CHARACTERIZATION OF "T-Z" MODEL DESIGN PARAMETERS FOR AUGERED CAST-IN-PLACE PILES USING FIELD LOAD TEST DATA

A THESIS IN Civil Engineering

Presented to the Faculty of the University of Missouri-Kansas City in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

By BRADLEY SCOTT GARDNER, P.E.

B.S., University of Missouri-Rolla, 1994

Kansas City, Missouri 2012

© 2012 BRADLEY SCOTT GARDNER ALL RIGHTS RESERVED

CHARACTERIZATION OF "T-Z" MODEL DESIGN PARAMETERS FOR AUGERED CAST-IN-PLACE PILES USING FIELD LOAD TEST DATA

Bradley Scott Gardner, Candidate for the Master of Science Degree
University of Missouri-Kansas City, 2012

ABSTRACT

With the increasing use of augered cast-in-place piles in new construction, it is important that proper design parameters be incorporated when evaluating pile capacity and performance using reliability-based design methods. This paper focuses on developing "tz" model parameters from analysis of static axial compression and tension load test data from a project site along the Missouri River floodplain in northwest Missouri. Data was collected from a total of twelve axial load tests (six compression and six tension) and includes dial gauge readings from the pile heads as well as vibrating wire strain gauge data from multiple locations throughout several of the test piles. The "t-z" method has been used extensively as a soil-structure interaction model to evaluate the settlement of deep foundations. The soil-structure interaction modeled in this analysis was based on hyperbolic load displacement behavior using effective (drained) stresses. The development of the "t-z" model parameters has been accomplished using finite difference methods to analyze the non-linear soil-structure interaction along the sides of the piles. During the analysis, the mean shear modulus of soil-structure interface subgrade reaction, K_{init} , and the mean ultimate shear strength of the soil-structure interface, τ_u , were backcalculated from each set of load test data and were based on the assumption of a single-layer, homogenous soil profile. These "t-z" model parameters were then compared to standard field investigation data, including standard penetration tests (SPT) and cone penetrometer test (CPT) soundings, and effective overburden stress to develop correlations suitable for service limit state design of augered cast-in-place piles. While there was some indication of a linear relationship between K_{init} and the field investigation data, there was not a sufficient quantity of data in the analysis to properly identify any statistical trends. The relationship between τ_u and the field investigation data was much more variable and did not provide any distinct correlation. The plot of the data relating the model parameters to the effective overburden stress exhibited some grouping but the sample size and distribution was not sufficient to identify any statistical trends.

The faculty listed below, appointed by the Dean of the School of Computing and Engineering, have examined a thesis titled "Characterization of "t-z" Model Design Parameters for Augered Cast-In-Place Piles Using Field Load Test Data," presented by Bradley Scott Gardner, candidate for the Master of Science degree, and hereby certify that in their opinion it is worthy of acceptance.

Supervisory Committee

John T. Kevern, Ph.D., P.E., LEED AP, Committee Chair Department of Civil and Mechanical Engineering

Jerry Richardson, Ph.D., P.E., D.WRE

Department of Civil and Mechanical Engineering

ZhiQiang Chen, Ph.D.

Department of Civil and Mechanical Engineering

CONTENTS

ABSTRACT	iii
LIST OF ILLUSTRATIONS	viii
LIST OF TABLES	xi
ACKNOWLEDGEMENTS	xii
Chapter	
1. INTRODUCTION	1
ACIP Pile Axial Capacity Design	2
Ultimate Limit State Capacity	3
Service Limit State Performance	8
2. LOAD-DISPLACEMENT ANALYSIS USING THE "T-Z" METHOD	12
Soil Structure Interaction Model	13
Load Transfer Model	16
Finite Difference Methodology	19
3. PROJECT SUMMARY	23
Project Geology	24
Field Investigation	25
Test Pile Program	30
Compression Testing Procedures	31
Tension Testing Procedures	33
Test Pile Instrumentation	34

4. DATA ANALYSIS	36
Model Parameters	39
Non-Interaction Zone	39
Axial Pile Stiffness	40
Tip Soil Elastic Modulus	42
Tip Soil Ultimate Bearing Capacity	45
Tip Soil Poisson's Ratio	46
Curve Fitting Results	48
Correlation of "t-z" Model Parameters with Field Investigation Data	64
Comparison of LPC Method for Correlating τ_u with q_c	69
Correlation of "t-z" Model Parameters with Effective Stress	71
5. SUMMARY AND CONCLUSIONS	77
Project Summary	77
Future Research	81
Appendix	
A. BORING LOGS	83
B. CPT SOUNDING LOGS	168
REFERENCES	182
VITA	184

ILLUSTRATIONS

Figure		Page
1	Normalized load-settlement curves for cohesive soils	11
2	Normalized load-settlement curves for cohesionless soils	11
3	Spring-slider model of pile-soil interface	14
4	Non-linear force-displacement relationship for soil-structure interface.	15
5	Project vicinity map	23
6	Topographic map of project area	24
7	Site layout with boring, CPT sounding and test pile locations	27
8	CPT soil behavior type classification system	29
9	Dial gauges for monitoring pile top movement	34
10	Geokon Model 4911 "Sister Bar" strain gauges	35
11	Applied load vs. settlement for grout strength sensitivity analysis using Boiler compression test pile results	43
12	Applied load vs. settlement for tip soil elastic modulus sensitivity analysis using Boiler compression test pile results	44
13	Applied load vs. settlement for tip soil ultimate bearing capacity sensitivity analysis using Boiler compression test pile results	47
14	Applied load vs. settlement for tip soil Poisson's ratio sensitivity analysis using Boiler compression test pile results	48
15	Applied load vs. settlement Boiler compression test pile	51
16	Load remaining in pile vs. depth for Boiler compression test pile	51

Figure		Page
17	Applied load vs. settlement Boiler tension test pile	52
18	Applied load vs. settlement Chimney compression test pile	53
19	Load remaining in pile vs. depth for Chimney compression test pile	53
20	Applied load vs. settlement Chimney tension test pile	54
21	Applied load vs. settlement Powerhouse compression test pile	55
22	Load remaining in pile vs. depth for Powerhouse compression test pile	55
23	Applied load vs. settlement Powerhouse tension test pile	56
24	Applied load vs. settlement Coal Yard compression test pile	57
25	Load remaining in pile vs. depth for Coal Yard compression test pile	57
26	Applied load vs. settlement Coal Yard tension test pile	58
27	Load remaining in pile vs. depth for Coal Yard tension test pile	58
28	Applied load vs. settlement Cooling Tower compression test pile	59
29	Load remaining in pile vs. depth for Cooling Tower compression test pile	59
30	Applied load vs. settlement Cooling Tower tension test pile	60
31	Applied load vs. settlement Water Tank compression test pile	61
32	Load remaining in pile vs. depth for Water Tank compression test pile	61
33	Applied load vs. settlement Water Tank tension test pile	62

Figure		Page
34	Load remaining in pile vs. depth for Water Tank tension test pile	62
35	K_{init} vs. N_{60} from compression and tension test piles	66
36	K_{init} vs. q_c from compression and tension test piles	66
37	τ_u vs. N_{60} from compression and tension test piles	68
38	τ_u vs. q_c from compression and tension test piles	68
39	β_{ep} vs. d/D from compression and tension test piles	73
40	K_{init} vs. d/D from compression and tension test piles	75
41	K_{init} vs. $K_o \sigma_v$ ' from compression and tension test piles	75

TABLES

Table		Page
1	LPC method α coefficients and k_c factors	7
2	Borings and CPT soundings evaluated	26
3	Test pile configurations	31
4	Summary of field investigation N_{60} values evaluated	38
5	Summary of field investigation q_c values evaluated	39
6	Back-calculated "t-z" model parameters	63
7	LPC Method α-coefficients back-calculated from load test data	69
8	Comparison of back-calculated and theoretical β_{ep} values	74

ACKNOWLEDGEMENTS

The author wishes to express his gratitude to Dr. Anil Misra and Dr. Lance Roberts for providing me the opportunity to expand on their previous research and setting him in the right direction to begin this project. The author would also like to thank Dr. John Kevern for his assistance with wrapping up the research and analysis at the end of a very long journey.

The author would like to extend my gratitude to the Supervisory Committee, Dr. John Kevern, Dr. Jerry Richardson, and Dr. ZhiQiang Chen for their assistance and comments.

Finally, the author wishes to express his most sincere appreciation to his wife and two beautiful children for their support, encouragement, and patience as he strived to balance time between family, work, and this project.

CHAPTER 1

INTRODUCTION

Augered cast-in-place (ACIP) piles, also referred to as auger cast piles, augered pressure-grouted (APG) piles, and continuous flight auger (CFA) piles, among others, have been in use in the United States for over 60 years. Throughout this time, ACIP piles have been utilized on a wide variety of project types including industrial and commercial buildings, bridges, equipment foundations, transmission structures, retaining walls and various other structures (DFI 1990). Due to the relative speed of installation, economy and high capacity, ACIP piles have come to be a common deep foundation element selected by geotechnical engineers for a wide variety of soil types. Unlike drilled shafts, the installation methods utilized for ACIP piles are somewhat independent of the soil and groundwater conditions encountered at a project site.

ACIP piles are a type of drilled foundation in which the pile is drilled to a targeted depth in one continuous process using a continuous flight auger with a hollow core. As the auger is drilled into the ground, the flights of the auger are filled with soil which provides lateral support and stability of the drilled hole. As the auger is withdrawn from the hole, a grout mixture typically consisting of sand, cement, and water is pumped continuously under pressure through the hollow center of the auger to the base of the auger. As the grout is pumped, the auger is lifted smoothly in one continuous operation. Because the auger provides support during the drilling process, and the fluid grout provides support

during the auger removal, there is no need for the use of casing or drilling slurry when this pile type is installed in soils prone to caving.

Immediately following placement of grout in the hole, and complete removal of the auger, any soil cuttings remaining in the grout at the top of the pile are removed.

Following the completion of the grouting process, a steel reinforcing cage is placed into the grout. The cage is then tied off at the ground surface to prevent the cage from settling into the fluid grout and to maintain proper elevation for the top of the reinforcement.

ACIP piles are typically installed with diameters ranging from 12 to 36 inches and lengths of up to 100 feet, with longer piles occasionally used. The reinforcing cages are often confined to the upper 30 to 50 feet of the pile for ease of installation and due to the fact that relatively low bending stresses are transferred beyond these depths (Brown et al. 2007). When tension loads are included in the design, full length center bars can be used to transfer the design tension loads to the full pile depth.

ACIP Pile Axial Capacity Design

In general, there are three design conditions that must be met when evaluating the axial capacity of a deep foundation: the geotechnical ultimate limit state or ultimate bearing capacity; the service limit state or settlement performance under service loads; and the structural ultimate limit state or structural capacity. For many projects, the ultimate limit state capacity will control the design of individual ACIP piles rather than the service limit state capacity. For that reason, the typical design approach is to first evaluate the ultimate limit state capacity and then check the service limit state performance. Once a

design has been selected to satisfy the requirements of the ultimate limit state capacity and the service limit state performance, the structural capacity will be evaluated and the steel reinforcement designed to accommodate the internal stresses (Brown et al. 2007).

While it is important to evaluate the lateral capacity of ACIP piles, the focus of this research was on the evaluation of axial capacity. Therefore, the methods and steps required for the evaluation of lateral capacity are not specifically addressed herein.

Ultimate Limit State Capacity

Currently, a large portion of the deep foundations designed in the United States, including ACIP piles, are designed utilizing Allowable Stress Design (ASD) procedures, also referred to as "working stress", and only consider the ultimate limit state capacity of the foundation.

With ASD design, the foundation capacity is evaluated by assuming full resistance through skin friction and end bearing. Extensive research has been conducted and many methods have been developed to evaluate the skin friction and end bearing components that contribute to the ultimate limit state capacity. Brown et al. (2007) includes a summary and comparison of 16 methods that can be used for estimating the axial capacity of ACIP piles. These include methods that were initially developed for the design of drilled shafts and driven piles but are also considered applicable to the design of ACIP piles. Also included are summaries of four comparisons of design methods, the results of which were used as the basis for the selection of recommended methods to be used for estimating the axial capacity of ACIP piles.

The FHWA 1999 Method for the design of drilled shafts presented by O'Neil and Reese (1999), and originally developed by Reese and O'Neill (1988), is the recommended method for the estimation of both the skin friction and end bearing capacity for ACIP piles in cohesive and cohesionless soils. This method is one of the more widely recognized methods for the prediction of drilled shaft capacities and comparison studies have shown it to be reasonably accurate at estimating capacities for ACIP piles.

The method generally relies on soil strength data collected from conventional soil borings including the undrained shear strength, S_u , of cohesive soils and the N_{60} values from cohesionless soils. The preferred method for evaluating S_u in cohesive soils is through laboratory triaxial compression tests or unconfined compressive strength tests performed on relatively undisturbed samples collected from the soil borings. N_{60} values are the standard penetration test (SPT) N-value adjusted to represent a hammer efficiency of 60 percent but they are not corrected for depth.

For an incremental length of pile, the ultimate unit skin friction in cohesive soils, τ_{tb} is calculated as:

$$\tau_u = \alpha S_u \tag{1-1}$$

where, α is a strength reduction factor that accounts for soil disturbance during construction, water migration from the concrete, and other similar factors (O'Neil and Reese 1999). The strength reduction factor varies as follows:

$$\alpha = 0.55$$
 for $S_{tt}/P_a \le 1.5$, and (1-2)

$$\alpha = 0.55 - 0.1(S_u / P_a - 1.5)$$
 for $1.5 \le S_u / P_a \le 2.5$ (1-3)

where, P_a is the standard atmospheric pressure typically approximated as 1.06 tons per square foot (tsf).

The ultimate unit end bearing resistance for cohesive soils, q_t , is calculated as:

$$q_t = N_c^* S_u \tag{1-4}$$

where, N_c^* is the bearing capacity factor and S_u is the average undrained shear strength of the soil with two pile diameters below the tip of the pile. For cohesive soils where $S_u \ge 2$ tsf, the value of $N_c^* = 9$ can be used with reasonable accuracy. For cohesive soils where $S_u \le 2$ tsf, the value of N_c^* is reduced to as low as 6.5 as a function of S_u and the undrained Young's modulus of the soil.

The ultimate unit skin friction in cohesionless soils, τ_u , is calculated based on correlations with the lateral earth pressures and the drained angle of internal friction as follows:

$$\tau_u = K_{ep} \, \sigma_v \, \tan \delta \, \leq 2.0 \, \text{tsf} \tag{1-5}$$

where, K_{ep} is the lateral earth pressure coefficient, $\sigma_{v}^{'}$ is the vertical effective stress, and δ is the drained angle of friction for the pile-soil interface. The values of K_{ep} and δ are difficult to evaluate and are significantly dependent on the type of deep foundation being installed and the quality of construction practices. Due to the difficulty of accurately evaluating the values of K_{ep} and δ , the simplified " β method" has been developed such that:

$$\beta_{ep} = K_{ep} \tan \delta \tag{1-6}$$

And Equation 1-5 can be re-written in the form:

$$\tau_{u} = \beta_{ep} \ \sigma_{v}^{'} \tag{1-7}$$

Where definitive information is not available regarding the values of K_{ep} and δ , it is considered reasonable to use an empirical relationship for β_{ep} that is near the lower bound of values obtained from a database of load tests (O'Neil and Reese 1999). The values for β_{ep} are typically correlated directly with the SPT N_{60} values which are expressed in blows per foot (bpf). The values recommended for use with the design of ACIP piles following the FHWA 1999 Method are estimated as:

$$\beta_{ep} = 1.5 - 0.135 Z^{0.5}$$
 for $N_{60} \ge 15 \text{ bpf}$ (1-8)

$$\beta_{ep} = \frac{N_{60}}{15} (1.5 - 0.135 Z^{0.5}) \qquad \text{for } N_{60} < 15 \text{ bpf}$$
 (1-9)

where, Z is the depth (in feet) from the ground surface to the midpoint of each respective soil layer or pile segment.

Within the FHWA 1999 method, the ultimate unit end bearing resistance value for cohesionless soils, q_t , is also correlated directly with SPT N_{60} values as follows:

$$q_t (tsf) = 0.6N_{60}$$
 for $0 \le N_{60} \le 75$ (1-10)

$$q_t = 45 \text{ tsf}$$
 for $N_{60} > 75$ (1-11)

where, N_{60} is considered within an interval from approximately one pile diameter above to two or three diameters below the tip of the pile.

Where cone penetration test (CPT) soundings are available, the Laboratorie Des Ponts et Chausses (LPC) method, originally developed by Bustamante and Gianeselli in 1982 for drilled shafts and driven piles, has been shown to provide reliable estimates of axial capacity for ACIP piles in both cohesive and cohesionless soils (Brown et al. 2007).

Using the LPC method, the ultimate unit skin friction and end bearing resistance values are correlated with the cone tip resistance, q_c , as follows:

$$\tau_u = \frac{q_c}{\alpha}$$
 (skin friction) (1-12)

$$q_t = k_c q_c$$
 (end bearing) (1-13)

where, τ_u is the ultimate unit skin friction, α is a friction coefficient, qt is the ultimate unit end bearing, and k_c is a bearing capacity factor. Recommended values for α and k_c for the design of ACIP piles, which are referred to in the LPC method documentation as "hollow auger bored piles" are dependent upon soil type as summarized below in Table 1. In addition, maximum values for τ_u are specified as part of the LPC method and are summarized in Table 1. For select soil types, a higher maximum value for τ_u , noted in parentheses in Table 1, is included for situations where careful execution and minimum disturbance of soil can be accounted for during construction.

Table 1. – LPC method α coefficients and k_c factors (Robertson and Robertson 2010)

Soil Type	q _c (MPa)	α Coefficient	Maximum τ_u (MPa)	k _c Factor
Soft clay and mud	< 1	30	0.015	0.40
Medium stiff clay	1 to 5	40	0.035 (0.08)	0.35
Very stiff clay	> 5	60	0.035 (0.08)	0.45
Loose silt/sand	< 5	60	0.035	0.40
M. dense sand/gravel	5 to 12	100	0.080 (0.12)	0.40
V. dense sand/gravel	> 12	150	0.120 (0.15)	0.30

Once the ultimate limit state capacity has been calculated using one of the many methods for axial capacity design, an assumed safety factor is then applied to that value to obtain the allowable axial capacity to be used for design. The factor of safety is used to account for variations in soil material strengths, inaccuracies in design equations, construction methods and the potential for errors to occur during construction, and the consequences of foundation failure (Phoon, Kulhawy and Grigoriu 2000). Typical factor of safety values range from 2 to 3 but can vary widely from engineer to engineer based on a variety of factors such as personal experience, quantity and quality of subsurface information available, and use of quality control measures such as static or dynamic load testing prior to or during construction. For the design of ACIP piles, Brown et al. (2007) recommend a minimum safety factor of 2.5 unless four specific conditions are met which permit the use of a safety factor of 2.0. Those conditions include: (1) the performance of at least one conventional static load test to a load exceeding the computed ultimate by 50 percent or to a load producing displacement equal to 5 percent of the pile diameter, (2) use of automated monitoring equipment on production pile, (3) the site geology stratigraphy, and soil properties are not highly variable, and (4) the site conditions do not pose difficult construction conditions for the piles.

Service Limit State Performance

Once the ultimate and allowable capacities have been calculated, the service limit state or settlement performance of the deep foundation can then be evaluated. The settlement analysis methods for single piles can generally be grouped into three broad

categories: (1) load transfer methods which incorporate the relationship between pile resistance and pile movement at select points along the pile, (2) methods based on the theory of elasticity using equations by for subsurface loading within a semi-infinite mass published by Mindlin in 1936, and (3) numerical methods such as finite-element analysis (Poulos and Davis 1980).

The method based on elastic theory is developed from equations for stress and deformation at any point in the interior of semi-infinite, elastic, and isotropic solids resulting from a force applied at another point in the solids. (Reese, Isenhower and Wang 2006). In addition, the method is generally based on the assumption that no slip occurs at the pile-soil interface. The method does not effectively consider the soil-structure interaction between the foundation and the surrounding soil. Modifications to the basic approach have been developed that allow for slip but the displacements that occur after slip occurs are still based on elastic theory. Several numerical methods have been developed based on the elastic theory method but which permit the consideration of variations to the method such as soil layering and bilinear or elasto-plastic soil performance. (Poulos and Davis 1980).

Empirical curves were developed by Reese and O'Neill (1988) to improve on the methods for prediction of settlement of drilled shafts by evaluating the load transfer and settlement performance for side resistance and end bearing separately. The curves were developed from the analysis of a database of compression load tests performed on single, full-sized drilled shafts. The use of these curves requires iterative process of estimating the settlement of the foundation element until the corresponding tip and side resistance

values added together equal the applied design load for the foundation. The load-settlement curves for side resistance were developed from tests performed on drilled shafts ranging diameter from 18 inches to 60 inches and the curves for end bearing were developed from tests performed on drilled shafts ranging in diameter from 30 inches to 132 inches. Use of these curves on drilled shafts with diameters outside those ranges should be verified with load testing (O'Neil and Reese 1999). While Brown et al. (2007) suggests that these curves can also be used to evaluate the load-settlement performance of ACIP piles, it is also recommended that the results be verified with load testing.

While there are separate curves for cohesive and cohesionless soils, as shown in Figures 1 and 2, this empirical method for evaluating settlement does not specifically consider the soil material properties along the side or at the tip of the foundation element. Rather, the method provides an estimate of settlement based on the ratio of design side load relative to the ultimate side load capacity as well as the ratio of the design end bearing pressure relative to the ultimate end bearing capacity. Furthermore, the evaluation of the overall load-settlement performance requires an iterative process to account for various aspects of the design, such as soil layering and stiffness of the soil relative to the stiffness of the foundation element, and to identify the proportioning of side load and end bearing load that result in comparable settlement performance.

The development of theoretical load transfer methods that consider the soilstructure interface performance, which can be applied to a variety of deep foundation types, and which can be adjusted for site-specific conditions, would be beneficial. Such an approach is discussed in Chapter 2

Figure 1. Normalized load-settlement curves for cohesive soils (Brown et al. 2007).

Figure 2. Normalized load-settlement curves for cohesionless soils (Brown et al. 2007).

CHAPTER 2

LOAD-DISPLACEMENT ANALYSIS USING THE "T-Z" METHOD

Due to the uncertainty of load-settlement performance inherent in the ASD methods, a theoretical method of evaluating load-settlement performance for a variety of deep foundation types, and which takes into consideration the soil-structure interaction, would be beneficial. Recently, the "t-z" method, first developed by Seed and Reese (1957), has become more widely used to evaluate and predict the load-transfer performance of deep foundations including ACIP piles. While the ASD methods consider the side and tip capacities and settlements separately and then add them together, the "t-z" method utilizes data relating the load transfer from the pile to the soil, *t*, to the foundation displacement, *z*, to evaluate the evaluate the capacity and settlement along the length of the pile and at the tip of the pile. With numerical modeling techniques, load-settlement performance of the sides and tip of the pile, as well as the elastic shortening of the structural foundation element, can be modeled simultaneously. Furthermore, the "t-z" method has the ability to incorporate site specific strength and deformation properties of soils (Zhu and Chang 2002).

Numerous empirical and theoretical models have been developed to evaluate the load transfer performance of deep foundations which are primarily based on drilled shafts and driven piles. Few models have been developed specifically for ACIP piles and those that have been developed usually take the form of modifications to models originally developed for drilled shafts or driven piles (Brown et al. 2007). The study conducted

herein follows previous research and analysis by Misra and Roberts using a theoretical "t-z" model to explicitly describe the load-displacement behavior of deep foundations (Misra and Roberts 2006, Roberts 2006).

The load-displacement behavior of the soil-structure interface can generally be described by two different theoretical "t-z" models: (1) a linear ideal elasto-plastic model, and (2) a non-linear hyperbolic model. The ideal elasto-plastic model can be evaluated using closed-form analytical relationships to describe the load-displacement. However, the hyperbolic model requires the solution of differential equations using numerical analysis techniques to describe the soil-structure interaction and evaluate the load-displacement behavior. The equations and methods for evaluating the non-linear model, on which this analysis is based, are summarized herein. For further derivation and reference of the equations for evaluating both the elasto-plastic model and the non-linear model, the reader is referred to Roberts (2006).

Soil-Structure Interaction Model

The soil-structure interaction that acts along the length of the pile in the "t-z" model method of evaluating load-displacement performance can be represented by the spring-slider system shown in Figure 3. This assumption is common with analytical and numerical models of the load-displacement behavior of drilled shafts and piles (Kraft, Ray and Kagawa 1981, Reese and O'Neill 1988).

Figure 3. Spring-slider model of pile-soil interface (Roberts 2006).

The analysis of the pile-soil interface resistance, represented by a series of springs along the length of the pile and at the tip, can be assumed to behave either as a linear ideal elasto-plastic material or as a non-linear material. If an ideal elasto-plastic material is assumed, the displacement that occurs during loading is assumed to be recoverable such that the displacement returns to zero when unloading occurs. For the non-linear model, the displacement that occurs during loading is non-recoverable and thus permanent when unloading occurs. For this analysis, the interface was modeled with the non-linear, behavior which better represents the typical observed load-displacement behavior of deep foundations.

Figure 4 shows the hyperbolic curve representative of a non-linear forcedisplacement behavior where the displacement, u, is plotted relative to the shear force per unit length of pile, q. The value K_{init} represents the initial tangent shear modulus of the subgrade reaction at the soil-structure interface and q_o represents the asymptotic value of the ultimate strength at the soil-structure interface. The value of q_o is defined as the product of the pile perimeter and the ultimate shear strength of soil-structure interface, T_u .

Figure 4. Non-linear force-displacement relationship for soil-structure interface (Roberts 2006).

For deep foundations, the load transfer occurs through the soil-structure interface along the length of the foundation element referred to as the interaction zone, L_b . Portions of the foundation with zero or negligible shearing resistance are considered to be the non-interaction zone. The length of the non-interaction zone can be affected by the diameter of foundation, frost depth, seasonal variations in moisture content of the soils, presence of fill, construction techniques, and the presence of excessive lateral loads. The non-interaction zone for deep foundations will typically range from as little as one foot, where cohesionless soils are present at the ground surface, to five feet or the full depth of seasonal moisture change, whichever is greater, where cohesive soils are present. Until recently, it has been common practice to also include a non-interaction zone of one

diameter at the bottom of drilled shaft and auger cast piles which bear in cohesive soils.

This approach was based on numerical modeling that predicts the development of a zone of tension at the shaft-soil interface in the zone immediately above the base of the shaft.

Results of field load test data do not support this approach and Brown, Turner and Castelli (2010) recommend that side resistance should not be neglected along the bottom one diameter.

As the pile is loaded in compression, the soil-structure interface within the interaction zone goes through deformation based on the assumed hyperbolic force-displacement relationship described previously. As the load increases, the soil-structure interface will begin to yield near the top of the interaction zone and then progress downward toward the bottom of the pile. Throughout the loading sequence, the pile is assumed to behave as an elastic element. The load required to reach the yield strength of the pile grout is much higher than the load required to cause yielding of the soil-structure interface.

<u>Load Transfer Model</u>

As described by Bowles (1997), the force balance of the pile-soil interface can be represented by the following equilibrium equation:

$$q(z) - Ku(z) = 0 \tag{2-1}$$

Where q(z) is the shear force per unit length along the pile and u(z) is the pile deformation at that location. The axial force in the pile can be represented by $K_m du/dz$, where K_m is the axial stiffness of the pile and is the product of the pile area and the modulus of elasticity of

the pile material. The shear force per unit length, q(z), can then be obtained with the following equation:

$$q(z) = K_m \frac{d^2 u}{dz^2} \tag{2-2}$$

The governing equilibrium Equation 2-1 can then be written as:

$$K_m \frac{d^2 u}{dz^2} - K u(z) = 0 {(2-3)}$$

The non-linear force-displacement relationship behavior has been effectively described for both clay and sand soils using the following hyperbolic model developed by Kondner et al. (Duncan and Chang 1970):

$$q = \frac{u}{\left\lceil \frac{1}{K_{init}} + \frac{uR_f}{q_o} \right\rceil} \tag{2-4}$$

where, K_{init} represents the initial tangent shear modulus of the subgrade reaction at the soil-structure interface. R_f , is a factor described as the failure ratio relating the theoretical ultimate strength, q_o , of the load-displacement curve to the observed failure strength, q_f , as follows (Duncan and Chang 1970):

$$R_f = \frac{q_f}{q_o} \tag{2-5}$$

Duncan and Chang note that the value of R_f will always be less than unity and that it has been found to be between 0.75 and 1.00 for a variety of different soils. They also note that the value of R_f is essentially independent of the confining pressure.

The load transfer model described above is applicable to piles subject to tension loads where the soil-structure interaction is limited to side forces. For piles subject to compression loads, the tip performance needs to be considered in addition to the side forces. The tip force, P_t , developed for each increment of compression load acting on the pile is proportional to the tip displacement, u_t , and is described by:

$$P_t = K_t u_t \tag{2-6}$$

where, K_t is the tip soil stiffness. The tip soil stiffness can be related to the pile diameter and the elastic properties of the tip soil using the theory for rigid punch bearing on an elastic half-space using (Johnson 1985):

$$K_{t} = \frac{0.3 \pi D E_{s}}{\left(1 - \mu_{s}^{2}\right)} \tag{2-7}$$

where, E_s is the elastic modulus of the tip soil, μ_s is the Poisson's ratio of the tip soil, and D is the diameter of the pile. To evaluate non-linear force-displacement relationship behavior at the tip of the pile, Equation 2-4 can be rewritten to represent the tip force:

$$P_{t} = \frac{u_{t}}{\left\lceil \frac{1}{K_{ti}} + \frac{u_{t}R_{f}}{P_{utip}} \right\rceil}$$
(2-8)

where, K_{ti} is the initial tip soil stiffness. Equation 2-7 can be used to calculate the initial value of tip soil stiffness. The failure ratio, R_f , is now used to relate the theoretical ultimate capacity of the tip soil, P_{utip} , to the observed failure strength of the tip soil, P_{fiip} , similar to Equation 2-5:

$$R_f = \frac{P_{flip}}{P_{utip}} \tag{2-9}$$

$$P_{utip} = q_t A_m (2-10)$$

Finite Difference Methodology

While the assumption of hyperbolic load-displacement for the soil performance allows for the modeling of non-linear behavior at the soil-structure interface, it is not possible to solve the equations that describe that performance in closed form. For a pile modeled using the non-linear behavior, the shear modulus of soil-structure interface subgrade reaction, K, along the length of the pile and at the pile tip are dependent on pile displacement. Therefore, a numerical method, such as the finite difference method, must be used to evaluate the load-displacement behavior.

Using the finite difference methodology, the pile is divided into a series of equidistant nodes along the length of soil-structure interface beginning at the tip (or deepest node) and proceeding to the head of the pile. As derived by Roberts (2006), and summarized herein, the central-difference methodology can be used to develop a set of algebraic equations that can be used to solve for the displacement at each node using the governing Equation 2-3:

$$u_{i+1} = \frac{K}{K_m} u_i(\Delta z^2) + 2u_i - u_{i-1}$$
 (2-11)

where, u_i is the nodal displacement and Δz is the distance between each node. The subscript i refers to the i^{th} node along the soil-structure interface, and the nodes are

numbered sequentially from the top of the pile (node θ) to the head (node x). As a result, a total of (x+I) nodes exist which enables the development of (x+I) equations to define nodal displacements. Equation 2-11 includes two additional unknown displacements which requires two additional known boundary conditions to solve for nodal displacements. At node θ , the term u_{i-I} becomes u_{-I} , and at node x, the term u_{i+I} becomes u_{x+I} . In the case of the pile foundation loaded in compression, the applied load at the head of the pile, P, and the tip force, P_{I} , given by Equation 2-6, are known. Using the central difference methods, the boundary conditions for u_{-I} and u_{x+I} can be written in terms of nodal displacement for the tip force and the applied pile load, respectively:

$$u_{-1} = u_0 \frac{K_t}{K_m} (2\Delta z) + u_1 \tag{2-12}$$

$$u_{x+1} = u_{x-1} + \frac{P}{K_m} (2\Delta z) \tag{2-13}$$

These algebraic equations can be utilized for piles subjected to either compression or tension loading. For a pile under tension loading, the boundary condition for the tip force, given by Equation 2-12, is simplified by the fact that the value for K_t will be equal to zero. In addition, for a pile subjected to tension loading, the value of the unknown displacement u_{-1} becomes equal to u_1 .

With the addition of these two boundary conditions, a total of (x+3) equations can be written and arranged in matrix form. When the head of the pile is subjected to an initial load, the algebraic equations can be solved for displacement at each discrete node using

standard matrix algebra. The use of the finite difference methodology requires that the nodal displacements be solved at small load increment steps. This allows for the values of shear modulus of soil-structure interface subgrade reaction, K, and the tip soils stiffness, K_t , to be updated at each load increment, and it accounts for the fact that the soil-structure interface will begin to yield from the head of the pile to the tip as the load is incrementally increased.

To incorporate the hyperbolic force displacement relationship into the analyses, Equations 2-4 and 2-5 can be rearranged by substituting $q_o = \pi D \tau_u$ and then by dividing by the displacement at node i, u_i , which yields the following expression:

$$K_i = K_{init} \frac{q_o}{q_o + u_i R_f K_{init}}$$
 (2-14)

where, K_i is the secant shear modulus of soil-structure interface subgrade reaction at the node of interest corresponding to the node displacement, u_i . At each load increment, the value of K_i can be calculated for the i^{th} node based on the nodal displacement calculated from the previous step load.

A similar equation can be written for the tip soil performance by dividing Equation 2-8 by the tip displacement, u_0 , which yields the following expression:

$$K_{t} = K_{ti} \frac{P_{utip}}{P_{utip} + u_0 R_f K_{ti}}$$

$$(2-15)$$

where, K_t is the secant stiffness of the tip soil corresponding to the tip displacement, u_0 . At each load increment, the value of K_t can be calculated based on the tip displacement

calculated from the previous step load. Note that Equation 2-15 will note apply to piles subject to tension loading.

Once the values for K_i and K_t are known, the displacements at each node are calculated. In addition, for piles subject to compression loading, the tip force, P_t , can be calculated using finite difference methods based on tip displacement represented as:

$$P_{t} = K_{m} \frac{(u_{1} - u_{-1})}{2\Delta z} \tag{2-16}$$

The process continues by incrementally increasing the applied shaft load, updating the load and stiffness vectors, and solving for the new nodal displacements. The process is completed for each node along the length of the pile and at the pile tip. As the load increases, and the displacement at each node increases, the value of K_i will approach zero and the soil-structure interface will fail progressing from the head of the pile to the tip. As this process continues for a pile under compression loading, the tip soil will carry a larger portion of the total load until the soil-structure interface yields at all nodes and the full load is applied to the tip soil. Once the tip force, P_i represented by Equation 2-16, reaches the tip baring capacity, P_{utip} represented by Equation 2-10, the pile will fail by plunging. For a pile subject to tension loading, ultimate failure of the pile occurs once all of the soil-structure interface nodes have failed since no load is carried by the pile tip.

CHAPTER 3

PROJECT SUMMARY

The project from which the research data was collected included the construction of a new coal-fired power plant near Weston, Missouri. Figures 5 shows the site vicinity of the project area and Figure 6 is a topographic map of the area. Construction of the new 850-megawatt generator was completed in 2010 adjacent to an existing coal-fired generator. Throughout the course of construction, more than 7,000 auger cast piles were installed for the support of various structures and equipment. During the design of the power plant, an extensive geotechnical subsurface investigation was conducted and multiple static pile load tests were performed to evaluate the performance of auger cast piles at this site.

Figure 5: Project vicinity map (Microsoft 2009).

Figure 6: Topographic map of project area (USGS 1984).

Project Geology

The project site is located along the east bank of the Missouri River approximately 4.5 miles northwest of Weston, Missouri. The site is within the unconsolidated alluvial deposits of the Missouri River floodplain and located between the east bank of the river and an upland bluff marking the flood plain boundary.

The uppermost soils within the flood plain are considered to be recent stage

Holocene alluvial deposits consisting of fine grained clays, silty clays and clayey silts.

The upper Holocene soils are underlain by thick layers of sand and gravel alluvium

believed to be of Wisconsinan-age within the Pleistocene Series and which are believed to

be of glacial origin. The Missouri River in its current location is considered to be the

approximate southern-most limit of continental glaciation. The Wisconsinan alluvium can

be more than 50 feet thick in terraces (Hasan, Moberly and Caoile 1988) and borings at the project site indicate that the alluvium extends to depths ranging from 76 to 91 feet below existing grade where bedrock is encountered at elevations between 703 feet and 695 feet above mean sea level. The Geologic Map of Missouri (Middendorf et al. 2003) indicates that the bedrock underlying the alluvium likely consists of Pennsylvanian-age shale, limestone or sandstone.

Field Investigation

The initial geotechnical subsurface field investigation was performed in March and April 2006 and included the completion of 45 soil borings and 27 cone penetration test (CPT) soundings. A second phase of investigations was performed in October and November 2007 and included an additional 22 soil borings. The soil borings and CPT soundings were completed to pre-determined depths or to practical refusal, whichever occurred first. Final boring depths ranged from 10 feet to 91.5 feet below the ground surface. Final CPT sounding depths ranged from 30 to 90 feet below the ground surface.

Borings and CPT soundings were number sequentially from 1 through 94 with borings denoted as B-## and CPT soundings denoted as C-##. The borings and CPT soundings used for the current research were selected based on their general proximity to the test pile locations and are summarized in Table 2. Locations for most of the borings and CPT soundings are shown in Figure 7. However, some locations which were further away from the main project area are not shown. Logs of soil borings and CPT soundings

applicable to the current research are included in Appendix A and Appendix B, respectively.

Table 2. – Borings and CPT soundings evaluated.

Test Pile	Boring /	Distance from	Grade Elev.	Total Depth
Area	CPT Sounding	Test Pile (ft.)	(ft.)	(ft.)
Powerhouse	B-01	150	784.5	87.0
	C-02	75	783.6	85.0
	B-03	150	784.9	102.5
	B-67	150	784.6	50.0
	B-68	90	782.9	50.0
	C-04	220	785.7	85.1
	B-05	160	785.6	86.0
Dailar	B-06	200	786.4	103.5
Boiler	C-07	80	785.9	73.3
	B-08	195	787.0	88.0
	C-29	280	786.3	50.0
	C-10	80	786.5	76.0
	B-11	130	788.2	90.5
Chimney	B-12	50	787.2	105.0
	C-13	115	786.9	79.2
	B-14	170	786.1	50.0
	B-58	700	785.7	88.0
Coal Yard	B-60	380	775.7	50.0
Coal Yard	C-61	135	785.7	50.0
	B-71	140	786.7	76.5
Cooling Tower	B-35	560	773.7	50.0
	B-36	320	774.9	76.7
	B-37	95	773.0	50.0
	B-38	255	772.7	50.0
Water Tanks	C-48	60	785.6	30.0
	B-49	195	785.6	20.0
	B-76	140	785.1	50.0
	B-77	90	784.5	85.0
	B-78	135	785.0	50.0

The soil borings in the initial phase of the investigation were completed using truck-mounted Mobile B-57 and CME-55 drill rigs as well as an all-terrain vehicle (ATV) mounted CME-750X drill rig. The soil borings in the second phase included the use of an ATV-mounted Diedrich D-50 drill rig. Drilling methods included a combination of hollow-stem augers and rotary wash drilling. Soil samples were collected at 2.5-foot intervals from the ground surface to a depth of 10 feet and then at 5-foot intervals beyond a depth of 10 feet. Disturbed samples were collected using 1-3/8 inch diameter split-barrel samplers in accordance with ASTM D1586. The drill rigs were all equipped with automatic trip hammers for conducting the standard penetration (SPT) tests. The hammers had calibrated efficiencies of 74, 72, 78, and 69 percent for the Mobile B-57, CME-55, CME-750X, and Diedrich D-50 rigs, respectively. Relatively undisturbed samples were collected using 3-inch diameter thin-walled Shelby tubes in accordance with ASTM D1587. When bedrock was encountered in select borings, NQ2-size (1-7/8 inch inner diameter) rock core was collected.

CPT soundings were advanced using a 20-ton compression type rig equipped with a CPTu system which collects piezometric data in addition to soil strength data. The cone had a tip area of 2.3 square inches and a friction sleeve area of 34.9 square inches. Measurements were collected at 2-inch intervals throughout the full length of each sounding and included tip resistance, q_c , sleeve friction, f_s , dynamic pore water pressure, g_s , temperature, g_s , and cone inclination, g_s . The stratigraphic profile for each sounding was interpreted using the friction ratio, g_s , which is defined as:

$$R_f = 100 \left(\frac{f_s}{q_t} \right) \tag{3-1}$$

The soil behavior types (SBT) identified on the CPT sounding logs are based on correlations of R_f with the q_c summarized by Robertson (2010) as shown in Figure 8.

Zone	Soil Behavior Type		
1	Sensitive fine grained		
2	Organic material		
3	Clay		
4	Silty Clay to clay		
5	Clayey silt to silty clay		
6	Sandy silt to clayey silt		
7	Silty sand to sandy silt		
8	Sand to silty sand		
9	Sand		
10	Gravelly sand to sand		
11	Very stiff fine grained*		
12	Sand to clayey sand*		

* Overconsolidated or cemented

Figure 8: CPT soil behavior type classification system (Robertson 2010)

The soils encountered in the borings and CPT soundings generally consist of an upper zone of fine to medium sands and silty sands extending to depths of approximately 10 to 15 feet. Using the Unified Soil Classification System (USCS), the sands generally classify as poorly graded sand (SP) and silty sand (SM). Throughout much of the site, a zone of finer grained silts (ML) and clays (CL and CH) are present to a depth of approximately 20 to 25 feet with an average layer thickness of approximately 15 feet. In the area of the cooling tower, which is approximately 10 to 15 feet lower in elevation than the rest of the project site, the silt and clay zone is present beginning at the ground surface. Below the soils transition back to sands which coarsen and have decreasing silt content

with depth and are classified as well graded sand (SW) and poorly graded gravel (GP). These granular soils were generally found to be loose to medium dense above a depth of approximately 35 to 40 feet and transitioned to medium dense to dense at greater depths down to the top of bedrock. The bedrock generally consisted of interbedded shale and sandstone with siltstone and limestone encountered in some locations.

Test Pile Program

During the course of the foundation design process, a total of six static compression and six static tension load tests were performed throughout the project site. Tests were performed in the area of the boiler, chimney, powerhouse, coal yard, cooling tower, and water tanks as indicated in Figure 7.

The load tests at the boiler, chimney and powerhouse were performed in August 2006, the load tests at the water tank and coal yard were performed in October and November 2006, and the load test at the cooling tower was performed in July 2007. Each load test was performed on a sacrificial auger cast pile which was not incorporated into the final foundation construction and separate piles were used for the compression and tension load testing at each location. A summary of the test pile configurations, including top elevations, embedment lengths, and tip elevations, is provided in Table 3.

Each of the test piles was installed as a standard 16-inch diameter auger cast pile.

Each compression test pile included a full length #10 or #11 center bar. The tension test piles installed at the coal yard, cooling tower, and water tank areas also included full length #10 and #11 center bars. The tension test piles installed at the boiler, chimney, and

powerhouse areas included full length #20 center bars. In addition to the center bars, 26-foot long reinforcing cages consisting of 6 - #8 longitudinal bars were installed in the upper portion of each of the test piles.

Table 3. – Test pile configurations.

Pile Location	Pile Type	Grade Elev. (ft.)	Embedment Length (ft.)	Tip Elevation (ft.)
Boiler	Compression	784.6	73.5	711.1
	Tension	784.6	73.0	711.6
Chimney	Both	787.0	75.0	712.0
Powerhouse	Both	782.5	69.0	712.5
Coal Yard	Both	776.9	65.0	711.9
Cooling Tower	Both	781.0	50.0	729.0
Water Tanks	Both	785.0	65.0	720.0

Compression Testing Procedures

Each static compression load test was performed in general accordance with ASTM D1143-81 (1994). Loading generally followed the "Standard Loading Procedure" (Part 5.1) and "Loading in Excess of Standard Test Load" (Part 5.3) with some modifications. Loading was applied in 25-percent increments up to 200 percent of the respective anticipated pile design load, referred to as the standard test load, as described in Part 5.1. The load increments from 25 to 175 percent of the design load were maintained for durations varying from 5 to 20 minutes and the standard test load was maintained for a period ranging from one hour to one and one-half hours. Unloading was then performed in four equal decrements, allowing for 5-minute hold times at each decrement. Each test pile

was then reloaded to the standard test load in increments of 50 percent of the design load as recommended in Part 5.3 with each of these increments maintained for 5 to 15 minutes. The applied load was then increased in increments of 10 percent of the design load until the maximum required load was applied (300 percent of the design load) or until failure of the test pile occurred. Each of these increments was maintained for 5 to 15 minutes rather than the 20-minute holds recommended in Part 5.3. The full 300-percent load was held for one hour, unless excess pile head settlement occurred, and then removed in four equal decrements, allowing for 5- to 15-minute hold times at each decrement. The compression test at the powerhouse was terminated following the 10-minute hold at 270 percent of the design load due to excessive pile head settlement.

The compression load test at the coal yard was performed generally as described previously with modifications. The test pile was initially loaded in two small loading/unloading sequences. The first loading/unloading sequence was applied in three increments; 25, 50, and 75 percent of the anticipated pile design load of 125 tons, allowing 10 minutes between load increments, and then unloaded in one decrement. The test pile was then reloaded in two increments; 75 and 100 percent of the proposed design load, allowing 5 and 10 minutes between load increments respectively, then unloaded in one decrement. The test pile was then re-loaded in six increments; 50, 100, 125, 150, 175, and 200 percent of the proposed design load. The duration for the 50 to 175 percent load increments was 5 to 15 minutes. The standard test load of 250 tons (200 percent of the design load) was removed after an approximate one and one-half hour hold time. The unloading sequence was carried out in four decrements; 150, 100, 50, and 0 percent of the

working load in general accordance with ASTM D1143, Part 5.1. The test pile was then reloaded to the standard test load in increments of 50 percent of the pile design load, allowing 5 to 10 minutes between load increments. The applied load was then increased in increments of 10 percent of the design load until the maximum required load of 375 tons (300 percent of the design load) had been applied, allowing 10 minutes between load increments. The full 300 percent load was held for 1 hour and then removed in four equal decrements, allowing 5 minutes between decrements.

Tension Testing Procedures

Each tension test load test was performed in general accordance with ASTM D3689-90 (1995). Loading generally followed the "Standard Loading Procedure" (Part 7.2) and "Loading in Excess of 200% of Pile Design Uplift Load" (Part 7.4) with some modifications. Loading was applied in 25-percent increments up to 200 percent of the respective pile design load, referred to as the standard test load, as recommended in Part 7.2. The load increments from 25 to 175 percent of the design load were maintained for durations varying from 5 to 15 minutes and the standard test loads were maintained for periods ranging from one hour to one and one-quarter hours. Unloading was then performed in four equal decrements. Each test pile was then reloaded to the standard test load in increments of 50 percent of the pile design load as recommended in Part 7.4 with each of these increments maintained for 5 to 10 minutes. The applied load was then increased in increments of 10 percent of the design load until the maximum required load was applied (300 percent of the design compression load) or until failure of the test pile

occurred. Each of these increments was maintained for 10 to 15 minutes rather than the 20-minute holds recommended in Part 7.4. The full 300-percent load was held for one hour and then removed in four equal decrements, allowing for 5- to 15-minute hold times at each decrement.

Test Pile Instrumentation

Test pile head settlements were measured at each test pile using four independently supported dial gauges, similar to those shown in Figure 9, which were accurate to the nearest 0.001 inch. The dial gauges were mounted at each of the four quadrants of the test pile to allow for detection of eccentric loading.

Figure 9: Dial gauges for monitoring pile top movement.

Each of the six compression test piles and three of the tension piles, including those at the coal yard, cooling tower, and water tank, were instrumented with multiple strain gauges. The Geokon Model 4911 "Sister Bar" strain gauges, similar to those shown in Figure 10, were attached to the steel reinforcing center bars at multiple depths throughout each pile. The strain gauges provided a means of monitoring the rate of load transfer in the pile during the load testing. Strain measurements from the sister-bar strain gauges were recorded using a Geokon GK-403 readout box.

Figure 10: Geokon Model 4911 "Sister Bar" strain gauges.

CHAPTER 4

DATA ANALYSIS

As discussed in Chapter 2, the use of the hyperbolic load-displacement relationship to evaluate the non-linear behavior at the soil-structure interface requires the use of a numerical method to solve the governing algebraic equations. A computer program was developed by Roberts (2006) using Mathcad (2002) which utilizes the finite difference methodology to evaluate the hyperbolic soil model. For this research, the program was utilized to back-calculate values for the ultimate shear strength of soil-structure interface, τ_{uv} , and the initial tangent shear modulus of the subgrade reaction at the soil-structure interface, K_{init} . The values of τ_u and K_{init} were adjusted until the theoretical load-settlement curve provided a close approximation of the load-settlement curve developed from each pile load test. The back-calculated values of τ_u and K_{init} were then compared with the SPT N_{60} values collected from nearby soil borings, as well as the q_c values from nearby CPT soundings, to look for trends that would indicate correlations between the field testing data and the soil strengths exhibited by the load testing.

While the soil profile observed in the borings and CPT soundings included some layering of silts and clays, the profile is generally dominated by a mixture of silt, sand, and gravel that generally coarsens with depth. The data provided by the embedded strain gauges generally does not appear to indicate any consistent layering. For model simplicity,

this research included the modeling of a single, homogenous layer of soil along the length of the piles and the values of τ_u and K_{init} were each treated as the average value over the full length of pile. Similarly, the SPT N_{60} values and the CPT q_c values from nearby explorations were averaged over the corresponding length of pile penetration for the purposes of evaluating correlations. A summary of the average N_{60} and q_c used for the development of correlations with "t-z" model parameters is included in Table 4 and Table 5.

Table 4 – Summary of field investigation N_{60} values evaluated.

		1			
Test Pile Area	Boring	N ₆₀ Range (bpf)	N_{60}	N_{60}	Exploration Tip
			Average	Average	Elevation
			(bpf)	(bpf)	(ft.)
	B-01	3 – 49	24	25	697.5
Powerhouse	B-03	7 - 46	26		682.4
rowernouse	B-67	0 - 43	17		734.6*
	B-68	4 – 44	18		732.9*
	B-05	4 – 61	26		699.6
Boiler	B-06	10 - 83	36	30	682.9
	B-08	4 – 75	28		699.0
Chimney	B-11	5 – 63	28	30	697.7
	B-12	6 – 89	32		682.2
	B-14	4 – 47	23		736.1*
	B-58	5 – 38	18	19	687.7
Coal Yard	B-60	5 – 38	20		736.7*
	B-71	3 – 30	21		709.2
Cooling Tower	B-35	5 – 35	16	19	723.7
	B-36	3 – 47	20		698.2
	B-37	4 – 47	19		723.0
	B-38	4 - 27	19		722.7
Water Tanks	B-49	4 - 35	23	17	765.6*
	B-76	5 – 56	26		735.1*
	B-77	7 – 33	17		699.5
	B-78	2 - 41	20		735.0*

^{*} Boring did not extend to the full depth of the associated test pile.

Table 5 – Summary of field investigation q_c values evaluated.

Test Pile Area	Boring	q_c Range (tsf)	q_c Average (tsf)	q_c Average (tsf)	Exploration Tip Elevation (ft.)
Powerhouse	C-02	3 – 713	167	172	698.7
Boiler	C-04	9 - 527	212	167	700.6
	C-07	6 - 704	148		712.6*
	C-29	6 - 382	155		736.3*
Chimney	C-10	5 – 504	186	167	710.6
	C-13	5 – 409	148		707.7
Coal Yard	C-61	6 – 489	126	126	735.7*
Cooling Tower	No CPT soundings were completed in the near vicinity				
Water Tanks	C-48	5 – 319	126	126	755.5*

^{*} Boring did not extend to the full depth of the associated test pile.

Model Parameters

While the values of τ_u and K_{init} were treated as variables for the load-settlement curve fitting process, the remaining parameters within the model were treated as constants. This includes the values for the non-interaction zones at the top and bottom of the piles, the axial stiffness of the pile, and the tip soil performance including the elastic modulus, ultimate bearing capacity, and Poisson's ratio.

Non-Interaction Zone

For this analysis, a non-interaction zone of 1 foot was included only at the top of the piles for the purpose of curve fitting with the static load test data as described later. The near-surface soils at the site predominantly consisted of cohesionless sands and silts.

While some construction disturbance can be expected in the near surface soils, the use of the auger to maintain a stable hole during the grouting process is expected to limit the amount of disturbance. In addition, seasonal conditions such as frost action and moisture variations would not impact the performance of piles during the relatively short duration between pile installation and performance of the static load testing.

While it has been common practice to also include a non-interaction zone of one diameter at the bottom of drilled shaft and auger cast piles which bear in cohesive soils, the piles considered for this research were terminated in cohesionless sands and gravels.

Therefore, a non-interaction zone was not included in the load-settlement model.

Axial Pile Stiffness

The axial stiffness of the piles was calculated based on the 7-day grout strength tests performed on typical 2-inch grout cubes collected during the installation of the test piles. For the coal yard area, the load testing was performed on the 23^{rd} day following test pile installation so the grout strength was estimated using 7-day and 28-day grout cube breaks. A similar approach was used for estimating the grout strength for the water tank area where testing was performed on the 19^{th} day following test pile installation. The compressive strength of the grout was used to calculate the grout modulus of elasticity, E_g . A composite section was evaluated to account for the presence of the steel reinforcement in the test piles. The stiffness of the composite pile section, K_m , was calculated as follows:

$$K_{m} = \frac{(A_{g} E_{g}) + (A_{s} E_{s})}{A_{m}}$$
 (4-1)

where, A_g is the area of grout, A_s is the area of steel reinforcement, E_s is the steel modulus of elasticity, and A_m is the total pile area. Due to variations in the quantity of steel reinforcement relative to depth, a weighted average for K_m was used in the analyses.

There is some potential for the grout strengths indicated by laboratory testing to differ from the actual grout strength within the test piles during pile testing. These variations can be attributed to different curing conditions for the test cubes relative to the grout placed within the pile or to time lapses between the date of grout testing and the date of pile testing. Due to this potential for variation of the grout strength, a sensitivity analysis was performed using the data from the Boiler compression test to evaluate the impact on the back-calculated values of τ_u and K_{init} . The data from the Boiler compression test was selected for the sensitivity analysis because it was the first set of data to be used for the load-settlement curve fitting process. As the curve-fitting analyses progressed using the data from other load tests, it was noted that the Boiler compression was one of the data sets that resulted in a close fit with the curves predicted by the "t-z" model. However, for the sensitivity analyses, the quality of fit between the load test data and the "t-z" model was not considered to be as important as the magnitude of variation observed in the predicted load-settlement curves relative to the magnitude of variation to the grout strength. A similar approach was for evaluating the sensitivity of the model to other input variables as discussed later.

With all other model parameters kept as constants, the grout strength was varied from the minimum design grout compressive strength of 5000 pounds per square inch (psi) to the maximum observed laboratory compressive strength of 7020 psi. As exhibited in

Figure 11, the impact of the variation of grout strength has a minimal impact on the predicted load-settlement performance. The analyses indicate that over the range of anticipated grout compressive strengths, the back-calculated value of τ_u varies from 21.7 to 22.5 psi. This is a variation of approximately ± 2 percent relative to the value of 22.0 psi back-calculated using the laboratory strength test data for the grout in the compression test pile for the Boiler area. The value of K_{init} was able to be kept constant at 3 psi and maintain a good fit to the load settlement performance of the test pile throughout the range of grout strengths. The potential for variation of the grout compressive strengths, and the affect it has on the axial pile stiffness, is expected to have a negligible impact on the derivation of the soil interaction strength parameters.

Tip Soil Elastic Modulus

The tip soil elastic modulus, E_s , was estimated using correlations with SPT N-values for gravelly sands as found in Bowles (1997). The correlations provided for gravelly sands include:

$$E_s = 1200(N_{60} + 6) \tag{4-2}$$

$$E_s = 600(N_{60} + 6)$$
 for $N_{60} \le 15$ (4-3)

$$E_s = 600(N_{60} + 6) + 2000$$
 for $N_{60} > 15$ (4-4)

The correlations do not indicate the conditions for which Equation 4-2 should be applied. As the N_{60} for the soils near the tips of the test piles exhibited N-values consistently greater than 15, the results of Equation 4-4 were compared with the results of

Equation 4-2. The resulting value for E_s ranged approximately from 350 to 1300 kips per square foot (ksf) with an average value of approximately 750 ksf.

Figure 11: Applied load vs. settlement for grout strength sensitivity analysis using Boiler compression test pile results.

To account for the potential variation of the value of E_s , a sensitivity analysis was performed using the data from the Boiler compression test to evaluate the impact on the back-calculated values of τ_u and K_{init} . With all other parameters kept as constants, the load settlement performance was evaluated at a minimum value 350 ksf and a maximum value

of 1300 ksf for E_s . As exhibited in Figure 12, the impact of the variation of tip soil elastic modulus has a minimal impact on the predicted load-settlement performance. The analyses indicate that at the maximum and minimum modeled E_s values, the back-calculated value of τ_u varies from 20.8 to 23.2 psi, respectively. This is a variation of approximately ± 5 percent relative to the value of 22.0 psi back-calculated using the average value of 750 ksf. The value of K_{init} was kept constant at 3 psi for this sensitivity analysis. The potential for variation of the tip soil elastic modulus is expected to have a negligible impact on the derivation of the soil interaction strength parameters.

Figure 12: Applied load vs. settlement for tip soil elastic modulus sensitivity analysis using Boiler compression test pile results.

Tip Soil Ultimate Bearing Capacity

The tip soil ultimate bearing capacity, q_t , was estimated using correlations with SPT N-values and with the q_c value from the CPT soundings. Equation 1-10 was used to estimate q_t from the N-values while Equation 1-13 was used to estimate q_t from the CPT soundings. For each correlation, the N-values and the q_t values were averaged over a distance of one diameter above and three diameters below the tips of each pile. Using Equation 1-10, the predicted value of q_t ranges from 20 ksf to 58 ksf with an average value of 38 ksf. Using Equation 1-13, with a k_c value of 0.3 for very dense sands and gravels as shown in Table 1, the predicted value of q_t ranges from 162 ksf to 278 ksf with an average value of 230 ksf.

Data collected from the strain gauges embedded at the tips of the test piles indicate that the bearing pressures developed at the maximum test loads ranged from 29 ksf to 132 ksf with an average value of 85 ksf. At the maximum test loads, the pile top settlements ranged from 0.9 to 1.5 inches. Accounting for elastic shortening of the piles, tip movements were estimated to be on the order of 0.3 to 1.0 inch. Brown et al. (2007) notes that the end bearing component is fully developed at tip displacements on the order of 5 to 10 percent of the pile diameter. For the 16-inch piles used in this research, a pile tip displacement on the order of 0.8 to 1.6 inches would be required for full development of the end bearing capacity. Therefore, the ultimate bearing capacities for the test piles are likely in the higher range of values predicted by the LPC method using the CPT sounding data. The average value of 230 ksf predicted by the LPC method was selected as the basis for analysis for the curve fitting calculations.

Due to the large variation between the predicted values for the ultimate tip bearing relative to the two correlation methods, an analysis was performed using the data from the Boiler compression test to evaluate the sensitivity of the back-calculated values of τ_u and K_{init} relative to variations in the value of q_t . With all other parameters kept as constants, the load-settlement performance was evaluated at a range of value for q_t predicted by the correlations. As exhibited in Figure 13, the impact of the variation of tip soil ultimate bearing capacity has a moderate impact on the predicted load-settlement performance. The analyses indicate that at the maximum and minimum modeled q_t values, the back-calculated value of τ_u varies from 21.8 to 23.8 psi, respectively. This is a variation of approximately minus 1 percent to plus 8 percent relative to the value of 22.0 psi back-calculated using the average value of 230 ksf. The value of K_{init} was kept constant at 3 psi for this sensitivity analysis. While the magnitude of potential variability is higher than for some of the other model parameters evaluated, the strain gauge data provides some justification for using the higher predicted value from the LPC correlations.

Tip Soil Poisson's Ratio

While correlations to estimate the Poisson's ratio, μ_s , of soils relative to conventional in-situ testing such as SPT or CPT, there are published typical values based on soil type. For dense sand or gravel, a range of 0.4 to 0.5 is recommended by Arya, O'Neill, and Pincus (1979). A value of 0.3 is recommended for gravel, unless evidence indicates otherwise, by Reese, Isenhower, and Wang (2006). In addition, it is noted that

the Poisson's ratio increases to a value of 0.48 to 0.49 in 100 percent saturated soils (U.S. Army Corps of Engineers 1995).

Figure 13: Applied load vs. settlement for tip soil ultimate bearing capacity sensitivity analysis using Boiler compression test pile results.

Similar to the parameters noted above, analyses were performed using the data from the Boiler compression test to evaluate the sensitivity of the back-calculated values of τ_u and K_{init} to variations in the value of Poisson's ratio for the tip soil incorporated into the model. As exhibited in Figure 14, the impact of variations to μ_s for the tips soils has a negligible impact on the predicted load-settlement performance. The analyses indicate

that, over the range of potential values suitable for dense sands and gravels, the theoretical load-settlement curves predicted by the model are nearly identical without varying the values of τ_u and K_{init} . With the tip soils being below the groundwater level and thus saturated, a value of 0.49 was used for μ_s in all analyses.

Figure 14: Applied load vs. settlement for tip soil Poisson's ratio sensitivity analysis using Boiler compression test pile results.

Curve Fitting Results

For each of the six static compression and six static tension load tests performed at the project site, the Mathcad model was used to back-calculate average values for the ultimate shear strength of soil-structure interface, τ_u , and the initial tangent shear modulus of the subgrade reaction at the soil-structure interface, K_{init} . The values of τ_u and K_{init} were adjusted until the theoretical load-settlement curve resembled a close approximation to the load-settlement curve produced by the static load testing. While an attempt was made to match the full range of load-settlement data from the static load tests, the data points representing 200 percent of the design load and 300 percent of the design load, or the maximum test load applied to the pile, were considered the key points to match. Since these load increments were maintained the longest during the testing, typically for periods of time ranging from one hour to one and one-half hours, they were considered to be the most representative points to use for the curve fitting. The intermediate load increments were maintained for periods ranging from 5 to 20 minutes.

For the load tests that were instrumented with strain gauge data, a secondary comparison was made between the distributions of load versus depth predicted by the numerical model and with the actual distribution exhibited by the strain gauge data. However, the curve fitting with the load-settlement data was the primary evaluation used to develop the τ_u and K_{init} values.

The results of the load-settlement curve fitting and the load-depth evaluation are grouped by test pile area and exhibited in Figures 15 through 34. For each plot of the load-settlement performance, a series of curves are provided to highlight the sensitivity of the curves to variations of the τ_u and K_{init} values. A summary of the final back-calculated τ_u and K_{init} values is presented in Table 6. In general, the load-settlement curves developed

by the "t-z" model present a good match to the curves from the static load testing.

However, there are some areas where the curves noticeably deviate from one another over a wide range of applied loads. Examples of these deviations are most apparent in the curves from the Powerhouse tension test and the Coal Yard compression test. Such deviations are considered to be a likely result of the assumption of a single layer soil profile.

Figure 15: Applied load vs. settlement Boiler compression test pile.

Figure 16: Load remaining in pile vs. depth for Boiler compression test pile.

Figure 17: Applied load vs. settlement Boiler tension test pile.

Figure 18: Applied load vs. settlement Chimney compression test pile.

Figure 19: Load remaining in pile vs. depth for Chimney compression test pile.

Figure 20: Applied load vs. settlement Chimney tension test pile.

Figure 21: Applied load vs. settlement Powerhouse compression test pile.

Figure 22: Load remaining in pile vs. depth for Powerhouse compression test pile.

Figure 23: Applied load vs. settlement Powerhouse tension test pile.

Figure 24: Applied load vs. settlement Coal Yard compression test pile.

Figure 25: Load remaining in pile vs. depth for Coal Yard compression test pile.

Figure 26: Applied load vs. settlement Coal Yard tension test pile.

Figure 27: Load remaining in pile vs. depth for Coal Yard tension test pile.

Figure 28: Applied load vs. settlement Cooling Tower compression test pile.

Figure 29: Load remaining in pile vs. depth for Cooling Tower compression test pile.

Figure 30: Applied load vs. settlement Cooling Tower tension test pile.

Figure 31: Applied load vs. settlement Water Tank compression test pile.

Figure 32: Load remaining in pile vs. depth for Water Tank compression test pile.

Figure 33: Applied load vs. settlement Water Tank tension test pile.

Figure 34: Load remaining in pile vs. depth for Water Tank tension test pile.

Table 6. – Back-calculated "t-z" model parameters.

Pile Location	Pile Type	K _{init} (ksi)	$ \tau_u $ (psi)	$ au_{u,tens}$ / $ au_{u,comp}$
Dailan	Compression	3.0	22.0	
Boiler	Tension	5.8	8.4	0.38
Chimney	Compression	3.4	22.5	0.32
Cililiney	Tension	5.0	7.3	0.32
Powerhouse	Compression	2.7	16.8	0.53
roweillouse	Tension	2.5	8.9	0.55
Coal Yard	Compression	2.5	23.7	0.42
Coarraiu	Tension	20.0	10.0	0.42
Cooling Tower	Compression	2.5	18.4	0.42
Cooling Tower	Tension	4.0	7.8	0.42
Water Tanks	Compression	2.0	27.5	0.23
vv ater Talles	Tension	4.0	6.2	0.23

While most of the values of K_{init} fell in a range from 2.0 to 5.0 ksi, the back-calculated value from the Coal Yard tension test (Figure 26) appears to be an outlier with a value of 20.0 ksi. It is unclear at this time whether the higher value of K_{init} is a product of variations in the pile installation or load testing or potentially a product of variations within the back-calculations of the model parameter from that specific test. For the development correlations between the "t-z" model parameters and the field investigation data, the value of K_{init} from the Coal Yard tension test in most cases was not included in the analyses.

It should be noted that the ratio of τ_u from the tension tests relative to the value of τ_u from the compression tests is quite low from this set of load tests. For deep foundations embedded in cohesionless soils, it is somewhat common to apply a reduction factor to the ultimate shear resistance values when evaluating tension capacity. This reduction is due to

the potential for a reduction in effective stress in the vicinity of the pile as a result of Poisson's effect. The reduction factor is typically in a range 70 percent and 100 percent of the ultimate shear resistance in compression (Brown et al. 2007). However, the back-calculated values of τ_u from the tensions tests for the current project exhibited an apparent reduction factor ranging from 23 percent to 53 percent. It is unclear at this time whether these notably lower reduction factors are a product of the particular pile installation methods or load testing methods performed on this project or potentially a product of variations within the back-calculations of the model parameter from these load tests.

Correlation of "t-z" Model Parameters with Field Investigation Data

The back-calculated values of K_{init} and τ_u developed from the numerical model were then compared with the SPT N_{60} values collected from conventional soil borings and with the q_c values collected from CPT soundings to evaluate whether suitable correlations could be developed for use on future pile designs. For these comparisons, a single soil layer was assumed for the design profile such that the N_{60} and q_c values from explorations in the near vicinity of each test pile were averaged over the corresponding lengths of pile penetration. For test pile areas where multiple borings or multiple CPT soundings were performed in close proximity to the test pile, a single average value was calculated for N_{60} and q_c as appropriate. These values were previously summarized in Table 4 and Table 5.

Initially, the field investigation data was plotted directly with the back-calculated model parameters. For each model parameter, the values developed from the compression and tension tests were initially plotted separately relative to the field investigation data to

identify any trends that were unique to the direction of the axial loading. Where similarities were observed between the results of the compression and tension test correlations, the data sets were combined to develop a single correlation applicable to loading in both axial directions.

Figure 35 and Figure 36 display the relationships for the N_{60} and q_c values, respectively, relative to K_{init} from both the compression and tension tests. The plot of the data generally indicates a linear relationship with the value of K_{init} increasing proportionally with the value of N_{60} or q_c . A simple linear regression correlation is indicated with the relationship forced through an imaginary point at the origin. As noted previously, the back-calculated value from the Coal Yard tension test appears to be an outlier and, while the data point is shown in each figure, that value was not included in the linear regression. While the plotted data does suggest a linear relationship, the sample size is not sufficient to confirm whether the relationship is a statistically accurate prediction of the correlation between the respective values.

Figure 35: K_{init} vs. N_{60} from compression and tension test piles.

Figure 36: K_{init} vs. q_c from compression and tension test piles.

Figure 37 and Figure 38 display the relationships for the N_{60} and q_c values relative to τ_u from both the compression and tension tests. It was anticipated that a trend would be observed similar to those exhibited in Figures 35 and 36, where the value of τ_u would generally increase with increasing values of N_{60} and q_c . However, the data from both the compression and tension tests displays a higher level of variability and there is no distinct correlation between the back-calculated soil interface parameters and the field investigation data. It is suspected that the apparent lack of correlation between these values may be related to the assumption of a single-layer soil profile.

As noted previously, the pile top settlements from the compression tests ranged from 0.9 to 1.5 inches. Elastic structural deformation of the compression test piles was estimated to range from 0.4 to 0.7 inch with pile tip movements estimated to be in the range of 0.3 to 1.0 inch. The pile top movement exhibited by the tension tests ranged from 0.2 to 1.6 inches. Elastic structural deformation of the tension test piles was estimated to range from 0.1 to 0.3 inch with pile tip movements estimated to be in the range of 0.0 to 1.3 inches. The side resistance component of the pile capacity is fully mobilized with a relatively small amount of axial pile movement, typically less than 0.4 inches. When taking elastic deformation of the pile into consideration, it is likely that full mobilization of the side resistance component did not occur along the lower portions of the piles where the tip movement was estimated to be below 0.4 inch. Where this is the case, the assumption of a single, homogenous soil layer could lead to inaccuracies when averaging the side resistance component over the full length of the test pile.

Figure 37: τ_u vs. N_{60} from compression and tension test piles.

Figure 38: τ_u vs. q_c from compression and tension test piles. 68

Comparison of LPC Method for Correlating τ_u with q_c

While the overall distribution of the values of τ_u relative to q_c does not reveal a definitive correlation, a closer inspection of the individual relationships was performed to evaluate whether the correlations defined by Equation 1-12 for the LPC Method, along with the α -coefficients in Table 1, might present a suitable relationship when utilizing the numerical methods described herein for the "t-z" model. The values of $\alpha = q_c/\tau_u$ backcalculated from each compression and tension test are summarized in Table 7. The results reveal values for α in the range of 64 to 138 for the compression tests and values in the range from 175 to 318 for the tension tests.

Table 7. – LPC Method α -coefficients back-calculated from load test data.

Pile	$lpha=q_c/ au_u$	$lpha=q_{c}/ au_{u}$
Location	Compression	Tension
Boiler	109	284
Chimney	103	318
Powerhouse	138	261
Coal Yard	74	175
Cooling Tower	No CPT S	oundings
Water Tanks	64	282

The α -coefficients developed from the compression tests are generally in line with the values published for the LPC method, previously summarized in Table 1, for soil types including loose silts and sands ($\alpha = 60$), medium dense sands and gravels ($\alpha = 100$), and very dense sands and gravels ($\alpha = 150$). The values of α calculated from the Boiler,

Chimney and Powerhouse areas fall in the published range between medium dense to very dense sands and gravels. The test piles in these three areas were the longest of the test piles installed and ranged in length from 69 feet to 75 feet compared with the test piles in the area of Coal Yard, Cooling Tower and Water Tanks which were installed with lengths of 50 to 65 feet. The longer embedment lengths result in deeper penetration of the piles into the sands and gravels at depth which exhibit higher densities. The values of α calculated from the Coal Yard and Water Tanks were 64 and 74, respectively. These values are in the published range between loose and medium sands which may be attributed to their shorter embedment lengths and the resulting stronger influence of the shallower clays, silts and sands on the average value of τ_u . Based on these results, it appears that the published values of α associated with the LPC Method as applied to ACIP piles installed in cohesionless soils, and loaded in compression, are a suitable correlation for developing the τ_u values to be used in the "t-z" model described herein.

As noted previously, the back-calculated values of τ_u for the test piles loaded in tension appear to be uncharacteristically low relative to the values of τ_u calculated for the corresponding compression test piles. In addition, the α -coefficients developed from the tension tests do not appear to exhibit any specific trends relative to the relationship between embedment length and magnitude of α -coefficient as exhibited by the compression test results. As a result, the values of α associated with the LPC Method are not considered to be a suitable correlation for estimating the τ_u values to be used in the "t-z" model.

Correlation of "t-z" Model Parameters with Effective Stress

Due to the lack of suitable correlations when comparing the back-calculated values of K_{init} and τ_u directly with the field investigation data, additional comparisons were performed to evaluate the relationship of the soil model parameters to effective stress. The values of K_{init} and τ_u can both be estimated relative the confining stress of the soil profile. Each soil model value was then plotted against the normalized depth of each test pile. For this evaluation, the normalized depth is defined as the depth of the test pile, d, divided by the pile diameter, D. Since the soil profile is being modeled as a single layer, the midpoint depth of the test piles is used.

The value of τ_u can be calculated using the β -method described previously in Chapter 1 and utilizing Equation 1-7 which can be rewritten as follows:

$$\beta_{ep} = \frac{\tau_u}{\sigma_v'} \tag{4-5}$$

Similarly, the value of K_{init} can be calculated from a relationship developed by Janbu (1963) using the following equation:

$$K_{init} = K_{\text{mod}} \sigma_{atm} \left(\frac{\sigma_{v}' K_{o}}{\sigma_{atm}} \right)^{x}$$
(4-6)

where, K_o is the at-rest coefficient of earth pressure, K_{mod} is a modulus number, \mathbf{s}_{atm} is the atmospheric pressure, and x is an exponent describing the rate of variation of K_{init} with respect to σ_v , K_o . Both x and K_{mod} are constants which can be determined experimentally from the results of drained triaxial tests conducted under a variety of confining pressures. However, knowledge of those constants is not required to evaluate the potential for

correlations between K_{init} and d/D or σ_v ' K_o that can be used for future analyses within the "t-z" numerical model.

The value of σ_v ' Equation 4-5 and Equation 4-6 can be calculated using the unit weight of the soil from laboratory test data or from correlations with field investigation data such as the N_{60} values and taking into consideration the influence of groundwater where present. Due to the difficulty in obtaining relatively undisturbed samples of cohesionless soils for laboratory unit weight tests, correlations with N_{60} values are commonly use to estimate the unit weight of sand and gravel soils. Correlations published by Bowles (1997) recommend wet unit weights in the range of 90 to 115 pounds per cubic foot (pcf) for loose sands, 110 to 130 pcf for medium dense sands, and 110 to 140 pcf for dense sands. For soils above the groundwater, a wet unit weight of 120 pcf was estimated for use in calculating the value of σ_v ' to be used for calculating the value of β_{ep} for each test pile area.

Figure 39 displays the relationships for β_{ep} relative to d/D from both the compression and tension tests. The data generally indicates decreasing values of β_{ep} relative to increasing normalized depth. The plot includes a regression trendline based on a power function which is typical of correlations for β_{ep} based on trends observed in other data sets. However, the data sample does not cover a wide enough range of normalized depth values to allow for proper statistical analysis.

Figure 39: β_{ep} vs. d/D from compression and tension test piles.

As another point of evaluation, the average β_{ep} values calculated from the load test data are compared in Table 8 to the average theoretical β_{ep} values for each associated soil boring calculated using Equation 1-8. While the values back-calculated from the compression tests at the Boiler, Chimney and Powerhouse are within approximately 25 percent of the predicted theoretical values, the remainder of the back-calculated values differ by a factor of approximately two from the predicted theoretical values. Based on these results, the FHWA 1999 " β -method" does not appear to be a suitable correlation for developing the value of τ_u for use in this "t-z" method numerical modeling.

Table 8. – Comparison of back-calculated and theoretical β_{ep} values.

Pile Location	Average β_{ep} Compression	Average β_{ep} Tension	Average β_{ep} Theoretical
Boiler	0.84	0.32	0.67
Chimney	0.87	0.28	0.67
Powerhouse	0.72	0.38	0.69
Coal Yard	1.40	0.59	0.74
Cooling Tower	1.23	0.52	0.86
Water Tanks	1.42	0.32	0.73

Figure 40 displays the relationship for K_{init}/σ_v ' relative to normalized depth from both the compression and tension tests. The data appears to show that the value of K_{init}/σ_v ' decreases with increasing normalized depth. Similar to the plot for β_{ep} relative to d/D, the data sample is too small to allow for proper statistical analysis but a regression trendline based on a power function has been shown.

Finally, the values of K_{init} are plotted relative to confining stress in the form of $\sigma_{v}{}^{\prime}K_{o}$ in Figure 41. Based on the relationship observed in the plot of $K_{init}/\sigma_{v}{}^{\prime}$ relative to normalized depth, it would be expected to see a similar trend with values of K_{init} decreasing relative to increased values of $\sigma_{v}{}^{\prime}K_{o}$. However, the date plotted suggests an opposite trend of K_{init} increasing relative to higher values of $\sigma_{v}{}^{\prime}K_{o}$. Once again, this data does not appear to provide a suitable correlation relative to the development of values for K_{init} to be used in this "t-z" numerical model.

Figure 40: K_{init} vs. d/D from compression and tension test piles.

Figure 41: K_{init} vs. $K_o \sigma_v$ ' from compression and tension test piles.

The primary source of difficulty in establishing correlations between the model parameters and the effective stress appears to be related to the limited stress range over which the data is plotted. Due to the assumption of a single soil layer, the magnitude of the effective stress, and similarly the magnitude of the normalized depth, presents a limited range over which the relationships can be evaluated.

CHAPTER 5

SUMMARY AND CONCLUSIONS

Project Summary

The purpose of this study was to expand on research previously performed by Roberts (2006) and Misra and Roberts (2006) to develop a reliability-based design methodology for the design and analysis of deep foundations at the service limit state. Specifically, this study focused on the development of "t-z" model parameters for use in service limit state analysis of augered cast-in-place (ACIP) piles. While most ACIP piles are designed based on well-established ultimate limit state methods, the methods for evaluating the service limit state performance, or load-settlement performance under service loads, have not been as thoroughly developed.

The current method most commonly used for evaluating the load-settlement performance of ACIP piles consists of curves based on empirical relationships developed from load tests performed on drilled shafts with a limited range of diameters. Use of those empirical curves methods may not provide an accurate prediction of the load-settlement performance of ACIP piles and load testing is recommended to verify the results of the analyses. While load testing for critical foundations is considered a good practice in general, load testing is often performed as a design verification process rather than for the purposes of optimizing the final foundation design. The development of a theoretical model that can be utilized during the design phase to more accurately evaluate the load-

settlement performance of a variety of deep foundation types, including ACIP piles, and which can account for site-specific subsurface conditions, would be beneficial.

For the "t-z" method, the load-displacement behavior evaluated at the pile-soil interface is modeled as a series of springs using either an ideal elasto-plastic model or a hyperbolic model. For this research, the hyperbolic model was selected to better approximate the non-linear load-displacement behavior typically exhibited by deep foundations.

The shape of the hyperbolic load-displacement curves are then defined by a set of four parameters: (1) the initial tangent shear modulus of the subgrade reaction at the soil-structure interface, K_{init} , (2) the ultimate shear strength of soil-structure interface, τ_u , (3) the initial tip soil stiffness, K_{ti} , and (4) tip soil ultimate bearing capacity, q_t . Since the hyperbolic curve cannot be defined by a closed form solution, a finite difference method was used to evaluate the non-linear load-displacement behavior. A Mathcad computer program developed by Roberts (2006) was used to evaluate non-linear performance of the soil-structure interface. The program utilizes the central-difference methodology to solve the algebraic equations which define the load-displacement performance at a series of nodes along the length of the pile. The Mathcad model was used to back-calculate values for K_{init} and τ_u until the theoretical load-settlement curve predicted by the model presented a close approximation to the load-settlement curve developed from full scale load tests.

Data was collected from a series of load tests performed at a project in northwest Missouri, near the city of Weston. A total of 12 load tests were performed for the project, including six static compression and six static tension, on dedicated test piles located

throughout the project site. During each load test, pile-top movement was monitored through the use of four dial gauges. In addition, "sister bar" strain gauges were embedded at multiple depths throughout each of the six compression test piles and three of the tension test piles to monitor the rate of load transfer in each pile during testing.

For model simplicity, the soil profile was assumed to consist of a single, homogenous layer with the values of K_{init} and τ_u modeled as average values over the length of each pile. During the curve fitting process, the values of K_{init} and τ_u were treated as variables while the remaining model parameters, including the non-interaction zones, axial stiffness of the pile, and the tip soil performance, were set as constants. Several sensitivity analyses were performed to evaluate the effect of potential variability within those parameters.

When matching the predicted pile performance from the Mathcad model to the data collected from the static load tests, the load-settlement data was the primary evaluation used to back-calculate the τ_u and K_{init} values. The predicted load distribution along the length of the piles, as compared with the data collected from the embedded strain gauges, was used as secondary criteria for comparison. With respect to the load-settlement curve matching, the data points representing 200 percent of the design load and 300 percent of the design load, the maximum test load applied to the pile, were considered the key points to match since those load increments were maintained for the longest time intervals during the testing.

Once average values of τ_u and K_{init} were back-calculated for each of the 12 load tests, they were compared against the N_{60} and q_c values collect from conventional borings and CPT soundings performed in the near vicinity of each test pile. While there is some indication of a linear relationship between K_{init} and N_{60} and q_c , the quantity of data evaluated was not sufficient to identify whether the relationship is a statistically accurate prediction of the correlation between the respective values.

The relationship between τ_u and N_{60} and q_c was much more variable and did not provide any distinct correlation between the back-calculated model parameters and the field investigation data. However, it was noted that when comparing q_c with τ_u , the back-calculated α -coefficients from the compression test data were very similar to values recommended in the LPC Method for hollow auger bored piles. Based on those results, it was suggested that values of α associated with the LPC Method as applied to ACIP piles installed in cohesionless soils, and loaded in compression, are a suitable correlation for developing the τ_u values to be used in this "t-z" model.

Due to overall poor quality of correlation between the back-calculated model parameters and the field investigation data, additional comparisons were performed to evaluate potential relationships between the "t-z" model parameters and effective stress within the soil profile. With the soil profile being modeled as a single layer, the data comparisons were made based on the effective stress at the mid-point depth of the test piles. While the plot of the data relating the model parameters to the effective stress exhibits some grouping, the ability to identify any trends in the correlation is difficult due

to the relatively limited range of normalized depth values over which the relationship could be evaluated.

Overall, the assumption of a single, homogenous layer appears to have been an oversimplification of the soil profile for the purposes of developing correlations with the "t-z" model parameters relative to both field investigation data and overburden stress. Consideration of multiple layers within a soil profile would allow for more accurate evaluation of any relationship that might exist between the "t-z" model parameters and associated field investigation data for each respective soil layer. It would also allow for data points over a wider range of normalized depths when evaluating the correlation between the model parameters and overburden stress.

In addition to the use of a multi-layer soil profile, it would also be beneficial to coordinate the location of the field investigation data with the test pile location. For the current study, the distance the test piles to the soil borings and CPT soundings varied from 50 feet to 560 feet (see Table 2). While it is not possible to quantify the impact of increasing distance between the test pile and field exploration locations, the heterogeneous nature of soils makes it more likely to encounter variations over large distances that could lead to poor correlations.

Future Research

The research performed for this study was based on load tests and field investigations from a single project site and did not provide a sufficient quantity of data to identify trends in correlations with proper statistical analysis. Where data from load

testing and field investigations are available from other sites, analyses similar to those performed within this study could be used to expand the volume of "t-z" model parameter correlations. The larger volume of correlations can then be evaluated for statistical trends more effectively. As part of any future evaluations to identify trends between "t-z" model parameters and field investigation data, it would also be beneficial to evaluate existing correlations between field investigation data and soil strength parameters, similar to those included in the FHWA 1999 Method or the LPC Method, to establish whether any existing correlations are suitable for use in estimating the "t-z" model parameters as an alternative to developing new correlations.

APPENDIX A

BORING LOGS

Drilling Log

Project				and one of	ng L			Borin	g Numi	B-(01
Project	No.	1.11						Page		D-(- 1
	1180-3.02	09	Table 2					100000		1 of	6
	Elevation 84 ft.msl		Location N 1195268	E 2653722				Total	Footag	e 87.0	e.
	ing Type	Hole Size	Overburden Footage	Bedrock Footage	No C	Of Samples	No.C	ore Boxes	De	pth to Wate	
VV	er/Mud	3 3/4 ID	87.0 ft.	0.0 ft.	1	20	110.0	0	-	20.6	3-23-06
4000	Company	Geotechnolog	1723576	100,000	Driller	s (s) Mi	ke Umflee	t Brian	Finge	rs	11 (ATC 1945)
Drilling		E -750 ATV	,		Type	of	007/	Auto-Tri	N. (7.2)	Research tech	
Date	3-22-06		то 3-23-06		18	tration Test Observer (s		ert Jaqu			
			02030		1.100		Field	Recov/		Sample	
Depth (ft)	1		Description		Class	Blow	Strength (PP)	Advance (Inch)		or Box No.	Remarks
3		and Gravel (FILL			x		2 MOST 112		107		
	Ξ				****					8	11:18 Setup; 11:30
1-	SAN	D, Fine to Medium	Grained, Light Brown,	Damp,	******		. :		1-		Break for lunch and safety meeting.
		um (SP)				71		10/			N = 27
2-	No.					12/ 15		18	2-	SS-1	destruction of the commence of
	=						s = 1		Ξ.		13:26 Calibrating tri hammer. Alex has
2	7									A. A.	seen the safety video.
3-	3								3-	6	5.000(400)
			Grained, Light Brown,						1		
4-	Medi	um, Trace Coarse	Sand, Trace Fine Grav	el (SP)		3/ 11/		14/	4-	SS-2	N = 21
	4					10		18	=		
5-	1						()		5-		
	3										
6-	=						: :		6-		
-	- SAN	D, Fine to Medium p, Medium (SP)	Grained, Light Brown t	to Gray,		21			200	É	62.2000
-	=					9/		14/	- 7	SS-3	N = 19
7-	2					10			7_		
8-									8_		
	SAN	D, Fine Grained G	Gray, Wet, Medium (SP)							
9-	100		8 8 8			9/		14/	9-		N = 19
	3			3		10		18	1	SS-4	
10-	=					S VALUE			10-	Š.	
3				3					1	8	14:00 Switch to mu rotary.
44	4								_ =		0.00
11-									11-		
	=										
12-			ium to Stiff, High Plasti	city, Some		į			12-		
	- Thin	Roots (CH)							=	8	
13-									13-		
	4							16/		05.5	e.
14	1			- 8			1.50 TSF	18	1 25	SS-5	Burns &

					Borin	g Numi	er B-0	01
roject Nan	Marie William St.				Page		3 of	Chara
roject Num	nber 41180-3.0209	15 14		W/ 	Date	- 4	3-22	-06
Depth (ft)	Description	Class	Blow	Field Strength (PP)	Recov./ Advance (Inch)		Sample or Box No.	Remarks
32	CLAY, Sity, Sandy, Gray, Wet, Very Soft, Medium to High Plasticity, Fine Sand at Bottom of Spoon (CL-CH) SAND, Fine Grained, Gray, Wet, Medium (SP)					32-		
33-						33-		
34-			5/ 8/ 10		14/ 18	34-	SS-9	N = 18
35—						35—		
37—	SAND, Fine to Coarse Grained, Gray, Wet, Medium, Trace Fine Gravel (SW)					37		
38-						38-		
39-			4/ 7/ 10		13/ 18	39	SS-10	N = 17
41—						41-		
42-						42-		
43	SAND, Fine to Coarse Grained, Gray, Wet, Medium, Trace					43— —		
44—	Fine Gravel (SW)		7/ 14/ 15		12/ 18	44	SS-11	N = 29
46—						46		
47—						47-		
48				250		=		Burns

56— SAND, Fine to Coarse Grained, Gray, Wet, Medium, Trace Lignific Trace Fine Grave (SW) See Sand State of Sta	
Depth Description Class Blow Spending Recovul	
Depth (ft) Description D	
SAND, Fine to Coarse Grained, Gray, Wet, Medium, Trace SAND, Fine to Coarse Grained, Gray, Wet, Medium, Trace SAND, Fine to Coarse Grained, Gray, Wet, Medium, Trace SAND, Fine to Coarse Grained, Gray, Wet, Medium, Trace SAND, Fine to Coarse Grained, Gray, Wet, Medium, Trace SAND, Fine to Coarse Grained, Gray, Wet, Medium, Trace SAND, Fine to Coarse Grained, Gray, Wet, Medium, Trace SAND, Fine to Coarse Grained, Gray, Wet, Medium, Trace SAND, Fine to Coarse Grained, Gray, Wet, Medium, Trace SAND, Fine to Coarse Grained, Gray, Wet, Medium, Trace SAND, Fine to Coarse Grained, Gray, Wet, Medium, Fine to Medium Gravel (SWG) SAND, Fine to Coarse Grained, Gray, Wet, Medium, Fine to Medium Gravel (SWG)	Remarks
12/ 20/ 18 16/ 49 SS-12 N = 3 SAND, Fine to Coarse Grained, Gray, Wet, Medium, Trace Clay and Fine Gravel (SW-SC) SAND, Fine to Coarse Grained, Gray, Wet, Medium, Trace 55— SAND, Fine to Coarse Grained, Gray, Wet, Medium, Trace 56— SAND, Fine to Coarse Grained, Gray, Wet, Medium, Trace 57— SAND, Fine to Coarse Grained, Gray, Wet, Medium, Trace 58— 59— 60— 61— SAND, Fine to Coarse Grained, Gray, Wet, Medium, Fine 62— SAND, Fine to Coarse Grained, Gray, Wet, Medium, Fine 62— SAND, Fine to Coarse Grained, Gray, Wet, Medium, Fine 63— 64— 65— 66— 66— 66— 66— 66— 66— 66— 66— 66	
50— 51— SAND, Fine to Coarse Grained, Gray, Wet, Medium, Trace Clay and Fine Gravel (SW-SC) 52— 53— 54— 55— 55— 56— SAND, Fine to Coarse Grained, Gray, Wet, Medium, Trace Lignite, Trace Fine Gravel (SW) 57— 58— 59— 60— 5AND, Fine to Coarse Grained, Gray, Wet, Medium, Trace 59— 60— 61— SAND, Fine to Coarse Grained, Gray, Wet, Medium, Fine to Medium Gravel (SWG) 58— 58— 58— 60— 61— 58— 58— 58— 60— 61— 58— 58— 58— 60— 61— 62— 58— 58— 68— 68— 68— 68— 68— 68— 68— 68— 68— 6	
50— 51— 52— SAND, Fine to Coarse Grained, Gray, Wet, Medium, Trace 52— 53— 54— 55— 55— 56— 56— 58— SAND, Fine to Coarse Grained, Gray, Wet, Medium, Trace 66— 58— 58— 58— 58— 59— 60— 61— SAND, Fine to Coarse Grained, Gray, Wet, Medium, Trace 60— 61— 5AND, Fine to Coarse Grained, Gray, Wet, Medium, Fine 60— 61— 5AND, Fine to Coarse Grained, Gray, Wet, Medium, Fine 62— 5AND, Fine to Coarse Grained, Gray, Wet, Medium, Fine 62— 5AND, Fine to Coarse Grained, Gray, Wet, Medium, Fine 62— 63— 64— 65— 66— 66— 66— 66— 66— 66— 66— 66— 66	= 38
51— SAND, Fine to Coarse Grained, Gray, Wet, Medium, Trace 153— SAND, Fine to Coarse Grained, Gray, Wet, Medium, Trace 55— SAND, Fine to Coarse Grained, Gray, Wet, Medium, Trace 156— SAND, Fine to Coarse Grained, Gray, Wet, Medium, Trace 157— SAND, Fine to Coarse Grained, Gray, Wet, Medium, Trace 158— 159— 160— 170 180 190 190 191 180 191 192 193 194 197 197 198 199 190 191 191 192 193 194 195 195 195 195 195 195 195	- 00
51— SAND, Fine to Coarse Grained, Gray, Wet, Medium, Trace 153— SAND, Fine to Coarse Grained, Gray, Wet, Medium, Trace 55— SAND, Fine to Coarse Grained, Gray, Wet, Medium, Trace 156— SAND, Fine to Coarse Grained, Gray, Wet, Medium, Trace 157— SAND, Fine to Coarse Grained, Gray, Wet, Medium, Trace 158— 159— 160— 170 180 190 190 191 180 191 192 193 194 197 197 198 199 190 191 191 192 193 194 195 195 195 195 195 195 195	
SAND, Fine to Coarse Grained, Gray, Wet, Medium, Trace	
SAND, Fine to Coarse Grained, Gray, Wet, Medium, Trace	
52 53 54 55 55 55 55 56 57 57 58 57 58 58 58 58	
52 53 54 55 55 55 56 57 57 58 57 58 58 58 58	
55	
55	
55	
55— 56— 58— SAND, Fine to Coarse Grained, Gray, Wet, Medium, Trace Lignite, Trace Fine Gravel (SW) 58— 58— 58— 58— 60— 61— SAND, Fine to Coarse Grained, Gray, Wet, Medium, Fine to Medium Gravel (SWG) 58— 58— 58— 60— 61— SAND, Fine to Coarse Grained, Gray, Wet, Medium, Fine to Medium Gravel (SWG)	
55— 56— 57— SAND, Fine to Coarse Grained, Gray, Wet, Medium, Trace Lignite, Trace Fine Gravel (SW) 58— 58— 58— 59— 60— 61— SAND, Fine to Coarse Grained, Gray, Wet, Medium, Fine to Medium Gravel (SWG) 58— 58— 58— 60— 61— 5AND, Fine to Coarse Grained, Gray, Wet, Medium, Fine to Medium Gravel (SWG)	
55— 56— 58— SAND, Fine to Coarse Grained, Gray, Wet, Medium, Trace Lignite, Trace Fine Gravel (SW) 58— 58— 58— 58— 60— 61— SAND, Fine to Coarse Grained, Gray, Wet, Medium, Fine to Medium Gravel (SWG) 58— 58— 58— 60— 61— SAND, Fine to Coarse Grained, Gray, Wet, Medium, Fine to Medium Gravel (SWG)	= 12
56— SAND, Fine to Coarse Grained, Gray, Wet, Medium, Trace 157— Lignite, Trace Fine Gravel (SW) 58— 58— 60— SAND, Fine to Coarse Grained, Gray, Wet, Medium, Trace 158— 60— SAND, Fine to Coarse Grained, Gray, Wet, Medium, Fine to Medium Gravel (SWG) 58— 58— 60— 61— SAND, Fine to Coarse Grained, Gray, Wet, Medium, Fine to Medium Gravel (SWG)	
56— SAND, Fine to Coarse Grained, Gray, Wet, Medium, Trace 157— Lignite, Trace Fine Gravel (SW) 58— 58— 60— SAND, Fine to Coarse Grained, Gray, Wet, Medium, Trace 158— 60— SAND, Fine to Coarse Grained, Gray, Wet, Medium, Fine to Medium Gravel (SWG) 58— 58— 60— 61— SAND, Fine to Coarse Grained, Gray, Wet, Medium, Fine to Medium Gravel (SWG)	
56— SAND, Fine to Coarse Grained, Gray, Wet, Medium, Trace Lignite, Trace Fine Gravel (SW) 57— 58— 58— 60— 61— SAND, Fine to Coarse Grained, Gray, Wet, Medium, Trace 100 61— SAND, Fine to Coarse Grained, Gray, Wet, Medium, Fine 100 58— 58— 60— 61— SAND, Fine to Coarse Grained, Gray, Wet, Medium, Fine 100 62— SAND, Fine to Coarse Grained, Gray, Wet, Medium, Fine 100 62— 63— 64— 65— 65— 66— 66— 66— 66— 66— 66— 66— 66	op for today. rained mud lines
SAND, Fine to Coarse Grained, Gray, Wet, Medium, Trace Sand	event freezing.
SAND, Fine to Coarse Grained, Gray, Wet, Medium, Trace Lignite, Trace Fine Gravel (SW) 58 60 61 SAND, Fine to Coarse Grained, Gray, Wet, Medium, Fine to Medium Gravel (SWG) 57 60 61 SAND, Fine to Coarse Grained, Gray, Wet, Medium, Fine to Medium Gravel (SWG) 62 63 64 65 66 67 68 68 68 68 68 68 68 68	23-06 7:15 On te. Geotech getti
58	el for rigs. 8:17
58— 59— 60— 61— 62— SAND, Fine to Coarse Grained, Gray, Wet, Medium, Fine to Medium Gravel (SWG) 58— 68— 69 107 12 58— 60 61— 61— 62— 62— 62— 63— 64— 65— 65— 66— 66— 66— 66— 66— 66— 66— 66	esume drilling at et. Hole taking
60— 61— SAND, Fine to Coarse Grained, Gray, Wet, Medium, Fine to Medium Gravel (SWG) 62— 63— 64— 65— 65— 66— 66— 66— 66— 66— 66— 66— 66	ater.
60— 61— SAND, Fine to Coarse Grained, Gray, Wet, Medium, Fine to Medium Gravel (SWG) 62— 63— 64— 65— 65— 66— 66— 66— 66— 66— 66— 66— 66	
60— 61— SAND, Fine to Coarse Grained, Gray, Wet, Medium, Fine to Medium Gravel (SWG) 62— 63— 64— 65— 65— 66— 66— 66— 66— 66— 66— 66— 66	
60— 61— 62— SAND, Fine to Coarse Grained, Gray, Wet, Medium, Fine to Medium Gravel (SWG) 62— 63— 64— 65— 65— 66— 66— 66— 66— 66— 66— 66— 66	
60 61 SAND, Fine to Coanse Grained, Gray, Wet, Medium, Fine to Medium Gravel (SWG) 62 62 63 63 62 63 63 63 63 63	
61— SAND, Fine to Coarse Grained, Gray, Wet, Medium, Fine to Medium Gravel (SWG) 62— 62— 63— 64— 65— 66— 66— 66— 66— 66— 66— 66— 66— 66	
SAND, Fine to Coarse Grained, Gray, Wet, Medium, Fine to Medium Gravel (SWG)	
SAND, Fine to Coarse Grained, Gray, Wet, Medium, Fine to Medium Gravel (SWG)	
SAND, Fine to Coarse Grained, Gray, Wet, Medium, Fine to Medium Gravel (SWG)	
62 to Medium Gravel (SWG) 62	
[Face-024 1 7	
64—	
□ SS-15 N=4	= 20
65 7 00000 11 0 00000 11 0 00000	

					Borin	g Numb	er B-0)1
roject Nan					Page		5 of	
roject Nun	nber 41180-3.0209	10 1		F	Date		3-22	-06
Depth (ft)	Description	Class	Blow	Field Strength (PP)	Recov./ Advance (Inch)		Sample or Box No.	Remarks
66-	SAND, Fine to Coarse Grained, Gray, Wet, Medium, Fine to Medium Gravel (SWG)					68-		
67-	SAND, Fine to Coarse Grained, Gray, Wet, Medium, Trace Fine Gravel (SW)					67—		
69—			12/ 14/ 14		10/ 18	69—	SS-16	N = 28
71—						71-		Losing circulation Bit clogged.
72—						72—		
74	SAND, Fine to Coarse Grained, Gray, Wet, Medium, Trace Fine Gravel (SW)		10/ 12/ 15		9/ 18	74—	SS-17	N = 27
76-						76		Bit Chattering on Occassional Cobbles.
77—	GRAVEL, Fine to Medium Grained, Sandy, Gray, Wet, Dense, Fine to Coarse Sand (GP)	0.0000000				77 -		
79—		0000	20/ 20/ 12		6/ 18	79-	SS-18	N = 32
81—						81-		

88

						g Numb	er B- (01
roject Nan	e latan				Page		6 of	6
roject Num	ber 41180-3.0209				Date	S 9	3-22	-06
Depth (ft)	Description	Class	Blow	Field Strength (PP)	Recov./ Advance (Inch)	6	Sample or Box No.	Remarks
83 - 88 - 88 - 88 - 90 - 91 - 92 - 93 - 93 - 995	GRAVEL, Fine to Medium Grained, Sandy, Gray, Wet, Dense, Fine to Coarse Sand (GP) Boring Terminated at 87 Feet	35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Count	(PP)	(Inch)	83 - 84 - 85 - 88 - 90 - 91 - 93 - 94 - 95 - 96 - 98 - 98 - 98 - 98 - 98 - 98 - 98	Box No.	Remarks Losing circulation. Hole taking water. Drilled past sample point. Bedrock at 8' feet. Fine gravel in drill cuttings. 10:27 Stop at 87 feet. Grouted hole with 6 bags of grout 50 gallons of water, and 1/2 bag of Quik Gel.

89

Drilling Log

			Drillir	ig L	<i>y</i> y						
Project Name latan							Borin	g Numl	oer B- ()3	
Project No. 41180-3.0 2	209						Page		1 of		
Ground Elevation 785 ft.msl		Location N 1195147	E 2653707				Total	Footag		00000	
Drilling Type	Hole Size	Overburden Footage	Bedrock Footage	No.	Of Samples	No. O	ore Boxes	De	pth to Wate		ate Measured
Auger/Mud	3 3/4 ID	87.0 ft.	15.5 ft.	<u> </u>	20		2		ot Measur	ed	
Drilling Company	Geotechnology	/, Inc.		Drille Type	Delta Arresta	aig Steine		120, 100, 77, 77, 77, 72			
Drilling Rig Mol Date 3-15-06	bile B-57	то 3-16-06		Pene	tration Test Observer (s	575.0 N	Auto-Trij n Bolling	2/	nmer)		
Date 3-13-00		10 3-10-00		Field	Observer (s	Field	Recov/		Sample		
Depth (ft)		Description		Class	Blow Count	Strength (PP)	Advance (Inch)		or Box No.	F	emarks
3—————————————————————————————————————	D, fine to medium g). D, fine to medium g	grained, light brown, da	imp, dense medium — — —		10/ 19/ 18 10/ 11/ 15	2.0TSF	16/ 18 15/ 18 18/ 18 16/ 18	1 1 2 3 4 5 6 7 8 9 1 1 1 1 1 1 1 1 1	\$\$-1 \$\$-2 \$\$-3	N=27 N=37 N=26	
14 🕇			44			2.0 101	18		00-0		Burns &

	1000 November 100000				1000	g Numl		
ject Nam					Page		3 of	
ject Num	nber 41180-3.0209	i i		and the same	Date		3-15	-06
epth (ft)	Description	Class	Blow Count	Field Strength (PP)	Recov / Advance (Inch)		Sample or Box No.	Remarks
32	SAND, medium to coarse grained, trace fine gravel, trace lignite, gray, wet, medium (SP).					32— 		
34			6/ 8/ 8		11/ 18	34 — - 35 —	SS-9	N=16
36						36— 		
38-						38-		
40	SAND; medium to coarse grained, gray, wet, medium, with trace gravel (SP).		7/ 7/ 14		12/ 18	39— - 40— -	SS-10	N=21
41—						41— - - - 42—		
43 13 14	CAND for how of the profile of the control of the c		15/		427	43 — - - - - 44 —		
45—	SAND; fine to medium grained, trace coarse sand, trace lignite, gray, wet, medium to dense (SP).		15/ 15		13/ 18	45— -	SS-11	N=30
46————————————————————————————————————						46 — - 47 — -		

					Borin	g Num	ber B-()3
ject Nan					Page		4 of	
ject Nur	nber 41180-3.0209			_	Date		3-15	-06
epth (ft)	Description	Class	Blow Count	Field Strength (PP)	Recov / Advance (Inch)		Sample or Box No.	Remarks
0-	SAND; medium grained, gray, wet, medium (SP).							
19			14/ 12/ 15		12/ 18	49— 	SS-12	
51-	SAND; fine to coarse grained, trace fines, gray, wet,					51—		N=27
52	medium (SW).					52 — - - - 53 —		
54-			8/ 10/ 15		13/ 18	54-	SS-13	
55—						55—		N=25
57	SAND; medium to coarse grained, gray, wet, medium, with trace fine sand (SP).					57 — - - - - - - - - -		
i9			12/ 13/ 13		12/ 18	59— 	SS-14	
51 -						60 — - - 61 —		N=26
3	SAND, coarse grained, with fine gravel, brownish gray, wet, medium (SW).					62 — - - - - 63 —		
i ³			11/ 10/ 11			64 —	SS-15	
₅ 7			5/00		l	_		N=21

ng san inggapanan barrara	(0)1				1000	g Numl		
ject Nam					Page		5 of	
ject Num	ber 41180-3.0209	1 1		T	Date		3-15	-06
epth (ft)	Description	Class	Blow Count	Field Strength (PP)	Recov / Advance (Inch)		Sample or Box No.	Remarks
66—	SAND, coarse grained, with fine gravel, brownish gray, wet, medium (SW).					66— - - - 67—		
is ————————————————————————————————————	SAND, medium to coarse grained, trace fine sand and gravel, brownish gray, wet, medium (SW).		11/ 10/		12/ 18	68 — 	SS-16	
71	укалок, околью укру, тес, пточки (отт).		10		110	70— - 71—		N=20
72—	SAND; coarse grained, with gravel, gray, wet, medium					72— 		
74	(SW).		11/ 10/ 9		11/ 18	74 — - 75 — 76 —	SS-17	N=19
" ————————————————————————————————————	GRAVEL; with coarse sand, gray, wet, medium (GP).					77 — 77 — 78 —		
			18/ 14/ 10		6/ 18	79 — - - - - 80 —	SS-18	N= 24
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						81 — - - - -		Stop at 16:45 or 3/15/06.

Addustrias was s	- American American	1007	Boring Number B-03							
oject Name latan						Page 6 of 7				
oject Num	nber 41180-3.0209	1		T	Date		3-15	-06		
Depth (ft)	Description	Class	Blow Count	Field Strength (PP)	Recov / Advance (Inch)		Sample or Box No.	Remarks		
-	SAND; coarse grained, gravel, gray, wet, medium (SW).									
Ξ						=				
83						83 — -				
3						-				
84-			21/		11/	84 —	SS-19			
=			15/ 12		18	_	33-19			
85—]						85 <u> </u>		N=27		
=						_		LEAN-NORTH		
86-		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				86 —				
Ξ		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								
87-	LIMESTONE; gray, fresh, moderately strong.	4 4 4 4 4				87 —				
3	SHALE; gray, fresh, weak, fissile.					=				
88.						88 -				
3				RQD=	40/		nava erroen			
89				67%	42	89 —	Run#1			
3	SANDSTONE; gray, fresh, strong, laminated with shale.	:::::::				_				
90-	procedures on the contract of					90 —				
3		:::::::								
91 —	SANDSTONE; fine grained, gray, fresh, strong; interbedded with SHALE; fissile, gray, fresh, weak.					91 —				
1						-				
F_292						92 —				
= =						_				
E.ee				RQD=	58/	93 —	Run#2			
~~ ‡	SANDSTONE; fine grained, gray, fresh, strong, with shell			35%	60		I Coli III Z			
94 🗐	fragments.					94 —				
<u> </u>						_				
95 —						95 —				
E						33 =				
96-						96 —				
						- -				
₀₇ ‡						07 -				
97				RQD= 8%	59/ 60	97 — -	Run#3			
=					"	_				
98-						98 — 				
99 =						_				
	reering D epartment	•		141				Burns McDo		

	Brilling Lo	<u> </u>			Borin	g Numl	ber B-C)3		
Project Name latan						Page 7 of 7				
Project Num	ber 41180-3.0209				Date		3-15	-06		
Depth (ft)	Description	Class	Blow Count	Field Strength (PP)	Recov / Advance (Inch)		Sample or Box No.	Remarks		
100	SANDSTONE; fine grained, gray, fresh, strong, with shell fragments.			RQD= 8%	59/ 60 ,	00-	Run#3			
101				RQD= 42%	24/ 24	01-	Run#4			
103		*******			4	03-				
104	Boring Terminated at 102.5 Feet.				9	04 — - - - 05 —				
106—					1.5	06-				
107					o	07 — - - - -				
108					9	08 —				
110—					6	10-				
111					34	- - 111— -				
112—					8	12 <u> </u>				
113—						13 — - - - 14 —				
115—					0	15—				
116								Burns &		

 Run No.
 Depth (ft)

 Run 1
 87.0 to 90.5

 Run 2
 90.5 to 95.5

 Run 3
 95.5 to Continued

Run No. Run 3 Run 4 Depth (ft) Continued to 100.5 100.5 to 102.5

0869701.61KG

ı	ce Elevation 785.56 DatumNAVD 88	Completion Date: 3/11/06	GRAPHIC LOG	DRY UNIT WEIGHT (pct) SPT BLOW COUNTS CORE RECOVERY/RQD	SAMPLES	Δ - UU/2 0 ₁ 5	O - QU/2 1,0 1,5 PENETRATIO (ASTM D 158	0 - PP 2 ₁ 0 2 ₁ 5 ON RESISTANCE
DEPTH IN FEET	DESCR	IPTION OF MATERIAL	GRA	SPT BLO	SA	PLI W	ALUE (BLOWS	PER FOOT)
	SAND, trace sit, r dense, poorly grad	nedkum, gray, medium dense to led (SP-SM) (continued)				10	20 30	40 50
- 45-				10-15-10	SS11	**********	: x :::::	
-				10-13-23	SS12			
- 50-								
- 55-				15-20-21	SS13			<u> </u>
- 60-	coarse			13-14-14	SS14			
- 60-								
- 65-				0-6-12	8815	:::::: .		
- 70-	medium-coarse, gr	ау		7-7-17	SS16	::::::::::::::::::::::::::::::::::::::		
				17-22-25	2047			
75-	~ coarse			11-22-63	3317			
G	ROUNDWATER DA	TA DRILLI	IG DATA	9-14-15	SS18	Orawn by: TAD Date: 3/14/06	Date: S/16/01	Applyd. by: 500
ENCO	UNTERED AT 23.5	AUGER 3-3 FEET \$\forall \text{WASHBORING} \\ \text{MU} \text{DRILLER}	FROM 25	FEET		GE GE	OTECHN	OLOGY, INC
		CME750X HAMMER					latan Unit ston, Mis	
REMA	ARKS:						NTINUATIO OF BORIN	
		<u> </u>		2000		Proje	ect No. 086970	01.61KG

	Description 785.56 Description 785.56 Description 785.56	Completion Date: 3/11/06	GRAPHIC LOG	SPT BLOW COUNTS CORE RECOVERY/RQD	SAMPLES	Δ - UUIZ 0,5 STANDARI	O - QU/2 1,0 1,5 D PENETRATIO (ASTM D 158 VALUE (BLOWS VATER CONTE	0 - PP 2,0 2,5 ON RESISTANCE 5) PER FOOT)
ωZ				R.20		PLI 10	20 30	40 50 LL
	SAND, trace slit, n dense, poorly grad with gravel and lim	nedium, gray, medium dense to ed (SP-SM) (continued) estone fragments		10-16-12	SS19			
- 85-		at roller bit refusal at 56 feet				::::::::		
90 95 100 110								
110								
G	ROUNDWATER DA	TA DRILLING	DATA		_	Drawn by: TAD	CKIS BY SEM	App'vd. by: 900
	UNTERED AT 23.5 F	AUGER _3-3/4	MOLLO ROM 25 SEM LOG	FEET		G ING	NEERING AND ENVIR ST. LOUIS + COLLINSVIL	OLOGY, INC. IONMENTAL SERVICES LE - KANSAS CITY
REMA	ARKS:	HAMMER TY					latan Unit	
NEMP	mato.					CO LOG	NTINUATIO OF BORIN	ON OF G: B-5
						Proje	ect No. 086970	1.61KG

	Datum NAVD 88	GRAPHIC LOG	DRY UNIT WEIGHT (pcf) SPT BLOW COUNTS CORE RECOVERY/RQD	SAMPLES	Δ - UU/2 0 ₇ 5	O - QU/2 1,0 1,5 PENETRATIO	100
DEPTH IN FEET	DESCRIPTION OF MATERIAL	GRAP	SPT BLO SPT BLO CORE REC	SAM	PLI—W	(ASTM D 158 ALUE (BLOWS VATER CONTE	PER FOOT)
	TOPSOIL - 12 inches	15.5		-	10	20 30	40 50
	CLAY, sandy, brown, damp, very stiff to hard, high	7//		-	:::::::::		
_	plasticity (CH)		6-8-9	SS1	¥		
-			5-12-19	SS2	:::::::::::::::::::::::::::::::::::::::		: :::::::
- 5-	SAND, fine to medium, gray, damp, medium dense to			-			
	dense, non-plastic, poorly graded (SP)		6-16-17	SS3	:::::::::		:: :::::::
_				-			
2000			14-16-18	554	:::::::::	1:::::::	: :::::::
- 10-		1000					
					:::::::::	::::::::	: ::::::::
_	CLAY, black, damp, stiff, high plasticity (CH)	///					7
\neg			3-4-7	SS5	::::x::	m	
- 15-				-			
			1 1				: :::::::::
_							
	SAND, some slit, fine to medium, gray, damp, loose to		5-3-5	SS6		::::::::	: ::::::::
- 20-	dense, non-plastic (SM)						
					:::::::::	::::::::	: ::::::::
-		1111		- 1		100000000000000000000000000000000000000	
1000		HH	10-15-18	SS7	::::::::		: ::::::::
- 25-	SAND, coarse, gray, wet, medium dense to dense,						
	non-plastic, poorly graded (SP)	100	1 J		111111111	133333333	: ::::::::
-		V			::::::::		:
-			1-4-7	SS8	· · · · · · · · · · · · · · · · · · ·		: ::::::::
- 30-							
							: : : : : : : : :
-		1000		- 1	:::::::::	*******	
-			12-10-9	SS9			: : : : : : : : : : : : : : : : : : : :
35-							
_			1				
		1300			:::::::::	:::::::	: : : : : : : :
			8-9-5	SS10	:::::::		
G	BROUNDWATER DATA DRILL	ING DATA		_	Drawn by: TAD	CKd. by: FM	Applyd, by: 900
	The second of th		A1 COTTO		Date: 4/3/06	Date: 5/16/0	5-15-06
FNC	AUGER 3- DUNTERED AT 28 FEET ♀ WASHBORING	3/4" HOLLO			GE GE	OTECHN	OLOGY, INC
	CS DRILLER				UNION INCOME	FE LOUIS + COLLINGVE	RONMENTAL SERVICE: LE - KANSAS CITY
		7 DRILL RIG				200	
		TYPE Auto			We	latan Unit eston, Mis	t 2 souri
REMA	ARKS: Auger refusal at 88 feet				LOG	OF BORIN	G: B-6
					Proje	ect No. 086970	01.61KG

	Datum NAVD 88	Completion Date: 4/1/06	GRAPHIC LOG	DRY UNIT WEIGHT (pcf) SPT BLOW COUNTS CORE RECOVERY/RQD	SAMPLES	Δ - UU/2 0 ₁ 5	PENETRATION	0 - PP 2,0 2,5
DEPTH IN FEET	DESCR	DTION OF MATERIAL	RAP	BEO	SAN	A N-V	(ASTM D 1586) ALUE (BLOWS PE	ER FOOT
EN I	DESCR	PTION OF MATERIAL	10	SP SP		V	VATER CONTEN	T, %
-	O.L.			8.0		PL 10	20 30	40 50 L
-	non-plastic, poorly	y, wet, medium dense to dense, graded (SP) (continued)				:::::::::	: ::::::::::	::::::::
\neg							: :::::::::	::::::::
			333					
- 10			1	13-9-12	SS11	*******	4:::::::::	1::::::::
- 45-	trace clay		100					
_							: : : : : : : : : :	::::::::
_			13/2	i N				
				22-19-22	0040	::::::::::		
- 50-				22-10-22	0012			A
			100			********	1111111111	::::::::
			188	ğ Y				
			188					
				22-28-25	SS13	*******		r
55	fine, black							
			100		1	:::::::::		::::::::
						:::::::::		
_			133	40.00.40		******		
- 60-			100	18-20-16	SS14			
-			100				::::::::::	::::::::
_			100	9		:::::::::		::::::::
				8		:::::::::	111111111111	*******
-			N/M	8-15-16	SS15			::::::::
65-			1773					
			1333	- 1		:::::::::	:::::::::	::::::::
				1		:::::::::	*********	:::::::::::::::::::::::::::::::::::::::
_			1993					
70-	medium to coarse			20-21-19	5516			
	- medium to coarse					:::::::::		::::::::::
\neg				- 1		::::::::	11111111111	:::::::::
			888				**********	********
			1223	22-28-39	SS17	111111111	1333333333	67
75-				-				
			1000			:::::::::		:::::::::
_				1				
-				7-19-20	0040			
			\$500	1-18-50	3518			
G	ROUNDWATER DAT	TA DRILLIN	G DATA			Drawn by: TAD Date: 4/3/06	Dates / 15/0%	Applyd. by: 500 5-15-06
		AUGER3-3/4	HOLLO	WSTEM				
ENCO	OUNTERED AT 28 FE					ENGIN	OTECHNO WELLRING AND ENVIRON	IMENTAL REPORCES
		CS DRILLER	333000000000000000000000000000000000000				ST. LOUIS - COLLINSVILLE -	KANSAS CITY
		Mobile B57					2000 0000 000	
		HAMMER T				We	latan Unit 2 eston, Misso	2 Duri
REMA	RKS: Auger refusa	al at 88 feet				CO	NTINUATION OF BORING	OF : B-6
						nt	ect No. 0869701.	

	DESCR	Completion Date: 4/1/06	GRAPHIC LOG	SPT BLOW COUNTS CORE RECOVERY/RQD	SAMPLES	∆ - UU/2 0,5 STANDARD	O - QU/2 1,0 1,5 PENETRATION (ASTM D 1588) ALUE (BLOWS P	0 - PP 2,0 2,5 I RESISTANCE ER FOOT)
SE	DEGGI	THOR OF MATERIAL	30	Sep Sep	1 8	PL	ATER CONTEN	
	SAND, coarse, gra non-plastic, poorly	y, wet, medium dense to dense, graded (SP) (continued)				10	20 30	40 50
- 85-				15-16-17	SS19			
- 90-	SHALE, gray, slight	tly weathered grading to fresh, weak		65% 37%	NQ1			
95-	to moderately stro	ng, ilmy with limestone seams		98% 55%	NQ2			
-100-				98% 90%	NQ3			
-	Boring terminated a	st 103.5 feet		100% 62%	NQ4			
-105-								
-110-								
-115								
	ROUNDWATER DA	AUGER <u>3-3/4*</u>	HOLLO M 30	FEET		Drawn by: TAD Date: 4/3/05 GB ENGIN	Date: 5 / IS/ODE OTECHNO EERING AND ENVIRON T. LOWIS - COLLINSWILLE	LOGY, INC
		Mobile 857 DF HAMMER TYPI	RILL RIG				latan Unit : ston, Miss	
REMA	RKS: Auger refus	al at 88 feet				COL	NTINUATION OF BORING	N OF i: B-6
						Proje	ct No. 0869701	.61KG

	DatumNAVD 88	GRAPHIC LOG	DRY UNIT WEIGHT (pcf) SPT BLOW COUNTS CORE RECOVERY/ROD	SAMPLES	Δ - UU/2 0,5 STANDARD	O - QU/2 1,0 1,5 PENETRATION (ASTM D 1586)	0 - PP 2,0 2,5 RESISTANCE
DEPTH IN FEET	DESCRIPTION OF MATERIAL	95	SPT U			ALUE (BLOWS P	
	TOPSOIL - 6 inches	14.0				1	
	SAND, fine, tan, dry, loose to medium dense, non-plastic, poorly graded (SP)		3-4-7	SS1	:::: x :::	1::::::::::	:::::::
		100			********		
			3-7-7	SS2		11111111111	:::::::
- 5-			MAINUAL.				
			6-7-9	SS3	:::::::::	::::::::::	:::::::
		173	-	-	::::::: <u>:</u>	1::::::::::	1:::::::
0.000			3-9-13	SS4	:::::::::		
- 10-		100	55.15	004	********	• • • • • • • • •	
					:::::::::	1::::::::::::::::::::::::::::::::::::::	
			1-4-4	cce			
- 15-			1-4-4	SS5	::: : : :::		
\neg			1				
	SILT, trace sand, gray, moist, very soft (ML)	1465	1		:::::::::	.::::::::	1::::::::
	brown		001	000			
- 20-			0-2-1	SS6	A		
		Ш					::::::::
	SAND trace of the less and to be an in-	ЩЦ					
	SAND, trace sit, fine, tan grading to gray, dry, loose, non-plastic, poorly graded (SP-SM)	M			:::::::::		:::::::
- 25-	2	430	4-5-4	SS7	T.: *:	:::::::::	::::::::
					:::::::::	:::::::::	*******
-	CAMP came all for any			- 1			
	SAND, some slit, fine, gray, dry, medium dense, non-plastic (SM)	MA			:::::::::	::::::::	::::::::
- 30-	NOROSTY (1969-1965)		5-9-10	SS8	:::::::::::::::::::::::::::::::::::::::	:::::::::::::::::::::::::::::::::::::::	::::::::
75.5					:::::::::	:::::::::	::::::::
_							::::::::
	SAND, trace sit, coarse to fine, tan, wet, medium dense to dense, non-plastic, poorly graded (SP-SM)						
35-	wet, coarse with trace gravel		7-7-8	SS9	:::::: x :	:::::::::	::::::::
-					:::::::::	:::::::::	::::::::
\dashv							::::::::
			8-13-13	\$\$10	::::::::	:::::::	
	GROUNDWATER DATA DRILLING I	DATA			Drawn by: TAD	Ckd. by: SEM	App'vd. by: 50%
	AUGER _3-3/4"		WSTEM		Date: 3/14/06	Date: 5/15/154	
ENC	OUNTERED AT 25 FEET \$ WASHBORING FRO				GE GE	OTECHNO	LOGY, INC
0000	MU DRILLER SE					L. FORM - CONTINENTITE	· XANSAS CITY
	CME750X DR				- 8		
	HAMMER TYPE					latan Unit : ston, Miss	
REM	ARKS:				LOG	OF BORING	: B-8
					Proin	ct No. 0869701	61KG

	700 07	24400		6 0		SH	EAR STRENGT	H, tsf
Surfac	ce Elevation 786.97	Completion Date: 3/11/06	(2)	DRY UNIT WEIGHT (pcf) SPT BLOW COUNTS CORE RECOVERY/ROD		Δ - UU/2	O-QU/2	D-PP
	DatumNAVD 88		9	유영종	SS	0,5	1,0 1,5	2,0 2,5
- 1			- 9	NAO.	SAMPLES	STANDARD	PENETRATION	RESISTANCE
프뉴			GRAPHIC LOG	FISH	SA		(ASTM D 1586)	
DEPTH IN FEET	DESCR	IPTION OF MATERIAL	9	258	180	A N-V	ALUE (BLOWS P	ER FOOT)
25				808	1	PLI 10	20 30	40 50 L
	SAND, trace sit, o	coarse to fine, tan, wet, medium dense tic, poorly graded (SP-SM)						
_	(continued)	nic, poorly graded (SP-SM)					1::::::::::::::::::::::::::::::::::::::	
-			I H			:::::::::		
			1311	10-9-8	SS11			
- 45-								
						::::::::	:::::::::	::::::::
_								13333333
			Ealt	19-23-35	8812	:::::::::	11111111111	
- 50-				10 20 00	0012			
						:::::::::	:::::::::	
			H	8 17			1311111111	:::::::
-				17-20-23	2012			
- 55-				.7-20-23	3313			A
					1 1		1::::::::::	
						:::::::::	::::::::::	::::::::
_			M	40.40.47				111111111
- 60-				10-12-17	5514	*******		
								:::::::::
-	SAND medium to	coarse, gray, wet, medium dense to	- 1334			::::::::		
	dense, non-plastic,	poorly graded (SP)						:::::::::
- 65-	coarse		100	7-8-10	SS15			
-				§				:::::::::
			1983	8 4		::::::::		
			183		2000		:::::::::	:::::::::
70-				11-11-14	SS16		: A::::::	::::::::::
				1				::::::::::
\Box	with trace gravel					:::::::::	********	:::::::::
- 75-				15-16-20	5517	:::::::::	:::::::::::::::::::::::::::::::::::::::	::::::::::
						:::::::::	:::::::::	*********
								:::::::::::::::::::::::::::::::::::::::
						::::::::::	::::::::	::::::::
	_		100	9-9-9	SS18	.	::::::::	:::::::::
G	ROUNDWATER DA	TA DRILLING	DATA			Drawn by: TAD Date: 3/14/06	CK'd, by SEM	App'vd. by: 500
		AUGER _3-3/4*	HOLLO	W STEM			Date: 5/14/01	5-15-06
ENCO	UNTERED AT 25 FE					ENGIN	OTECHNO EERING AND ENVIRO	NMENTAL SERVICES
		MU DRILLER 3					T. LDUIS + COLLINGVILLE	· KANSAS CITY
		CME750X D	THE PERSON			10		
		HAMMER TY				We	latan Unit : ston, Miss	ouri
REMA	RKS:					LOG	NTINUATION OF BORING	N OF : B-8
						-	ct No. 0869701	

	ce Elevation 786.97 Completion Date:3/11/06	GRAPHIC LOG	DRY UNIT WEIGHT (pcf) SPT BLOW COUNTS CORE RECOVERY/RQD	SAMPLES	SHEAR STRENGTH, tsf Δ - UU/2 O - QU/2 [] - PP 0,5 1,0 1,5 2,0 2,5 STANDARD PENETRATION RESISTANCE
DEPTH IN FEET	DESCRIPTION OF MATERIAL	GRAF	SPT BLC	SA	(ASTM D 1886) N-VALUE (BLOWS PER FOOT) WATER CONTENT, %
85-	SAND, medium to coarse, gray, wet, medium dense, non-plastic, poorly graded (SP) (continued	se to	12-15-13	SS19	10 20 30 40 50
- 90- - 95- -100-	Boring terminated at roller bit refusal at 88 feet			-	
-115					
	AUGER UNTERED AT 25 FEET \$ WASHBOR	3-3/4" HOLLOV RING FROM 25 F LER SEM LOG	EET		Drawn by: TAD CX'd, by: SFAA Applyd, by: SIX Date: 3/14/06 Date: S 11/(17) 5-15-06 GEOTECHNOLOGY, INC ENGINEERING AND ENVIRONMENTAL SERVICE ST LOUIS - COLLINEVALE - MANSAS CITY
REMA	<u>CME</u> HAMN	750X_DRILL RIG MER TYPE <u>Auto</u>			latan Unit 2 Weston, Missouri CONTINUATION OF
					LOG OF BORING: B- 8 Project No. 0869701.61KG

roject Name latan	,				ng Lo			Bonn	g Numi	B-1	11	
roject No.	-3.0209							Page		1 of		
ound Bleva	ation		Location	E DOFOCE :				Total	Footag	j0		
788 ft. Drilling Ty		Size	N 1194786 Overburden Footage	E 2653254 Bedrock Footage	No.C	of Samples	No. Co	re Boxes	De	90.5 pth to Wate		Date Measure
Auger/M	7000	ID	90.5 ft.	0.0 ft.		21		0		27.5		3-13-06
ling Comp	pany Geoteci	hnology	, Inc.		Driller		aig Steine	r, Shau	Dot:	ion		
lingRig	Mobile B-57				Type Periet	of ration Test	SPT (Auto-Trij	p Han	nmer)		
no 3-10	0-06		To 3-13-06		Field	Observer (s	Robe	ert Jaque	es, Ke	vin Bollin	g	
lepth (ft)			Description		Class	Blow Count	Field Strength (PP)	Recov/ Advance (Inch)		Sample or Box No.		Remarks
1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11 11 11 11 11 11 11	SAND, fine grait trace coarse san SAND, fine grait coarse sand (St	ned, light (SP)	brown, damp, mediu brown, damp, mediu brown, damp, mediu	m to dense, m, trace		9/ 12/ 15 15/ 15/ 15/ 15/ 15/ 15/ 10/ 10		16/ 18 18/ 18 17/ 18	1 4 4 5 6 7 7 8 9 9 10 11	\$\$-1 \$\$-2 \$\$-3	N=21 N=21 N=21	0
13 14 1							1 50 TSF	16/ 18	13	SS-5	3	

Secta Annual Engineering Department

					Borin	g Num	ber B-	11
roject Nam	ne latan				Page		3 of	
roject Nun	rber 41180-3,0209	G) 20	2 - 22		Date		3-10	-06
Depth (ft)	Description	Class	Blow Count	Field Strength (PP)	Recov / Advance (Inch)		Sample or Box No.	Remarks
32	SAND, fine to coarse grained, gray, wet, medium, trace fine gravel (SW).					32-		Switch to mud rota at 30 ft.
34-			4/ 6/ 5		12/ 18	34	SS-9	N=11
36-						36		
38-	SAND; fine to coarse grained, gray, wet, medium, with fine gravel (SW)		5/ 9/ 15		14/ 18	38-	SS-10	N=24
40 - 1						40-		
42						42		
44	SAND, fine to medium grained, gray, wet, medium, some coarase sand (SW).		5/ 15/ 13		15/ 18	44	SS-11	N=28
46						46		
47	SAND, fine gravel, fine to coarse grained, gray, wet, dense (SWG)	- B**				47		

Section and Engineering Department

					Borin	g Num	ber B-1	11
ect Nam	e latan				Page		4 of	6
ect Num	ter 41180-3,0209	~ ·			Date		3-10	-06
opin (t)	Description	Class	Blow Count	Field Strength (PP)	Recov / Advance (Inch)		Sample or Box No.	Remarks
+	SAND, fine gravel, fine to coarse grained, gray, wet, dense (SWG)	100 N	198707	-			1000000	
E		1000	15/	l	18/	1.3	SS-12	
\pm	SAND; fine grained, gray, wet, dense (SP)		24/ 17	l	18	49-	-0012	N=41
Ε		100	_			1		
ᅼ				l		50-		
1								
. =		W. W.		l				
'=		10000		l		51-		
-∃-	SAND; fine to coarse grained, gray, wet, medium, trace fine	111000		l		3	1	
2-7	gravel (SW)					52-		
=						1		
<u>,</u>						53-		
3			9/		147	-		
E			9/ 9/ 9	l	18	54 -	SS-13	
'∃		****		l		-		N=18
=						1 :		
5-				l		55-	1	
Ŧ				l		3	1	
3-3				l		56-	1	
#	SAND, fine grained, gray, wet, dense, laminated (SP).	730293						
7				l		57-	1	
Ε							1	
E						58-		
1			9/		355.00			
E			15/		11/		SS-14	
E			16			59-		N=31
=								
H						60-		
3						1		
\exists						61-		
#	SAND, fine to coarse grained, gray, wet, medium (SW).	11/2				:		
1	and the same of th					62-		
E						-		
E						63		
=			18/		10,000	:		
. ‡			15/		10/ 18		SS-15	V.5650
ΈŤ			6		11.45%	64		N= 21
F		*****				1		16:25 Stop for (3/10/2006).

	W. W.W.				Bonn	g Num		
ect Nam	NO. (QANAMI)				Page		5 of	
ect Nun	rber 41180-3,0209		-	_	Date	_	3-10	-06
pen t)	Description	Class	Blow	Field Strength (PP)	Recov / Advance (Inch)		Sample or Box No.	Remarks
4	SAND; fine to coarse grained, gray, wet, medium (SW).	*****				1		11:10 Begin or
سأسسأت						66-		3/13/2006
						68		
Ī	SAND, fine to coarse grained, gray, wet, dense to very dense (SW).		19/ 23/ 28		18/ 18	69-	SS-16	
Ī						70-		N=51
						71-		
						73-		
	SAND, fine to coarse grained, gray, wet, medium, with coarse gravel zones (SW).		15/		9/	74-		
			12/ 7		18	75-	\$S-17	N=19
<u></u>						76-		14=19
سأس	SAND; some gravel, fine to medium grained, gray, wet, medium to dense, gravel is fine grained (SW)					77		
į			11/			78		
爿			16/ 15		13/ 18	79	SS-18	Market Co.
Ä						80		N=31
4						81		
= =								2

Seale should Engineering Department

roject Nam latan	0							12500	g Num	B-	12
roject No. 4118	0-3.0209	r .						Page		1 of	7
ound Elev	ation		Location N 119466	0 E 2653238				Total	Footaç		
Drilling T		Hole Size	Overburden Footage		e No.C	of Samples	No.O	ore Boxes	De	pth to Wate	Married Williams and Publishers and
Auger/N	Mud	3 3/4 ID	90.0 ft.	15.0 ft.		20		2		22	3-13-06
ling Com	pany C	Seatechnolog	y, Inc.		Driller	s (s) Cr	aig Steine	er, Shau	n Dot	son	
llingRig	Mobile	B-57	10.		Type Penet	of ration Test	SPT (Auto-Tri	p Han	nmer)	
n 3-1	3-05		To 3-15-06			Observer (n Bolling	1	2 10	No.
Depth (ft)			Description		Class	Blow Count	Field Strength (PP)	Recov./ Advance (Inch)		Sample or Box No.	Remarks
=	SAND,	fine grained, lig	nt brown, damp, medi	um (SP).							
1						7/ 9/ 13		15/ 18	2	SS-1	N=22
3 1111111111111111111111111111111111111	SAND; clay (SF	ine grained, ligi ')	nt brown, damp, med	ium, with trace		7/ 11/ 13		14/ 18	3-4-	SS-2	N=24
6-11-7-11-1	SAND; trace cla	ine to medium by (SP).	grained, light brown, o	damp, medium,		8/ 12/ 14		17/ 18	6-	SS-3	
8	SAND; trace da	tne to medium sy, trace coarse	grained, light brown, o sand (SP).	damp, medium,		9/ 8/ 13		17/	9	SS-4	N=26
11 12 11 11 11 11 11 11 11 11 11 11 11 1									11 12		N=21
\exists							0.50 to	18/	-	SS-5	

les to divisial Engineering Department

					Borin	ig Num	ber B-	12
ct Nan	ne latan				Page		4 of	
ct Nun	rber 41180-3.0209				Date		3-13	-05
en)	Description	Class	Blow Count	Field Strength (PP)	Recov/ Advance (Inch)		Sample or Box No.	Remark
1	SiLT; fine sand, gray, wet, medium (ML).							
ĬunĬ			10/ 11/ 15		16/ 18	49-	SS-12	N=26
mhin						51-		14-20
1						52		
	SILT, trace coarse sand, gray, wet, very dense, nonplastic (ML)		16/ 19/ 33		16/	54	SS-13	
1			33		10	55-		N=52
-						56-		
	SAND, fine to coarse grained, gray, wet, medium, trace coarse gravel (SW).					58-		
			16/ 7/ 10		15/	59	SS-14	
1						60		N=17
						61-		
	SAND; fine to coarse grained, gray, wet, very dense (SW).					63		
1			17/ 25/ 30		16/ 18	64	SS-15	N=55

					Borin	g Numi	or B-	12
ject Nam	e latan				Page		5 of	7
ject Num	ber 41180-3.0209				Date		3-13	-05
epth (ft)	Description	Class	Blow Count	Field Strength (PP)	Recov./ Advance (Inch)		Sample or Box No.	Remarks
17	SAND, medium grained, gray, wet, very dense, trace fine sand, trace gravel (SP)					66-		
			25/ 35/ 37		13/ 18	69	SS-16	0725×1
, 1						71-		N=72
3						73		
5	SAND, medium grained, gray, wet, medium, trace gravel (SP)		13/ 14/ 11		10/ 18	74	SS-17	N=25
64						76-		
78	SAND, medium to coense grained, gravel, gray, wet, dense (SW)					77-		
9			18/ 16/ 16		10/ 18	79	SS-18	N=32
11111						81-		

					Borin	g Numi	or B-1	12
roject Nan	ne latan				Page		6 of	
roject Nun	rber 41180-3,0209			6	Date		3-13	-05
Depth (ft)	Description	Class	Blow Count	Field Strength (PP)	Recov / Advance (Inch)		Sample or Box No.	Remarks
83—	GRAVEL, medium to coarse sand, gray, wet, medium to dense (GW).	8.0.8	15/ 16/		gy	83		
85			16/		18	85	SS-19	N=30
87	SAND; coarse grained, gravel, brownish gray, wet, medium, trace coarse gravel (SW).					87-		
89			14/ 12/ 50/4"		12/ 16	89	SS-20	Spoon refusal at 89.83 feet. Stoppe
91	SILTSTONE; gray, trace fine sand and shale, thin laminations; slightly weathered, weak.			RQD= 22%	57.5/ 60	91	Run#1	at 3:30 on 3/14/2006, resum- 4/2006, 3/15/2006, 3/15/2006
93-1-94-1-95-1-95-1-95-1-95-1-95-1-95-1-95	SANDSTONE; fine grained, gray, poorly graded, laminated with sit, fresh, moderately strong.					94		
96-				RQD= 55%	60/ 60	97-	Run#2	

Description Description Description Description Description Description Description Description Description provided, laminated stit, thesh, moderately strong.	Class	Blow Count	Field Strength (PP) RQD= 55%	Pegg Date Recov/ Advance (Inch) 60/ 60	100-	7 of 7 3-13-0 Sample or Box No.	
Description IDSTONE; the grained, gray, poorly graded, laminated silt, fresh, moderately strong.		Blow Count	Strength (PP) RQD= 55%	Recov/ Advance (Inch)	100	Sample or Box No.	
IDSTONE; fine grained, gray, poorly graded, laminated sit, tresh, moderately strong.		Blow Count	Strength (PP) RQD= 55%	(Inch)	100	or Box No.	Remarks
			55%	60/ 60	101	Run#2	
oming fine to medium grained				8	101		
					02-		
			RQD= 46%	60/ 60	03	Run#3	
ng Terminated at 105 Feet.					05		
g ranna accorda 100 ran) is	107		
				8	08-		
					110		
				93	12-		
				3	13-		
				33	15		
						13-	113—

-1	DatumNAVD 88	Completion Date: 3/10/06	GRAPHIC LOG	DRY UNIT WEIGHT (pd) SPT BLOW COUNTS CORE RECOVERY/ROD	SAMPLES	Δ - UU/2 0 ₁ 5	0 - QU/2 1,0 1,5 PENETRATIO (ASTM D 1586	0 - PP 2 ₁ 0 2 ₁ 5 N RESISTANCE
DEPTH IN FEET	DESCR	PTION OF MATERIAL	GRA	SPT BL CORE RE	8	PLI—W	ALUE (BLOWS F	PER FOOT)
-	TOPSOIL - 6 Inch	16	100.0	-	-	10	20 30	40 50
	SAND, trace slit, f non-plastic, poorly	ne, gray, dry, loose to medium dense, graded (SP-SM)		5-8-12	881	*		
- 5-				4-5-12	SS2	:::::::x		: ::::::::
				5-8-8	SS3	.		
- 10-				4-5-5	SS4			
			2					
- 15-	CLAY, sity, gray, o	lamp, soft, high plasticity (CH)		2-1-2	SS5	x:::::::	:::: : ::::	6
20-	non-plastic, poorly	te, tan, wet, loose to dense, graded (SP-SM)		5-7-9	SS6	:::::::::::::::::::::::::::::::::::::::		
- 25-				3-5-5	SS7	.		
- 30-				4-5-7	SS8	::::::		
Ξ								
- 35-				9-17-19	SS9			
\equiv								
			FAITH	12-13-18	SS10	Drawn by: TAD	Ckd. by: SEA	Applyd, by: 50%
ENCO	UNTERED AT 23.5 F	AUGER 3-3/4" EET \$\mathbb{Z}\$ WASHBORING FR	HOLLO OM 25			Date: 3/14/05	OTECHNO	DLOGY, INC.
		CME750X DI HAMMER TYP	RILL RIG	i.			latan Unit eston, Miss	
REMA	ARKS:					LOG	OF BORING	6: B-14
						Proje	ect No. 086970	1.61KG

- 1	ce Elevation 786.09 DatumNAVD 88	Completion Date: 3/10/06	GRAPHIC LOG	SPT BLOW COUNTS CORE RECOVERY/RQD	SAMPLES	Δ - UU/2 0,5 STANDARD	PENETRATION (ASTM 0 1586)	0 - PP 2,0 2,5 RESISTANCE
DEPTH IN FEET	DESCR	PTION OF MATERIAL	8	PTE	"	W	ALUE (BLOWS PE	
	CAND			F S		PLI	-	10 50
	non-plastic, poorly	ne, tan, wet, loose to dense, graded (SP-SM) (continued)						
	coarse, trace gray	el			_	:::::::::		
- 45-				6-8-10	SS11		:::::::::	:::::::
- 60				8-9-12	SS12		**********	
- 50-	Boring terminated	at 50 feet	5.100			:::::::::	:::::::::	11111111
						:::::::::::::::::::::::::::::::::::::::		:::::::
			1 1			:::::::::		:::::::
- 55-			1.1					
_			11					::::::::
- 60-						********		
750			11			::::::::	::::::::	::::::::
			1 1					::::::::
- 65-					1			
\dashv			1 1					
			1 1	1			*********	
70-						::::::::	:::::::::	::::::::
				- 1	- 1	:::::::::		::::::::
							::::::::	::::::::
- 75-			11				**********	::::::::
75-						:::::::::	::::::::::	::::::::
			\perp				::::::::::	::::::::
								::::::::
	DOUBLEWATER DAY				_	Orawa by: TAD	CK'd. by GEM	Applyd. by: 50%
9	ROUNDWATER DAT		70 10 10 Ex			Date: 3/14/06	Date: -> 115/1/12	5-15-06
ENCO	UNTERED AT 23.5 F	AUGER <u>3-3/4*</u> EET ¥ WASHBORING FR				GE GE	OTECHNO EERING AND ENVIRON	LOGY, INC
	FEET AFTER 40 HO		THE RESTORTED			9	TLEMS - COLLINSVILLE -	KANSAS CITY
		CME750X D HAMMER TY					latan Unit 2 ston, Misso	
REMA	RKS:					CON	TINUATION OF BORING:	OF
							ct No. 0869701.	

ject Name ject Numb epth (ft)	5 - O-Control - O-	Class			Page Date		2 of 4-5-	4
epth (ft)	Description SAND, Fine to Medium Grained, Silt, Light Brown, Wet,	Class	-		Date		4-5-	06
(10)	SAND, Fine to Medium Grained, Silt, Light Brown, Wet,	Class		COMMO				
15	SAND, Fine to Medium Grained, Silt, Light Brown, Wet, Loose (SP)	C1000	Blow Count	Field Strength (PP)	Recov / Advance (Inch)		Sample or Box No.	Remarks
Ξ			2/ 1/ 4		15/ 18		SS-3	N = 5
17						16-		Sampler wet upon retrieval of SS-3, convert to mud rotar drilling.
	SAND, Medium to Coense Grained, Brownish Gray, Wet, Loose (SP)		3/ 3/		9/	18		N=6
20			3/3		18	20-	SS-4	
27						21-		
2 1	SAND, Medium to Coarse Grained, Gray, Wet, Loose, Organic Debnis, Lignite (SP)					23		
24			3/ 3/ 5		11/ 18	25-	\$\$-5	N = 8
26	SAND, Fine to Coarse Graned, Trace Fine Gravel,					26		
28	Brownish Gray, Wet, Medium (SW)					27		
, I			5/ 6/ 7		9/ 18	29	SS-6	N = 13

					Borin	g Num	ber B-S	35
roject Nam	ne latan				Page		4 of	4
oject Nun	rber 41180-3,0209	934 m		6	Date		4-5-0	06
Depth (ft)	Description	Class	Blow Count	Field Strength (PP)	Recov / Advance (Inch)		Sample or Box No.	Remarks
=	SAND, Fine to Medium Grained, Gray, Wet, Medium (SP)							
49-			11/ 13/ 14		13/ 18	49	SS-10	N = 27
50	Boring Terminated at 50 Feet	8440044				50		15:00 End at 50 fee bgs.
51=						51-		
52						52-		
3						1111		
53						53-		
54-						54 -		
55						55-		
Ε								
56						56-		
57-						57		
58-						58-		
Ē.,						-		
59						59-		
60-						60		
61						61-		
Ē						=		
62						62-		
63-						63-		
64						64		
65						1.1.1		

Project Name latan							Bonn	g Num	B-S	36	
roject No. 41180-3.02	ng						Page		1 of		
round Elevation	ve	Location	E DOE (FFO				Total	Footag	yii		
775 ft.msl Drilling Type	Hole Size	N 1194318 Overburden Footage	E 2654559 Bedrock Footage	No.C	f Samples	No. O	ore Boxes	De	76.7 pth to Wate		Date Measure
Auger/Mud	3 3/4 ID	76,5 ft.	0.2 ft.		18		0	-	ee Remar	_	4-6-06
niling Company	Geotechnolog	y, Inc.		Driller		t Hart, Jo	hn				
rilingRig CM	E -750 ATV			Type i Penet	of ration Test	SPT (Auto-Tri	p Han	nmer)		
ato 4-6-06		то 4-6-06	.00		Observer (Butler		2 (0)	-1	
Depth (ft)		Description		Class	Blow Count	Field Strength (PP)	Recov/ Advance (Inch)		Sample or Box No.		Remarks
TOP (TOP	SOIL, Sit, Dark B SOIL)	rown, Moist, with Organ	ecs 3					111		7:30 S	etup; 7:50
		np, Stiff, Medium to Hig	n Plasticity					1-		Start 7:56	
, 1 (CH)							11/	. =			
2=						1.25 TSF	24	2-	ST-1		
3.=								3-			
Ē								1		8:05	
4-						1.75 TSF	10/ 24	4-	ST-2		
3							47	=			
5—								5-			
∄								=			
		mp to Moist, Soft, Trace	Plasticity					6-			
_ = (ML)					1/	0.50 TSF	16/ 18	=	SS-1	N = 2	
7=					1		5555	7-			
Es								8-			
1		No. of the Control of						-		0.44	
9 Incre	asing Fine Sand (Content, Moist to Wet			1/		13/	9-		8:22 N = 7	
3					2/ 5		18	=	SS-2	16.00	
10-					-			10-			
=								=			
11-								11-			
=								=			
	D, Fine Graned, 1 e, Nonplastic (SM	race to Some Sit, Brow	vn, Wet,					12-			
=	-, respirate join										
13-							-	13-			
14				7247	2		14/	-	SS-3	8:33	

hertechnial Engineering Department

					Borin	g Num		
ject Nam	e latan				Page		2 of	5
ect Num	ter 41180-3,0209			8	Date		4-6-	06
pth t)	Description	Class	Blow Count	Field Strength (PP)	Recov/ Advance (Inch)		Sample or Box No.	Remarks
Junjunj	SAND, Fine Graned, Trace to Some Sit, Brown, Wet, Loose, Nonplastic (SM)		1/ 3/ 4	7.17	14/	15	SS-3	N = 7, Sample W Upon Retrieval, Switch to Mud Rotary Wash at 1 t.
سأسسآس	SAND, Fine to Medium Grained, Trace Coarse, Brown, Wet, Loose, Nonplastic (SP)					17		
يأسيك			5/ 4/ 4		12/ 18	19	SS-4	8.53 N = 8
ساسسا						21		
uliuuluuluu	SAND, Medium Graned, Trace Fine and Coarse, Trace Grawel, Brown, Wet, Loose (SP)		2/ 2/ 5		13/ 18	23-	\$\$-5	9.00 N = 7
7	Becoming Medium Dense		7/		10/	27		9:08 N = 12
سأست			6/		18.	30-	SS-6	

					Borin	g Numi	ber B-	36
ject Nam	e latan				Page		3 of	
ect Nun	rber 41180-3,0209	7			Date		4-6-	06
epth (t)	Description	Class	Blow Count	Field Strength (PP)	Recov / Advance (Inch)		Sample or Box No.	Remarks
2 3	SAND, Fine to Medium Grained, Gray, Wet, Dense (SP)					32-		9.15
5			13/ 18/ 18		14/ 18	35	SS-7	N = 36
8						37-		
سأسال	SAND, Fine to Medium Grained, Gray, Wet, Medium to Dense, Trace Coarse Sand (SP)		8/ 12/ 19		12/ 18	39	SS-8	9.25 N = 31
1 1 1 1 1 1 1 1 1						41-		
3	SAND, Fine Grained, Trace Medium, Gray, Wet, Medium Dense (SP)		42-1		97955	43		9,40
4	n.com and the control of the control		10/ 11/ 15		14/	45	SS-9	N = 26
7						46		

		Borin	g Numi	Boring Number B-36				
roject Nam	e latan			Page	Page 4 of 5			
roject Num	ber 41180-3.0209				Date		4-6-	06
Depth (ft)	Description	Class	Blow Count	Field Strength (PP)	Recov / Advance (Inch)	5-8	Sample or Box No.	Remarks
-	SAND, Fine to Medium Grained, Trace Coarse, Gray, Wet, Medium to Dense, Non Plastic (SP)	0.00						
49	medical to Existe, Note Hadoc (SC)		8/ 13/ 15		11/ 18	49	SS-10	9:50 N = 28
51						51-		
52						52-		
54			21/ 20/ 15		10/ 18	54	SS-11	10.00 N = 35
55	GRAVEL, Fine to Coarse Grained, With Medium to Coarse Sand, Gray, Wet, Dense, Nonplastic (GP)	200000				55-		10:15 Sand in rod:
56		0000000				56 -		drillers mixing new batch of drilling flu
58	Coarse Gravel and Cobbles Noted by Driller	00000				58-		
59=	SAND, Fine to Coarse Grained, Trace Gravel, Gray, Wet, Medium, Nonpleistic (SW)	.0°.	7/ 9/		8/ 18	59	SS-12	10.55 N = 17
60			8			60		
61						61-		11.05 Sand in rod again. Borehole is staying open for it full depth.
62						62		
64			8/			64		11.48
65	Trace to Some Fine Gravel		10/		10/ 18	1	\$S-13	N = 17

					Borin	g Num	ber B-	37		
ject Name latan						Page 2 of 4				
ject Num	ber 41180-3.0209	_			Date	_	4-5-	06		
epth (ft)	Description	Class	Blow Count	Field Strength (PP)	Recov/ Advance (Inch)		Sample or Box No.	Remarks		
15	SILT, Trace Clay, Gray, Wet, Loose/Soft, Trace Plasticity (ML)		1/ 1/ 2		12/ 18	15-	\$\$-3	N ≃ 3		
17	SAND, Coarse Grained, Trace Fine Gravel, Brownish Gray, Loose (SP)					16				
19			3/ 4/ 4		10/ 18	19	SS-4	N = 8		
21						21-				
24	SAND, Coarse Grained, Trace Fine Gravel, Light Brown, Medium (SP)		3/ 6/ 9		11/ 18	23-	\$\$-5	N = 15		
26						25				
27-						27				
9 1			4/ 4/ 4		1/	29	SS-6	N = 8		
, =						1.1.1				

Destroyal Engineering Department

					Borin	g Num	ber B-	37
oject Nam	45 VM (410)				Page		4 of	
oject Num	tier 41180-3,0209				Date		4-5-	06
epth (ft)	Description	Class	Blow Count	Field Strength (PP)	Recov./ Advance (Inch)		Sample or Box No.	Remarks
3	SAND, Fine to Coarse Grained, Trace Fine Gravel, Gray, Wet, Medium (SW)	****						
	THE MEDITION		5/ 7/ 9			49-	SS-10	N = 16
555-556-556-556-556-556-556-556-556-556	Boring Terminated at 50 Feet					50 51 52 53 54 55 56 57 58 59 60 61 62 63		Firesh at 19:00

Seeks treat Engineering Department

	Description OF MATERIA	WPHICLOG	SPT BLOW COUNTS CORE RECOVERY/RQD	SAMPLES	Δ - UU/2 0,5 STANDARD	O - QU/2 1,0 1,5 2,0 PENETRATION RE (ASTM D 1586) ALUE (BLOWS PER I ATER CONTENT, 9	2,5 SISTANCE
οZ			F 200		PLI	20 30 40	50 IL
45-	SAND, coarse, gray, wet, loose to medium dei non-plastic, poorty-graded (SP) (continued) with limestone fragments	196,	9-9-12	SS9		A:	
-				18. 2			
	some fine pebbles				:::::::::		
- 50-	Boring terminated at 50 feet	- WW	6-7-6	SS10	::::: x :::	:::::::::::::::::::::::::::::::::::::::	:::::::
- 55-			1		********		
_		1.1				:::::::::	
		1.1					
- 60-		1.1					
		1.1					
		1.1					
- 65-		1.1			::::::::	111111111111111111111111111111111111111	::::::
		- 1					::::::
		1 1			::::::::::	::::::::::::::::::::::::::::::::::::::	::::::
- 70-							::::::
70-						* * * * * * * * * * * * * * * * * * * *	::::::
							1111111
_							
- 75-				1			*****
-			1				::::::
					Drawn by: TAD	CKd. bySEAA App	4
2	GROUNDWATER DATA	DRILLING DATA			Date: 4/11/06	Data: SJ C JOTA	5-15-06
ENC	OUNTERED AT 13 FEET ♀ WASH	R 3-3/4" HOLLON BORING FROM 15 I DRILLER RMJ LON	FEET		ENGIN	OTECHNOLO EERING AND ENVIRONMEN T. LOUIS - COLLINSVILLE - KAN	TAL SERVICES
	н	ME750X DRILL RIG AMMER TYPE Auto			We	latan Unit 2 ston, Missou	ri
REMA	ARKS:					NTINUATION OF BORING: E	
					725 (5)	ct No. 0869701.61K	

Project	Marris			Drillir	ig L	<i>y</i>		Rose	g Num	Ne	
la	atan							1250	Siz Sch	B-<	49
Project 4	No. 1180-3.0	209						Page		1 of	2
Ground	Bevason 86 ft.msl		Location N 1195361	E 2652880				Total	Footag		
	ing Type					No.C	ore Boxes	De	pth to Wate		
,	\uger	3 3/4 ID 20.0 ft. 0.0 ft. 7					0	Not Measured			
Drilling	Company	Geotechnolo	gy, Inc.		Driller	s (s) Tro	y Robert	son, Mik	e Bar	ry	
Drilling	Rig C	ME -750 ATV			Type	of tration Test	SPT (Auto-Tri	p Han	nmer)	
Date	3-29-06		то 3-29-06	70		Observer (s	Rob	ert Jaqu	es	2 10	
Depti (ft)	h		Description		Class	Blow Count	Field Strength (PP)	Recov/ Advance (Inch)		Sample or Box No.	Remarks
64	_	nd and Gravel Fill (*****	Count	4.7	quitary		200110	Promisero
	3			1					3		13:30 Setup; 13:45
1-	- SA	ND, Fine to Medium	m Grained, Light Brown,	Damp,					1-		Begin
	3 "	dium (SP)				5/ 12/		12/ 18	=	SS-1	N = 26
2-	Ŧ					14		190	2-		
	=								_ =		1
3-	3								3-		
	= SA	ND, Fine to Mediun	n Grained, Light Brown, e Sand, Trace Fine Grav	Damp, (el (SP)		-			. =		
4-	Ξ.					4/ 10/ 14		14/ 18	4-	SS-2	N = 24
	=					14		1,158	. =		
5-	=								5-		1
6-	SAI Me	ND, Fine to Coarse dium, Trace Fine G	Grained, Light Brown, I bravel (SW)	Damp,					6-		
0	=					AI.		31000	-		now next
7-	3					12/ 15		13/ 18	7-	SS-3	N = 27
-	=							(2000)	=		
8-	3				***				8-		
-	3 SA	ND, Fine to Mediur dium, Trace Coarse	n Grained, Light Brown, e Sand, Trace Fine Grav	Damp, wil(SP)					=		
9-	3					6/		2444	9-		N - 22
	3				198	10/ 12		147 18	=	SS-4	N = 22
10-	4				4.33.4				10-		
	3								-		
11-	-								11-		
	=								=		
12-	-a	AY, Sit, Gray, Mois	st, Stiff, Medium to High	Plasticity	mn				12-		
	100			costested ()					=		
13-	-								13-		
	=					5	1.25	12/	-	SS-5	
14	1_						1.20	18	-	30-0	Burns &

hertechnial Engineering Department

					Borin	g Numi	ber B-4	19
roject Nam	e latan				Page		2 of	
oject Num	ber 41180-3,0209			8	Date		3-29	-06
Depth (ft)	Description	Class	Blow Count	Field Strength (PP)	Recov./ Advance (Inch)		Sample or Box No.	Remarks
15	CLAY, Silt, Gray, Moist, Stiff, Medium to High Plasticity (CH)		2/ 2/ 1	1.25	12/ 18	15-	\$\$-5	N = 3
16				Not Measured	15/ 24	16	ST-1	
17-	SAND, Fine Grained, Light Brownish Gray, Moist, Loose to Medium (SP)					17-		
<u> </u>	SILT, Clay, Fine Sand, Light Brownish Gray, Moist to Wet, Very Soit to Soit (CL-ML)	-				18		
19			3/ 3/ 2	< 0.25	18/ 18	19-	SS-6	N = 5
20	Boring Terminated at 20 Feet					21		Seal hole with 3 ba Benseal and 5 gallons water and cuttings 2 t to surface.
22=						22-		174.00
23-						23		
25—						24-		
26						26		
27-						27		
28-						28-		
30-						30		
31						1.1.1		Burns&

Seeks treat Engineering Department

Control of Alle	200.0				ig Lo			Otton	or # h Levi		
Project No lata	n							100000	g Num	B-{	58
Project No 411	80-3.02	09						Page		1 of	6
Ground B	evation		Location	E BARCOO				Total	Footag	y 0	
Drilling	ft.msl	Hole Size	N 1197518 Overburden Footage	E 2653114 Bedrock Footage	No.0	Of Samples	No.C	ore Boxes	The	98.0 pth to Wate	
Auger		3 3/4 ID	73.0 ft.	15.0 ft.		17	1100.0	2	9.7		4-13-06
Onling Co		Geotechnolo	100000000000000000000000000000000000000	10.0	Driller		aig Steine		_		11000
Drilling Ri			93, 1110.		Type	d		Auto-Tri	n Han	omar)	
_	-12-06	2-30	To 4-13-06			tration Test				ratier)	
Date 4	12-00		To 4-13-06	T	FREE	Observer (1	ert Jaqui	es	2000	1
Depth			4		1442313	Blow	Field Strength (PP)	Recov/ Advance		Sample or	
(1)	FILL	Clay, Silt, Sand	Description	-	Class	Count	(HP)	(Inch)		Box No.	Remarks
Ξ	1	Gay, Oic, Gara							=		13:00 Setup, 13:08
1-				- 1		_			1-		Begin
Ξ		Test decid	adim to SW Material	Section .		1/		6/	3		N-4
2-	Coal	r, Gray, Moist, M Debris (CL)	edium to Stiff, Medium F	nasuoty,		2/	2.00 TSF	18	2-	SS-1	N = 4
=						1 8			-		
3—									3-		
~ =	SILT, Medi	Clay, Brownish of um Plasticity (CL-	Gray, Moist, Medium to -ML)	Stiff, Trace to					-		
, =	11155571			1		-					
7=						3/ 5/ 7	1.00 TSF	12/ 18	-	SS-2	N = 12
_ =								01/08/	_ =		
5-									5-		
=	SANI (SP-S), Fine Grained,	Sit, Light Brown, Damp,	Medium							
6-	lors	SWI /							6-		
Ξ						12/		13/	-	SS-3	N = 24
7-						12/ 12		18	7-		
Ξ									-		
8-	SANO), Fine Grained,	Light Brown, Moist, Med	tum (SP)	1000				8-		
Ξ			100						=		
9-						6/		15/	9-		N = 21
Ξ						10/ 11		18	3	SS-4	100.50
10-					\$ 30 A				10-	ै	
Ξ									3		
11-				-					11-		
=				Ī					-		
12-				ŀ					12-		
									-		
12 =											
13-									13-		
14				F				18/	-	SS-5	

Secta Annual Engineering Department

					Borin	g Num	ber B-	58
Nam	e latan				Page		2 of	6
Num	ber 41180-3,0209				Date		4-12	-06
	500 - 19 CA 500 - 50 50 50 50 50 50 50 50 50 50 50 50 50	0000000	Blow Count	Field Strength (PP)	Recov./ Advance		Sample or Box No.	CECURATE.
L	Description	Class		(PP)	(Inch)	_	Box No.	Remarks
	SAND, Fine Grained, Light Brown, Wet, Loose (SP)		2/ 5/		18/ 18	13	SS-5	N = 10
			.5		- 10	15-		14 = 10
								150400000000000000000000000000000000000
						16-	1	Switch to mud rota
		733				17-	1	
						"		
						18 -		
	SAND, Fine to Medium Grained, Light Brownish Gray, Wat, Medium (SP)					1.		
	Lat. I		3/ 5/ 9		15/ 18	19-	SS-6	N = 14
			9		1.490	000	1000000	
						20-		1
						1 3		
		1000				21-		
	SAND, Fine to Coarse Grained, Gray, Wet, Medium, Trace	- 4				3		
	Fine Gravel (SW)					22-		
						-		
						23-		
			_			1 3		
			10/ 12/ 12		12/ 18	24 -	SS-7	N = 24
			12		18	=		
						25		
						:		
						26-		
						:		
						27		
						:		
						28-		
	SAND, Fine to Coarse Grained, Gray, Wet, Medium, Trace		-			1		
	Lignite (SW)		5/ 6/		11/	29-		N = 13
			7		18	3	SS-8	1050 1750
			_			30-		
		*****						Burns

leste divisal Engineering Department

					Borin	g Numi	or B-€	58
oject Nam	e latan				Page		3 of	
oject Num	ber 41180-3.0209				Date	_	4-12	-06
Oepth (ft)	Description	Class	Blow	Field Strength (PP)	Recov./ Advance (Inch)		Sample or Box No.	Remarks
32	SAND, Fine to Medium Grained, Gray, Wet, Loose (SP)					32-		
34			6/ 5/ 3		15/ 18	34	SS-9	N = 8 Trace clay at base of SS-9 sample
35	CLAY, Gray, Wet, Medium, Medium Plasticity (CL) SAND, Fine to Coarse Grained, Gray, Wet, Medium (SW)	****			10/ 24	35	ST-1	35233110
37						37-		
39-	SAND, Fine to Coarse Grained, Gray, Wet, Medium, Trace Fine Gravel (SW)		5/ 7/ 8		12/ 18	39	SS-10	N = 15
41-11	SAND, Fine to Medium Graned, Gray, Well, Medium (SP)					41-		
43						43		
44			10/ 14/ 12		11/ 18	44-	SS-11	N = 26
46						46		
47-1						47		

					Borin	g Num	ber B-	90
ect Nan	745 - Q-A-95(9)				Page		4 of	
ect Nun	rber 41180-3.0209			_	Date	_	4-12	-06
pm ti)	Description	Class	Blow Count	Field Strength (PP)	Recov / Advance (Inch)		Sample or Box No.	Remarks
3	SAND, Fine to Medium Grained, Gray, Wet, Dense (SP)							
Žini			12/ 16/ 16		14/ 18	49-	SS-12	N = 32
infin	SAND, Fine to Coarse Grained, Gray, Wet, Medium, Trace					51-		
يستأ	Fine Gravel (SW)					52-		
ulun			5/ 7/ 7		11/	54	SS-13	N = 14
Ĭ Ĭ						56		
7	SAND, Coarse Grained, Gravel, Gray, Wet, Medium (SPG)					57-		
įΞ		70.0				58-		
in Minin			5/ 7/ 6		10/ 18	59	SS-14	N = 13
Juni						61		
Ĭ						62		
Į Į						63		
1	SAND, Medium to Coarse Grained, Gray, Wet, Medium, Fine Gravel (SPG)		6/ 12/ 12		11/ 18	64	SS-15	N = 24

Seale should Engineering Department

					Borin	g Num	ber B-{	58
roject Nam	e latan				Page	,	6 of	6
roject Nun	rber 41180-3,0209				Date	_	4-12	-06
Depth (ft)	Description	Class	Blow Count	Field Strength (PP)	Recov./ Advance (Inch)		Sample or Box No.	Remarks
83	SHALE, Dark Gray, Darrip, Fresh to Sightly Weathered, Moderately Strong. Some Pyrite Lined Vertical Fractures (SH)					83		
84	LIMESTONE, Light Brown, Dry, Fresh, Strong, Some Thin Shale Beds (LS)			RQD= 65%	60/ 60	84-	Run#3	
85-						85		
87	SANDSTONE, Gray, Fresh, Strong, Laminated (SS)			RGD= 80%	30/ 30	87	Run#4	
88 99 99 99 99 99 99 99 99 99 99 99 99 9	Boring Terminated at 88 Feet.					90 91 92 93 94 95 96 97 98		12:00 Finished coring. Grout hold with 2 bags grout. 1/2 bag Guik Gel, and 80 Gal. Water

 Run No.
 Depth (ft)

 Run 1
 73.0 to 75.5

 Run 2
 75.5 to 80.5

 Run 3
 80.5 to Continued

Run No. Run 3 Run 4 Depth (ft) Continued to 85.5 85.5 to 88.0

0869701.61KG

Project Name latan							Bonn	g Num	B-6	60
roject No. 41180-3.02	209	**********					Page		1 of	
round Elevation 787 ft.msl		Location N 1197203	E 2653948				Total	Footag		20107
Drilling Type	Hole Size	Overburden Footage	Bedrock Footage	No.C	of Samples	No.C	ore Boxes	De	pth to Wate	
Auger/Mud	3 3/4 ID	50.0 ft.	0.0 ft.		13		0	N	ot Measur	red
illing Company	Geotechnolog	gy, Inc.		Driller		ke Umfle	et, Brian	Finge	rs	
SingRig CM	E -750 ATV			Type Periet	of ration Test	SPT (Auto-Tri	p Han	nmer)	
sto 3-27-06		To 3-27-06		Field	Observer (s	Rob	ert Jaqu	es		
Depth (ft)		Description		Class	Blow Count	Field Strength (PP)	Recov/ Advance (Inch)		Sample or Box No.	Remarks
Gras	s, Sity Topsol (O	L)						1		10.45.0-1-10.55
1 500	D Eine to Medium	Grained, Light Brown.	Damo	W-526.V				1-		12.45 Setup, 12.55 Begin
Med	um, Trace Fine G	ravel, Trace Coarse Sa	nd (SP)		4/		14/	3		N = 18
2—					10		18	2-	SS-1	1.65(2.58)
=								=		
3-								3-		
SAN	D, Fine to Medium	n Grained, Light Brown,	Damp,					-		
4 1	ium, trace Pine G	ravel, Trace Coarse Sa	nd(SF)	Y 32.4	5/ 7/ 7		15/ 18	4-	SS-2	N = 14
, 					7		160	, =		
Ē								5-		
6 								6-		
SAN	D, Fine Grained, I (SP)	Light Brown, Damp, Me	dum, Trace		5/		14/	=		N - 20
7-3					12/ 15		18	7-	SS-3	N = 29 Concrete tragments
3				1				=		in base of SS-3 sample.
8-								8-		
SAN	D, Fine to Medium	n Grained, Light Brown,	Damp,	6				- 3		
9— Med	ium (SP)				4/ 8/		13/	9-	SS-4	N = 17
3				(e.v.)	9		18	=		
10-								10-		
∃										
11=								11-		
12								12-		
<u> </u>				100				-		
13								13-		
=				1			13/	=	7733945	
14 -							18	-	SS-5	Burns &

						g Num	ber B-6	50
roject Nian	V45 - V444(410)				Page		2 of	
oject Nun	mber 41180-3,0209		-		Date	_	3-27	-06
Depth (ft)	Description	Class	Blow Count	Field Strength (PP)	Recov./ Advance (Inch)		Sample or Box No.	Remarks
15	SAND, Fine Graned, Light Brown, Damp, Loose (SP)		2/ 3/ 3		13/ 18	15-	SS-5	N = 6
17 17 18	SILT, Clayey, Brownish Gray, Moist, Soft to Medium, Trace to Medium Plasticity (CL-ML)					17-		
19 1			1/ 2/ 2	0.50 TSF	17/ 18	19-	SS-6	N = 4
21	Sit,T. Clayey, Brownish Gray, Moist, Medium to Stiff, Trace to Medium Plashoty CL-Mt.)			1.00 TSF	21/ 24	21	ST-1	
23-	SAND, Fine Grained, Brownish Gray, Moist to Wet, Medium (SP)		4/		16/	23-	20.4	N = 23
25			9/		18	25	SS-7	Switch to mud rotar
27-	PAID For County Brown Co., Was Made					27		
29-	SAND, Fine Grained, Brownish Gray, Wet, Medium (SP)		57 107 14		13/ 18	29	SS-8	N = 24
31								Burns &

					Borin	g Num	ber B-6	60
ject Nam	ne latan				Page		3 of	
ject Nun	rber 41180-3,0209				Date		3-27	-06
epth (ft)	Description	Class	Blow Count	Field Strength (PP)	Recov / Advance (Inch)		Sample or Box No	Remarks
32	SAND, Fine Grained, Brownish Gray, Moist to Wet, Medium (SP)					32-		
3	SAND, Fine to Coarse Grained, Light Brownish Gray, Wet, Medium (SW)					33		
4			5/ 10/ 10		10/ 18	34	SS-9	N = 20
15						35 -		
7==						37		
= =						38-		
E	SAND, Fine to Coarse Grained, Light Brown, Wet, Medium, Trace Fine Gravel (SW)		4/ 6/ 7		10/ 18	39	SS-10	N = 13
						41-		
2	SAND, Fine to Coarse Grained, Light Brown, Wet, Loose, Fine Gravel (SWG)	7.58°C				42		
3 =		0 1: 0.*				43		
4		, a. b. a. c. a. S.	5/ 5/ 5		10/ 18	44	SS-11	N = 10
5		0 F				45		
7		, a .c				47		
F 8		O E				-		Burne

					Borin	g Numi	ber B-6	60
roject Nam	e latan				Page		4 of	
oject Num	ther 41180-3,0209	G) 20			Date		3-27	-06
Depth (ft)	Description	Class	Blow Count	Field Strength (PP)	Recov./ Advance (Inch)		Sample or Box No.	Remarks
3	SAND, Fine to Coarse Grained, Light Brownish Gray, Wet, Medium, Fine Gravel (SWG)	2000						
	median, chie order gorney	. C	4/ 8/ 7		11/ 18	49	SS-12	N = 15
50	Boring Terminated at 50 Feet					51 52 53 54 55 56 60 61 62 63 64		Stop at 50 feet. Grouted hole with 3 bags of grout, 50 gallons of water, at 1/2 bag of Quilk Gel

Project Nan latan								Bonn	g Num	[™] B-€	67	
roject No. 4118	80-3.0209							Page		1 of	4	
Ground Be			Location N. 1105314	E 2653791				Total	Footag		20172	
Drilling 1		Hole Size	Overburden Footage	Bedrock Footage	No.0	f Samples	No.C	ore Boxes	De	pth to Wate		sure
Auger/	Mud	3 3/4 ID	50.0 ft.	0.0 ft.		12		0	N	ot Measur	ed	
Onling Con	npany G	eotechnolog	y, Inc.		Drillen		ke Umfle	et, Brian	Finge	rs		
Orilling Rig	CME -	750 ATV	<i>(1)</i>		Type o Periet	of ration Test	SPT (Auto-Tri	p Han	nmer)		
Date 3-2	26-06		To 3-26-06			Observer (s		ert Jaqu	es	2 10		
Depth (ft)			Description		Class	Blow Count	Field Strength (PP)	Recov / Advance (Inch)		Sample or Box No.	Remarks	
=	Sand an	d Gravel Fill (F	LL)									
,4									1-		7:26 Setup	
^ =	SAND, F	ine Grained, L	ight Brown, Damp, Me	idium (SP)		6/			-			
2-						6/ 7		13/ 18	2-	SS-1	N = 13	
Ξ									=			
3-									3-			
=	SAND, F	ine Graned, L	ight Brown, Damp, Me	idium (SP)	13				1			
4-						2/ 5/ 7		11/	4-	SS-2	N = 12	
\exists						7		18	=	000		
5									5-			
E									- 2			
6-	SAND, F	ine Grained, G	ray, Damp, Loose (SF)	1	91			6-			
, <u></u>					4.24.5	3/ 5/ 5		14/ 18	7-	SS-3	N = 10	
′ =					1.2	_		1200	1			
Es									8-			
=	SOUTH	ine Greened C	iray, Moist, Medium (S	p)	8888				=			
9-	OHIO, I	are orange, o	roy, muse, medical (S	11		3/ 8/		13/	9-		N = 11	
Ξ						3		18	1 3	SS-4	108880	
10-									10			
Ħ									=			
11-									11-			
Ε.,												
12	CLAY, G	ray, Wet, Stiff	High Plasticity (CH)						12-			
13									13-			
13-									-			
14							1.50 TSF	11/	-	SS-5		

leste divisal Engineering Department

Seale should Engineering Department

Seale should Engineering Department

					Borin	g Numi	ber B-6	57
roject Nan	ne latan				Page		4 of	
oject Nur	rber 41180-3,0209	G) 20			Date		3-26	-06
Depth (ft)	Description	Class	Blow Count	Field Strength (PP)	Recov./ Advance (Inch)		Sample or Box No.	Remarks
=	SAND, Fine Grained, Gray, Wet, Medium to Dense (SP)					-		
49-			11/ 18/ 15		12/ 18	49	SS-11	N = 33
50 51 51 552 53 555 557 558 60 61 61 62 63 64	Boring Terminated at 50 Feet					50 51 52 53 54 55 56 57 58 59 60 61 62 63		Stop at 50 feet. Grouted hole with 2 bags of grout, 60 pallons of water, an 1/2 bag of Quik Get

Project Nam latan					ng Lo			Bonn	g Num	B-€	88
Project No.	and the Albert							Page		1 of	
Fround Ele		-	Location	E 0050770				Total	Footag	yii	
Drilling 7	ft.msl Type	Hole Size	N 1195231 Overburden Footage	E 2653778 Bedrock Footage	No.C	of Samples	No.C	ore Boxes	De	50.0 pth to Wate	
Auger/f		3 3/4 ID	50.0 ft.	0.0 ft.		13		0	N	ot Measur	red
Onling Con	npany	Geotechnolog	zy, Inc.		Driller	s (s) Mil	ke Umfle	et, Brian	Finge	rs	
rilling Rig	CME	-750 ATV			Type Penet	of ration Test	SPT (Auto-Tri	p Han	nmer)	
osto 3-2	23-06		то 3-24-06		Field	Observer (s	Rob	ert Jaqu	es	2 10	95
Depth (ft)			Description		Class	Blow Count	Field Strength (PP)	Recov / Advance (Inch)		Sample or Box No.	Remarks
=	Grass,	Sity Topsoil (O	L)		===	70			-		
į,									1-		15:40 Setup, 15:50 Begin
†	SAND,	Fine Grained, L	ight Brown, Damp, Me	dium (SP)		3/		247	-		
2-						7/		11/ 18	2-	SS-1	N = 14
E									=		
3-									3-		
=	SAND.	Fine Graned, L	ight Brown, Damp, Me	dium (SP)					=		
4-						3/ 5/		10/	4-	SS-2	N = 13
Ξ						8		18	=		
5									5-		Stop for today 3-24-06 7:25 Setup
, =									-		7:56 Resume
6=	SAND,	Fine Grained, L	ight Brown, Damp, Me	dium (SP)		91			6-		000000
₇ _=					132	3/ 5/ 6		14/ 18	7-	SS-3	N = 11
=					132				=		
8-									8-		
3	SAND	Fine Graned G	ray, Moist, Medium (Si	P-SM1					=		
9	U 1.00,		Top, many mouse (or			3/ 6/		147	9-	SS-4	N = 13
=						7		18	=	004	10000000
10-									10-		
Ħ									=		
11									11-		
,]											
12	CLAY,	Gray, Moist to V	Wet, Medium, High Pla	sticity (CH)					12-		
13									13-		
· =							Upo bioma	14/	=		
14 7					//////		1.00 TSF	18	-	SS-5	Burns &

les to divisial Engineering Department

Destroyed Engineering Department

Destroyal Engineering Department

					Borin	g Numi	ber B-6	58
roject Nam	ne latan				Page		4 of	
roject Nun	rber 41180-3,0209	-			Date		3-23	
Depth (ft)	Description	Class	Blow Count	Field Strength (PP)	Recov/ Advance (Inch)		Sample or Box No.	Remarks
=	SAND, Fine to Coarse Grained, Gray, Wet, Dense, Trace Fine Gravel (SW)	****				-		
49			18/ 17/ 17		17/ 18	49	SS-12	N = 34
50 51 52 55 55 55 55 55 55 55 55 55 55 55 55	Boring Terminated at 50 Feet					51 52 53 54 55 56 57 58 60 61 62 63 64		Stop at 50 feet. Grouted hole with 3 bags of grout, 60 galloris of water, an 1/2 bag of Quik Get

Seeks treat Engineering Department

	DatumNAVD 88	Completion Date:11/9/06	GRAPHIC LOG	DRY UNIT WEIGHT (pcf) SPT BLOW COUNTS CORE RECOVERY/RQD	SAMPLES	Δ - UU/2 0 ₁ 5	O - QU/2 1,0 1,5 D PENETRATIO	0 - SV 2,0 2,5 N RESISTANC
DEPTH IN FEET	DESCR	IPTION OF MATERIAL	GRAP	SPT BLO CORE REC	SAN	PL 10	VALUE (BLOWS WATER CONTE	PER FOOT) NT, %
	GRAVEL, sandy, ((continued)	ine , gray, medium dense (GS)	0.000			10	20 30	40 50
- 75-	SAND, gravelly, co	arse, gray, medium dense	.0	8-9-11	SS17		•	
- 85- - 90- - 95-	Auger refusal, Bori	ng Terminated						
GF	ROUNDWATER DAT	** 12. 12. 12. 12. 12. 12. 12. 12. 12. 12.	DATA	STEM		Drawn by: VS Date: 11/10/06	CKd. by: [EW Date: 3-9-07	Date: 3-20-07
ENCOU	C FREE WATER NOT NTERED DURING DR	WASHBORING FR	EW LOGO	EET		tings	OTECHNO NEERING AND ENVIRO ST. LOUIS - COLLINEVILLE	NMENTAL SERVICE
		D-50 DRI HAMMER TY	PE Auto			We	latan Unit eston, Miss	2 ouri
Round	RKS: Water was no caved to 6 feet at 2 ng: 2653593.31 Easi	ot encountered before wash boring 4 hours. ing: 1197163,15	g. Offset	5' East.		CON	NTINUATIO OF BORING	N OF
					1		ect No. 0869701	

	DatumNAVD 88	Completion Date:11/9/06	8	HT (pcf) NUNTS RY/ROD		Δ - UU/2	O - QU/2	0 - SV
DEPTH IN FEET		IPTION OF MATERIAL	GRAPHIC LOG	DRY UNIT WEIGHT (pc) SPT BLOW COUNTS CORE RECOVERY/ROD	SAMPLES	A N-V	1,0 1,5 PENETRATION (ASTM D 1566) (ALUE (BLOWS F VATER CONTEN	PER FOOT)
-	SAND trace clay	fine to coarse, medium dense (SP)	1000	0 0		10	20 30	40 50
	(continued)	see to coarse, medium dense (SP)						
- 40-				8-8-8	8810			
								: : : : : : :
	SAND, sity, fine to	coarse,mdelum dense (SP)				:::::::::		
-				8-12-14	0044			
- 45-				U-16-14	3011		*******	******
	SAND, trace slit, fi	ne to medium, medium dense (SP)	5355	1				
- 50-				6-12-12	SS12	:::::::::	: ^ : : : : : :	:::::::
-					Ī			
_					- 1			
-					- 1			
_				10-12-12	0010		1::::::::	111111111
- 55-				10-12-12	3513		:::::::::	
-			100			::::::::	:::::::::	
_			1000	- 1				
-			1					
-				7-8-10	SS14			
- 60-	fine to coarse							
-	inte to course		MM	1			:::::::::	:::::::
-			100					
-								
-				8-9-13	815		A::::::::	
65	GRAVEL sandy for	ne , gray, medium dense (GS)	100		_			******
-	Section, series, in	. g.aj, mediani dense (Ga)	0.00				:::::::::	::::::::
_			P 0				::::::::::	
_			.03					
-			D. Tarak	3-10-13 S	S16		*:::::::	
			125					
G	ROUNDWATER DA	TA DRILLING	DATA		- 3	Drawn by: VS	Ck'd. by: LETO	Applyd, by: 50G
		AUGER 3-3/4	HOLLOW	VSTEM	- 8	Date: 11/10/08	Date: 3-4-07	
	X FREE WATER NO INTERED DURING DI	T WASHBORING FE RILLING <u>SD</u> DRILLER	ROM 15 F EW LOG	EET		ENGIN	OTECHNO EERING AND ENVIRO E LOUIS - COLLINGUILLE	NMENTAL SERVICE
		<u>D-60</u> DRI HAMMER TY	PE <u>Auto</u>				latan Unit : ston, Miss	
Boring	RKS: Water was n g caved to 6 feet at ing: 2653593.31 Eas		g. Offset	5' East.		CON LOG C	TINUATIO F BORING	N OF 6: B-71
						D. C.	ct No. 0869701	

Surf	dace Elevation 785.08 Completi DatumNAVD 88	on Date: 11/1/06	GRAPHIC LOG	DRY UNIT WEIGHT (pcf) SPT BLOW COUNTS CORE RECOVERYINGS	LES	Δ - UU/2 0 ₁ 5	1,0 1,5	/2 D-SV
DEPTH IN FEET	DESCRIPTION	OF MATERIAL	GRAPH	SPT BLOW	SAMPLES	1	(ASTM D 1: I-VALUE (BLOW WATER CONT	S PER FOOT)
	FILL, crushed rock			0 0		10	20 30	40 50
	SAND, fine, damp, medium, r	non plastic (SP)	XXXX			******		
		, and the terms of		6-13-16	SS1			
_					-			
					+-		:: ::::::	11 :::::::
- 5-		0)		3-12-17	SS2		:: ::::x:::	:: ::::::
-					1			
		53		2.12.10	000		:: :::::::	
				8-13-16	SS3		:: ::::::::::::::::::::::::::::::::::::	
								11 1111111
40			1	3-9-13	SS4			:: ::::::::
- 10-				_	-		*******	** ******
							: :::::::	:: :::::::
	SAND, some silt, trace clay, go	ray, moist, loose frame	EE				: :::::::	:: :::::::
	low plasticity (SM)	7,	1			*******	1	:::::::::
		E		1-2-2	000	1,	: :::::::	::
- 15-		1	11	1-2-2	SS5	.4		
		F.	111					
-		E C						
-		[5					1	:: :::::::
		į,		0.0			: ::::::::	
- 20-		E		88	STE		101	: :::::::
-		l l						
_	SAND, slity, fine to medium, br	own wat madium are		1			: ::::::::	
	plastic (SP)	San		8.1			: : : : : : : : :	
- 25-	*	3		3-5-6	SS7	:::: T ::	1	: ::::::::
20-		8						
		8						: ::::::::
		3						: ::::::::
	gray	[5]						: ::::::::
100				7-6-6	SSS			: ::::::::
30-			1		-			
					- 13		1::::::::	: :::::::
								:
+	SAND, trace sit, fine to coarse,	cray wat madism to					1::::::::	
	dense, non plastic (SP)	5-7, may madabil to		7.40	200		1::::::::	-
-			- B	-7-10	589			
G	ROUNDWATER DATA	DRILLING DAT	TA			Drawn by: VS	CKM. by: LETO	App'vd. by: SOL
		AUGER _3-3/4" HO		OTEL	1	Date: 11/2/08		Date: 3-20-07
ENC	COUNTERED AT 15 FEET	WASHBORING FROM				€ GE	OTECHN	OLOGY, INC
25-200					- 1	ENG	NEERING AND ENVIR ST. LOUIS + COLLINSVIL	CONMENTAL REPAIRED
		SD DRILLER LEW		ER	ļ			- Land
		D-55 DRILL RI					latan Unit	2
		HAMMER TYPE A	Auto			10/-	atan Unn	. 4
DEM.	DVC. Badan	**************************************				WV6	eston, Mis	souri
North	RKS: Boring caved to 6.2 fee ing: 2652667.87 Easting: 1195	t at 24 hours			- [
	reserved capulity, 1195	VV2.00				LOG	OF BORIN	G: B-76
					1			O. D-76
					1	F-1000		100 March
						Proje	ect No. 086970	d CALCO

- 1	ce Elevation 785.08 Completic Datum NAVD 88	on Date:	GRAPHIC LOG	DRY UNIT WEIGHT (pcf) SPT BLOW COUNTS CORE RECOVERY/RQD	SAMPLES	۵ - UU/2 0 ₁ 5	O - QU/2 1,0 1,5 D PENETRATION	0 - SV
DEPTH IN FEET	DESCRIPTION (OF MATERIAL	GRAPI	SPT BLOV	SAM	A N	(ASTM D 1586) VALUE (BLOWS PE WATER CONTEN	R FOOT)
	SAND, trace silt, fine to coarse	dray wat madium to	700	0 0	_	10	20 30	40 50
- 40-	dense, non plastic (SP) (contin	ued)		5-7-10	SS10			
				8-14-17	SS11			:::::::
45-				0-14-17	3311			
50				19-23-26	SS12		:::::::::	
50	Boring terminated at 50 feet							
55-	100					::::::::	:::::::::	:::::::
60-								
65-								
GR	COUNDWATER DATA	DRILLING DA	ATA			Onewn by: VS	CK's by: LEW A	pp'vd. by: 500
ENCO	DUNTERED AT 15 FEET	AUGER 3-3/4" H WASHBORING FROM SD DRILLER LEW D-55 DRILLE	OLLOW M_15_F	EET		UNGEN C	DMS: 3-4-67 TO DMS: 4-67 TO DM	OGY, IN
REMAR	tKS: Boring caved to 6.2 feet	HAMMER TYPE					latan Unit 2 ston, Misso	uri
Northir	ng: 2652667.87 Easting: 1195	at 24 hours 502.86				LOG C	TINUATION F BORING:	OF B-76
					Project No. 0869701.61KG			

Surface	Elevation 784.49	Completion Date: _10/31/06		89		SHEAR STRENGTH, tsf						
		Sumperior Date:	9	DRY UNIT WEIGHT (pc) SPT BLOW COUNTS CORE RECOVERY/ROD	1	old 1998	UU/2		O-QU/2		0 - SV	
D	atumNAVD 88		GRAPHIC LOG	900	ES		0,5	1,0	1,5	2,0	2,5	
2011			- 1 }	N ≥ 0	SAMPLES	STANDARD PENETRATION RESISTANCE						
DEPTH IN FEET	12-12-12-12-12-12-12-12-12-12-12-12-12-1		3	투응발	SAB				STM D 158			
유분	DESCR	IPTION OF MATERIAL	1 2	558	1	-	MATER CONTENT, %					
oz				800		PLI	_	-	-	_		
	SAND, fine to med	flum, brown, damp, medium, non	2.900	-	-		10	20	30	40	50	
	plastic (SP)				-	1::::		: :::		: ::		
	 black clay seam (3 	3")	200	4-8-10	551	::::		4 ::	:::::		*****	
	98					1::::	::::	: :::				
-				3-8-11	SS2	1::::		: :::				
- 5-				3-0-11	992			A				
\rightarrow	- trace gravel					::::		:		1 10		
-	- wara Brasci		333	4-8-9	883					1 11		
_			1333							: ::	::::::	
_	- trace sllt, fine							: ::		: ::	::::::	
- 10-			1000	5-7-9	SS4		4	1		0 11		
1000												
			100	9		:::::		::::		: :::		
			1300		1	:::::		1:::		: ::		
- 1				1								
45	SILT, brown to gray	y, damp to wet, medium, low plasticity	1111	3-3-3	\$85	: B::						
- 15	(ML)		11111					-		+		
			11111							: : : :		
			11111							: : : :		
			11111					1:::		: :::		
	trace sand		11111	2-3-3	S\$6			1:::	:::::	: : : :		
- 20-			11111	-		*****		* * * *				
_			HIII					1:::	:::::	: : : :		
_			11111	1		:::::	::::	1:::	:::::	: : : :		
			11111	- 1	- 1		::::	1:::		1:::		
	SAND, silty, fine, g	ray, wet, loose, non plastic (SM)	RHA.	2-1-6	\$87	:::::::::::::::::::::::::::::::::::::::	::::	1:::				
25-			HH									
_												
				- 1								
_	SAND, some slit, fin	e to medium, brown, wet, medium,	1911				::::	:::		1:::		
30-	non plastic (SP-SM)		DATE:	10-11-11	558		::::	A:::		1:::		
			13414									
				- 1		:::::	::::	200	::::::	1:::	::::::	
			311			:::::	::::	::::	::::::	1:::		
- 5	SAND, fine to coarse	e, gray, wet, medium, non plastic	1700		_	:::::		:::				
	(SP)	- 2-71 month instructive from phastics	1989	5-7-8	SS9	:::::	*:	:::		:::		
GP	DUNDWATER DAT	TA DOUL WA	DATE			Onewn by:	LW	CK4.	y: LEW	Annie	by 40	
Conti	DANIER DA	A DRILLING	DATA			Date: 11/			3-9-07	Date:	3-20-07	
			HOLLOV	W STEM		-	G	1772 8 8			GY, INC.	
ENCO	UNTERED AT 15 F	EET WASHBORING FR	OM 15 F	EET		-C	ENGIN	VEERING.	AND ENVIR	ONMENTA	A RESIDENCE OF	
		SD DRILLER 1	EW LOG	GER			8	er cours .	COLLINGVILL	- KANSAS	ICTY	
		D-50 DRIL	LRIG		- 1					_	_	
		HAMMER TYPE	E Auto						1 Unit			
							We	ston	, Miss	ouri		
REMARI	KS: Loss of drilling	ng fluid return at 64.5 feet. Borehol	e collap	sed at 70	1							
	5.5 feet at 24 hou	aid to maintain open borehole belo	w 70 fee	t. Boring	3	LC	OG (DF B	ORING	3. B	.77	
caved to	O.D IEUL HT ZG DOOL											
caved to	: 2652637.4 Easti				- 1				J. 1.1.1		100	
caved to							_	2000151	086970	-	579.4	

Surf	face Elevation 784.49	Completion Date:10/31/06		8.08		5	HEAR STRENG	TH, tsf			
16000			0	DRY UNIT WEIGHT (pcf) SPT BLOW COUNTS CORE RECOVERY/RQD		Δ-UU/2 O-QU/2 D-SV					
	Datum NAVD 88		GRAPHIC LOG	至公民	SS	0,5	1,0 1,5	2,0 2,5			
				1 A 5 9	1 2	STANDAR	D PENETRATIO	N RESISTANC			
开放			P.	EGR	SAMPLES	STANDARD PENETRATION RESISTANCE (ASTM D 1586)					
DEPTH IN FEET	DESCR	IPTION OF MATERIAL	8	SEE	03	▲ N-VALUE (BLOWS PER FOOT)					
OZ.	000000000		350	중앙상	1	PLI WATER CONTENT, %					
	CAND C.		110	0 0		10	20 30	40 50			
	(SP) (continued)	rse, gray, wet, medium, non plastic	20.00								
				H			: : : : : : : : :	:			
. 7				20							
			100					1 11111111			
133	trace gravel			5-6-7	SS10			: : : : : : : : :			
- 40-			1883			*******					
-						*******	1 111111111				
-			1000								
_											
				** ***			: : : : : : : : :	: : : : : : : :			
- 45-			133	11-11-12	SS11		1*::::::	:			
			1,733								
			1000								
			1	- 1			1:::::::::				
			100	4-6-11	SS12		1111111111				
- 50-			機器								
-			173								
-				- 11			1222222				
_			177		- 1			1::::::::			
			1000		_		1:::::::::	1:::::::			
- 55	Lectronia America		1	5-9-6	SS13		1:::::::::				
33-	CLAY, trace slit, gra	y, wet, medium, trace plasticity (CL)	VIIII		+						
				- 1	- 1						
				- 1				1:::::::			
				- 1	- 1		1111111111				
-											
60-	SAND, some gravel	, fine to medium, gray, wet, loose,	11114	2-2-11	3514	0.					
_	non plastic (SP)	, and to modelli, gray, was, soose,	1983	-				******			
-								111111111			
	gravel seam		1333	- 1				*******			
			188		_						
	wood and gravel sea	m (5%)	1702	2-2-8 S	S15			********			
65-	SAND, with gravel re	im (5") nedium to coarse, gray, wet, dense,	8898		-		********				
	non plastic (SP)	to course, gray, wee, delige,		- 1			::::::::::::				
			100	1	1		:::::::::	*******			
-					1:	*******					
-			8	-13-16 S	S16						
			100 T		-						
G	ROUNDWATER DAT	A DRILLING I	ATA			Drawn by: LW	CKd. by: LEW	Applyd by 904			
117					1	Date: 11/3/06	Date: 3-907	Date: 3-20-07			
EMO	OUNTEDED AT 45 TO		HOLLOW			● GE	OTECHNO	HOAT DATA DATE AND THE PLANT			
ENG	COUNTERED AT 15 F				1	ENGIN	EERING AND ENVIRO	NMENTAL SERVICES			
		SD DRILLER LE	M rock	BER	1		FE LOUIS - COLLINSVILLE	- MANSASCITY			
		D-50 DRILL	RIG		1	- 5	lata - 11 /-				
		HAMMER TYP	E_Auto				latan Unit				
					- 1	We	ston, Miss	ouri			
	RKS: Loss of drilling	ng fluid return at 64.5 feet. Borehole	collaps	ed at 70							
REMA		id to maintain open borehole below	70 feet	Boring	1	CON	ITINUATIO	N OF			
mot.	i nickenea aniling tiu	en .									
caved	to 5.5 feet at 24 hou	rs.				LOG C	F BORING	: B-77			
caved	i nickenea aniling tiu	rs.				LOG C	F BORING	: B-77			

10000	DetumNAVD 88	Completion Date:10/31/06	GRAPHIC LOG	DRY UNIT WEIGHT (pcf) SPT BLOW COUNTS CORE RECOVERY/RQD	SAMPLES	Δ - UU/2 0 _i 5 STANDARI	O - QU/ 1,0 1,5 D PENETRATI (ASTM D 15 //ALUE (BLOWS	2 [] - SV 2,0 2,5 ON RESISTANC
NO.	DESCR	IPTION OF MATERIAL	0	SPT	1 5	PLI-V	WATER CONT	ENT, %
	non plastic (SP) (c			4 0		10	20 30	40 50
- 75 -	GRAVEL, with san plastic (GP)	d, fine, gray, wet, medium, non	0000	11-13-11	SS17		: : :	
			000	5-9-9	SS18			
- 80-			00000			***********		
- 85-	SAND, some grave medium, non plasti	(, medium to coarse, brown, wet,	0.0	15-13-13	SS19		134::::	
- 90-	Boring terminated a	st 85 feet.						
95-								
100-								
G	ROUNDWATER DAT	A DRILLING	DATA			Drawn by: LW	Ckd. by: 3 44	7, App'vd. by: 504
ENC	OUNTERED AT 15 F	AUGER _3-3/4" EET WASHBORING FRO _SD_DRILLER_LE	M 15 F	EET		Date: 11/3/08	OTECHN REERING AND ENVI	OLOGY, INC
		D-50 DRILL HAMMER TYPE					latan Uni ston, Mis	
caved	RKS: Loss of drilling flut to 5.5 feet at 24 houng: 2652637.4 East		collaps v 70 feet	ed at 70 . Boring			ITINUATION BORIN	
		1955				Proje	ct No. 08697	01.61KG

Surface Elevation 784.95 DatumNAVD 88		Completion Date; 10/27/05	0010	EIGHT (pdf) COUNTS WERY/ROD	LES	Δ - UU/2 0 ₁ 5	O-QUA	2 0 - SV 2,0 2,5
DEPTH IN PEET	DESCR	TION OF MATERIAL	GRAPHIC LOG	DRY UNIT WEIGHT (pcf) SPT BLOW COUNTS CORE RECOVERY/ROD	SAMPLES	STANDARD PENETRATION RESISTANC (ASTM 0 1586) N-VALUE (BLOWS PER FOOT) WATER CONTENT, %		
- 40- - 45- - 50- - 65-	SAND, trace silt, fi plastic (SP) (contin				SS10 SS11	10	20 30	40 50
GROUNDWATER DATA GROUNDWATER DATA AUGER 3-3/4" HOLLOW STEM ENCOUNTERED AT 14 FEET WASHBORING FROM 15 FEET SD DRILLER JT LOGGER D-50 DRILL RIG HAMMER TYPE AND REMARKS: Loss of circulation of wash water from 22.0 to 26.0 feet in the mud pit. Boring caved to 6.4 feet at 24 hours.						We	Date: 3 40 7 Date: 3 40 7 OTECHNO OT	Date: 3 - 16 - 0) OLOGY, INC DAMENTAL SERVICES E - KANSAS CITY 2 SOURÍ
Northing: 2652632.07 Easting: 1195386.76						LOG OF BORING: B-78 Project No. 0869701.61KG		

APPENDIX B CPT SOUNDING LOGS

REFERENCES

- Arya S.C., M.W. O'Neill, G. Pincus. 1979. *Design of Structures and Foundations for Vibrating Machines*. Gulf Publishing Company, Houston, TX.
- Bowles, J.E. 1997. *Foundation Analysis and Design*. The McGraw-Hill Companies, Inc., New York, NY.
- Brown, D.A., J.P. Turner, and R.J. Castelli. 2010. *Drilled Shafts: Construction Procedures and LRFD Design Methods*. Report No. FHWA NHI-10-016. National Highway Institute, U.S. Department of Transportation, Washington, D.C.
- Brown, D.A., P.E. Dapp, W.R. Thompson, and C.A. Lazarte. 2007. *Design and Construction of Continuous Flight Auger Piles*. Geotechnical Engineering Circular No. 8. Report No. FHWA-HIF-07-03. Federal Highway Administration, U.S. Department of Transportation, Washington, D.C.
- DFI. 1990. *Augered Cast-In-Place Piles Manual*. First Edition. Deep Foundations Institute, Sparta, NJ.
- Duncan, J.M. and C.-Y. Chang. 1970. Nonlinear analysis of stress and strain in soils, *Journal of the Soil Mechanics and Foundations Division*. ASCE, vol. 96, SM 5, pp. 1629-1653.
- Hasan, S.E., R.L. Moberly, and J.A. Caoile. 1988. Geology of Greater Kansas City, Missouri and Kansas, United States of America. *Bulletin of the Association of Engineering Geologists* 25(3): 281-341.
- Janbu, N. 1963. Soil compressibility as determined by oedometer and triaxial tests. *European Conference on Soil Mechanics and Foundations Engineering*, Wiesbaden, Germany, I:19-25.
- Johnson, K.L. 1985. Contact Mechanics. Cambridge University Press, London, UK.
- Kraft, L.M., R.M. Ray, and T. Kagawa. 1981. Theoretical t-z curves. *Journal of Geotechnical Engineering Division*, ASCE, 107(11):1543-1561.
- Mathcad version 11 (2002). Mathsoft Engineering & Education, Inc., Cambridge, MA.
- Microsoft Streets & Trips 2010. 2009. Microsoft Corporation, Redmond, Washington.

- Middendorf, M.A. and others. 2003. *Geologic Map of Missouri*. Missouri Department of Natural Resources, Division of Geology and Land Survey. Sesquicentennial Edition
- Misra, A., and L. Roberts. 2006. Probabilistic analysis of drilled shaft service limit state using the "t-z" method. *Canadian Geotechnical Journal* 43:1327-1332.
- O'Neil, M.W., and L.C. Reese. 1999. *Drilled Shafts: Construction Procedures and Design Methods*. Report No. FHWA-IF-99-025. Federal Highway Administration, Washington D.C.
- Phoon, K., F.H. Kulhawy, and M.D. Grigoriu. 2000. Reliability-based design for transmission line structure foundations. *Computers and Geotechnics* 26: 169-185.
- Poulos, H.G., and E.H. Davis. 1980. *Pile Foundation Analysis and Design (Series in Geotechnical Engineering)*. John Wiley & Sons, Inc., New York, New York.
- Reese, L.C., and M.W. O'Neil. 1988. *Drilled Shafts: Construction Procedures and Design Methods*. Report No. FHWA-HI-88-042. Federal Highway Administration, McLean, Virginia.
- Reese, L.C., W.M. Isenhower, and S. Wang. 2006. *Analysis and Design of Shallow and Deep Foundations*. John Wiley & Sons, Inc., Hoboken, New Jersey.
- Roberts, L.A. 2006. Reliability-based design and analysis of deep foundations at the service limit state. Ph.D. Diss., University of Missouri-Kansas City.
- Robertson, P.K. 2010. Soil behavior type from the CPT: an update. 2nd International Symposium on Cone Penetration Testing, Huntington Beach, CA.
- Seed, H.B., and L.C. Reese. 1957. The action of soft clay along friction piles. *Transactions*, ASCE 122:731-754.
- United States Army Corps of Engineers. 1995. *Geophysical Exploration for Engineering and Environmental Investigations*. Engineer Manual 1110-1-1802. U.S. Army Corps of Engineers, Washington, DC.
- United States Geological Survey. 1984. *Weston Quadrangle, Missouri-Kansas*. 1:24,000. 7.5-Minute Series. United States Department of the Interior.
- Zhu, H., and M. Chang. 2002. Load transfer curves along bored piles considering modulus degradation. *Journal of Geotechnical and Geoenvironmental Engineering* 128(9): 764-774.

VITA

Bradley Scott Gardner was born on June 22, 1972, in Dallas, Texas. His family moved to the Kansas City area in 1973 and he grew up in Liberty, Missouri. He attended elementary and secondary schools in the Liberty Public School District and graduated from Liberty High School in 1990. He attended the University of Missouri – Rolla in Rolla, Missouri and graduated with his Bachelor of Science in Geological Engineering in December 1994.

Mr. Gardner began his career as an environmental engineer with ABB-Environmental Services (ABB-ES) in Tallahassee, Florida. During his two years with ABB-ES, he served as the Field Operations Leader for on-going site characterization and remediation work at the Marine Corps Logistics Base in Albany, Georgia.

In June of 1996, he met his future wife, Kimberly, at a wedding and by the end of that year, he had decided to relocate back to the Kansas City area. Mr. Gardner went to work for HNTB Corporation in January 1997 where he began a new phase of his career focusing on geotechnical engineering. In early 1999 they moved to Greeley, Colorado, and Mr. Gardner spent two years working as a geotechnical engineer with Rocky Mountain Consultants in Longmont, Colorado.

In September of 2001, Mr. Gardner and his wife returned to Kansas City and he went to work for Burns & McDonnell where he is currently still employed as an Associate Geotechnical Engineer. Upon completion of his degree requirements, Mr. Gardner plans to continue working with Burns & McDonnell.