NEONATAL ALLOIMMUNE THROMBOCYTOPENIA

Background

1. Definition
 - Neonatal Thrombocytopenia: Platelet count <150 X 10⁹/L
 - Severe Neonatal Thrombocytopenia: Platelet count <50 X 10⁹/L

2. General Information
 - Fetal/neonatal alloimmune thrombocytopenia (FNAIT) – most common and important cause of severe neonatal thrombocytopenia

Pathophysiology

1. Pathology of Disease
 - Maternal antiplatelet IgG antibodies cross placenta and attack fetal platelets at 14-16 weeks gestation
 - Human platelet antigens (HPA) must be absent in mother and present in fetus (due to inheritance from father)
 - By 18 weeks gestation, platelet antigens seen in fetus
 - Transfer of antibodies increases as gestation progresses until maximum level is reached in late 3rd trimester
 - Severity depends on:
 - Concentration and subclass of maternal IgG allo-antibodies
 - Antigen density on fetal platelets
 - Phagocyte activity in fetal reticuloendothelial system.
 - Ability of fetal bone marrow to compensate for accelerated platelet destruction

2. Incidence, Prevalence
 - HPA-1a found in 98% of Caucasian population
 - 2% of Caucasian pregnant women are HPA-1a negative and likely to carry a HPA-1a positive fetus
 - In Asians, HPA-4 most common cause of FNAIT
 - FNAIT Incidence: 1/600-1/5000
 - Anti-HPA-1a sensitization occurs only if mother’s Human Leukocyte Antibody (HLA) type is DR52a.

3. Risk Factors
 - HPA incompatibility between father and mother

4. Morbidity / Mortality
 - Antenatal intracranial hemorrhage (ICH) in 10-30% of severe FNAIT
 - Death in 10% of ICH
 - Neurological sequelae in 10%-20% of ICH
 - 1/3 of infants with FNAIT and ICH die
Diagnostics

1. History
 - Previous pregnancy of FNAIT

2. Physical Examination
 - Healthy appearing newborn born to healthy mother with normal maternal platelet count and uneventful pregnancy
 - Within minutes to hours of newborn’s life: petechiae, bruising, excessive bleeding, and mucocutaneous purpura appear
 - ICH presentation: can vary from asymptomatic to seizures, retinal hemorrhage, lethargy, tense fontanel, altered consciousness, apnea, and bradycardia

3. Diagnostic Testing
 - Diagnosis made after birth for first pregnancy
 - CBC usually normal except for thrombocytopenia and anemia if excessive blood loss (always confirm true thrombocytopenia with second sample)
 - Platelet count <20,000/ml when symptoms appear
 - Must rule out infection, disseminated intravascular coagulation, bleeding disorders and maternal immune thrombocytopenia (ITP)
 - Confirmatory test: presence of antiplatelet antibodies in maternal blood sample + maternal-paternal antigen incompatibility
 - Mother and father should be screened for HPA-1, HPA-3, HPA-5 [+ HPA-4 if Asian]
 - Maternal antiplatelet antibody testing accomplished via:
 - Monoclonal antibody-specific immobilization of platelet antigen test (MAIPA)
 - Platelet immunoflourescence test (PIFT)
 - Antigen-specific particle assay (ASPA)
 - Serologic testing for FNAIT recommended in following scenarios:
 - severe thrombocytopenia (even when other causes of neonatal thrombocytopenia present)
 - ICH with significant thrombocytopenia
 - Family history of any transient neonatal thrombocytopenia
 - Diagnostic Testing in multiparous women with confirmed previous FNAIT
 - PCR from amniocytes or chorionic villi at 18 weeks gestation to determine fetal platelet type
 - Fetal Blood Sampling to determine severity
 - Use diminished because of significant risks
 - 1.3% fetal loss rate per procedure
 - 5.5% loss rate per affected pregnancy

4. Laboratory evaluation
 - Commercial enzyme-linked immunosorbent antibody kits for initial screen followed by monoclonal antibody specific immobilization of platelet antigen assays and radioimmunoprecipitation assay for further antibody testing

5. Diagnostic imaging
 - All neonates with confirmed FNAIT should be screened for ICH via cerebral ultrasound, CT, or nuclear magnetic resonance scan
Differential Diagnosis

1. Key Differential Diagnoses
 - FNAIT seen in healthy newborns versus thrombocytopenia seen in a sick newborn. Newborn thrombocytopenia seen in the following:
 - Maternal Idiopathic Thrombocytopenia purpura (2nd most common cause of neonatal thrombocytopenia)
 - Neonatal Drug Exposure: Heparin, Quinine
 - Thrombocytopenia – absent radius syndrome
 - Congenital Amegakaryocytic Thrombocytopenia
 - Maternal Factors:
 - Penicillin, Dioxin, Phenytoin, Indomethacin, Phenytoin, Heparin exposure;
 - History Pregnancy Induced-Hypertension
 - Chromosomal abnormalities: Trisomy 18, 13, 21, Turner’s
 - Wisckott-Aldrich Syndrome
 - Fanconi’s anemia
 - Kasabach-Merritt syndrome
 - Cardiac anomalies
 - Placental insufficiency

2. Extensive Differential Diagnoses
 - Congenital infections: CMV, Syphilis, Toxoplasmosis, Rubella, HIV, Parvovirus B19
 - Severe Rhesus disease
 - Disseminated intravascular coagulation
 - Perinatal infection: GBS, E.coli, Listeria

Therapeutics

1. Acute Treatment in Neonate
 - Treat based on newborn’s condition
 - Asymptomatic with mild to moderate thrombocytopenia
 - No treatment necessary
 - Neonatal Bleeding or Severe Thrombocytopenia
 - First Line Therapy: Transfusion of HPA compatible platelets ASAP
 - Transfusion of 1 dose (10 mL/kg) usually increases platelet count by 100×10^9 / L within 1 hour
 - If HPA compatible platelets not available, then either
 - Transfusion of HPA-1a-negative and HPA-5a-negative platelets or
 - Transfusion of maternal platelets
 - Need gamma-irradiated and washed to minimize transfer of maternal antibodies.
 - Until matched platelets available, acceptable to give unmatched platelet concentrates
 - IVIG and/or steroids when severe thrombocytopenia and/or hemorrhage persists
Therapeutic effect of platelet count delayed for 24-48 hrs; neonate remains at risk for ICH
- Fresh Frozen Plasma
 - Contains 1 international unit of clotting factors for every 10-15 mL/kg
 - Dose: 10-20 mL/kg to prevent bleeding with severe thrombocytopenia of unknown origin

2. Antenatal Treatment in history of FNAIT sibling
 - Recommend non-invasive management over invasive
 - Non-Invasive Management
 - Weekly maternal gamma globulin infusion - IVIG (1 g/kg/wk) with or without steroids (0.5 mg/kg/d)
 - Gamma globulin has following actions:
 - suppresses platelet antibody synthesis
 - blocks antiplatelet antibody transfer
 - competitively inhibits platelet binding to maternal antibodies and/or interferes with phagocyte-mediated immune clearance by reticulo-endothelial system
 - Peak maternal IgG level decreases by 50% after 72 hrs
 - IVIG prevents ICH and increases platelets in 55%-85% of cases
 - Side effects: Aseptic meningitis, acute renal failure, thrombosis, anaphylaxis, headaches, febrile reactions, nausea, malaise, and myalgia
 - Side effects minimized by slowing infusion rate
 - Optimal management with IVIG alone or IVIG plus steroids remains unclear.
 - Steroids as sole treatment controversial
 - Efficacy variable, and chronic steroid therapy associated with oligohydraminos
 - Mechanism of action: suppression of Fc receptor function of macrophages and possible interference with antibody synthesis
 - Invasive Management
 - Fetal blood sampling and intrauterine platelet transfusion
 - Previous initial approach but no longer commonly used because of the increased risk of fetal death
 - Only used as an option when mother does not respond to noninvasive management
 - Mode of Delivery
 - Delivery plan based on patient’s risk category, response to treatment, and most recent fetal platelet count.
 - Cordocentesis, to determine fetal platelet count as delivery considered, not associated with fetal bleeding
 - Appropriate gestation age for delivery has not been determined
• Cesarean Delivery alone not effective in preventing antenatal or perinatal hemorrhage
• Vaginal Delivery
 • Reasonable if fetal platelet > 50 X 10^9/L
 • If platelets <50 X 10^9/L, platelet intrauterine transfusion can protect against bleeding (must weigh risks of transfusion)
 • No evidence to suggest increased risk of ICH in vaginal deliveries with platelets <50 X10^9/L
 • Avoid instrumental vaginal delivery, fetal scalp electrodes, and fetal scalp blood samples
 • Neonatal care team should be present and compatible platelets prepared by blood bank

3. Further Management (24 hrs)
 o Observe and follow platelet counts daily^5
 o Maternal antibodies start to leave infant’s circulation at 48 hours of age^3
 o Resolution of FNAIT usually occurs by 2 weeks of age with complete normalizing of platelet count by 4 weeks^3
 o Platelet count should be kept > 100 X 10^9/L if bleeding occurred and maintained at >50 X 10^9/L for 1 to 2 weeks^5

4. Recommended Antenatal Therapy.\(^1\)
 o Weekly maternal IVIG infusions (1 g/kg/wk) with or without oral steroids (0.5 mg/kg/d)
 o Begin treatment 4 to 6 weeks earlier than when ICH or severe thrombocytopenia occurred in previous pregnancy
 • If information unavailable begin therapy at 30 weeks

Follow-Up^3
1. Outpatient follow-up includes platelet levels for rare but possible thrombocytopenia recurrence
2. Developmental/neurological follow-up is necessary if ICH occurred
3. Close maternal follow-up with high risk obstetrics and early prenatal care if history of confirmed FNAIT pregnancy

Prognosis
1. FNAIT occurs earlier and is more severe in subsequent pregnancies^1
2. Recent studies show that high 3rd semester antibody titers (>1:32) and high IgG3 subclass titers may predict severe thrombocytopenia. This has yet to be confirmed.\(^6\)
3. Best noninvasive predictor = in utero ICH in sibling\(^1\)
 o 70-80% recurrence rate of ICH if prior sibling affected\(^1\)
4. Quick and proper treatment reduces the risks of death and long-term disabilities^3

Patient Education\(^1\)
1. Must provide preconceptional counseling for patients with history of pregnancy with FNAIT
References

Author: Sneha Kemkar, MSIII, & James Hynes, MD, University of TN COM

Editor: Robert Marshall, MD, MPH, MISM, CMIO, Madigan Army Medical Center, Tacoma, WA