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ABSTRACT

With the increasing use of augered cast-in-place piles in new construction, it is
important that proper design parameters be incorporated when evaluating pile capacity and
performance using reliability-based design methods. This paper focuses on developing “t-
z” model parameters from analysis of static axial compression and tension load test data
from a project site along the Missouri River floodplain in northwest Missouri. Data was
collected from a total of twelve axial load tests (six compression and six tension) and
includes dial gauge readings from the pile heads as well as vibrating wire strain gauge data
from multiple locations throughout several of the test piles. The “t-z” method has been
used extensively as a soil-structure interaction model to evaluate the settlement of deep
foundations. The soil-structure interaction modeled in this analysis was based on
hyperbolic load displacement behavior using effective (drained) stresses. The
development of the “t-z” model parameters has been accomplished using finite difference
methods to analyze the non-linear soil-structure interaction along the sides of the piles.
During the analysis, the mean shear modulus of soil-structure interface subgrade reaction,

Kiuir, and the mean ultimate shear strength of the soil-structure interface, z,, were back-

il



calculated from each set of load test data and were based on the assumption of a single-
layer, homogenous soil profile. These “t-z” model parameters were then compared to
standard field investigation data, including standard penetration tests (SPT) and cone
penetrometer test (CPT) soundings, and effective overburden stress to develop correlations
suitable for service limit state design of augered cast-in-place piles. While there was some
indication of a linear relationship between K;,;; and the field investigation data, there was
not a sufficient quantity of data in the analysis to properly identify any statistical trends.
The relationship between 7, and the field investigation data was much more variable and
did not provide any distinct correlation. The plot of the data relating the model parameters
to the effective overburden stress exhibited some grouping but the sample size and

distribution was not sufficient to identify any statistical trends.
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CHAPTER 1

INTRODUCTION

Augered cast-in-place (ACIP) piles, also referred to as auger cast piles, augered
pressure-grouted (APG) piles, and continuous flight auger (CFA) piles, among others, have
been in use in the United States for over 60 years. Throughout this time, ACIP piles have
been utilized on a wide variety of project types including industrial and commercial
buildings, bridges, equipment foundations, transmission structures, retaining walls and
various other structures (DFI 1990). Due to the relative speed of installation, economy and
high capacity, ACIP piles have come to be a common deep foundation element selected by
geotechnical engineers for a wide variety of soil types. Unlike drilled shafts, the
installation methods utilized for ACIP piles are somewhat independent of the soil and
groundwater conditions encountered at a project site.

ACIP piles are a type of drilled foundation in which the pile is drilled to a targeted
depth in one continuous process using a continuous flight auger with a hollow core. As the
auger is drilled into the ground, the flights of the auger are filled with soil which provides
lateral support and stability of the drilled hole. As the auger is withdrawn from the hole, a
grout mixture typically consisting of sand, cement, and water is pumped continuously
under pressure through the hollow center of the auger to the base of the auger. As the
grout is pumped, the auger is lifted smoothly in one continuous operation. Because the

auger provides support during the drilling process, and the fluid grout provides support



during the auger removal, there is no need for the use of casing or drilling slurry when this
pile type is installed in soils prone to caving.

Immediately following placement of grout in the hole, and complete removal of the
auger, any soil cuttings remaining in the grout at the top of the pile are removed.
Following the completion of the grouting process, a steel reinforcing cage is placed into
the grout. The cage is then tied off at the ground surface to prevent the cage from settling
into the fluid grout and to maintain proper elevation for the top of the reinforcement.

ACIP piles are typically installed with diameters ranging from 12 to 36 inches and
lengths of up to 100 feet, with longer piles occasionally used. The reinforcing cages are
often confined to the upper 30 to 50 feet of the pile for ease of installation and due to the
fact that relatively low bending stresses are transferred beyond these depths (Brown et al.
2007). When tension loads are included in the design, full length center bars can be used

to transfer the design tension loads to the full pile depth.

ACIP Pile Axial Capacity Design

In general, there are three design conditions that must be met when evaluating the
axial capacity of a deep foundation: the geotechnical ultimate limit state or ultimate
bearing capacity; the service limit state or settlement performance under service loads; and
the structural ultimate limit state or structural capacity. For many projects, the ultimate
limit state capacity will control the design of individual ACIP piles rather than the service
limit state capacity. For that reason, the typical design approach is to first evaluate the

ultimate limit state capacity and then check the service limit state performance. Once a
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design has been selected to satisfy the requirements of the ultimate limit state capacity and
the service limit state performance, the structural capacity will be evaluated and the steel
reinforcement designed to accommodate the internal stresses (Brown et al. 2007).

While it is important to evaluate the lateral capacity of ACIP piles, the focus of this
research was on the evaluation of axial capacity. Therefore, the methods and steps

required for the evaluation of lateral capacity are not specifically addressed herein.

Ultimate Limit State Capacity

Currently, a large portion of the deep foundations designed in the United States,
including ACIP piles, are designed utilizing Allowable Stress Design (ASD) procedures,
also referred to as “working stress”, and only consider the ultimate limit state capacity of
the foundation.

With ASD design, the foundation capacity is evaluated by assuming full resistance
through skin friction and end bearing. Extensive research has been conducted and many
methods have been developed to evaluate the skin friction and end bearing components
that contribute to the ultimate limit state capacity. Brown et al. (2007) includes a summary
and comparison of 16 methods that can be used for estimating the axial capacity of ACIP
piles. These include methods that were initially developed for the design of drilled shafts
and driven piles but are also considered applicable to the design of ACIP piles. Also
included are summaries of four comparisons of design methods, the results of which were
used as the basis for the selection of recommended methods to be used for estimating the

axial capacity of ACIP piles.



The FHWA 1999 Method for the design of drilled shafts presented by O’Neil and
Reese (1999), and originally developed by Reese and O’Neill (1988), is the recommended
method for the estimation of both the skin friction and end bearing capacity for ACIP piles
in cohesive and cohesionless soils. This method is one of the more widely recognized
methods for the prediction of drilled shaft capacities and comparison studies have shown it
to be reasonably accurate at estimating capacities for ACIP piles.

The method generally relies on soil strength data collected from conventional soil
borings including the undrained shear strength, S, of cohesive soils and the N4y values
from cohesionless soils. The preferred method for evaluating S, in cohesive soils is
through laboratory triaxial compression tests or unconfined compressive strength tests
performed on relatively undisturbed samples collected from the soil borings. Ny values
are the standard penetration test (SPT) N-value adjusted to represent a hammer efficiency
of 60 percent but they are not corrected for depth.

For an incremental length of pile, the ultimate unit skin friction in cohesive soils,

7,, 18 calculated as:

T,=as, (1-1)
where, « 1is a strength reduction factor that accounts for soil disturbance during
construction, water migration from the concrete, and other similar factors (O’Neil and
Reese 1999). The strength reduction factor varies as follows:

a=0.55 for S,/P,< 1.5, and (1-2)

a=0.55-0.1(S,/P,—-1.5) for1.5<8,/P,<2.5 (1-3)



where, P, is the standard atmospheric pressure typically approximated as 1.06 tons per
square foot (tsf).

The ultimate unit end bearing resistance for cohesive soils, ¢, is calculated as:
g,=NS, (1-4)
where, N, is the bearing capacity factor and S, is the average undrained shear strength of
the soil with two pile diameters below the tip of the pile. For cohesive soils where S, > 2
tsf, the value of NC* =9 can be used with reasonable accuracy. For cohesive soils where S,
<2 tsf, the value of Nc* is reduced to as low as 6.5 as a function of S, and the undrained
Young’s modulus of the soil.

The ultimate unit skin friction in cohesionless soils, 7, is calculated based on
correlations with the lateral earth pressures and the drained angle of internal friction as
follows:

r, =K, o, tans < 2.0tsf (1-5)

where, K, 1s the lateral earth pressure coefficient, a; is the vertical effective stress, and o
is the drained angle of friction for the pile-soil interface. The values of K., and ¢ are
difficult to evaluate and are significantly dependent on the type of deep foundation being
installed and the quality of construction practices. Due to the difficulty of accurately
evaluating the values of K, and 9, the simplified ” method” has been developed such that:
p,=K,tano (1-6)

And Equation 1-5 can be re-written in the form:

z,=8,0, (1-7)



Where definitive information is not available regarding the values of K., and 4, it is
considered reasonable to use an empirical relationship for S, that is near the lower bound
of values obtained from a database of load tests (O’Neil and Reese 1999). The values for
Bep are typically correlated directly with the SPT Ny values which are expressed in blows
per foot (bpf). The values recommended for use with the design of ACIP piles following

the FHWA 1999 Method are estimated as:

=1.5-0.1352"° for Ngp> 15 bpf (1-8)
ep
NGO 0.5
ﬂep ZF(IS—OI?)SZ ) for Ng() <15 bpf (1—9)

where, Z is the depth (in feet) from the ground surface to the midpoint of each respective
soil layer or pile segment.

Within the FHWA 1999 method, the ultimate unit end bearing resistance value for
cohesionless soils, g, is also correlated directly with SPT Ny values as follows:
q: (tsf) = 0.6Ng for 0 < Ngp <75 (1-10)
q: =45 tst for Ngp> 75 (1-11)
where, Ny is considered within an interval from approximately one pile diameter above to
two or three diameters below the tip of the pile.

Where cone penetration test (CPT) soundings are available, the Laboratorie Des
Ponts et Chausses (LPC) method, originally developed by Bustamante and Gianeselli in
1982 for drilled shafts and driven piles, has been shown to provide reliable estimates of

axial capacity for ACIP piles in both cohesive and cohesionless soils (Brown et al. 2007).



Using the LPC method, the ultimate unit skin friction and end bearing resistance values are

correlated with the cone tip resistance, ¢, as follows:
;=4 (skin friction) (1-12)
a

q,=k.q, (end bearing) (1-13)

where, 7, is the ultimate unit skin friction, « is a friction coefficient, g7 is the ultimate unit
end bearing, and k. is a bearing capacity factor. Recommended values for a and k. for the
design of ACIP piles, which are referred to in the LPC method documentation as “hollow
auger bored piles” are dependent upon soil type as summarized below in Table 1. In
addition, maximum values for 7, are specified as part of the LPC method and are
summarized in Table 1. For select soil types, a higher maximum value for 7,, noted in
parentheses in Table 1, is included for situations where careful execution and minimum

disturbance of soil can be accounted for during construction.

Table 1. — LPC method a coefficients and k. factors (Robertson and Robertson 2010)

Soil Type (N?l;a) a Coefficient Mag/rﬁ)l;r)n % |k, Factor
Soft clay and mud <1 30 0.015 0.40
Medium stiff clay lto5 40 0.035 (0.08) 0.35
Very stiff clay >5 60 0.035 (0.08) 0.45
Loose silt/sand <5 60 0.035 0.40
M. dense sand/gravel Sto 12 100 0.080 (0.12) 0.40
V. dense sand/gravel > 12 150 0.120 (0.15) 0.30




Once the ultimate limit state capacity has been calculated using one of the many
methods for axial capacity design, an assumed safety factor is then applied to that value to
obtain the allowable axial capacity to be used for design. The factor of safety is used to
account for variations in soil material strengths, inaccuracies in design equations,
construction methods and the potential for errors to occur during construction, and the
consequences of foundation failure (Phoon, Kulhawy and Grigoriu 2000). Typical factor
of safety values range from 2 to 3 but can vary widely from engineer to engineer based on
a variety of factors such as personal experience, quantity and quality of subsurface
information available, and use of quality control measures such as static or dynamic load
testing prior to or during construction. For the design of ACIP piles, Brown et al. (2007)
recommend a minimum safety factor of 2.5 unless four specific conditions are met which
permit the use of a safety factor of 2.0. Those conditions include: (1) the performance of at
least one conventional static load test to a load exceeding the computed ultimate by 50
percent or to a load producing displacement equal to 5 percent of the pile diameter, (2) use
of automated monitoring equipment on production pile, (3) the site geology stratigraphy,
and soil properties are not highly variable, and (4) the site conditions do not pose difficult

construction conditions for the piles.

Service Limit State Performance
Once the ultimate and allowable capacities have been calculated, the service limit
state or settlement performance of the deep foundation can then be evaluated. The

settlement analysis methods for single piles can generally be grouped into three broad
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categories: (1) load transfer methods which incorporate the relationship between pile
resistance and pile movement at select points along the pile, (2) methods based on the
theory of elasticity using equations by for subsurface loading within a semi-infinite mass
published by Mindlin in 1936, and (3) numerical methods such as finite-element analysis
(Poulos and Davis 1980).

The method based on elastic theory is developed from equations for stress and
deformation at any point in the interior of semi-infinite, elastic, and isotropic solids
resulting from a force applied at another point in the solids. (Reese, Isenhower and Wang
2006). In addition, the method is generally based on the assumption that no slip occurs at
the pile-soil interface. The method does not effectively consider the soil-structure
interaction between the foundation and the surrounding soil. Modifications to the basic
approach have been developed that allow for slip but the displacements that occur after slip
occurs are still based on elastic theory. Several numerical methods have been developed
based on the elastic theory method but which permit the consideration of variations to the
method such as soil layering and bilinear or elasto-plastic soil performance. (Poulos and
Davis 1980).

Empirical curves were developed by Reese and O’Neill (1988) to improve on the
methods for prediction of settlement of drilled shafts by evaluating the load transfer and
settlement performance for side resistance and end bearing separately. The curves were
developed from the analysis of a database of compression load tests performed on single,
full-sized drilled shafts. The use of these curves requires iterative process of estimating

the settlement of the foundation element until the corresponding tip and side resistance
9



values added together equal the applied design load for the foundation. The load-
settlement curves for side resistance were developed from tests performed on drilled shafts
ranging diameter from 18 inches to 60 inches and the curves for end bearing were
developed from tests performed on drilled shafts ranging in diameter from 30 inches to 132
inches. Use of these curves on drilled shafts with diameters outside those ranges should be
verified with load testing (O’Neil and Reese 1999). While Brown et al. (2007) suggests
that these curves can also be used to evaluate the load-settlement performance of ACIP
piles, it is also recommended that the results be verified with load testing.

While there are separate curves for cohesive and cohesionless soils, as shown in
Figures 1 and 2, this empirical method for evaluating settlement does not specifically
consider the soil material properties along the side or at the tip of the foundation element.
Rather, the method provides an estimate of settlement based on the ratio of design side
load relative to the ultimate side load capacity as well as the ratio of the design end bearing
pressure relative to the ultimate end bearing capacity. Furthermore, the evaluation of the
overall load-settlement performance requires an iterative process to account for various
aspects of the design, such as soil layering and stiffness of the soil relative to the stiffness
of the foundation element, and to identify the proportioning of side load and end bearing
load that result in comparable settlement performance.

The development of theoretical load transfer methods that consider the soil-
structure interface performance, which can be applied to a variety of deep foundation
types, and which can be adjusted for site-specific conditions, would be beneficial. Such an

approach is discussed in Chapter 2
10
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Figure 1. Normalized load-settlement curves for cohesive soils (Brown et al. 2007).
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CHAPTER 2

LOAD-DISPLACEMENT ANALYSIS USING THE “T-Z” METHOD

Due to the uncertainty of load-settlement performance inherent in the ASD
methods, a theoretical method of evaluating load-settlement performance for a variety of
deep foundation types, and which takes into consideration the soil-structure interaction,
would be beneficial. Recently, the “t-z” method, first developed by Seed and Reese
(1957), has become more widely used to evaluate and predict the load-transfer
performance of deep foundations including ACIP piles. While the ASD methods consider
the side and tip capacities and settlements separately and then add them together, the “t-z”
method utilizes data relating the load transfer from the pile to the soil, ¢, to the foundation
displacement, z, to evaluate the evaluate the capacity and settlement along the length of the
pile and at the tip of the pile. With numerical modeling techniques, load-settlement
performance of the sides and tip of the pile, as well as the elastic shortening of the
structural foundation element, can be modeled simultaneously. Furthermore, the “t-z”
method has the ability to incorporate site specific strength and deformation properties of
soils (Zhu and Chang 2002).

Numerous empirical and theoretical models have been developed to evaluate the
load transfer performance of deep foundations which are primarily based on drilled shafts
and driven piles. Few models have been developed specifically for ACIP piles and those
that have been developed usually take the form of modifications to models originally

developed for drilled shafts or driven piles (Brown et al. 2007). The study conducted

12



herein follows previous research and analysis by Misra and Roberts using a theoretical “t-
z” model to explicitly describe the load-displacement behavior of deep foundations (Misra
and Roberts 2006, Roberts 2006).

The load-displacement behavior of the soil-structure interface can generally be
described by two different theoretical “t-z” models: (1) a linear ideal elasto-plastic model,
and (2) a non-linear hyperbolic model. The ideal elasto-plastic model can be evaluated
using closed-form analytical relationships to describe the load-displacement. However, the
hyperbolic model requires the solution of differential equations using numerical analysis
techniques to describe the soil-structure interaction and evaluate the load-displacement
behavior. The equations and methods for evaluating the non-linear model, on which this
analysis is based, are summarized herein. For further derivation and reference of the
equations for evaluating both the elasto-plastic model and the non-linear model, the reader

is referred to Roberts (2006).

Soil-Structure Interaction Model

The soil-structure interaction that acts along the length of the pile in the “t-z”” model
method of evaluating load-displacement performance can be represented by the spring-
slider system shown in Figure 3. This assumption is common with analytical and
numerical models of the load-displacement behavior of drilled shafts and piles (Kraft, Ray

and Kagawa 1981, Reese and O’Neill 1988).
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Figure 3. Spring-slider model of pile-soil interface (Roberts 2006).

The analysis of the pile-soil interface resistance, represented by a series of springs
along the length of the pile and at the tip, can be assumed to behave either as a linear ideal
elasto-plastic material or as a non-linear material. If an ideal elasto-plastic material is
assumed, the displacement that occurs during loading is assumed to be recoverable such
that the displacement returns to zero when unloading occurs. For the non-linear model, the
displacement that occurs during loading is non-recoverable and thus permanent when
unloading occurs. For this analysis, the interface was modeled with the non-linear,
behavior which better represents the typical observed load-displacement behavior of deep
foundations.

Figure 4 shows the hyperbolic curve representative of a non-linear force-
displacement behavior where the displacement, u, is plotted relative to the shear force per
unit length of pile, g. The value K;,;; represents the initial tangent shear modulus of the

subgrade reaction at the soil-structure interface and g, represents the asymptotic value of
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the ultimate strength at the soil-structure interface. The value of ¢, is defined as the

product of the pile perimeter and the ultimate shear strength of soil-structure interface, T,,.

Shear force per
unit length, q

P

Y

Displacement, u

Figure 4. Non-linear force-displacement relationship for soil-structure
interface (Roberts 2006).

For deep foundations, the load transfer occurs through the soil-structure interface
along the length of the foundation element referred to as the interaction zone, L,. Portions
of the foundation with zero or negligible shearing resistance are considered to be the non-
interaction zone. The length of the non-interaction zone can be affected by the diameter of
foundation, frost depth, seasonal variations in moisture content of the soils, presence of fill,
construction techniques, and the presence of excessive lateral loads. The non-interaction
zone for deep foundations will typically range from as little as one foot, where
cohesionless soils are present at the ground surface, to five feet or the full depth of
seasonal moisture change, whichever is greater, where cohesive soils are present. Until

recently, it has been common practice to also include a non-interaction zone of one
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diameter at the bottom of drilled shaft and auger cast piles which bear in cohesive soils.
This approach was based on numerical modeling that predicts the development of a zone of
tension at the shaft-soil interface in the zone immediately above the base of the shaft.
Results of field load test data do not support this approach and Brown, Turner and Castelli
(2010) recommend that side resistance should not be neglected along the bottom one
diameter.

As the pile is loaded in compression, the soil-structure interface within the
interaction zone goes through deformation based on the assumed hyperbolic force-
displacement relationship described previously. As the load increases, the soil-structure
interface will begin to yield near the top of the interaction zone and then progress
downward toward the bottom of the pile. Throughout the loading sequence, the pile is
assumed to behave as an elastic element. The load required to reach the yield strength of
the pile grout is much higher than the load required to cause yielding of the soil-structure

interface.

Load Transfer Model

As described by Bowles (1997), the force balance of the pile-soil interface can be
represented by the following equilibrium equation:
q(z) = Ku(z) =0 2-1)
Where ¢g(z) is the shear force per unit length along the pile and u(z) is the pile deformation
at that location. The axial force in the pile can be represented by K,, du/dz, where K, is the

axial stiffness of the pile and is the product of the pile area and the modulus of elasticity of
16



the pile material. The shear force per unit length, ¢(z), can then be obtained with the

following equation:

d’u
q(z) =K, — (2-2)
dz
The governing equilibrium Equation 2-1 can then be written as:
d2
K, 2 —Ku(z)=0 (2-3)
dz

The non-linear force-displacement relationship behavior has been effectively described for
both clay and sand soils using the following hyperbolic model developed by Kondner et al.

(Duncan and Chang 1970):

(2-4)

where, K;,;; represents the initial tangent shear modulus of the subgrade reaction at the soil-
structure interface. R is a factor described as the failure ratio relating the theoretical
ultimate strength, g,, of the load-displacement curve to the observed failure strength, gy, as

follows (Duncan and Chang 1970):

q
R, = 17 (2-5)

9,
Duncan and Chang note that the value of R, will always be less than unity and that it has
been found to be between 0.75 and 1.00 for a variety of different soils. They also note that

the value of Ryis essentially independent of the confining pressure.
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The load transfer model described above is applicable to piles subject to tension
loads where the soil-structure interaction is limited to side forces. For piles subject to
compression loads, the tip performance needs to be considered in addition to the side
forces. The tip force, P;, developed for each increment of compression load acting on the
pile is proportional to the tip displacement, u,, and is described by:

P =K, u, (2-6)
where, K, is the tip soil stiffness. The tip soil stiffness can be related to the pile diameter
and the elastic properties of the tip soil using the theory for rigid punch bearing on an
elastic half-space using (Johnson 1985):

_037zDE,

) =

where, E; is the elastic modulus of the tip soil, z is the Poisson’s ratio of the tip soil, and
D is the diameter of the pile. To evaluate non-linear force-displacement relationship

behavior at the tip of the pile, Equation 2-4 can be rewritten to represent the tip force:

P=c—" = (2-8)
1k
Kti Putip

where, K, is the initial tip soil stiffness. Equation 2-7 can be used to calculate the initial

value of tip soil stiffness. The failure ratio, Ry, is now used to relate the theoretical ultimate
capacity of the tip soil, P, to the observed failure strength of the tip soil, Py, similar to

Equation 2-5:
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R, =_1" (2-9)
f

f)utip
F.=4, 4, (2-10)

Finite Difference Methodology

While the assumption of hyperbolic load-displacement for the soil performance
allows for the modeling of non-linear behavior at the soil-structure interface, it is not
possible to solve the equations that describe that performance in closed form. For a pile
modeled using the non-linear behavior, the shear modulus of soil-structure interface sub-
grade reaction, K, along the length of the pile and at the pile tip are dependent on pile
displacement. Therefore, a numerical method, such as the finite difference method, must
be used to evaluate the load-displacement behavior.

Using the finite difference methodology, the pile is divided into a series of
equidistant nodes along the length of soil-structure interface beginning at the tip (or
deepest node) and proceeding to the head of the pile. As derived by Roberts (2006), and
summarized herein, the central-difference methodology can be used to develop a set of
algebraic equations that can be used to solve for the displacement at each node using the

governing Equation 2-3:

i =2 (024 20, = (2-11)

i+1
m

where, u; is the nodal displacement and Az is the distance between each node. The

subscript i refers to the i" node along the soil-structure interface, and the nodes are
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numbered sequentially from the top of the pile (node 0) to the head (node x). As a result, a
total of (x+1/) nodes exist which enables the development of (x+1) equations to define
nodal displacements. Equation 2-11 includes two additional unknown displacements
which requires two additional known boundary conditions to solve for nodal
displacements. At node 0, the term u; ; becomes u_;, and at node x, the term u;,; becomes
uy+;. In the case of the pile foundation loaded in compression, the applied load at the head
of the pile, P, and the tip force, P,, given by Equation 2-6, are known. Using the central
difference methods, the boundary conditions for u_; and u,+/ can be written in terms of

nodal displacement for the tip force and the applied pile load, respectively:

Kt

U, =u,

(2Az) +u, (2-12)

m

u

x+1

P
=u, + K—(ZAZ) (2-13)

These algebraic equations can be utilized for piles subjected to either compression
or tension loading. For a pile under tension loading, the boundary condition for the tip
force, given by Equation 2-12, is simplified by the fact that the value for K; will be equal to
zero. In addition, for a pile subjected to tension loading, the value of the unknown
displacement u_; becomes equal to u;.

With the addition of these two boundary conditions, a total of (x+3) equations can
be written and arranged in matrix form. When the head of the pile is subjected to an initial

load, the algebraic equations can be solved for displacement at each discrete node using
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standard matrix algebra. The use of the finite difference methodology requires that the
nodal displacements be solved at small load increment steps. This allows for the values of
shear modulus of soil-structure interface subgrade reaction, K, and the tip soils stiffness,
K, to be updated at each load increment, and it accounts for the fact that the soil-structure
interface will begin to yield from the head of the pile to the tip as the load is incrementally
increased.

To incorporate the hyperbolic force displacement relationship into the analyses,
Equations 2-4 and 2-5 can be rearranged by substituting g, = 7D 7, and then by dividing by

the displacement at node i, u;, which yields the following expression:

K, =K,, 9. (2-14)
g, tu; R, K

init
where, K; is the secant shear modulus of soil-structure interface subgrade reaction at the
node of interest corresponding to the node displacement, u;. At each load increment, the
value of K; can be calculated for the i” node based on the nodal displacement calculated
from the previous step load.

A similar equation can be written for the tip soil performance by dividing Equation

2-8 by the tip displacement, u,, which yields the following expression:

K _K l)utip
t = (2-15)
Putip +u, Rf K,

where, K is the secant stiffness of the tip soil corresponding to the tip displacement, ). At

each load increment, the value of K, can be calculated based on the tip displacement
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calculated from the previous step load. Note that Equation 2-15 will note apply to piles
subject to tension loading.

Once the values for K; and K, are known, the displacements at each node are
calculated. In addition, for piles subject to compression loading, the tip force, P,, can be

calculated using finite difference methods based on tip displacement represented as:

L (2-16)

The process continues by incrementally increasing the applied shaft load, updating
the load and stiffness vectors, and solving for the new nodal displacements. The process is
completed for each node along the length of the pile and at the pile tip. As the load
increases, and the displacement at each node increases, the value of K; will approach zero
and the soil-structure interface will fail progressing from the head of the pile to the tip. As
this process continues for a pile under compression loading, the tip soil will carry a larger
portion of the total load until the soil-structure interface yields at all nodes and the full load
is applied to the tip soil. Once the tip force, P, represented by Equation 2-16, reaches the
tip baring capacity, P, represented by Equation 2-10, the pile will fail by plunging. For a
pile subject to tension loading, ultimate failure of the pile occurs once all of the soil-

structure interface nodes have failed since no load is carried by the pile tip.
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CHAPTER 3

PROJECT SUMMARY

The project from which the research data was collected included the construction of
a new coal-fired power plant near Weston, Missouri. Figures 5 shows the site vicinity of
the project area and Figure 6 is a topographic map of the area. Construction of the new
850-megawatt generator was completed in 2010 adjacent to an existing coal-fired
generator. Throughout the course of construction, more than 7,000 auger cast piles were
installed for the support of various structures and equipment. During the design of the
power plant, an extensive geotechnical subsurface investigation was conducted and
multiple static pile load tests were performed to evaluate the performance of auger cast

piles at this site.
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Figure 5: Project vicinity map (Microsoft 2009).
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Figure 6: Topographic map of project area (USGS 1984).

Project Geology

The project site is located along the east bank of the Missouri River approximately
4.5 miles northwest of Weston, Missouri. The site is within the unconsolidated alluvial
deposits of the Missouri River floodplain and located between the east bank of the river
and an upland bluff marking the flood plain boundary.

The uppermost soils within the flood plain are considered to be recent stage
Holocene alluvial deposits consisting of fine grained clays, silty clays and clayey silts.
The upper Holocene soils are underlain by thick layers of sand and gravel alluvium
believed to be of Wisconsinan-age within the Pleistocene Series and which are believed to
be of glacial origin. The Missouri River in its current location is considered to be the

approximate southern-most limit of continental glaciation. The Wisconsinan alluvium can
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be more than 50 feet thick in terraces (Hasan, Moberly and Caoile 1988) and borings at the
project site indicate that the alluvium extends to depths ranging from 76 to 91 feet below
existing grade where bedrock is encountered at elevations between 703 feet and 695 feet
above mean sea level. The Geologic Map of Missouri (Middendorf et al. 2003) indicates
that the bedrock underlying the alluvium likely consists of Pennsylvanian-age shale,

limestone or sandstone.

Field Investigation

The initial geotechnical subsurface field investigation was performed in March and
April 2006 and included the completion of 45 soil borings and 27 cone penetration test
(CPT) soundings. A second phase of investigations was performed in October and
November 2007 and included an additional 22 soil borings. The soil borings and CPT
soundings were completed to pre-determined depths or to practical refusal, whichever
occurred first. Final boring depths ranged from 10 feet to 91.5 feet below the ground
surface. Final CPT sounding depths ranged from 30 to 90 feet below the ground surface.

Borings and CPT soundings were number sequentially from 1 through 94 with
borings denoted as B-## and CPT soundings denoted as C-##. The borings and CPT
soundings used for the current research were selected based on their general proximity to
the test pile locations and are summarized in Table 2. Locations for most of the borings
and CPT soundings are shown in Figure 7. However, some locations which were further

away from the main project area are not shown. Logs of soil borings and CPT soundings
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applicable to the current research are included in Appendix A and Appendix B,

respectively.
Table 2. — Borings and CPT soundings evaluated.
Test Pile Boring / Distance from Grade Elev. Total Depth

Area CPT Sounding | Test Pile (ft.) (ft.) (ft.)
B-01 150 784.5 87.0

C-02 75 783.6 85.0
Powerhouse B-03 150 784.9 102.5
B-67 150 784.6 50.0

B-68 90 782.9 50.0

C-04 220 785.7 85.1

B-05 160 785.6 86.0
Boiler B-06 200 786.4 103.5
C-07 80 785.9 73.3

B-08 195 787.0 88.0

C-29 280 786.3 50.0

C-10 80 786.5 76.0

B-11 130 788.2 90.5
Chimney B-12 50 787.2 105.0
C-13 115 786.9 79.2

B-14 170 786.1 50.0

B-58 700 785.7 88.0

B-60 380 775.7 50.0

Coal Yard C-61 135 785.7 50.0
B-71 140 786.7 76.5

B-35 560 773.7 50.0

Cooling Tower B-36 320 774.9 76.7
B-37 95 773.0 50.0

B-38 255 772.7 50.0

C-48 60 785.6 30.0

B-49 195 785.6 20.0

Water Tanks B-76 140 785.1 50.0
B-77 90 784.5 85.0

B-78 135 785.0 50.0
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The soil borings in the initial phase of the investigation were completed using
truck-mounted Mobile B-57 and CME-55 drill rigs as well as an all-terrain vehicle (ATV)
mounted CME-750X drill rig. The soil borings in the second phase included the use of an
ATV-mounted Diedrich D-50 drill rig. Drilling methods included a combination of
hollow-stem augers and rotary wash drilling. Soil samples were collected at 2.5-foot
intervals from the ground surface to a depth of 10 feet and then at 5-foot intervals beyond a
depth of 10 feet. Disturbed samples were collected using 1-3/8 inch diameter split-barrel
samplers in accordance with ASTM D1586. The drill rigs were all equipped with
automatic trip hammers for conducting the standard penetration (SPT) tests. The hammers
had calibrated efficiencies of 74, 72, 78, and 69 percent for the Mobile B-57, CME-55,
CME-750X, and Diedrich D-50 rigs, respectively. Relatively undisturbed samples were
collected using 3-inch diameter thin-walled Shelby tubes in accordance with ASTM
D1587. When bedrock was encountered in select borings, NQ2-size (1-7/8 inch inner
diameter) rock core was collected.

CPT soundings were advanced using a 20-ton compression type rig equipped with
a CPTu system which collects piezometric data in addition to soil strength data. The cone
had a tip area of 2.3 square inches and a friction sleeve area of 34.9 square inches.
Measurements were collected at 2-inch intervals throughout the full length of each
sounding and included tip resistance, ¢., sleeve friction, f;, dynamic pore water pressure, u,
temperature, 7, and cone inclination, /. The stratigraphic profile for each sounding was

interpreted using the friction ratio, Ry, which is defined as:
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R, =100 (L] (3-1)
| q,

The soil behavior types (SBT) identified on the CPT sounding logs are based on

correlations of Ry with the g. summarized by Robertson (2010) as shown in Figure 8.

100 T T T E
= 1" ] Zone Soil Behavior Type
E r i 1 Sensitive fine grained
= 2 Organic material
& 10F E 3 Clay
@ F 4 Silty Clay 1o elay
g . 5 Clayey silt to silty clay
2 3 | 6 Sandy silt to clayey silt
I |2 = 7 Silty sand to sandy silt
g f 8 Sand to silty sand
O i 9 Sand
2 1 10 Gravelly sand to sand
0.1 P 11 Very stiff fine grained*
o 1 2 3 4 5 6 7 8 12 Sand to clayey sand*
Friction ratio (%) * Overconsolidated or cemented

Figure 8: CPT soil behavior type classification system (Robertson 2010)

The soils encountered in the borings and CPT soundings generally consist of an
upper zone of fine to medium sands and silty sands extending to depths of approximately
10 to 15 feet. Using the Unified Soil Classification System (USCS), the sands generally
classify as poorly graded sand (SP) and silty sand (SM). Throughout much of the site, a
zone of finer grained silts (ML) and clays (CL and CH) are present to a depth of
approximately 20 to 25 feet with an average layer thickness of approximately 15 feet. In
the area of the cooling tower, which is approximately 10 to 15 feet lower in elevation than
the rest of the project site, the silt and clay zone is present beginning at the ground surface.

Below the soils transition back to sands which coarsen and have decreasing silt content
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with depth and are classified as well graded sand (SW) and poorly graded gravel (GP).
These granular soils were generally found to be loose to medium dense above a depth of
approximately 35 to 40 feet and transitioned to medium dense to dense at greater depths
down to the top of bedrock. The bedrock generally consisted of interbedded shale and

sandstone with siltstone and limestone encountered in some locations.

Test Pile Program

During the course of the foundation design process, a total of six static compression
and six static tension load tests were performed throughout the project site. Tests were
performed in the area of the boiler, chimney, powerhouse, coal yard, cooling tower, and
water tanks as indicated in Figure 7.

The load tests at the boiler, chimney and powerhouse were performed in August
2006, the load tests at the water tank and coal yard were performed in October and
November 2006, and the load test at the cooling tower was performed in July 2007.

Each load test was performed on a sacrificial auger cast pile which was not incorporated
into the final foundation construction and separate piles were used for the compression and
tension load testing at each location. A summary of the test pile configurations, including
top elevations, embedment lengths, and tip elevations, is provided in Table 3.

Each of the test piles was installed as a standard 16-inch diameter auger cast pile.
Each compression test pile included a full length #10 or #11 center bar. The tension test
piles installed at the coal yard, cooling tower, and water tank areas also included full length

#10 and #11 center bars. The tension test piles installed at the boiler, chimney, and
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powerhouse areas included full length #20 center bars. In addition to the center bars, 26-
foot long reinforcing cages consisting of 6 - #8 longitudinal bars were installed in the

upper portion of each of the test piles.

Table 3. — Test pile configurations.

Pile Pile Type Grade Elev. | Embedment Length | Tip Elevation
Location (ft.) (ft.) (ft.)

Boiler Compre.ssion 784.6 73.5 711.1
Tension 784.6 73.0 711.6
Chimney Both 787.0 75.0 712.0
Powerhouse Both 782.5 69.0 712.5
Coal Yard Both 776.9 65.0 711.9
Cooling Tower Both 781.0 50.0 729.0
Water Tanks Both 785.0 65.0 720.0

Compression Testing Procedures

Each static compression load test was performed in general accordance with ASTM
D1143-81 (1994). Loading generally followed the “Standard Loading Procedure” (Part
5.1) and “Loading in Excess of Standard Test Load” (Part 5.3) with some modifications.
Loading was applied in 25-percent increments up to 200 percent of the respective
anticipated pile design load, referred to as the standard test load, as described in Part 5.1.
The load increments from 25 to 175 percent of the design load were maintained for
durations varying from 5 to 20 minutes and the standard test load was maintained for a
period ranging from one hour to one and one-half hours. Unloading was then performed in

four equal decrements, allowing for 5-minute hold times at each decrement. Each test pile
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was then reloaded to the standard test load in increments of 50 percent of the design load
as recommended in Part 5.3 with each of these increments maintained for 5 to 15 minutes.
The applied load was then increased in increments of 10 percent of the design load until
the maximum required load was applied (300 percent of the design load) or until failure of
the test pile occurred. Each of these increments was maintained for 5 to 15 minutes rather
than the 20-minute holds recommended in Part 5.3. The full 300-percent load was held for
one hour, unless excess pile head settlement occurred, and then removed in four equal
decrements, allowing for 5- to 15-minute hold times at each decrement. The compression
test at the powerhouse was terminated following the 10-minute hold at 270 percent of the
design load due to excessive pile head settlement.

The compression load test at the coal yard was performed generally as described
previously with modifications. The test pile was initially loaded in two small
loading/unloading sequences. The first loading/unloading sequence was applied in three
increments; 25, 50, and 75 percent of the anticipated pile design load of 125 tons, allowing
10 minutes between load increments, and then unloaded in one decrement. The test pile
was then reloaded in two increments; 75 and 100 percent of the proposed design load,
allowing 5 and 10 minutes between load increments respectively, then unloaded in one
decrement. The test pile was then re-loaded in six increments; 50, 100, 125, 150, 175, and
200 percent of the proposed design load. The duration for the 50 to 175 percent load
increments was 5 to 15 minutes. The standard test load of 250 tons (200 percent of the
design load) was removed after an approximate one and one-half hour hold time. The

unloading sequence was carried out in four decrements; 150, 100, 50, and 0 percent of the
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working load in general accordance with ASTM D1143, Part 5.1. The test pile was then
reloaded to the standard test load in increments of 50 percent of the pile design load,
allowing 5 to 10 minutes between load increments. The applied load was then increased in
increments of 10 percent of the design load until the maximum required load of 375 tons
(300 percent of the design load) had been applied, allowing 10 minutes between load
increments. The full 300 percent load was held for 1 hour and then removed in four equal

decrements, allowing 5 minutes between decrements.

Tension Testing Procedures

Each tension test load test was performed in general accordance with ASTM
D3689-90 (1995). Loading generally followed the “Standard Loading Procedure” (Part
7.2) and “Loading in Excess of 200% of Pile Design Uplift Load” (Part 7.4) with some
modifications. Loading was applied in 25-percent increments up to 200 percent of the
respective pile design load, referred to as the standard test load, as recommended in Part
7.2. The load increments from 25 to 175 percent of the design load were maintained for
durations varying from 5 to 15 minutes and the standard test loads were maintained for
periods ranging from one hour to one and one-quarter hours. Unloading was then
performed in four equal decrements. Each test pile was then reloaded to the standard test
load in increments of 50 percent of the pile design load as recommended in Part 7.4 with
each of these increments maintained for 5 to 10 minutes. The applied load was then
increased in increments of 10 percent of the design load until the maximum required load

was applied (300 percent of the design compression load) or until failure of the test pile
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occurred. Each of these increments was maintained for 10 to 15 minutes rather than the
20-minute holds recommended in Part 7.4. The full 300-percent load was held for one
hour and then removed in four equal decrements, allowing for 5- to 15-minute hold times

at each decrement.

Test Pile Instrumentation
Test pile head settlements were measured at each test pile using four independently
supported dial gauges, similar to those shown in Figure 9, which were accurate to the
nearest 0.001 inch. The dial gauges were mounted at each of the four quadrants of the test

pile to allow for detection of eccentric loading.

Figure 9: Dial gauges for monitoring pile top movement.
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Each of the six compression test piles and three of the tension piles, including those
at the coal yard, cooling tower, and water tank, were instrumented with multiple strain
gauges. The Geokon Model 4911 “Sister Bar” strain gauges, similar to those shown in
Figure 10, were attached to the steel reinforcing center bars at multiple depths throughout
each pile. The strain gauges provided a means of monitoring the rate of load transfer in the
pile during the load testing. Strain measurements from the sister-bar strain gauges were

recorded using a Geokon GK-403 readout box.

Figure 10: Geokon Model 4911 “Sister Bar” strain gauges.
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CHAPTER 4

DATA ANALYSIS

As discussed in Chapter 2, the use of the hyperbolic load-displacement relationship
to evaluate the non-linear behavior at the soil-structure interface requires the use of a
numerical method to solve the governing algebraic equations. A computer program was
developed by Roberts (2006) using Mathcad (2002) which utilizes the finite difference
methodology to evaluate the hyperbolic soil model. For this research, the program was
utilized to back-calculate values for the ultimate shear strength of soil-structure interface,
7, and the initial tangent shear modulus of the subgrade reaction at the soil-structure
interface, K;,;. The values of 7, and K;,;; were adjusted until the theoretical load-settlement
curve provided a close approximation of the load-settlement curve developed from each
pile load test. The back-calculated values of 7, and Kj,;; were then compared with the SPT
Ngp values collected from nearby soil borings, as well as the g. values from nearby CPT
soundings, to look for trends that would indicate correlations between the field testing data
and the soil strengths exhibited by the load testing.

While the soil profile observed in the borings and CPT soundings included some
layering of silts and clays, the profile is generally dominated by a mixture of silt, sand, and
gravel that generally coarsens with depth. The data provided by the embedded strain

gauges generally does not appear to indicate any consistent layering. For model simplicity,
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this research included the modeling of a single, homogenous layer of soil along the length
of the piles and the values of 7, and K;,;; were each treated as the average value over the
full length of pile. Similarly, the SPT Ny values and the CPT ¢, values from nearby
explorations were averaged over the corresponding length of pile penetration for the
purposes of evaluating correlations. A summary of the average Ny and ¢, used for the

development of correlations with “t-z”” model parameters is included in Table 4 and Table

5.
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Table 4 — Summary of field investigation Ny values evaluated.

Test Pile . Ngp Range Noo Neo Exp loratign Tip
Area Boring (bph) Average Average Elevation
(bpf) (bph) (ft.)
B-01 3-49 24 697.5
B-03 7-46 26 682.4
Powerhouse g5 043 17 25 734.6*
B-68 444 18 732.9*
B-05 4-61 26 699.6
Boiler B-06 10 - 83 36 30 682.9
B-08 4-175 28 699.0
B-11 5-63 28 697.7
Chimney B-12 6 -89 32 30 682.2
B-14 447 23 736.1%*
B-58 5-38 18 687.7
Coal Yard B-60 5-38 20 19 736.7*
B-71 3-30 21 709.2
B-35 5-35 16 723.7
Cooling B-36 3-47 20 19 698.2
Tower B-37 447 19 723.0
B-38 4-27 19 722.7
B-49 4-35 23 765.6*
B-76 5-56 26 735.1%*
Water Tanks =5 77 7-33 17 17 699.5
B-78 2-41 20 735.0*

* Boring did not extend to the full depth of the associated test pile.
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Table 5 — Summary of field investigation ¢, values evaluated.

Test Pile . q. Range 9 4c Exp loratlgn Tip
Area Boring (tsf) Average Average Elevation
(tsf) (tsf) (ft.)
Powerhouse C-02 3-713 167 172 698.7
C-04 9527 212 700.6
Boiler C-07 6 — 704 148 167 712.6*
C-29 6 — 382 155 736.3%
. C-10 5—-504 186 710.6
Chimney ™13 5409 148 167 707.7
Coal Yard C-61 6 —489 126 126 735.7*
Cooling No CPT soundings were completed in the near vicinity
Tower
Water C-48 | 5-319 126 126 755.5%
Tanks

* Boring did not extend to the full depth of the associated test pile.

Model Parameters

While the values of 7, and Kj,;; were treated as variables for the load-settlement
curve fitting process, the remaining parameters within the model were treated as constants.
This includes the values for the non-interaction zones at the top and bottom of the piles, the
axial stiffness of the pile, and the tip soil performance including the elastic modulus,

ultimate bearing capacity, and Poisson’s ratio.

Non-Interaction Zone
For this analysis, a non-interaction zone of 1 foot was included only at the top of
the piles for the purpose of curve fitting with the static load test data as described later. The

near-surface soils at the site predominantly consisted of cohesionless sands and silts.
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While some construction disturbance can be expected in the near surface soils, the use of
the auger to maintain a stable hole during the grouting process is expected to limit the
amount of disturbance. In addition, seasonal conditions such as frost action and moisture
variations would not impact the performance of piles during the relatively short duration
between pile installation and performance of the static load testing.

While it has been common practice to also include a non-interaction zone of one
diameter at the bottom of drilled shaft and auger cast piles which bear in cohesive soils, the
piles considered for this research were terminated in cohesionless sands and gravels.

Therefore, a non-interaction zone was not included in the load-settlement model.

Axial Pile Stiffness
The axial stiffness of the piles was calculated based on the 7-day grout strength
tests performed on typical 2-inch grout cubes collected during the installation of the test
piles. For the coal yard area, the load testing was performed on the 231 day following test
pile installation so the grout strength was estimated using 7-day and 28-day grout cube
breaks. A similar approach was used for estimating the grout strength for the water tank
area where testing was performed on the 19 day following test pile installation. The
compressive strength of the grout was used to calculate the grout modulus of elasticity, E,.
A composite section was evaluated to account for the presence of the steel reinforcement in
the test piles. The stiffness of the composite pile section, K,,,, was calculated as follows:
_ (A4, E,)+ (4, E,)

" Y|

m

(4-1)
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where, 4, is the area of grout, 4, is the area of steel reinforcement, E is the steel modulus
of elasticity, and A4,, is the total pile area. Due to variations in the quantity of steel
reinforcement relative to depth, a weighted average for K, was used in the analyses.

There is some potential for the grout strengths indicated by laboratory testing to
differ from the actual grout strength within the test piles during pile testing. These
variations can be attributed to different curing conditions for the test cubes relative to the
grout placed within the pile or to time lapses between the date of grout testing and the date
of pile testing. Due to this potential for variation of the grout strength, a sensitivity
analysis was performed using the data from the Boiler compression test to evaluate the
impact on the back-calculated values of 7, and K;,;. The data from the Boiler compression
test was selected for the sensitivity analysis because it was the first set of data to be used
for the load-settlement curve fitting process. As the curve-fitting analyses progressed
using the data from other load tests, it was noted that the Boiler compression was one of
the data sets that resulted in a close fit with the curves predicted by the “t-z”” model.
However, for the sensitivity analyses, the quality of fit between the load test data and the
“t-z” model was not considered to be as important as the magnitude of variation observed
in the predicted load-settlement curves relative to the magnitude of variation to the grout
strength. A similar approach was for evaluating the sensitivity of the model to other input
variables as discussed later.

With all other model parameters kept as constants, the grout strength was varied
from the minimum design grout compressive strength of 5000 pounds per square inch (psi)

to the maximum observed laboratory compressive strength of 7020 psi. As exhibited in
41



Figure 11, the impact of the variation of grout strength has a minimal impact on the
predicted load-settlement performance. The analyses indicate that over the range of
anticipated grout compressive strengths, the back-calculated value of 7, varies from 21.7 to
22.5 psi. This is a variation of approximately £2 percent relative to the value of 22.0 psi
back-calculated using the laboratory strength test data for the grout in the compression test
pile for the Boiler area. The value of K;,;; was able to be kept constant at 3 psi and
maintain a good fit to the load settlement performance of the test pile throughout the range
of grout strengths. The potential for variation of the grout compressive strengths, and the
affect it has on the axial pile stiffness, is expected to have a negligible impact on the

derivation of the soil interaction strength parameters.

Tip Soil Elastic Modulus
The tip soil elastic modulus, E;, was estimated using correlations with SPT N-
values for gravelly sands as found in Bowles (1997). The correlations provided for

gravelly sands include:

E, =1200(N,, +6) (4-2)
E, =600(N,, +6) for Ny < 15 (4-3)
E, =600(N, + 6) + 2000 for Ngg> 15 (4-4)

The correlations do not indicate the conditions for which Equation 4-2 should be
applied. As the Ny for the soils near the tips of the test piles exhibited N-values

consistently greater than 15, the results of Equation 4-4 were compared with the results of
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Equation 4-2. The resulting value for £, ranged approximately from 350 to 1300 kips per

square foot (ksf) with an average value of approximately 750 ksf.
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Figure 11: Applied load vs. settlement for grout strength sensitivity analysis using Boiler

compression test pile results.

To account for the potential variation of the value of Ej, a sensitivity analysis was

performed using the data from the Boiler compression test to evaluate the impact on the

back-calculated values of 7, and K;,;;,. With all other parameters kept as constants, the load

settlement performance was evaluated at a minimum value 350 ksf and a maximum value
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of 1300 ksf for E;. As exhibited in Figure 12, the impact of the variation of tip soil elastic
modulus has a minimal impact on the predicted load-settlement performance. The
analyses indicate that at the maximum and minimum modeled E; values, the back-
calculated value of 7, varies from 20.8 to 23.2 psi, respectively. This is a variation of
approximately 5 percent relative to the value of 22.0 psi back-calculated using the
average value of 750 ksf. The value of K;,;; was kept constant at 3 psi for this sensitivity
analysis. The potential for variation of the tip soil elastic modulus is expected to have a

negligible impact on the derivation of the soil interaction strength parameters.
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Figure 12: Applied load vs. settlement for tip soil elastic modulus sensitivity analysis using
Boiler compression test pile results.

44




Tip Soil Ultimate Bearing Capacity

The tip soil ultimate bearing capacity, ¢,, was estimated using correlations with
SPT N-values and with the g, value from the CPT soundings. Equation 1-10 was used to
estimate g, from the N-values while Equation 1-13 was used to estimate ¢, from the CPT
soundings. For each correlation, the N-values and the g, values were averaged over a
distance of one diameter above and three diameters below the tips of each pile. Using
Equation 1-10, the predicted value of ¢, ranges from 20 ksf to 58 ksf with an average value
of 38 ksf. Using Equation 1-13, with a k. value of 0.3 for very dense sands and gravels as
shown in Table 1, the predicted value of ¢, ranges from 162 ksf to 278 ksf with an average
value of 230 ksf.

Data collected from the strain gauges embedded at the tips of the test piles indicate
that the bearing pressures developed at the maximum test loads ranged from 29 ksf to 132
ksf with an average value of 85 ksf. At the maximum test loads, the pile top settlements
ranged from 0.9 to 1.5 inches. Accounting for elastic shortening of the piles, tip
movements were estimated to be on the order of 0.3 to 1.0 inch. Brown et al. (2007) notes
that the end bearing component is fully developed at tip displacements on the order of 5 to
10 percent of the pile diameter. For the 16-inch piles used in this research, a pile tip
displacement on the order of 0.8 to 1.6 inches would be required for full development of
the end bearing capacity. Therefore, the ultimate bearing capacities for the test piles are
likely in the higher range of values predicted by the LPC method using the CPT sounding
data. The average value of 230 ksf predicted by the LPC method was selected as the basis

for analysis for the curve fitting calculations.
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Due to the large variation between the predicted values for the ultimate tip bearing
relative to the two correlation methods, an analysis was performed using the data from the
Boiler compression test to evaluate the sensitivity of the back-calculated values of 7, and
Ki.i relative to variations in the value of ¢,. With all other parameters kept as constants,
the load-settlement performance was evaluated at a range of value for ¢, predicted by the
correlations. As exhibited in Figure 13, the impact of the variation of tip soil ultimate
bearing capacity has a moderate impact on the predicted load-settlement performance. The
analyses indicate that at the maximum and minimum modeled ¢, values, the back-
calculated value of 7, varies from 21.8 to 23.8 psi, respectively. This is a variation of
approximately minus 1 percent to plus 8 percent relative to the value of 22.0 psi back-
calculated using the average value of 230 ksf. The value of K;,,;; was kept constant at 3 psi
for this sensitivity analysis. While the magnitude of potential variability is higher than for
some of the other model parameters evaluated, the strain gauge data provides some

justification for using the higher predicted value from the LPC correlations.

Tip Soil Poisson’s Ratio
While correlations to estimate the Poisson’s ratio, x4, of soils relative to
conventional in-situ testing such as SPT or CPT, there are published typical values based
on soil type. For dense sand or gravel, a range of 0.4 to 0.5 is recommended by Arya,
O’Neill, and Pincus (1979). A value of 0.3 is recommended for gravel, unless evidence

indicates otherwise, by Reese, Isenhower, and Wang (2006). In addition, it is noted that
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the Poisson’s ratio increases to a value of 0.48 to 0.49 in 100 percent saturated soils (U.S.

Army Corps of Engineers 1995).
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Figure 13: Applied load vs. settlement for tip soil ultimate bearing capacity sensitivity
analysis using Boiler compression test pile results.

Similar to the parameters noted above, analyses were performed using the data

from the Boiler compression test to evaluate the sensitivity of the back-calculated values of
7, and K;,;, to variations in the value of Poisson’s ratio for the tip soil incorporated into the
model. As exhibited in Figure 14, the impact of variations to y for the tips soils has a

negligible impact on the predicted load-settlement performance. The analyses indicate
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that, over the range of potential values suitable for dense sands and gravels, the theoretical
load-settlement curves predicted by the model are nearly identical without varying the

values of 7, and K;,,;;. With the tip soils being below the groundwater level and thus

saturated, a value of 0.49 was used for z in all analyses.
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Figure 14: Applied load vs. settlement for tip soil Poisson’s ratio sensitivity analysis using
Boiler compression test pile results.

Curve Fitting Results

For each of the six static compression and six static tension load tests performed at

the project site, the Mathcad model was used to back-calculate average values for the
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ultimate shear strength of soil-structure interface, z,, and the initial tangent shear modulus
of the subgrade reaction at the soil-structure interface, K;,;;. The values of 7, and K,,;; were
adjusted until the theoretical load-settlement curve resembled a close approximation to the
load-settlement curve produced by the static load testing. While an attempt was made to
match the full range of load-settlement data from the static load tests, the data points
representing 200 percent of the design load and 300 percent of the design load, or the
maximum test load applied to the pile, were considered the key points to match. Since
these load increments were maintained the longest during the testing, typically for periods
of time ranging from one hour to one and one-half hours, they were considered to be the
most representative points to use for the curve fitting. The intermediate load increments
were maintained for periods ranging from 5 to 20 minutes.

For the load tests that were instrumented with strain gauge data, a secondary
comparison was made between the distributions of load versus depth predicted by the
numerical model and with the actual distribution exhibited by the strain gauge data.
However, the curve fitting with the load-settlement data was the primary evaluation used to
develop the 7, and K;,;; values.

The results of the load-settlement curve fitting and the load-depth evaluation are
grouped by test pile area and exhibited in Figures 15 through 34. For each plot of the load-
settlement performance, a series of curves are provided to highlight the sensitivity of the
curves to variations of the 7, and K;,,;; values. A summary of the final back-calculated g,

and Kj,;, values is presented in Table 6. In general, the load-settlement curves developed
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by the “t-z” model present a good match to the curves from the static load testing.
However, there are some areas where the curves noticeably deviate from one another over
a wide range of applied loads. Examples of these deviations are most apparent in the
curves from the Powerhouse tension test and the Coal Yard compression test. Such
deviations are considered to be a likely result of the assumption of a single layer soil

profile.
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Figure 16: Load remaining in pile vs. depth for Boiler compression test pile.
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Figure 17: Applied load vs. settlement Boiler tension test pile.
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Figure 18: Applied load vs. settlement Chimney compression test pile.
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Figure 19: Load remaining in pile vs. depth for Chimney compression test pile.
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Figure 20: Applied load vs. settlement Chimney tension test pile.
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Figure 21: Applied load vs. settlement Powerhouse compression test pile.
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Figure 22: Load remaining in pile vs. depth for Powerhouse compression test pile.
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Figure 23: Applied load vs. settlement Powerhouse tension test pile.
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Figure 24: Applied load vs. settlement Coal Yard compression test pile.
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Figure 25: Load remaining in pile vs. depth for Coal Yard compression test pile.
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Figure 26: Applied load vs. settlement Coal Yard tension test pile.
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Figure 27: Load remaining in pile vs. depth for Coal Yard tension test pile.
58



Applied Load (kips)
4] 100 200 300 400 500 600 700 800 900 1000

==gum | 0ad Test Results

= + =K=1.5 psi; tu = 18.1 psi
— =K=3.5 psi; tu = 18.1 psi
= w=K=2.5 psi; tu = 18.1 psi
= + K=2.5 psi; tu = 17 psi

====K=2.5 psi; tu = 20 psi

= = K=6 psi; tu = 13.9 psi

Settlement (in)

Figure 28: Applied load vs. settlement Cooling Tower compression test pile.
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Figure 29: Load remaining in pile vs. depth for Cooling Tower compression test pile.
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Figure 30: Applied load vs. settlement Cooling Tower tension test pile.
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Figure 31: Applied load vs. settlement Water Tank compression test pile.
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Figure 32: Load remaining in pile vs. depth for Water Tank compression test pile.

61



Applied Load (kips)
0 100 200 300 400 500 600

=g | 0ad Test Results

- + =K=3 psi; tu = 6.2 psi
= « =K=5 psi; tu = 6.2 psi
= w=K=4 psi; tu=6.2 psi

= « K=4 psi; tu = 4 psi

= = K=4 psi; tu =8 psi

E
§
£
o
E-
&
Figure 33: Applied load vs. settlement Water Tank tension test pile.
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Figure 34: Load remaining in pile vs. depth for Water Tank tension test pile.
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Table 6. — Back-calculated “t-z”” model parameters.

Loiiilt?on Pile Type (Ilils];ls (pTgi) Zf:;p/
e e
chmney | o |25y
Powerhouse CO{% Ir)lrseif)srion gz 15.98 0.53
Coal Yard | -=CpRESOR 0, 100 042
Cooling Tower CO,}I; Ir)lrsif)srion i(s) 17884 0.42
Water Tanks Co;r; I:I)l rseizsnlon 4218 267..25 0.23

While most of the values of K, fell in a range from 2.0 to 5.0 ksi, the back-
calculated value from the Coal Yard tension test (Figure 26) appears to be an outlier with a
value of 20.0 ksi. It is unclear at this time whether the higher value of K, is a product of
variations in the pile installation or load testing or potentially a product of variations within
the back-calculations of the model parameter from that specific test. For the development
correlations between the “t-z” model parameters and the field investigation data, the value
of K, from the Coal Yard tension test in most cases was not included in the analyses.

It should be noted that the ratio of 7, from the tension tests relative to the value of
7, from the compression tests is quite low from this set of load tests. For deep foundations
embedded in cohesionless soils, it is somewhat common to apply a reduction factor to the

ultimate shear resistance values when evaluating tension capacity. This reduction is due to
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the potential for a reduction in effective stress in the vicinity of the pile as a result of
Poisson’s effect. The reduction factor is typically in a range 70 percent and 100 percent of
the ultimate shear resistance in compression (Brown et al. 2007). However, the back-
calculated values of 7, from the tensions tests for the current project exhibited an apparent
reduction factor ranging from 23 percent to 53 percent. It is unclear at this time whether
these notably lower reduction factors are a product of the particular pile installation
methods or load testing methods performed on this project or potentially a product of

variations within the back-calculations of the model parameter from these load tests.

Correlation of “t-z” Model Parameters with Field Investigation Data

The back-calculated values of K;,;;and 7, developed from the numerical model
were then compared with the SPT N values collected from conventional soil borings and
with the g, values collected from CPT soundings to evaluate whether suitable correlations
could be developed for use on future pile designs. For these comparisons, a single soil
layer was assumed for the design profile such that the Nypand g, values from explorations
in the near vicinity of each test pile were averaged over the corresponding lengths of pile
penetration. For test pile areas where multiple borings or multiple CPT soundings were
performed in close proximity to the test pile, a single average value was calculated for Ny
and g, as appropriate. These values were previously summarized in Table 4 and Table 5.

Initially, the field investigation data was plotted directly with the back-calculated
model parameters. For each model parameter, the values developed from the compression

and tension tests were initially plotted separately relative to the field investigation data to
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identify any trends that were unique to the direction of the axial loading. Where
similarities were observed between the results of the compression and tension test
correlations, the data sets were combined to develop a single correlation applicable to
loading in both axial directions.

Figure 35 and Figure 36 display the relationships for the Ny and g, values,
respectively, relative to K;,;; from both the compression and tension tests. The plot of the
data generally indicates a linear relationship with the value of K,;; increasing
proportionally with the value of Ngj or ¢g.. A simple linear regression correlation is
indicated with the relationship forced through an imaginary point at the origin. As noted
previously, the back-calculated value from the Coal Yard tension test appears to be an
outlier and, while the data point is shown in each figure, that value was not included in the
linear regression. While the plotted data does suggest a linear relationship, the sample size
is not sufficient to confirm whether the relationship is a statistically accurate prediction of

the correlation between the respective values.
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Figure 36: K, vs. g. from compression and tension test piles.
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Figure 37 and Figure 38 display the relationships for the Ny and ¢, values relative
to 7, from both the compression and tension tests. It was anticipated that a trend would be
observed similar to those exhibited in Figures 35 and 36, where the value of 7, would
generally increase with increasing values of N and g.. However, the data from both the
compression and tension tests displays a higher level of variability and there is no distinct
correlation between the back-calculated soil interface parameters and the field
investigation data. It is suspected that the apparent lack of correlation between these
values may be related to the assumption of a single-layer soil profile.

As noted previously, the pile top settlements from the compression tests ranged
from 0.9 to 1.5 inches. Elastic structural deformation of the compression test piles was
estimated to range from 0.4 to 0.7 inch with pile tip movements estimated to be in the
range of 0.3 to 1.0 inch. The pile top movement exhibited by the tension tests ranged from
0.2 to 1.6 inches. Elastic structural deformation of the tension test piles was estimated to
range from 0.1 to 0.3 inch with pile tip movements estimated to be in the range of 0.0 to
1.3 inches. The side resistance component of the pile capacity is fully mobilized with a
relatively small amount of axial pile movement, typically less than 0.4 inches. When
taking elastic deformation of the pile into consideration, it is likely that full mobilization of
the side resistance component did not occur along the lower portions of the piles where the
tip movement was estimated to be below 0.4 inch. Where this is the case, the assumption
of a single, homogenous soil layer could lead to inaccuracies when averaging the side

resistance component over the full length of the test pile.
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Comparison of LPC Method for Correlating 7, with g,

While the overall distribution of the values of 7, relative to g. does not reveal a
definitive correlation, a closer inspection of the individual relationships was performed to
evaluate whether the correlations defined by Equation 1-12 for the LPC Method, along
with the a-coefficients in Table 1, might present a suitable relationship when utilizing the
numerical methods described herein for the “t-z” model. The values of a = ¢./7, back-
calculated from each compression and tension test are summarized in Table 7. The results
reveal values for a in the range of 64 to 138 for the compression tests and values in the

range from 175 to 318 for the tension tests.

Table 7. — LPC Method a-coefficients back-calculated from load test data.

Pile o=qJ/7 o=qJ/7

Location Compression Tension
Boiler 109 284
Chimney 103 318
Powerhouse 138 261
Coal Yard 74 175
Cooling Tower No CPT Soundings
Water Tanks 64 | 282

The a-coefficients developed from the compression tests are generally in line with
the values published for the LPC method, previously summarized in Table 1, for soil types
including loose silts and sands (o = 60), medium dense sands and gravels (a = 100), and

very dense sands and gravels (« = 150). The values of a calculated from the Boiler,
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Chimney and Powerhouse areas fall in the published range between medium dense to very
dense sands and gravels. The test piles in these three areas were the longest of the test
piles installed and ranged in length from 69 feet to 75 feet compared with the test piles in
the area of Coal Yard, Cooling Tower and Water Tanks which were installed with lengths
of 50 to 65 feet. The longer embedment lengths result in deeper penetration of the piles
into the sands and gravels at depth which exhibit higher densities. The values of a
calculated from the Coal Yard and Water Tanks were 64 and 74, respectively. These
values are in the published range between loose and medium sands which may be
attributed to their shorter embedment lengths and the resulting stronger influence of the
shallower clays, silts and sands on the average value of 7,. Based on these results, it
appears that the published values of a associated with the LPC Method as applied to ACIP
piles installed in cohesionless soils, and loaded in compression, are a suitable correlation
for developing the 7, values to be used in the “t-z” model described herein.

As noted previously, the back-calculated values of 7, for the test piles loaded in
tension appear to be uncharacteristically low relative to the values of 7, calculated for the
corresponding compression test piles. In addition, the a-coefficients developed from the
tension tests do not appear to exhibit any specific trends relative to the relationship
between embedment length and magnitude of a-coefficient as exhibited by the
compression test results. As a result, the values of a associated with the LPC Method are
not considered to be a suitable correlation for estimating the 7, values to be used in the “t-

7” model.
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Correlation of “t-z”” Model Parameters with Effective Stress

Due to the lack of suitable correlations when comparing the back-calculated values
of K, and 7, directly with the field investigation data, additional comparisons were
performed to evaluate the relationship of the soil model parameters to effective stress. The
values of K;,;;and 7, can both be estimated relative the confining stress of the soil profile.
Each soil model value was then plotted against the normalized depth of each test pile. For
this evaluation, the normalized depth is defined as the depth of the test pile, d, divided by
the pile diameter, D. Since the soil profile is being modeled as a single layer, the mid-
point depth of the test piles is used.

The value of 7, can be calculated using the f-method described previously in

Chapter 1 and utilizing Equation 1-7 which can be rewritten as follows:

B, == (4-5)
O

v

Similarly, the value of K;,,;; can be calculated from a relationship developed by

Janbu (1963) using the following equation:
c'K Y
Kinit = Kmodaatm( - Oj (4_6)
atm

where, K, is the at-rest coefficient of earth pressure, K,,s is @ modulus number, S, is the
atmospheric pressure, and x is an exponent describing the rate of variation of K;,;; with
respect to 0, K,. Both x and K, are constants which can be determined experimentally
from the results of drained triaxial tests conducted under a variety of confining pressures.

However, knowledge of those constants is not required to evaluate the potential for
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correlations between K;,;; and d/D or 0,” K, that can be used for future analyses within the
“t-z” numerical model.

The value of 0,” Equation 4-5 and Equation 4-6 can be calculated using the unit
weight of the soil from laboratory test data or from correlations with field investigation
data such as the Ny values and taking into consideration the influence of groundwater
where present. Due to the difficulty in obtaining relatively undisturbed samples of
cohesionless soils for laboratory unit weight tests, correlations with Ny values are
commonly use to estimate the unit weight of sand and gravel soils. Correlations published
by Bowles (1997) recommend wet unit weights in the range of 90 to 115 pounds per cubic
foot (pcf) for loose sands, 110 to 130 pcf for medium dense sands, and 110 to 140 pcf for
dense sands. For soils above the groundwater, a wet unit weight of 120 pcf was estimated
for use in calculating the value of 0,’ to be used for calculating the value of f,, for each
test pile area.

Figure 39 displays the relationships for ., relative to d/D from both the
compression and tension tests. The data generally indicates decreasing values of S,
relative to increasing normalized depth. The plot includes a regression trendline based on
a power function which is typical of correlations for f,, based on trends observed in other
data sets. However, the data sample does not cover a wide enough range of normalized

depth values to allow for proper statistical analysis.
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Figure 39: S, vs. d/D from compression and tension test piles.

As another point of evaluation, the average S, values calculated from the load test
data are compared in Table 8 to the average theoretical S, values for each associated soil
boring calculated using Equation 1-8. While the values back-calculated from the
compression tests at the Boiler, Chimney and Powerhouse are within approximately 25
percent of the predicted theoretical values, the remainder of the back-calculated values
differ by a factor of approximately two from the predicted theoretical values. Based on
these results, the FHWA 1999 “f-method” does not appear to be a suitable correlation for

developing the value of 7, for use in this “t-z”” method numerical modeling.
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Table 8. — Comparison of back-calculated and theoretical S, values.

Pile Average f., Average ., Average f.,

Location Compression Tension Theoretical
Boiler 0.84 0.32 0.67
Chimney 0.87 0.28 0.67
Powerhouse 0.72 0.38 0.69
Coal Yard 1.40 0.59 0.74
Cooling Tower 1.23 0.52 0.86
Water Tanks 1.42 0.32 0.73

Figure 40 displays the relationship for K;,;;/0,’ relative to normalized depth from
both the compression and tension tests. The data appears to show that the value of K;,,;/0,’
decreases with increasing normalized depth. Similar to the plot for S, relative to d/D, the
data sample is too small to allow for proper statistical analysis but a regression trendline
based on a power function has been shown.

Finally, the values of K,;; are plotted relative to confining stress in the form of
0,’K, in Figure 41. Based on the relationship observed in the plot of K;,;,/0,’ relative to
normalized depth, it would be expected to see a similar trend with values of K;,;; decreasing
relative to increased values of 0,’K,. However, the date plotted suggests an opposite trend
of K, increasing relative to higher values of 0,’K,. Once again, this data does not appear
to provide a suitable correlation relative to the development of values for K;,; to be used in

this “t-z”” numerical model.

74



1400 -

1200 a

1000

800
g
~
E
3

600

\
N K/a",= 2495.5(d/Dy°
\ R?2=0.15
Y
400 > =
~
%
&
S~ A
= - A
s T —
P N il S,
0
(] 5 10 15 20 25 30 35 40
d/D

Figure 40: Kj,;; vs. d/D from compression and tension test piles.

1600

1400

1200

400 &

A
200 + - - - - ~ - it

0.0 01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 10

LA

Figure 41: K, vs. K,0,” from compression and tension test piles.

75




The primary source of difficulty in establishing correlations between the model
parameters and the effective stress appears to be related to the limited stress range over
which the data is plotted. Due to the assumption of a single soil layer, the magnitude of
the effective stress, and similarly the magnitude of the normalized depth, presents a limited

range over which the relationships can be evaluated.
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CHAPTER 5

SUMMARY AND CONCLUSIONS

Project Summary

The purpose of this study was to expand on research previously performed by
Roberts (2006) and Misra and Roberts (2006) to develop a reliability-based design
methodology for the design and analysis of deep foundations at the service limit state.
Specifically, this study focused on the development of “t-z”” model parameters for use in
service limit state analysis of augered cast-in-place (ACIP) piles. While most ACIP piles
are designed based on well-established ultimate limit state methods, the methods for
evaluating the service limit state performance, or load-settlement performance under
service loads, have not been as thoroughly developed.

The current method most commonly used for evaluating the load-settlement
performance of ACIP piles consists of curves based on empirical relationships developed
from load tests performed on drilled shafts with a limited range of diameters. Use of those
empirical curves methods may not provide an accurate prediction of the load-settlement
performance of ACIP piles and load testing is recommended to verify the results of the
analyses. While load testing for critical foundations is considered a good practice in
general, load testing is often performed as a design verification process rather than for the
purposes of optimizing the final foundation design. The development of a theoretical

model that can be utilized during the design phase to more accurately evaluate the load-
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settlement performance of a variety of deep foundation types, including ACIP piles, and
which can account for site-specific subsurface conditions, would be beneficial.

For the “t-z” method, the load-displacement behavior evaluated at the pile-soil
interface is modeled as a series of springs using either an ideal elasto-plastic model or a
hyperbolic model. For this research, the hyperbolic model was selected to better
approximate the non-linear load-displacement behavior typically exhibited by deep
foundations.

The shape of the hyperbolic load-displacement curves are then defined by a set of
four parameters: (1) the initial tangent shear modulus of the subgrade reaction at the soil-
structure interface, K;,;, (2) the ultimate shear strength of soil-structure interface, z,, (3) the
initial tip soil stiffness, K, and (4) tip soil ultimate bearing capacity, ¢,. Since the
hyperbolic curve cannot be defined by a closed form solution, a finite difference method
was used to evaluate the non-linear load-displacement behavior. A Mathcad computer
program developed by Roberts (2006) was used to evaluate non-linear performance of the
soil-structure interface. The program utilizes the central-difference methodology to solve
the algebraic equations which define the load-displacement performance at a series of
nodes along the length of the pile. The Mathcad model was used to back-calculate values
for K, and 7, until the theoretical load-settlement curve predicted by the model presented
a close approximation to the load-settlement curve developed from full scale load tests.

Data was collected from a series of load tests performed at a project in northwest
Missouri, near the city of Weston. A total of 12 load tests were performed for the project,

including six static compression and six static tension, on dedicated test piles located
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throughout the project site. During each load test, pile-top movement was monitored
through the use of four dial gauges. In addition, “sister bar” strain gauges were embedded
at multiple depths throughout each of the six compression test piles and three of the tension
test piles to monitor the rate of load transfer in each pile during testing.

For model simplicity, the soil profile was assumed to consist of a single,
homogenous layer with the values of K;,;; and 7, modeled as average values over the length
of each pile. During the curve fitting process, the values of K;,; and 7, were treated as
variables while the remaining model parameters, including the non-interaction zones, axial
stiffness of the pile, and the tip soil performance, were set as constants. Several sensitivity
analyses were performed to evaluate the effect of potential variability within those
parameters.

When matching the predicted pile performance from the Mathcad model to the data
collected from the static load tests, the load-settlement data was the primary evaluation
used to back-calculate the 7, and K,;; values. The predicted load distribution along the
length of the piles, as compared with the data collected from the embedded strain gauges,
was used as secondary criteria for comparison. With respect to the load-settlement curve
matching, the data points representing 200 percent of the design load and 300 percent of
the design load, the maximum test load applied to the pile, were considered the key points
to match since those load increments were maintained for the longest time intervals during

the testing.
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Once average values of 7, and K;,;; were back-calculated for each of the 12 load
tests, they were compared against the Ngpand g, values collect from conventional borings
and CPT soundings performed in the near vicinity of each test pile. While there is some
indication of a linear relationship between K;,;; and Ny and ¢., the quantity of data
evaluated was not sufficient to identify whether the relationship is a statistically accurate
prediction of the correlation between the respective values.

The relationship between 7, and Ny and g. was much more variable and did not
provide any distinct correlation between the back-calculated model parameters and the
field investigation data. However, it was noted that when comparing g. with 7, the back-
calculated a-coefficients from the compression test data were very similar to values
recommended in the LPC Method for hollow auger bored piles. Based on those results, it
was suggested that values of a associated with the LPC Method as applied to ACIP piles
installed in cohesionless soils, and loaded in compression, are a suitable correlation for
developing the 7, values to be used in this “t-z”” model.

Due to overall poor quality of correlation between the back-calculated model
parameters and the field investigation data, additional comparisons were performed to
evaluate potential relationships between the “t-z”” model parameters and effective stress
within the soil profile. With the soil profile being modeled as a single layer, the data
comparisons were made based on the effective stress at the mid-point depth of the test
piles. While the plot of the data relating the model parameters to the effective stress

exhibits some grouping, the ability to identify any trends in the correlation is difficult due
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to the relatively limited range of normalized depth values over which the relationship could
be evaluated.

Overall, the assumption of a single, homogenous layer appears to have been an
oversimplification of the soil profile for the purposes of developing correlations with the
“t-z” model parameters relative to both field investigation data and overburden stress.
Consideration of multiple layers within a soil profile would allow for more accurate
evaluation of any relationship that might exist between the “t-z” model parameters and
associated field investigation data for each respective soil layer. It would also allow for
data points over a wider range of normalized depths when evaluating the correlation
between the model parameters and overburden stress.

In addition to the use of a multi-layer soil profile, it would also be beneficial to
coordinate the location of the field investigation data with the test pile location. For the
current study, the distance the test piles to the soil borings and CPT soundings varied from
50 feet to 560 feet (see Table 2). While it is not possible to quantify the impact of
increasing distance between the test pile and field exploration locations, the heterogeneous
nature of soils makes it more likely to encounter variations over large distances that could

lead to poor correlations.

Future Research

The research performed for this study was based on load tests and field
investigations from a single project site and did not provide a sufficient quantity of data to

identify trends in correlations with proper statistical analysis. Where data from load
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testing and field investigations are available from other sites, analyses similar to those
performed within this study could be used to expand the volume of “t-z”” model parameter
correlations. The larger volume of correlations can then be evaluated for statistical trends
more effectively. As part of any future evaluations to identify trends between “t-z”” model
parameters and field investigation data, it would also be beneficial to evaluate existing
correlations between field investigation data and soil strength parameters, similar to those
included in the FHWA 1999 Method or the LPC Method, to establish whether any existing
correlations are suitable for use in estimating the “t-z”” model parameters as an alternative

to developing new correlations.
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| SAND, Fine to Coarse Grained, Gray, Wet, Medium, Tracs
_1 Fine Gravel (SW) 27|
74 w [ N=27
1 -] 5517 i
- 18 -
TS_— ® - Bi Chatienng on
— — Ocassional
] ] Cobbles.
T6— 78—
n GRAVEL, Fine to Medum Grained, Sandy, Gray, Wet, n
77— Dense, Fine to Coarse Sand (GP) 77—
76— o
A [& T / 2ol
79— 20 o [P g N =32
T 20 18 7] ss-18
i) 12 7]
80— 20
81— 81
82 7 =]

Cimotmchmics! gy, Ducatren
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GEDTECHMECAL LOG OOy COORDINATES) MTAMOGSE? OFJ BURMNS MO GDT A&Z308

Drilling Log, continued

Boinghurber B-011

Project Mame  latan Fage Bofé
Project humber - 4 1180-3.0208 Diate 3-22-08
Feld | Recow/ Sample
DE?h ; SY\S?h Advance o
[t} Description Class {PF) {inch) Ban: Na. Remarks
| GRAVEL. Fine to Medum Gramed, Sandy, Gray. Wet, SN = Losing circulation
—  Dense, Fine to Coarse Sand (GF) [o L (o — Huole taking water.
— 2 B - Driled past sample
83| Q0 o <o point. Bedrock at 7
7] o [y -2 ] fest Fine gravel in
— :'_: rf:_:" =l dril cuttings.
] b O o ]
84— [# 5~ 84—
=] =g '3(::' —
] B O o =
- o -
85— o b 85—
1 b ]
- L ] -
86 25 -:l- D-c:—". -
i B O o - 10:27 Stop 2 87
4 fa (7 - 4 feet Grouted hole
=1 o B - with & bags of grout,
87 & el P 50 gaions of water,
_|  Boring Terminated &t 87 Fest 5] ?:3 112 bag of Quik
58__ SB—_
89— g ]
a0— o0 —|
91— ol
92— o]
43— az—]
G a4
96— ek
97— 57—
ag— ag—]
98 7 ]

Gt il Enginesring Dmgarime—

&9




Drilling Log

GEQTECHNICAL LOG (XY CODRDINATES) |ATANLOGS2 GPJ BURNS MO.GDT B/23/08

Project Name Boring Number
latan B-03
Project No. Page
41180-3.0209 1 of 7
Ground Elevation Location Total Footage
785 ft.msl N 1195147 E 2653707 102.5 ft.
Drilling Type Hole Size Overburden Footage | Bedrock Footage Mo. Of Samples No. Core Boxes | Depth to VWater (ft) Date Measured
AugerMud 33/41D 87.0 ft. 165 f. 20 2 Not Measured
Driling Company ~ Geotechnology, Inc. Drillers (s} Craig Steiner, Shaun Dotson
DrlingRig ~ Mobile B-57 e e SPT (Auto-Trip Hammer)
Date  3-15-08 To 3-16-06 Fisld Observer ts)  Kevin Bolling
Field Recaow / Sample
Depth Blowy Strength | Advance or
(fty Description Class Count (PP} {Inch} B Mo, Remarks
SAND; fine to medium grained, light brown, damp, medium _}
(S} i
1
g 1
12 Tor J s
¥k 2—]
7 N=27
3_
SAND-f . " 10/ 4—
» fine to medium grained, light brawn, damp, dense 107 15/ d s
18 18 ]
5 - MN=37
|~ SAND; fire to medium grained, brown, damp, medium ]
i5P) 6
10/ ]
1 4 J sss
15 7
=] N=26
1 SILT: fine sand, trace clay, gray, wet, medium, trace Bt
plasticity (ML). —
10/ 9]
= & I A ssa
- 8 ]
10—_ 10— N=i6
1 1 - 11—
12— 12
13— ]
- 18/ il
14 = 20TsF 18 - 555

Geotechnical Engineering D e partment
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Drilling Log, continued

Boring MNumber B'03

GEQTECHNICAL LOG (XY CODRDINATES) |ATANLOGS2 GPJ BURNS MO.GDT B/23/08

Project Name  latan Page 20of7
ProjectNurmber — 41180-3.0209 Date 3-15-06
Field Recaow Sample
Depth Blow Strength | Advance or
{ft) Description Class Count (PP} {Inch} Box Mo, Remarks

A CLAY, brownish gray, stiff to very stiff, highly plastic [CH). 7 3 ]
] / 5 |2o07sF| 1¥ q sss
- 6 =

15— 15— Nt
] 24f 7

16 - 225TsF 2 16 ] ST-1
. CLAY, trace silt, brownish gray, very stiff, highly plastic 7

17— © 17

18— 18 :

19__ CLAY: brownish gray, stiff, highly plastic {CH) gf 15TSF 16/ wt 556
- 3 g ]

20— g N=5

21 ] 21 ] Switch to rotary
-< / — wash
] SILT, trace clay, trace fine sand, gray, wet, medium, 1

22__ nonplastic (ML), 22:

23_ 23;

24— 7 24|
= 8 L4 q ss7
- 8 ]

| 25—_ 25 . N=i6

26_ 25;
=] SAND:fine graned, sit, gray, wet, medum (SP). i

27— 27—

28_ 23;

20— 6 29—
= i b4  sss
- 7 ]

30— 50-) N=13

31 ] N

Geotechnical Engineering D e partment
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Drilling Log, continued

Boring MNumber B'03

GEQTECHNICAL LOG (XY CODRDINATES) |ATANLOGS2 GPJ BURNS MO.GDT B/23/08

Project Name  latan Page 3of7
ProjectNurmber — 41180-3.0209 Date 3-15-06
Field Recaow Sample
Depth Blow Strength | Advance or
{ft) Description Class Count (PP} {Inch} Box Mo, Remarks
- SAND, medium to coarse grained, trace fine gravel, trace _}
- lignite, gray, wet, medium (SF) —
32— 32
33— 33|
34—] & 34—
- & w q sse
' 8 -}
35— 35 N=16
26— 36|
37_ 37;
26— 36|
39__ SAND; medium to coarse grained, gray, wet, medium, with g 12/ 39t 5510
- trace gravel (SP). 14 18 |
40— 2] N=21
41— 41|
| 42— 42|
43— 43—
44 SAND; fine to medium grained, trace coarse sand, trace ]g; 13/ 44t 514
- lignite, gray, wet, medium to dense (SP) 15 18 —
] 45|
45— 5 KL
46— 46—
47— 47 —
48 ] -

Geotechnical Engineering D e partment
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Drilling Log, continued

Boring MNumber B'03

GEQTECHNICAL LOG (XY CODRDINATES) |ATANLOGS2 GPJ BURNS MO.GDT B/23/08

Project Name  latan Page 40f7
ProjectNurmber — 41180-3.0209 Date 3-15-06
Field Recaow Sample
Depth Blow Strength | Advance or
{ft) Description Class Count (PP} {Inch} Box Mo, Remarks
- SAND, medium grained, gray, wet, medium [(SP). ]
49— 14/ 49—
] 12 2 - s52
- 15 ]
50— 0%} N=27
51— 51—
=1 SAND;fineto coarse grained, trace fines, aray, wet,  feaoireres N
gp—]  medium &) i 50|
53— et 53]
54— ittt B 59—
- ety T L J sss
15 _
- iapm N=25
- SAND; medium to coarse grained, gray, wet, medium, with iy
57__ trace fine sand (SP) 57 |
56— 56— |
59— 12 53|
| - 13/ 14 1 ss14
- 13 a
60—_ {60 N=26
51— 161 -]
=1 " SAND; coarse grained, with fine gravel, browrish gray, wet, ]
62—_ medium (SWv) I62;
63— le=
64— 11/ 164 —
_ 10/ 7 5515
7 L ) =21
65 N

Geotechnical Engineering D e partment
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Drilling Log, continued

Boring MNumber B'03

GEQTECHNICAL LOG (XY CODRDINATES) |ATANLOGS2 GPJ BURNS MO.GDT B/23/08

Project Name  latan Page 50f7
ProjectNurmber — 41180-3.0209 Date 3-15-06
Field Recaow Sample
Depth Blow Strength | Advance or
{ft) Description Class Count (PP} {Inch} Box Mo, Remarks
- SAND;, coarse grained, with fine gravel, brownish gray, wet, |
= medium (SW) K e —
66— Sl Jes]
67— e ler]
65— RN lea
69__ SAND; medium to coarse grained, trace fine sand and :::::2222 '11&]]; 12¢ IGQi se1g
oravel, brownish gray, wet, medium [SYW) Ry T 18
70— 70 N=20
71— 71—
72— 72|
73— 73:
. SAND;, coarse grained, with gravel, gray, wet, medium 7
74— W e IELT w I
. DO IR (U} 7| ssi7
- s Bt g 18 —
75— 75 N=19
| 76— 75;
| GRAVEL with coarse sand, gray, wet, mediom (GP). | ]
77_ 77—
78— 76|
79— Qad o el
- o B"Q“ 14f b 7] ss8
. OOD 10 i
= 0 ]
80— o D” 2 80
- = N=24
- ) DQ ]
- %@ d ]
- AR i
81— ) DQ 81 Stop at 16:45 on
- %D 4 ] 3M5/06
- AR a
82 - R .

Geotechnical Engineering D e partment
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Drilling Log, continued

Boring MNumber B'03

GEQTECHNICAL LOG (XY CODRDINATES) |ATANLOGS2 GPJ BURNS MO.GDT B/23/08

Project Name  latan Page 6of 7
ProjectNurmber — 41180-3.0209 Date 3-15-06
Field Recaow Sample
Depth Blow Strength | Advance or
{ft) Description Count (PP} {Inch} Box Mo, Remarks
- SAND; coarse grained, gravel, gray, wet, medium [SV) =
83— 3]
84— 21/ ' 54—
- 15/ 18 1 5518
- 12 ]
85— 85 N=27
66— BE:
87|
: SHALE; gray, fresh, wealk, fissile _
88_ EB;
- RQD= 40/ N
- — Rur#l
ag—1 67% 42 89|
90— 90:
- SANDSTONE, fine grained, gray, fresh, strong; interbedded iy
o1 __ with SHALE, fissile, gray, fresh, weal 91 ]
92— 92|
— RQD= 58/ _
| 93 ] 3504 a0 |93 Rum2
I SANDSTONE; fine grained, gray, fresh, strong, with shell 4
- fragments |
94— cr
95— 95|
96_ 95;
97__ 97;
- RGQD= 507 n
. 3% 50 | Rum#s
98— 95|
99 N

Geotechnical Engineering D e partment
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Drilling Log, continued

Boring MNumber B'03

MO.GOT E/2308

GEQTECHNICAL LOG (XY COORDINATES) |ATANLOGSZ. GPJ BURNS

Project Name  latan Page 7of7
ProjectNurmber — 41180-3.0209 Date 3-15-06
Field Recaow Sample
Depth Blow Strength | Advance or
{ft) Description Count (PP} {Inch} Box Mo, Remarks
- SANDSTONE, fine grained, gray, fresh, strong, with shell _}
- fragments —
=1 RQD= 597 i
- - Rur#3
100—] Bl 5 foo—
101—] 01-]
- RQD= 247 —
- 4% | -
102_ 02_,
103—_ 03{
104 - Boring Terminated at 102 5 Feet 04t
105_ 05_:
106—] 06
107—] 07
108_ UB—:
109—] 03]
110—] 0.
| — i
111— 11—
112—] 12—}
13— 13-
114—] 14—
115—] 15—}
116 7 N

Geotechnical Engineering D e partment
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B3 IATAN UNIT 2 PROJECT B&McD Project 41180

RUN1TOP I

oy G’
AT — < — -
RUN 2 BOTTOM RUN3TOP

Run No. Depth (ft)
Run 1 87.0t0 90.5
Run 2 90.5 to 95.5
Run 3 95.5 to Continued
B-3 TATAN UNIT 2 PROJECT B&McD Project 41180

ﬂ' L ;{ ;,ﬂ;{. {9

Run No. Depth (ft)
Run 3 Continued to 100.5
Run 4 100.5 to 102.5

0869701.61KG
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Surfacs Elevation 78558 | Compieticn Date;

DaturNAVD 88

2M10E

s STRENGTH,
B - Uiz o - auR o-pp
10 15 20 5
STANDARD PENETRATION RESISTANGE

DEPTH
IN FEET

DESCRIPTION OF MATERIAL

(ASTM D 1588)

= 10

— 20|

b 25

SENT Tl FOXRAATE BOUNDARIES BETWEEN SO0 TYPER

BH A ARD THE THARSITI0N LAY BE GRADUAL. 08UArnIC LONG FOR LLUSTRATION PURPCSES CRLY.

—.aﬂ_.

ROTE STRATFICATION LINEE REPAE!

|
i

%
:
;
:

REMARKS:

O] OF BORSRG

CMETSOX DRILL RIG latan Unit 2
Weston, Missouri

LOG OF BORING: B-5

Project No. 0865701.51KG

98



SHEAR STRENGTH, tsf
4 -z - oz o-rp

05 10 1& 2,0 25

STANDARD PENETRATION RESISTANCE

(ASTM D 1588)

Surfacs Exevation 785.55 | Completion Dste: _ 311106 _ EE§
Dt NAVD 88 g Eﬁﬁ
gk
i
E[@. DESGRIPTION OF MATERIAL St
£
mmﬂmﬂ.mﬂmh o
dense, pacely praded (SP-SM] fontius) f{
e il 01510
wy 211 ey
g :
EE = 152021
gg 0
’ ¥iii i
t‘-‘g - m_h“ o 4 134-14]s514)
&
Eg - 0512 [5515
gﬁ
§i — "~~~ madium-caacse. gray E Py |
L 70 o
;
i :
g: - : 17-22-25 5817
E "~ coarse a0
71 9-14-15 [s818

__AUGER 334" HOLLOW STEM
WASHBORING FROM 25 FEET
ML CRILLER _SEM LOGGER

LCMETENE DRILL A
HAMMER TYPE fulp

latan Unit 2
Weston, Missouri

CONTINUATION OF
LOG OF BORING: B-5

Project No. DBBS701.61KG

99



SAMPLES

SHEAR STRENGTH, t51

4 -Uu2 O-auwz o-PP
1 15 20 2
STANDARD PENETRATION RESISTANCE

5519

Surlce Etavation 78556 | Compistion Date- _ 3106 §E§
DatunNAVD 88 § Eg E
1 ;
E E DESCRIPTION OF MATERIAL EEE
i)
BAND, Irace sit, mediumn, gray, medium danse o b
dense, paorly graded isﬁﬁ (Eontinusdg
™= with grawel and imeslons fagments 11812
L e
“Haring lerminated ol raller bk rafsal at B8 faet
o
Eﬁ
=
éE
Hs =] 1) =
i
4
E‘é 105
i
25
Eg 110~
gt
g.’i
l—" ts_
g
F
]
GROUNDWATER DATH DRILLING DATA
E —_AUGER 334" HOLLOW 5TEM
ENCOUNTERED AT 23.5 FEET 2 WASHBORING FROM 28 FEET
- H_ DRILLER SEM LOGGER
SMETS0X_ DRILL RIG
HAMMER TYPE Aulo
:
Bl REMARKS:

LOEG OF

CONTINUATION OF
LOG OF BORING: B-5

Project No. 08637T01.61KG
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SHEAR STRENGTH, taf
Surface Elevation T8844 | Compisticn Date: __ 41008 EE@ 4-Luz Otz O.pp
DaturMAVD B8 § EgE w 0, 19 1
g |y 5 | & [TSTANDARD PENETRATION RESISTANGE
" g Egﬁ u!; [ASTM & 1508)
E? DESCRIPTION OF MATERIAL E% " ATER CONTENT %]
€ g N B gl
TOPEOIL - 12 Tnches = ;
"~ CLAY, sandy, Betm, damp, very s8ifl to Fard, Figh— — —
ﬂ@iﬁhﬂhm ta Fard, Figh

[~ 5~ SARD, Tin i mackirn, iy, dame, meaio dorse i~

%

denss, non-plaslic, poory graded (5

|— 10

"~ LAV, ack, dam, 3, high plastiy (GH] ]

— {8 —

~ TARE, same st Hine Te madlun, gray, damp, oosa i3~ o[
— 20— dense, nan-plaste (58) G s

GAELEET BT

b At

I~ = BAND, Goare, gray, wel, medlon danse I denes,”~
nan-plastic, poorly graded {57)

I
a8
1

WOTE STRATIFICATION LIMES REFRESENT THL  AOXBAATE BOUNDARIES BETWEEN 300 TYPES

1 12-1040 | 850

T
i

s o a e |

GTING DEMINT.GR) BHans ARD THE THANSITION WAY BE GRADUAL. GRAFEG LOG FOR LLUSTRATION PURSRDSES CBLY,
o

GROUNDWATER DATHA
—AUGER 344" HOLLOW STEM
ENCOUNTERED AT 28 FEET & WASHBORING FROM 30 FEET
L5 DRILLER BB LOGGER
Mghlls B5T. DRILL RIG
HAMMER TYPE Aufp

M WL DSSTOE!

REMARKS: Auger refusal at 83 foet

latan Unit 2
Weston, Missouri

LOG OF BORING: B- 6

Projoct No. DBES701.61KG
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Surface Elevalicn 75644

DatunfAVD 88

Campletion Date: __AMIE

|

DEFTH
IN FEET

DESCRIPTION OF MATERIAL

GRAPHIC LOG
DRY LINIT WEIGHT {pef)

SET BLOW COUNTS

CORE RECOVERY/ROD
SAMPLES

e 50~

NOTE STRATIFICATION LINES REPRESENT TH, RONIMATE BOUNDRARES DETHEEN TYPES
SR AND THE TRANSITION MAY BE GRADUAL GRAFEC LOG FOR LLUSTRATION nmusg'n'mr.

f— 75

SAND, caarse, gray, wel, medium dansa io dense,
nan-plastic, pocity graded (SP) (continue)

[~ 4T yace clay

GHEAR STRENGTH, tsf

& -uiz 0-awz o-rpP
5 L] 15 2
STANDARD PENETRATION RESISTANCE
(ASTI D 1585)

A NMVALUE (BLOWS PER FOOT)

WATER CONTENT, %
. L

T

13812 8511

::'.zmm 1

118-20-18 |5E14

B-15-18 }5615) | !

20-21-16 |58

22-28-20 5517

GROUNDWATER DATA

§ KGOS GTING

LOG OF

ENCOUNTERED AT 28 FEET 2

latan Unit 2
Weston, Missouri

CONTINUATION OF
LOG OF BORING: B-6

Praject No. 0855701.61KG
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SHEAR STRENGTH, tsf

NOTE: STRAATIFICATION LINES REPHESENT THe  AOXNMATE BOUNDARIES BETWEEN SOL TYPES

Surface Elevation 78844 | Comoistion Date: __#1/06 g;-_w% &-UuB - il 5-pe
OatunMAVD BB g EE} i 0, 10 18 20
o § & | STANDARD PENETRATION RESISTANGE
g ;E g JASTM D 1588)
£l DESCRIPTION OF MATERIAL o |2ky 4 BYALE h
i 5
SAMD, conrsa, gray, wet, medium Gonse io Ganas, 4
nea-plastic, poarty graded (SF) (contiued)
|— a5
waﬁﬁmiﬁm """"""" 1
~odemeygiong losrong _ __________ =
— o0~ SHALE, gray wwmwﬁuhm —
L lnmmm.mmhﬂm”m =
] =
g_,,_ =
E F—
3
B l-100-
g
5 ™ Hareg lerminaied st 1058 feat
é—mﬁ-
B
5
E—nnu
2 Tz TR
]| g
3 cmficaniilensirizes R
Brawe by: TAD _ [Cd by S s | by, S0
a GROUNDWATER DATA DRILLING DATA e 4508 o 3 [ i “"""!m:
E __MUGER 334" HOLLOW STEM e
E ENCOUNTERED AT 28 FEET ¥ WASHBORING FROM 30 FEET ‘ www
g 0S5 DRILLER RS LOGGER
s atan Unic2
R Weston, Missouri
e s CONTINUATION OF

LOG OF BORING: B-6&

LD OF BORSNG

Project Mo, DBE970M.61KG
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SHEAR STRENGTH, t=
Sutace Elevation 78697 | Completion Date: _ 1106 _ Bpd e
DaturNAVD 88 § 55 10 15 20 25
§ STANDARD PENETRATION RESISTANGE
tg [ASTM D 1588)
=
Eﬁ DESCRIPTION OF MATERIAL 8 | Sruw L PER POOT)
z E6g PLI o — L
20 3 40 50
T, = o g i R
EAND, fina, tan, dry, bose o medum donss
nen-plastic, pocrly graded (5P
]
; b= 10=
=
5!
-
=
gs |~ GiLT, tmca and, giay, mobt, very sofl AL}
™= brown
ES |- z0-|
i
E "~ SAND, e i, g o ey o~
E non-plastic, poory gristed (SP-SM) ;
8 2 IO~ SO~ e =0
= EAND, mome slit fine, gy, dry, mediim desse,
3 rean-piastic (SM)
4 I SAR, ric ¥, Gaaree W s, Vam, wel, st derse — 111
! \M o disnse, noa-plastc, poodly graded (SP-SM) O
E 354 wal, coarse with braca gravel 4
- Bt
E .;:.:‘1 ‘o s
E 10 Latald o1l OOt iiaed B4 toddes.
Crmwn by: TAD  [CRd e S E by
GROUNDWATER DATA DRILLING DATA Tabe: 314708 =
__AUSER 330" HOLLOW STEM -
EMCOUNTERED AT 28 FEET 2 WASHEORING FROM 25 FEET bn;i:.nm mmuﬂ?nus
MU DRILLER _SEM LOGGER
_CMETEOX DRILL RIG
i latan Unit 2

LOG OF BOMMG F00F v OSSS70L BN

Weston, Missouri

LOG OF BORING: B-8

Project No. D865TOM.B1KG
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SHEAR STRENGTH, 1 |
786.97 .3
Surface Elevation 8897 | compiation Date; _ 3H10E EE% & - L o-aus o-pe
DaturNAVD 88 : E§ 05 1 16 20 28
g EE STANDARD PENETRATION RESISTANCE
. 1 (i
o DESCRIPTION OF MATERIAL §
bz EEE
ﬁmn.mﬂmmm.?;}mdlnm e
o bl "
— 45— :"I: 'Il:I-EdiSEﬂ"'”“"
]
i
e 18-23-35 (881
8 3
Eg e Hifhraoasfssis
- [
Al i
EE—B:I-- . [ 10-12-1T [5514 s T
¢ |
5  SAND, o 5 Godros, gray, et s e 5 — :
£ \\mwmﬁm S
ia_ﬁ_ caara | 7810 feses il
8
2 FERa R
EE o 114114 |85198) S 2210000
B
Eg ™=~ with traco gravel
|— T8

GROUNDWATER DATA

GFJ OTING DE3E301.08) Sndos

ENCOUNTERED AT 28 FEET 2

latan Unit 2
Weston, Missouri

CONTINUATION OF
LOG OF BORING: B-8

L OF BOAmG 3003 CREATTLO|

Projuct No, DBESTO1.61KG
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e —— e —
Surtace Elovation 788.87 | Compinticn Date; __ 311106 5 quns .
§ E € 4 -uurz G- ourz o-pe
DuturMAVD 88 3 E ] o8 10 15 7.0 5
g|E P mmmfﬂﬁﬁma?ﬁsﬁm
& % HHE BTG vy
il c a A MVALUE [BLOWS PER FOOT)
EE DESCRIPTION OF MATERIAL P pL__ WATERGONTENT,%
L T o
BAND, medium (o coara, gray, wak, madium denss i
dense, nan-plastic, poarly graded (£F) foantnusd)
— B5=
Boring Temninated af roller Dt refusal o) B8 feot
i
=
E§_1m_
i
b
é-—tnﬂ—
3
i
Eg—m—
7
g?:
115
§
i
GROUNDWATER DATA pn 2 B
: DRILLING DATA D 3109 Jowe: & i1
- A S GEOTECHNOLOGY,
] EMCOUNTERED AT 25 FEET & WASHBORING FROM 35 FEET ' mwm;ml&
g MU DRILLER _SEM LOGGER BT 150 + COLLMEVLLE + RARSAR 0T
DRILL RIG
ﬁmEm latan Unit 2
! Weston, Missouri
gl REMARKS:
- CONTINUATION OF
E LOG OF BORING: B-8

Project No, 0965701.61KG
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CHMICAL LOG 6V DDORTINATES] LATAMLOGED GPJ BURNS 80 GOT ST006

OTE

GE

Drilling Log

Progat N

Elorng Mt

B-11

Progect Mo

41180-3.0209

P

i af 6

Groursd Efdmamon [

7848 f.rmsl M 1194786 E 2653254

Tta Footegs

9051

CnBng Tyope Hols S Owerburden Fooage | Badrotk Foctags Mo, 0f Samphes

M. Core Bos:

Ceapth Lo Waler (1) Dt Miesgmrad

AugerMud 33410 BOS R 0O,

21

0

78

3-13-06

Diling Compearny GIMM, i,
DriwgRia  Mobbe B-ST

Typedl
P atrapon Test

Crikirs [y Crabg Steines, Shaun Dotson

SPT (Aac- Trig Hammer)

Dot 310-06 [Ta 31306

Pl Cibstmrvn 4]

Robert Jaques, Kevin Baling

Figdd | Recov) Sampis
Ciapdh Bow | Seengh | Advance or
1] Cerscrphon Clmss Coung iz {inchy B Mo Famarks
= SN e graned, g broemn, damp. medam. e : 1247 Begn Lring
= ol Land (5P) =
= o &
= e L
A ROARERY ]
-1 st i . 1
- e w | e
5] Eoid Ui i
— Qe 5 — o
o Bt . He ]
= SR ]
- |:__I.1 o .
= o 3
3= 1 i
= Y ]
4__. SAND: bne graned, bght bhown, damp, medum (o derse, EI. 15 ‘_— ]
= trecs coarse sand |5F) 13 1 ] 3
= g 1 M=30
55— 5
§— §
- o ] n
7] SAND. fne gramed, Bgnt brown, damg, medam, racs 17 )
7 codrih Land {57 |I= 8 T !
=4 - = =25
a8— 5 8-
- |
9]  SanD; e tomedum grained, igrt brown, damp, madum . w | ¥ —
= trace oodrse wand {3P) vl I.-l & e
- -_JI N=X
A (e ,u: 10 =
- o
- & 1
- ¥ .
19— : 11—
= .:: a
- ] ]
12— .E 12—
7 ] ]
- ] ]
= - i
13— :'J; 13—
- ey 3
- Lot r A
14 Rt 1so7sF| 1% ] sss

e e b
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2GR ERRNES M0 GDT SR

OFTSMATES] LT AMLCHRS

LE L

CHMICAL LOG (XY

OTE

GE

Drilling Log, continued
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B-58 IATAN UNIT 2 PROJECT  B&MeD Project 41150

; --v'-i.'. _lmzm'rro-u

Run No. Depth (fty
Rum 1 T3.0 to 75.5
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Hun 3 30.5 to Continued

[ATAN UNIT 2 PROJECT B&MeD Project 41180

Run 3 Continued to 85.5
Run 4 B5.5 10 88.0

(RETO . GLKG
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Horthing: 2653583,31 Easing: 119716315

LOG OF BORING: B-71

Project No. 086S701.61KG
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