM Trans. Networking 11, 6 (2003), 870–883.

156

[31] Duffield, N. G., Goyal, P., Greenberg, A., Mishra, P., Ramakrishnan, K. K., and

van der Merwe, J. E. Resource management with hoses: point-to-cloud services for

virtual private networks. IEEE/ACM Trans. Networking 10, 5 (2002), 679–692.

[32] Elnozahy, E. M., Kistler, M., and Rajamony, R. Energy-Efficient Server Clusters. In

Proc. of the 2nd Workshop on Power-Aware Computing Systems (2002), pp. 179–

196.

[33] Erlang, A. K. The Theory of Probabilities and Telephone Conversations. Nyt

Tidsskrift for Matematik B 20 (1909).

[34] Erlang, A. K. Solution of some Problems in the Theory of Probabilities of Signifi-

cance in Automatic Telephone Exchanges. Elektrotkeknikeren 13 (1917).

[35] Fan, X., Weber, W.-D., and Barroso, L. A. Power provisioning for a warehouse-

sized computer. In Proceedings of the 34th annual international symposium on

Computer architecture (New York, NY, USA, 2007), ISCA ’07, ACM, pp. 13–23.

[36] Filani, D., He, J., Gao, S., Rajappa, M., Kumar, A., Shah, R., and Naappan, R.

Dynamic Data Center Power Management: Trends, Issues and Solutions. Intel

Technology Journal (2008).

[37] Gleeson, B., Lin, A., Heinanen, J., Armitage, G., and Malis, A. A Framework for IP

Based Virtual Private Networks. RFC 2764, 2000.

[38] Gmach, D., Rolia, J., Cherkasova, L., and Kemper, A. Workload Analysis and De-

mand Prediction of Enterprise Data Center Applications. In Proceedings of the

2007 IEEE 10th International Symposium on Workload Characterization (Washing-

ton, DC, USA, 2007), IISWC ’07, IEEE Computer Society, pp. 171–180.

157

[39] Greenberg, A., Hamilton, J., Maltz, D. A., and Patel, P. The cost of a cloud: research

problems in data center networks. SIGCOMM Comput. Commun. Rev. 39, 1 (2009),

68–73.

[40] Grottke, M., Mainkar, V., Trivedi, K. S., and Woolet, S. Response time distribu-

tions in networks of queues. In Queueing Networks: A Fundamental Approach (R.

Boucherie, N.V. Dijk (Eds.)), Springer-Verlag. to appear.

[41] Guyton, J. D., and Schwartz, M. F. Locating nearby copies of replicated Internet

servers. In SIGCOMM ’95: Proceedings of the conference on Applications, tech-

nologies, architectures, and protocols for computer communication (New York, NY,

USA, 1995), ACM, pp. 288–298.

[42] Hayes, B. Cloud Computing. Communications of the ACM 51 (2008), 9–11.

[43] Iversen, V. Teletraffic Engineering and Network Planning. manuscript for course

34340, Technical University of Denmark (2006).

[44] Kalyanakrishnan, M., Iyer, R., and Patel, J. Reliability of Internet Hosts - A Case

Study from the End User’s Perspective. Computer Communications and Networks,

International Conference on 0 (1997), 418.

[45] Kangasharju, J., Ross, K. W., and Roberts, J. W. Performance evaluation of redi-

rection schemes in content distribution networks. Computer Communications 24, 2

(2001), 207 – 214.

[46] Kaufman, J. S. Blocking in a shared resource environment. IEEE Trans. on Com-

munications COM-29 (1981), 1474–1481.

[47] Kleinrock, L. Theory, Volume 1, Queueing Systems. Wiley, 1975.

158

[48] Kohavi, R. Practical guide to controlled experiments on the web: Listen to your

customers not to the HiPPO. In In ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (KDD-2007 (2007), pp. 959–967.

[49] Koomey, J. G. Estimating total power consumption by servers in the U.S. and the

world. Tech. rep., Lawrence Derkley National Laboratory, Feb. 2007.

[50] Krishnan, P., Raz, D., and Shavitt, Y. The Cache Location Problem. IEEE/ACM

Trans. Networking 8 (2000), 568–582.

[51] Kusic, D., Kephart, J. O., Hanson, J. E., Kandasamy, N., and Jiang, G. Power

and performance management of virtualized computing environments via lookahead

control. Cluster Computing 12, 1 (2009), 1–15.

[52] Li, A., Yang, X., Kandula, S., and Zhang, M. CloudCmp: Shopping for a Cloud

Made Easy. In Proc. of 2nd USENIX Workshop on Hot Topics in Cloud Computing

(HotCloud) (June 2010).

[53] Lipsky, L. Queueing Theory: A Linear Algebraic Approach. Springer Publishing

Company, Incorporated, 2008.

[54] Liu, K. Y. K., Lui, J. C. S., and Zhang, Z.-L. Distributed Algorithm for Service

Replication in Service Overlay Network. In Proc. of 3rd IFIP-TC6 Networking

Conference (Networking 2004) (2004), pp. 1156–1167.

[55] Lu, T., and Chen, M. Simple and Effective Dynamic Provisioning for Power-

Proportional Data Centers. http://arxiv.org/abs/1112.0442, Dec. 2011.

[56] Medhi, D. Some Results for Renewal Arrival to a Communication Link. A. C.

Borthakur and H. Choudhury, New Age International Limited (1996), 85–107.

[57] Medhi, D., Choi, B.-Y., Scoglio, C., Song, S., and Dispensa, S. Agent-Based VPN

Architecture: A Framework and the Optimal User Connectivity Problem (Static

159

Case). 15th International Conference on Advanced Computing and Communica-

tions (ADCOM) (2007), 138–143.

[58] Medhi, J. Stochastic Processess (3rd Edition). New Age Science, 2009.

[59] Meng, X., Papas, V., and Zhang, L. Improving the Scalability of Data Center Net-

works with Traffic-aware Virtual Machine Placement. In INFOCOM (2010).

[60] Moore, G. E. Cramming more components onto integrated circuits (Reprinted from

Electronics, pg 114-117, April 19, 1965). Proceedings of the IEEE 86, 1 (1998),

82–85.

[61] Nagarajan (Ed)., A. Generic Requirements for Provider Provisioned Virtual Private

Networks (PPVPN). RFC 3809, June 2004.

[62] Petrucci, V., Loques, O., and Mossé, D. A dynamic configuration model for power-

efficient virtualized server clusters. 11th Brazilian Workshop on Real-Time and

Embeded Systems, May 2009.

[63] Petrucci, V., Loques, O., and Mossé, D. Dynamic configuration support for power-

aware virtualized server clusters. Tech. rep., 2009. Technical Report.

[64] Petrucci, V., Loques, O., and Mossé, D. Dynamic optimization of power and perfor-

mance for virtualized server clusters, Technical Report, 2009.

[65] Pinherio, E., Bianchini, R., Carrera, E. V., and Heath, T. Compilers and Operating

Systems for Low Power. Kluwer Academic Publishers, 2003, ch. Dynamic Cluster

Reconfiguration for Power and Performance.

[66] Plaxton, C. G., Rajaraman, R., and Richa, A. W. Accessing nearby copies of repli-

cated objects in a distributed environment. In Proc. of 9th ACM Symposium on

Parallel Algorithms and Architectures (SPAA’97) (Newport, Rhode Island, 1997),

pp. 311–320.

160

[67] Positive Networks. http://www.anx.com/content/solutions/managed-remote-

access/positive-networks.

[68] Qian, H., Dispensa, S., and Medhi, D. Optimizing request denial and latency in an

agent-based VPN architecture. In IEEE/IFIP Network Operations and Management

Symposium (NOMS) 2008 (Salvador, Brazil, April 2008), pp. 248–255.

[69] Qian, H., Dispensa, S., and Medhi, D. Balancing Request Denial Probability and

Latency in an Agent-Based VPN Architecture. IEEE Transactions on Network and

Service Management 7, 4 (2010), 282–295.

[70] Qian, H., Li, F., and Medhi, D. On energy-aware aggregation of dynamic temporal

demand in cloud computing. In COMSNETS (2012), pp. 1–6.

[71] Qian, H., and Medhi, D. Estimating optimal cost of allocating virtualized re-

sources with dynamic demand. In Proceedings of the 23rd International Teletraffic

Congress (2011), ITC ’11, ITCP, pp. 320–321.

[72] Qian, H., and Medhi, D. Server Operational Cost Optimization for Cloud Computing

Service Providers over a Time Horizon. In UNSENIX Hot’ICE 2011 (2011).

[73] Qian, H., Medhi, D., and Trivedi, K. S. A hierarchical model to evaluate quality of

experience of online services hosted by cloud computing. In Proceedings of the 12th

IFIP/IEEE International Symposium on Integrated Network Management, IM 2011,

Dublin, Ireland, 23-27 May 2011 (2011), N. Agoulmine, C. Bartolini, T. Pfeifer, and

D. O. Sullivan, Eds., IEEE, pp. 105–112.

[74] Qian, H., Surapaneni, C. S., Dispensa, S., and Medhi, D. Service management archi-

tecture and system capacity design for PhoneFactor™: a two-factor authen-

tication service. In Proceedings of the 11th IFIP/IEEE international conference

on Symposium on Integrated Network Management (Piscataway, NJ, USA, 2009),

IM’09, IEEE Press, pp. 73–80.

161

[75] Qian, H., Surapaneni, R. S., Ray, M., Dispensa, S., and Medhi, D. DReaM-Cache:

Distributed Real-Time Transaction Memory Cache to Support Two-Factor Authen-

tication Services and its Reliability. In IEEE/IFIP Network Operations and Man-

agement Symposium 2010 (2010).

[76] Raikov, D. On the Decomposition of Poisson Laws. C. R. (Doklady) Academy of

Sciences of URSS 14 (1937).

[77] Roberts, J. W. A service system with heterogeneous user requirements: application

to multi-services telecommunications systems. Performance of Data Communica-

tion Systems, and Their Applications, G. Pujolle (Ed.), North-Holland (1981).

[78] Rosen, E., and Rekhter, Y. BGP/MPLS IP Virtual Private Networks (VPNs). RFC

4364, February 2006. Updated by RFCs 4577, 4684, 5462.

[79] Sahner, R., Trivedi, K., and Puliafito, A. Performance and Reliability Analysis

of Computer Systems: An Example-Based Approach Using the SHARPE Software

Package. Kluwer Academic Publishers, 1995.

[80] Shaikh, A., Tewari, R., and Agrawal, M. On the Effectiveness of DNS-based Server

Selection. In Proc. of IEEE INFOCOM (2001).

[81] Srikantaiah, S., Kansal, A., and Zhao, F. Energy aware consolidation for cloud

computing. In Proceedings of the 2008 conference on Power aware computing and

systems (Berkeley, CA, USA, 2008), HotPower’08, USENIX Association, pp. 10–

10.

[82] Sripanidkulchai, K., Maggs, B. M., and Zhang, H. Efficient Content Location Us-

ing Interest-Based Locality in Peer-to-Peer Systems. In Proc. of IEEE INFOCOM

(2003).

162

[83] Trivedi, K. S. Probability and Statistics with Reliability Queuing and Computer

Science Applications (2nd Edition). John Wiley & Sons, 2002.

[84] . EPA Report on Server and Data Center Energy Efficiency. U.S. Enviromental

Protetion Agency, 2007. ENERGY STAR Program.

[85] . VMware Distributed Power Management Concepts and Use.

http://www.vmware.com/files/pdf/DPM.pdf, 2009.

[86] Verma, A., Dasgupta, G., Nayak, T. K., De, P., and Kothari, R. Server workload

analysis for power minimization using consolidation. In Proceedings of the 2009

conference on USENIX Annual technical conference (Berkeley, CA, USA, 2009),

USENIX’09, USENIX Association, pp. 28–28.

[87] Vishwanath, K. V., and Nagappan, N. Characterizing Cloud Computing Hardware

Reliability. In Proc. of 1st ACM Symposium on Cloud Computing (June 2010).

[88] Wang, D., and Trivedi, K. Modeling User-Perceived Reliability Based on User

Behavior Graphs. International Journal of Reliability, Quality & Safety Engineering

16, 4 (August 2009), 303–330.

[89] Wustenhoff, E. Serice Level Agreement in the Data Center. http://www-

it.desy.de/common/documentation/cd-docs/sun/blueprints/0402/sla.pdf.

[90] Zhang, Q., Cheng, L., and Boutaba, R. Cloud computing: state-of-the-art and re-

search challenges. Journal of Internet Services and Applications 1, 1 (2010), 7–18.

[91] Zhang, Z., Zhang, M., Greenberg, A., Charlie, Y., Ratul, H., and Christian, M. B.

Optimizing Cost and Performance in Online Service Provider Networks. In NSDI

(2010).

163

VITA

Haiyang Qian was born on February 11, 1981 in Binhai, Jiangsu Province, China.

He attended Nanjing University of Science & Technology in September 1998 and gradu-

ated in June 2002 with a Bachelor degree in Communication Engineering. In 2002-2004,

Mr. Qian was an R&D engineer at Nanjing Nari Telecommunication Corp.

Mr. Qian attended Technical University of Denmark in 2004 and received his

Master of Science in Telecommunications in 2006. In August 2006, Mr. Qian joined

the Ph.D. program in University of Missouri–Kansas City (UMKC) with Telecommuni-

cations and Computer Networking (TCN) and Electrical Engineering as his coordinating

discipline and Co-discipline, respectively. Mr. Qian was awarded UMKC Chancellor’s

Doctoral Fellowships in 2009–2010 and 2010–2011. Mr. Qian received Best Student

Poster award in the 23rd International Teletraffic Congress (ITC 2011) in San Francisco,

CA. Upon completion his Ph.D. requirements, Mr. Qian plans to continue to research in

the data center and computer networking domains.

Mr. Qian is a member of Institute of Electrical and Electronic Engineers (IEEE)

and Association of Computing Machinery (ACM).

