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ABSTRACT 

 

 As customer expectations continue to rise, so too do the costs of producing and 

distributing globally competitive products and services that are in line with such 

demanding expectations.  This trend includes not only the cost of materials and labor, but 

also the cost of energy to procure, produce, and deliver such products and services across 

the global market.  In fact, the price of gas has nearly quadrupled in the last two decades.  

Even so, the demand for such non-renewable energy as well as the fear of its limited 

availability continues to rise and thus threaten its price more.  

 Given the trend in energy costs, this research investigates the effect of energy on 

logistics decisions by analyzing the effect of energy on an inventory ordering policy.  The 

inventory model developed and analyzed in this paper is based on the actual environment 

at a leading aircraft manufacturer.  In particular, the proposed model is applicable for 

production systems with constant production rates but small, underlying possibilities for 

undesirable circumstances to threaten the intricately planned production schedule.  Rather 

than ignoring the possibility for undesirable circumstances and subsequently fulfilling 

any emergency demand with a more expensive and energy cost sensitive emergency 

order, the proposed model provides multiple scenarios to fulfill the emergency demand 

more cost effectively compared to the traditional EOQ model.  These options include 

fulfilling the emergency demand from safety stock alone, a combination of safety stock 

and an emergency order, and lastly an emergency order alone if the regularly scheduled 

order is already in route to the production facility. 
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 Thus, the objective of the inventory model developed in this paper is to structure 

an inventory policy under explicit energy cost considerations with optimal sizes for a 

scheduled order quantity, safety stock, and inventory cycle length that minimizes the total 

expected cost per unit time for a system with a constant production rate but a small, 

underlying possibility for undesirable circumstances to threaten the production schedule.  

Whilst varying most of the model parameters, this model is comparatively analyzed to the 

traditional EOQ model which satisfies the regular demand generated by the production 

system with a regularly scheduled order and ignores the possibility of an undesirable 

circumstance threatening the intricately planned production schedule.   

 By varying most of model parameters, the analysis reveals key production 

environments in which inventory policies are most significantly affected by changes to 

energy cost as well as the environments in which the proposed inventory model is most 

cost effective compared to the traditional EOQ model.  These environments, as illustrated 

and discussed in analysis, consist of high levels of at least one of the following key 

parameters: the weight of the product, the regular demand of the product, or the 

emergency demand of the product.  As any one of the three key factors increase, the 

change in many of the inventory decisions or related logistics costs become more 

significant as energy cost changes.  Moreover, the cost effectiveness of implementing the 

proposed inventory model in place of the traditional EOQ model becomes more 

significant as any one of the three key factors increase as energy cost rises.  Therefore, 

production environments with relatively high levels of at least one of the three key factors 

are particularly receptive to the proposed inventory model and its cost savings. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background & Motivation 

Industry changes over the past several decades have been driven by several 

factors including technology advancement and globalization.  As a result, market 

expectations around the world have increased significantly.  Customers expect not only 

an even greater amount of quality and customization, but also a faster delivery of many if 

not all products and services regardless of the place of origin.  Furthermore, there is a 

persistent expectation for these products and services to be available at a lower price. 

Nevertheless, the costs of producing and distributing globally competitive 

products and services that are in line with such expectations are also increasing.  This 

trend includes not only the cost of materials and labor, but also the cost of energy to 

procure, produce, and deliver such products and services.  In fact, the price of gasoline 

has nearly quadrupled in the last two decades.  As a result of these increasing trends in 

costs and market expectations, businesses are compelled to manage their resources and 

facilities more efficiently and effectively in order to minimize costs and maintain 

competitiveness across the global market. 

Even so, increased global awareness of the environmental costs associated with 

consuming non-renewable energy such as gasoline is forcing businesses to think again.  

Rather than minimizing monetary expenses alone, businesses are researching for 
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alternative options in order to increase energy efficiency, reduce energy consumption, 

and improve their environmental image.   

One of the most promising areas to employ alternative energy options for an 

actual monetary return is transportation.  According to Leinbach and Capineri (2007), 

energy consumption within the transportation sector has increased nearly 47 percent in 

the past two decades compared to 4 percent in the other industrial sectors.  Given this 

increased consumption within transportation activities and the increased cost of energy 

sources like gasoline, businesses are compelled to consider alternative options with 

regard to energy and transportation in order to manage their resources more efficiently 

and effectively and thus compete in this environmentally conscious market. 

For these reasons, businesses should explicitly consider energy cost as it relates to 

transportation decisions as well as many other decisions contingent upon transportation.   

That is, businesses should explicitly consider the costs of energy as it relates to all 

decisions essential for moving products from the suppliers to the customers.  These 

decisions which are integrated for effective supply chain management include but are not 

limited to those associated with location, production, inventory, and transportation.   

Though successful coordination of all the strategic, tactical, and operational 

decisions are important for effective supply chain management, the focus area for this 

research is inventory management.  More specifically, this research explicitly considers 

energy cost as it relates to inventory decisions including order quantity, safety stock, 

inventory cycle length, and transportation. 
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1.2 Problem Description 

The situation under scrutiny in this study consists of a single part in a single stage 

of a business supply chain.  This stage consists of a production system which has a 

number of characteristics; most importantly, the production rate of the system is mostly 

constant from year to year regardless of any fluctuations to the actual market demand of 

the product.  This constant production rate may be due to any number of reasons, but one 

genuine possibility is that the production capacity is limited.  So, customer orders which 

are processed very early and delivered to customers at a much later date can be scheduled 

for production far in advance. 

Given such a system with a constant production rate and a strict production 

schedule, the demand for a part required by the system may be effortlessly assumed.  

That is, since the production rate is constant it may be assumed that the demand for a part 

required by the system is also constant.  Hence, the inventory decisions for such a system 

can follow a simple economic order policy with a regularly delivered order quantity and 

zero safety stock.   

However, within almost any industry there are undesirable circumstances that 

arise and threaten to affect the production schedule.  These circumstances include failures 

to meet quality standards, requests for repairs, requests for maintenance, and urgent 

changes to the production schedule.  Regardless of the exact situation, if there is zero 

safety stock, a notably expensive emergency order from a supplier or distributor to the 

production system is required to satisfy the unexpected emergency demand and to 

maintain the highly intricate production schedule. 
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In the situation under investigation, there is a small probability of an undesirable 

circumstance to arise and generate unexpected emergency demand.  Nevertheless, there 

are multiple options available to satisfy the emergency demand without backlogging or 

stopping the production schedule.  These options include carrying safety stock, increasing 

the size of the regularly scheduled order from the supplier, and placing a more expensive 

emergency order from the supplier or other comparable distributor.   

The high cost of such an emergency order is primarily associated with higher 

handling costs, higher fuel costs, and greater energy consumption for faster delivery via 

faster, less energy efficient transportation modes such as airplanes.  Given the 

aforementioned rise in energy costs, the costs of these emergency orders are expected to 

increase significantly.  Therefore, it is necessary to explicitly consider the cost of energy 

as it affects transportation costs as well as other costs including those associated with 

procurement and production when establishing inventory replenishment policies. 

Given the detailed problem situation above, the objective of this research is to 

determine the optimal sizes for the scheduled order quantity and the safety stock that 

minimizes the total cost of the system with respect to procurement, transportation, 

inventory, and particularly energy costs of a single part in this production system.  In 

other words, this study explicitly considers energy cost to determine the optimal 

inventory policy that minimizes all associated costs for a single part in a production 

system with a constant production rate but small probability for an undesirable 

circumstance to arise and generate unexpected emergency demand.   
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1.3 Problem Motivation: Boeing Corporation 

The problem situation, inventory model and numerical analysis in the subsequent 

sections are motivated by actual challenges faced by the Boeing Corporation.  With 

operations across 49 states and in 70 countries as well as customers in more than 90 

countries, Boeing is challenged to operate effectively and efficiently throughout its entire 

supply chain in order to minimize its costs and improve its competitiveness.  This 

challenge may become even more difficult as the cost of energy increases.   

Given the rising costs of gas, especially in 2008 when gas prices exceeded four 

dollars a gallon, managers at Boeing questioned the effect of increasing energy costs on 

many of its logistics decisions.  With such a large scale logistics network, it was 

questioned whether or not such decisions like inventory ordering policies are in fact 

significantly impacted by changes to energy cost, even if such changes were small.  As a 

result of this luring challenge, a group of individuals at Boeing Corporation approached 

the Center for Engineering Logistics and Distribution at the University of Missouri with 

the task of investing the effect of energy cost on many logistics decisions, but more 

specifically on the inventory ordering policy at Boeing Corporation. 

Although the actual inventory ordering policy currently employed at Boeing is not 

clear, the inventory model developed throughout this research is based at least on the 

production environment at Boeing as well as other aircraft manufacturers.  The 

production environment, like that in the problem description, is differentiated with fairly 

constant production rate – a characteristic that is quite common in the aircraft industry.  

In fact, the aircraft industry is prone to a very limited manufacturing capacity.  Orders for 

aircraft placed by customers of companies like Boeing are processed very early and 
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delivered at a much later date.  Consequently, the production schedules are planned far in 

advance.  So whether or not the actual customer demand fluctuates from year to year, the 

production rate is fairly constant. 

Given such a system, the demand for a part required for production may be 

frequently assumed as constant.  However, undesirable circumstances do arise and 

threaten to impact the production schedule.  These circumstances include failures to meet 

quality standards, requests for repairs, requests for maintenance, and urgent changes to 

the production schedule.  Regardless of the exact situation, if there is no safety stock for 

the part in trouble, a notably expensive emergency shipment of parts from the supplier or 

a comparable distributor is required to satisfy the unexpected emergency demand for that 

part and to maintain the highly intricate production schedule. 

In the situation under investigation at Boeing, there is a small probability of an 

undesirable circumstance to arise and generate unexpected emergency demand.  So, for 

many parts, there may be virtually no safety stock.  When such a circumstance arises, an 

emergency shipment of the part in trouble is required for a notably higher cost than that 

of a regularly scheduled shipment of the part.  Since this higher cost is primarily 

associated with higher handling costs, higher fuel costs, and greater energy consumption 

for a faster deliver by way of a faster, less energy efficient transportation mode such as an 

airplane, these costs are expected to increase significantly as energy costs rise. 

This study compares the expected cost of a traditional economic ordering policy 

without safety stock with an inventory model designed to determine optimal inventory 

decisions with respect to procurement, transportation, inventory, and particularly energy 

costs of a single part in a similar production environment as described prior. 
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1.4 Effect of Energy on Logistics 

Though there is little research that explicitly considers or mentions energy cost as 

it relates to inventory decisions, there is evidence that energy cost as well as energy 

consumption is related to many transportation decisions relevant to supply chains.  These 

decisions include but are not limited to modes of transportation, types of carriers, degree 

of consolidation, vehicle routes, and vehicle load plans.  The diagram in Figure 1.1 shows 

some of interrelationships between the aforementioned transportation decisions. 

 

Figure 1.1: Interrelationships of Transportation Decisions in Supply Chains 

 

The costs associated to any of these transportation decisions illustrated in the 

diagram above include the costs to operate a vehicle or fleet and the costs to handle 

individual packages that are transported from an origin to a destination.  One of the 

primary operating costs associated to many of these transportation decisions is the cost of 

fuel consumption.  As fuel consumption increases, so does the cost of transportation. 

Fuel consumption can be reduced in multiple ways, but one frequently researched 

approach to reducing fuel consumption associated with transportation is shifting the 
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mode of transportation.  Each mode of transportation such as water, rail, road, and air 

vary by energy efficiency which is directly related to the cost-effectiveness of a mode.  A 

barge for instance, is one of the most energy efficient and thus cost effective modes of 

transportation.  With a fraction of the fuel consumed by other modes, a single barge can 

transport the same quantity of materials as 15 railcars or 80 trucks (Murphy 2009).  

Furthermore, McKinnon cites that the energy consumption of road transportation is 4.3 

times higher than that of rail and 6.8 times higher than that of water (1999).  So, the 

energy efficiency and the cost effectiveness of a transportation mode are strongly related 

to optimizing the transportation mode decision. 

Similar to the energy efficiency of a transportation mode, the transportation 

distance is directly related to fuel consumption.  As transportation distance increases, fuel 

consumption and thus transportation cost increases; and different transportation modes 

can become more cost effective.  So, transportation decisions related to distance 

including vehicle routing or even package consolidation can significantly affect the 

resultant transportation cost.  Conversely, changes in energy cost can affect the degree of 

consolidation or other transportation decisions that aim to minimize cost. 

Though energy cost and energy consumption may not directly and explicitly 

affect every transportation decision, since the decisions are interrelated as illustrated in 

Figure 1.1, all the transportation decisions in some way are affected by energy cost and 

energy consumption.  Likewise, since the essential functions in the logistics system are 

interrelated with each other as well as transportation, all the decisions prevalent in the 

logistics system are affected explicitly or implicitly by transportation decisions.  The 

interrelationships between these essential functions are illustrated in Figure 1.2. 
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Figure 1.2: Interrelationships of Essential Decisions in Supply Chains 

 

 The relationship diagram in Figure 1.2 illustrates the interrelationships between 

all the essential decisions and functions in the logistics system.   As illustrated by the 

diagram, transportation decisions are explicitly related to the decisions prevalent in 

strategic planning, physical network organization, procurement and supply management, 

production, and warehousing.  Given that these decision areas are explicitly related to 

transportation decisions, and the cost of energy affects all transportation decisions in 

some way, it can be concluded that these five decision areas are also affected to some 

degree by the cost of energy. 

 Although the remaining two decision areas – inventory management and material 

handling – are not explicitly related to transportation decisions, it can be reasoned that 
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these decisions, and thus all decisions prevalent to the logistics system, are also affected 

to some degree by the cost of energy.  Such reasoning is possible given the complex 

system of interrelationships prevalent in the logistics system and illustrated in Figure 1.2.  

So, even though transportation is not directly linked to inventory management or material 

handling in the diagram, these decision areas are implicitly related to transportation and 

thus subsequently affected by the cost of energy to some degree through other decisions 

and interrelationships in the system.   

These relationships can be indirectly connected through multiple decisions, but it 

is easy to illustrate and understand the implicit relationship given only one degree of 

separation between the transportation decisions and the remaining two decision areas.  

For instance, transportation decisions can be linked to inventory management decisions 

through any of three decision areas – strategic planning, procurement and supply 

management, and production.  Likewise, transportation decisions can be linked to 

material handling decisions through the decision areas of procurement and supply 

management, production, or warehousing. 

Given that the remaining two decision areas – inventory management and 

material handling – are implicitly related to transportation decisions, and the cost of 

energy affects all transportation decisions in some way, it can be concluded that the 

decisions associated to inventory management and material handling are also affected to 

some degree by the cost of energy.  Furthermore, since every decision prevalent in the 

logistics system is either explicitly or implicitly related to transportation decisions, it can 

be concluded that every decision essential in the logistic system are affected to some 

degree by the cost of energy. 
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 A more detailed view of the interrelationships between the decisions within each 

of the essential functional areas of a logistics system is illustrated in Figure 1.3.  This 

detailed relationship diagram illustrates more specifically the relationships between all 

the decisions prevalent within each functional area as well as the relationships between 

all the decisions in the whole logistics system.   

 

Figure 1.3: Detailed Interrelationships of Essential Decisions in Supply Chains 

  

 Following a similar reasoning for the effect of energy cost on the essential 

decision areas illustrated in Figure 1.2, it is reasoned that all the decisions within each 

functional area of the logistics system illustrated in Figure 1.3 are affected to some 

degree by the cost of energy.  Rather than explicitly showing the effect of energy cost on 
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each specific decision prevalent in the logistics system illustrated in Figure 1.3, the 

purpose of this research is to investigate this effect through an example logistics problem 

situation.  That is, the objective of this research is to investigate the effect of energy cost 

on logistics by investigating the effect of energy cost on a common logistics problem – 

the inventory order policy – and the overall cost associated to decisions essential in the 

policy.  The decisions essential to the inventory order policy as well as the direct 

relationships between these decisions and other decisions in the logistics system are 

emphasized in the relationship diagram illustrated in Figure 1.4. 

 

Figure 1.4: Detailed Interrelationships of Essential Decisions in Supply Chains with 

Emphasis on Inventory Policy Decisions 
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1.5 Value & Contribution 

The purpose of this research is to investigate the effect of energy cost on logistics 

decisions by more specifically investigating the effect of changes to energy cost on the 

decisions and costs related to the inventory ordering policy.  Though there is little 

research that explicitly considers or mentions energy cost as it relates to inventory 

decisions, there is evidence that energy cost as well as energy consumption is directly 

related to many transportation decisions relevant to supply chains.  For instance, the 

energy cost of a transportation mode increases as the energy efficiency of the mode 

decreases.  Similarly, the energy consumption and thus the energy proportion of the 

transportation cost increases as the transportation distance increases. 

Since the inventory ordering policy is related to procurement, inventory, and 

transportation costs, it is theorized that inventory decisions are affected by changes to 

energy cost and consumption.  Therefore, the inventory model developed and analyzed in 

this paper explicitly considers the cost of energy in the formulation of the inventory 

model.  Such a formulation of an inventory model is contrary to many if not all the 

current research on inventory ordering policies.  Though some inventory models consider 

different transportation modes or emergency shipments, there is little to no research that 

explicitly considers the cost of energy in transportation or other logistics costs. 

Also, unlike much of the current research, the inventory model developed and 

analyzed in this paper is based on a simple economic ordering policy even though the 

demand by the production system is not entirely constant.  That is, while the production 

system may have a fairly constant production rate, there is a small, underlying possibility 

for undesirable circumstances to threaten the rigidly set production schedule.  Rather than 
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ignoring the possibility for undesirable circumstances and subsequently fulfilling any 

emergency demand with a more expensive and energy cost sensitive emergency order 

from a supplier, the proposed model provides multiple scenarios to fulfill the emergency 

demand more cost effectively.  These options include fulfilling the emergency demand 

from safety stock alone, a combination of safety stock and an emergency order, and lastly 

an emergency order alone if the scheduled order is already in route to the plant location.  

Given these multiple options to replenish the emergency demand more cost effectively, 

the inventory model developed later in this paper determines an optimal inventory 

ordering policy similarly to an economic inventory ordering policy but with safety stock 

in addition to a scheduled order quantity. 

Besides developing a unique inventory policy that explicitly considers energy cost 

and optimizes the inventory decisions for a system with a constant production rate but a 

small, underlying possibility for emergency demand, the purpose of this research is to 

discover and understand the production environments in which inventory policies are 

most significantly affected by changes to energy cost as well as the environments in 

which the proposed inventory model is most cost effective.  Provided a set of factors 

characteristic of these production environments, guidelines can be developed to direct 

businesses to manage their inventory as well as other resources more efficiently and 

effectively as energy cost and consumption rise.  Such guidelines are expected to be 

especially beneficial for businesses with extensive energy usage or logistics systems. 

As is presented later in this paper, the research analysis reveals three factors 

which are significant to the effect of energy cost on inventory decisions and related 

logistics costs.  As any of the three factors increase, the change in many of the inventory 
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decisions and related logistics cost becomes more significant with respect to changes in 

energy cost.  Moreover, the cost effectiveness of implementing the proposed inventory 

policy in place of simple economic ordering policy becomes more significant as any one 

of the three key factors increase with respect to energy cost.  Therefore, production 

environments with relatively high levels of at least one of the three key factors are 

particularly receptive to the proposed inventory model and its cost savings. 

Before the results are presented, a review of the current and related research on 

inventory models is discussed in Chapter 2.  Then, the proposed model is described, 

defined, and formulated in Chapter 3.  Provided the solution conditions also formulated 

in Chapter 3, procedures for numerically solving the complex inventory model are 

developed in Chapter 4.  Subsequently, the model is analyzed and compared to the 

traditional economic order quantity model with respect to changes in several model 

parameters in Chapter 4 in order to develop guidelines for businesses at the end of 

Chapter 4 and in Chapter 5.  Lastly, the conclusions of the research and the analysis are 

presented in Chapter 5 along with future extensions to this research. 
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CHAPTER 2 

LITERATURE REVIEW 

 

Many researchers study inventory systems in which there is more than one supply 

option.  The objective of most if not all the past research in this area is to minimize the 

total expected cost per unit time, per inventory cycle, per year, or for the finite horizon.  

The primary differences between the models are the replenishment policies and the 

assumptions.   

Much of the past inventory literature is based on the classic economic order 

quantity model introduced by F.W. Harris (Ghiani et. al, 2004).  The classic EOQ model 

assumes instantaneous supply and deterministic demand.  Given that demand varies and 

supply is not always instantaneous, the EOQ has been extended to the common (Q, R) 

order policy which determines the economic order quantity and reorder point.  Such an 

order policy is common in inventory systems with continuous review policies.   

There have been several models developed within the class of continuous review 

inventory policies that allow for emergency orders.  White and White (1992) compare an 

extension of the (r,Q) model that allows emergency ordering and safety stock in addition 

to the original (r,Q) model with no emergency ordering.   

Moinzadeh and Nahmias (1988) analyze an extension of the (r,Q) policy in which 

two supply modes with continuous lead times are available.  Instead of determining only 

one set of ordering policy parameters, the model develops two sets of ordering policies 

parameters.  That is, the suggested ordering policy is of the form (r1, r2, Q1, Q2) in 
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which (r1,Q1) represent the optimal order quantity and reorder point for a regular order 

and (r2,Q2) represent an optimal order quantity and reorder point for an emergency order.  

The optimal parameters are determined by minimizing the expected cost of procurement, 

holding, and shortages.  An order of each type has an associated fixed ordering cost and 

unit procurement cost.   

Johansen and Thortstenson (1998) analyze a similar model in which the lead time 

of the emergency order is assumed to be much smaller than the lead time of the regular 

order.  Between replenishments, the state of the system is reviewed at certain time points 

rather than continuously.  The order policy is thus driven by the state and the time of the 

system.  In order to minimize the inventory cost rate with state-dependent emergency 

orders, a tailor made policy-iteration algorithm is designed based on the Markov decision 

process.  Results show than an emergency order option may have considerable impact on 

the average costs for a single-item in the system.  However, this may not be the case if 

shortage costs are high compared to the emergency order costs.   

Many more research has been done within the class of periodic review inventory 

policies than continuous review inventory policies that allow for emergency orders.  In 

periodic review inventory policies, the inventory level is checked at regular periods and 

orders are made to raise the inventory a specified threshold.   

Fukuda (1964) presents a dynamic inventory problem in which stock is delivered 

by either a regular less expensive mode one period later or an emergency more expensive 

mode instantaneously.  In every even period, an optimal ordering policy is determined 

based on the current inventory state and the regular and emergency order-up-to levels.  

That is, if the inventory level is below the emergency order-up-to level, an emergency 
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order is made in order to return to the emergency order-up-to level, and a regular order is 

made in order to return to the cumulative order-up-to level.  If the inventory level, on the 

other hand, is between the emergency order-up-to level and the cumulative order-up-to 

level, than the difference between the current inventory level and the cumulative order-

up-to level is ordered.  Wright (1969) studies an extension to this model for both a single-

product and a multi-product inventory system in which there exists a capacity on the size 

of the emergency order.   

The modeled developed by Vlachos and Tagaras (2001) also include a capacity on 

the size of the emergency order in addition to analyzing the option of placing an 

emergency order early or late in the period.  Unlike some models, both the models 

presented by Vlachos and Tagaras (2001) assume the fixed order cost for both order types 

are negligible and the variable cost of the regular order is negligible.  This assumption is 

true if the regular order is part of a larger order with more products that are delivered at 

every period regardless of a different ordering policy.  These assumptions can also be 

made on standing orders which are delivered with the same quantity in every period. 

A special case of the multiply-supply mode inventory system is one in which a 

standing order is deliver in every period.  Rosenshine and Obee (1976) investigate such a 

system under a periodic review inventory system.   At each review period, if the 

inventory falls below a known emergency stock level, an emergency order is place and 

delivered instantaneously to increase the inventory level to the optimal threshold.  The 

dynamic inventory model determines the optimal emergency order quantity and standing 

order quantity to minimize the expected total cost of the system.  Unlike past research, if 

the total inventory exceeds the maximum inventory level, the excess inventory is sold.   
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In general, analysis by Rosenshine and Obee (1976) show that the unit penalty 

cost on the purchasing price of an emergency order decreases, so does the lead-time at 

which the standing order system becomes more economical.  This model was extended 

by Chiang (2007) who does not assume a minimum and maximum inventory level is 

known.  Instead, the dynamic inventory model derived by Chiang (2007) determines the 

dispose-down-to level and order-op-to level.  If inventory in a review period is lower than 

the order-up-to level, an emergency order is placed to raise the inventory to this level 

instantaneously; and if the inventory at a review period is higher than the dispose-down-

to level, inventory is sold down to this level.  The model is solved for either the average-

cost or discounted-cost criterion as well as the backlogged or lost-sales problems. 

Rather than having an option for emergency orders, some research considers the 

option of expediting an outstanding an order.  Chiang (2002) proposes two continuous-

review single-item order policies in which expediting is allowed either by a certain 

threshold time point or within a the lead time of an outstanding ordering.   

The first policy extends another model similar to the (r,Q) which added a third 

optimal ordering parameter – order expediting level – two the original two optimal 

parameters for the regular order – order quantity and reorder point.  The first policy 

extends this model by ensuring that the expedited order does not arrive after the regular 

order by assuming that the last time point at which an expediting decision can be made is 

the elapsed time after a regular order is less than (not equal to) the difference between the 

two order lead times.  The model of the first policy thus determines the optimal regular 

order quantity, reorder point, expediting ordering point, and threshold time point.   
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The second policy proposed by Chiang (2002) assumes the lead time of the order 

consists of two components: a manufacturing lead time and a delivery lead time.  While 

the manufacturing lead time is assumed to be deterministic, the delivery period can be a 

variable interval.  The model determines the optimal order quantity, reorder point, and 

expediting level by minimizing the total cost per unit time with respect to a service level 

constraint.   

Duran et. al (2004) extends the second policy proposed by Chiang (2002) which 

assumes the lead time of an order consists of two components.  In this model, if the 

inventory is below the expediting level at the end of the manufacturing lead time, the 

order is expedited; otherwise, the order is not expedited.   
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CHAPTER 3 

INVENTORY MODEL 

 

3.1 Model Description 

The inventory model developed in this chapter is motivated by the actual 

environment at Boeing Corporation.  Like many other businesses in the aircraft industry, 

Boeing has a limited manufacturing capacity.  Orders from customers are processed very 

early and delivered at a much later date.  As a result, the production schedules are 

planned far in advance, and the production rate is fairly constant from year to year 

regardless of whether or not actual customer demand fluctuates. 

Given an environment in which the production rate is fairly constant, it may be 

frequently assumed that the demand for a part required for production is also constant.  

Thus, the inventory policy for parts required by the production system can follow a 

traditional economic order policy with a regularly delivered order from the supplier or 

distributor and zero safety stock.   

However, in this production environment, there is a possibility for undesirable 

circumstances to arise and threaten the intricately planned production schedule.  These 

circumstances include failures to meet quality standards, requests for repairs, requests for 

maintenance, and urgent changes to the production schedule.  Regardless of the exact 

situation, if there is no safety stock for the part, a notably expensive emergency order of 

the part from a supplier or distributor is required to satisfy the unexpected emergency 

demand for that part and to maintain the highly intricate production schedule. 
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The high cost of such an emergency order is primarily associated with higher 

handling and fuel costs as well as greater energy consumption for a faster delivery via a 

faster, less energy efficient transportation mode such as an airplane.  Given the rise in 

energy costs, the costs of these emergency orders from suppliers or distributors are 

expected to increase significantly.  Therefore, the inventory control policies in 

environments similar to the one described become much more critical.  So, it is necessary 

to explicitly consider the cost of energy as it affects the procurement cost, transportation 

cost, and inventory cost to determine a cost effective inventory policy. 

Based on the described production environment, the following model explicitly 

considers the cost of energy to determine an optimal inventory policy of a single item 

with a possibility of emergency demand in addition to a fairly constant regular demand.  

Given that the regular demand is constant, a scheduled order of size Q that satisfies the 

regular demand during the inventory cycle is delivered from a supplier after a 

deterministic lead time τ at the beginning of each inventory cycle.  It is assumed that the 

length between consecutive scheduled orders is identical and equal to T time units, where 

the inventory cycle length T is always greater than the deterministic lead time τ (τ < T). 

In addition to constant regular demand, there exists a small probability that an 

undesirable circumstance such as a failure to meet quality standards or a request for part 

repair will arise and threaten to change the intricately planned production schedule.  Such 

a circumstance creates an unexpected emergency demand for the part required by the 

production system.  In order to satisfy this emergency demand as well as to maintain the 

highly intricate production schedule with minimum cost, there exists some additional 

inventory quantity s for safety stock.   
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Without safety stock, a more expensive emergency order from a supplier is 

required to maintain the production schedule and meet customer demands with zero 

stock-outs.  Conversely, too much safety stock can lead to unnecessary inventory holding 

costs.  In order to balance this tradeoff, it is assumed that in addition to the safety stock, 

an emergency replenishment option is available for certain demand scenarios. 

Regardless of the demand scenario, it is assumed that each cycle begins at an 

identical inventory level equal to Q + s in order to satisfy the expected demand within 

each inventory cycle.  Thus, it is assumed that the safety stock level is full or replenished 

at the beginning of each inventory cycle.  The safety stock can be replenished by either 

adjusting the regularly scheduled order or placing an emergency order from the supplier.   

Since the regularly scheduled order requires a deterministic lead time τ to be 

shipped from the supplier, the size of the regularly scheduled order can only be adjusted 

within the first T – τ time of the inventory cycle before it leaves the supplier.  Therefore, 

any emergency demand that occurs during the scheduled order lead time τ – after the 

scheduled order leaves the supplier – requires an emergency order from the supplier or a 

comparable distributor to replenish the safety stock and prevent an imminent stock-out.   

An emergency order of a part may also be placed before the scheduled order 

leaves the supplier if the emergency demand exceeds the safety stock level.  In such a 

scenario, an emergency order is necessary to prevent a stock-out before the beginning of 

the next inventory cycle.  In any case, such an emergency order requires negligible lead 

time and thus is delivered from a supplier immediately after emergency demand occurs. 

The purpose of this model is to determine optimal sizes for the scheduled order 

quantity Q, the safety stock level s, and the inventory cycle length T that minimizes the 
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expected total cost per unit time of a product with a probability of stochastic emergency 

demand between regularly scheduled orders.  In the model, it is assumed that there is 

proportional probability equal to pt of one occurrence of stochastic emergency demand 

arising within a given time period of length t.  Hence, there is a proportional probability 

equal to (1 – pt) of no emergency demand arising within a given time period of length t.   

The possibility of more than one occurrence of emergency demand during any 

time period is not considered in this model.  Though it may be possible for multiple 

instances of emergency demand within a given time period, the probability per unit time 

of a single instance of stochastic emergency demand is assumed to be very small so that 

the probability of more than one instance of emergency demand within a given time 

period would be negligible.   

If there is no emergency demand during an inventory cycle, a regular inventory 

replenishment scenario occurs.  Within a regular inventory replenishment scenario, the 

regularly scheduled order quantity Q will be received by way of an economical ground 

transportation after a deterministic lead time τ at the beginning of the next inventory 

cycle.  If, on the other hand, an instance of emergency demand does occur during an 

inventory cycle, one of three irregular replenishment scenarios will arise depending on 

the time point and the quantity of the emergency demand.  The three irregular 

replenishment scenarios are depicted in the following figure alongside the regular 

replenishment scenario. 
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Figure 3.1: Replenishment Scenarios for the Proposed Inventory Policy 

 

The first irregular replenishment scenario depicted in the figure arises when the 

emergency demand x occurs before the next scheduled order leaves the supplier and is 

less than or equal to the safety stock level s.  If the emergency demand is less than the 

safety stock level, no inventory stock-outs will occur before the next regularly scheduled 

order is received.  Nevertheless, the depleted safety stock must be replenished by the 

beginning of the next inventory cycle in order to have an adequate amount of inventory to 

satisfy the expected demand in the next inventory cycle.  Since the emergency demand 

occurs before the regularly scheduled order leaves the supplier in this scenario, the size of 

this order from the supplier is increased by an amount equal to the emergency demand x.  

That is, at the beginning of the next inventory cycle, a scheduled order of size (Q + x) 

will be delivered from the supplier via ground transportation.      

In the second irregular replenishment scenario, a large instance of emergency 

demand occurs before the next scheduled order ships out from the supplier.  In such a 

scenario, the inventory level will decrease to zero before the beginning of the next 
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inventory cycle because the emergency demand x is greater than the safety stock level s.  

So, an emergency order from the supplier or a comparable distributor is required.  Yet 

since it is assumed that no other instance of emergency demand will occur in the current 

inventory cycle, there is no pressing need to replenish the completely depleted safety 

stock with the more expensive emergency order.  Instead, the completely depleted safety 

stock is replenished by increasing the size of the next scheduled order to (Q + s); and the 

emergency demand that exceeds the safety stock level is replenished by an emergency 

order of size (x – s) which is triggered and delivered immediately via air transportation. 

The third and final irregular replenishment scenario depicted in the figure arises 

when the emergency demand occurs after the next scheduled order leaves the supplier.  

Since it is assumed that each inventory cycle starts with the inventory level (Q + s) in 

order to satisfy the expected demand within any inventory cycle, an emergency order 

from a supplier is necessary to replenish the depleted safety stock before the beginning of 

the next inventory cycle.  Thus, an emergency order equal to the size of the emergency 

demand x is triggered and received immediately after the emergency demand occurs via 

air transportation that is assumed to be more expensive than ground transportation and 

have a negligible lead time. 
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3.2 Model Definitions 

The purpose of the proposed model is to develop an inventory model under 

explicit energy cost considerations.  Specifically, it is an inventory model with optimal 

sizes for the scheduled order quantity Q, the safety stock level s, and the inventory cycle 

length T that minimizes the expected total cost per unit time with respect to procurement, 

transportation, inventory, and energy costs of a part in the production stage of a supply 

chain.  Though the fairly constant demand of the part is satisfied by regularly scheduled 

orders, there is a small probability p of stochastic emergency demand x between orders. 

It is assumed that a regularly scheduled order is delivered at the beginning of each 

inventory cycle and each inventory cycle has an identical length of time T.  Given the 

inventory cycle length T and a constant regular demand D, the scheduled order quantity 

Q can be derived by the product of the inventory cycle length T and the constant regular 

demand D.  This order quantity, which is one of the inventory model decisions, only 

satisfies the constant regular demand within each inventory cycle.  Another inventory 

model decision, the level of safety stock s, is designed to satisfy the expected emergency 

demand at a minimal cost. 

Emergency demand arises when an undesirable circumstance such as a failure to 

meet quality standards or a request for part repair threatens to change the intricately 

planned production schedule.  It is assumed that there exists a small probability p per unit 

time of a stochastic emergency demand such that the proportional probability of a single 

occurrence of stochastic emergency demand within a given inventory cycle of time 

period of length T is pT.  Hence, the proportional probability of no emergency demand 
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within a given inventory cycle is (1 – pT).  This is equivalent to the probability for a 

regular replenishment scenario in which no emergency demand occurs.   

It is assumed that at most one occurrence of emergency demand can arise within 

an inventory cycle since the probability of multiple occurrences of emergency demand is 

very small.  In the proposed model, emergency demand may occur before or after the 

regularly scheduled order leaves the supplier.  So the probability that the emergency 

demand occurs after the regularly scheduled order leaves the supplier within the last τ 

time units of the inventory cycle, as it does in the third irregular replenishment scenario, 

is pτ.  Conversely, the probability that the emergency demand occurs before the regularly 

scheduled order leaves the supplier within the first (T – τ) time units of the inventory 

cycle, as it does in either the first or second irregular replenishment scenario, is p(T – τ).   

Since the occurrence of either the first or the second irregular replenishment 

scenario depends on the size of the emergency demand, the probability of one of the two 

scenarios arising is the product the emergency demand probability p(T – τ) and the 

probability that the emergency demand x is less than or equal to the safety stock level s 

(for the first irregular replenishment scenario) or the emergency demand x is greater than 

the safety stock level s (for the second irregular replenishment scenario).  The total costs 

of an inventory cycle depend on the associated replenishment scenario. 

The total cost for each replenishment scenario consists of procurement costs, 

transportation costs, inventory costs, and explicit energy related costs.  The procurement 

and transportation costs consist of a fixed cost component km, a variable cost component 

em associated to energy cost, and another variable cost component cm associated to 

everything but energy cost.  The index m M (o, g, a) of each cost component represents 
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the origin of the cost.  Any production or procurement cost is represented by the index m 

= o.  So the fixed contracting or ordering cost to procure the product from supplier is 

represented by ko; and the per unit non-energy-related production cost to procure a 

product from the supplier is represented by co; and per unit energy-related production 

cost to procure a product from the supplier is represented eo.  Alternatively, any shipping 

activity cost is represented by the index m M (g, a). 

The transportation and shipping costs depend on the transportation mode and thus 

the replenishment scenario.  The transportation mode for any regularly scheduled order is 

assumed to be an economical ground transportation denoted by the index m = g that takes 

a deterministic time of length τ to deliver.  An emergency order, on the other hand, is 

assumed to be a more expensive and faster air transportation denoted by the index m = a 

that takes a theoretically negligible time to deliver.   

For either transportation mode m M (g, a), there is a fixed cost component and 

two variable cost components that compose the total cost of transportation and shipping.  

In particular, there is a fixed cost km to ship an order such that the fixed cost for ground 

transportation is less than the fixed cost for air transportation (kg < ka).  Additionally, 

there is a per unit cost cm to ship one item via a specified transportation mode m M (g, a) 

such that the unit shipping cost via ground transportation is again less than the unit 

shipping cost via air transportation (cg < ca).  Lastly, there is an energy-related cost 

component em such as fuel cost to ship one unit of product via a specified transportation 

mode m M (g, a).  Similar to the prior transportation cost components, the energy-related 

shipping cost per unit of product is less for ground transportation than for air (eg < ea). 
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 The final component of the total cost in each inventory cycle is the inventory 

holding cost.  The total inventory holding cost is a function of the demand curve and the 

holding cost h per unit product and per unit time.  Though the holding cost h is identical 

for any inventory cycle, the total inventory cost is dependent on the replenishment 

scenario. 

  

Indices 

m cost origin m M (o, g, a) 

Parameters 

D Regular demand of product per cycle time 

x Emergency demand of product per cycle time 

p Probability of emergency demand in each unit time 

km Fixed cost of an order via cost origin m 

cm Non-energy related cost of one unit of product via cost origin m 

em Energy cost of one unit of product via cost origin m 

h Holding cost per unit product and per unit time 

τ Lead time of scheduled order 

Integer Variables 

Q Order quantity of the scheduled order 

s Safety stock level of product 

Noninteger Variables 

T Length between consecutive schedule orders or length of the inventory cycle 
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3.3 Model Formulation 

The purpose of the proposed model is to determine optimal sizes for the 

scheduled order quantity Q, the safety stock level s, and the inventory cycle length T that 

minimizes the expected total cost under explicit energy cost considerations of a part with 

a probability p of stochastic emergency demand x between regularly scheduled orders.  In 

order to determine the expected total cost per unit time of the inventory model, the total 

cost and probability of each replenishment scenario must be determined.  Given the total 

costs and the probability of each replenishment scenario, the objective function to 

minimize the total expected cost can be formulated. 

 

3.3.1 Total Costs for each Replenishment Scenario 

The occurrence of a replenishment scenario depends on whether emergency 

demand occurs or not.  If there is no emergency demand during an inventory cycle, a 

regular inventory replenishment scenario occurs.  The probability of this regular 

inventory replenishment scenario in which no emergency demand occurs during the 

inventory cycle is (1 – pT).   

Within a regular inventory replenishment scenario, the regularly scheduled order 

quantity Q will be received by an economical ground transportation after a deterministic 

lead time τ at the beginning of the next inventory cycle.  The costs of these orders are 

depicted in equations (1-2).  While equation (1) depicts the cost to procure the regularly 

scheduled order, equation (2) depicts the cost to ship the regularly scheduled order.  

Equation (3), on the other hand, depicts the inventory holding cost of this scenario in 

which the inventory level decreases at a constant demand rate and the safety stock level 
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remains constant throughout the inventory cycle.  Given these three individually depicted 

cost components in equations (1-3), the total cost of the regular replenishment scenario 

can be illustrated in equation (4). 
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Whereas the occurrence of the regular replenishment scenario is contingent upon 

no emergency demand arising during an inventory cycle, the occurrence of one of the 

other three irregular replenishment scenarios is dependent upon when the emergency 

demand occurs within the inventory cycle and how much is demanded at that time.  If the 

emergency demand occurs within the first (T – τ) time units of the inventory cycle – 

before the regularly scheduled order leaves the supplier, either the first or the second 

irregular replenishment scenario will arise with a probability of p(T – τ).  If, on the other 

hand, the emergency demand occurs within the last τ time units of the inventory cycle – 

after the regularly scheduled order leaves the supplier, the third irregular replenishment 

scenario will arise with a probability of pτ.  Since the replenishments vary in each of the 

three irregular replenishment scenarios, each irregular replenishment scenario incurs a 

different amount of cost.    

The total cost of the first irregular replenishment scenario in which the emergency 

demand x occurs before the next scheduled order leaves the supplier and is less than or 
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equal to the safety stock level s is illustrated in equation (8).  In this scenario, no 

inventory stock-outs occur before the next order is received since the emergency demand 

is less than the level of safety stock.  However, a portion of the safety stock is depleted 

and thus requires replenishment by the beginning of the next inventory cycle in order to 

satisfy the next cycle’s demand.  Given that this occurs before the scheduled order leaves 

the supplier, the scheduled order quantity is increased by an amount equal to the 

emergency demand x.   

In terms of cost, the change in the scheduled order quantity for the first irregular 

replenishment scenario translates to an increase in the cost of the scheduled order by an 

amount proportional to the emergency demand.  This increase is incorporated in 

equations (5-6) which illustrate the costs of procurement and transportation for this 

scenario.  In particular, the cost to procure the regularly scheduled order is increased by 

the unit cost to procure the emergency demand x as shown in equation (5); and the cost to 

ship the regularly scheduled order is increased by the unit cost to ship the emergency 

demand x as shown in equation (6). 

Contrary to the increase in procurement and transportation costs for this irregular 

replenishment scenario, the inventory holding cost shown in equation (7) decreases.  In 

this scenario as well as the second irregular replenishment scenario, it is assumed that the 

emergency demand can occur at any time between the beginning of an inventory cycle 

and the time at which the regularly scheduled order is shipped.  Yet on average, the 

emergency demand occurs half way between these two time points.  So similarly, the 

time point at which the inventory level is reduced by the emergency demand is on 

average, half way between the time period (T – τ).  Given that the inventory level is 
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reduced by am amount equal to the emergency demand for the remaining time period, the 

inventory holding cost is reduced by an amount proportional to the emergency demand x 

and the remaining time period which is equal to half the time period (T + τ). 

Given the procurement, transportation, and inventory costs individually depicted 

in equations (5-7), the total cost of the first irregular replenishment scenario can be 

illustrated in equation (8).  The probability of incurring the total cost illustrated in 

equation (8) is equal to the product of the following two probabilities:  the first being the 

probability p(T – τ) that an emergency demand occurs before the scheduled order leaves 

the supplier and the second being the probability f(x ≤ s) that an emergency demand is 

less than or equal to the safety stock. 
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Similarly, in the second irregular replenishment scenario, the probability of 

incurring the total cost characteristic of this scenario in equation (12) is equal to the 

product of the next two probabilities:  the probability p(T – τ) that an emergency demand 

occurs before the scheduled order leaves the supplier and the probability f(x > s) that an 

emergency demand is greater than the safety stock level.  In such a scenario, the 

inventory level will decrease to zero before the beginning of the next inventory cycle 
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because the emergency demand x is greater than the safety stock level s.  So, an 

emergency order is required to maintain the intricate production.   

Nevertheless, since it is assumed that no other instance of emergency demand will 

occur in the current inventory cycle, there is no pressing need to replenish all the stock, 

specifically the completely depleted safety stock, with the more expensive emergency 

order before the beginning of the next inventory cycle.  Instead, the emergency order 

from the supplier should only satisfy the emergency demand which exceeds the level of 

safety stock and thus would not be satisfied otherwise; and the completely depleted safety 

stock should be replenished by adjusting the next scheduled order.  . 

So, in the second irregular replenishment scenario, two separate inventory 

replenishments must occur.  First, an emergency order of size (x – s) will be triggered and 

delivered immediately from the supplier via air transportation that is assumed to be more 

expensive than ground transportation and have a negligible lead time.  Second, the next 

scheduled order that is delivered from the supplier via ground transportation will be 

increased to the size (Q + s) so as to replenish the entirely depleted safety stock.  The 

procurement and transportation costs associated to these inventory replenishments are 

represented in equations (9-10), respectively; and the resultant inventory cost of this 

scenario is shown in equation (11). 

The procurement costs in equation (9) consist of two separately incurred costs.  

For one, it includes the cost to procure the regularly scheduled order which is increased to 

the size (Q + s) so as to replenish the depleted safety stock and start the next inventory 

cycle with an identical inventory level of (Q + s).  Secondly, it includes the cost to 

procure the emergency order of size (x – s) so as to satisfy the emergency demand that 
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exceeds the safety stock level.  As compared to the procurement costs in equation (1) of 

the regular replenishment scenario, these procurement costs are increased by a fixed cost 

to procure the emergency order as well as the unit costs to procure an amount of parts 

equal to the emergency demand between the two replenishment methods. 

Like the procurement costs in equation (9), the transportation costs in equation 

(10) consist of two separately incurred costs.  That is, it includes the cost to ship the 

regularly schedule order via ground transportation as well as the cost to ship the 

emergency order via air transportation.   As compared to the transportation costs in 

equation (2) of the regular replenishment scenario, these transportation costs are 

increased by three factors:  the fixed cost to ship the emergency order via the more 

expensive air transportation; the unit costs to ship the larger regularly scheduled order 

which replenishes the completely depleted safety stock with ground transportation; and 

lastly, the unit costs to ship the emergency order of size (x – s) with air transportation. 

Whereas both the procurement and transportation costs are higher in this scenario 

as compared to the regular replenishment scenario, the resultant inventory cost shown in 

equation (11) is lower in this scenario as compared to the regular replenishment scenario.  

This is true for both the first and second irregular replenishment scenarios.  In fact, the 

resultant inventory cost for the two scenarios are almost identical.   

Like in the first irregular replenishment scenario, it is assumed that the emergency 

demand can occur at any time between the beginning of an inventory cycle and the time 

at which the regularly scheduled order is shipped from the supplier.  Yet on average, the 

emergency demand occurs half way between these two time points – at the point in time 

equal to half the time period (T – τ).  So, like the first irregular replenishment scenario, 
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the time point at which the inventory level is reduced by the emergency demand is, on 

average, half way between the two points in time.  Given that the inventory level is 

reduced by an amount equal to the depleted safety stock for the remaining time period, 

the inventory holding cost is reduced by an amount proportional to the depleted safety 

stock s and the remaining time period which is equal to half the time period (T + τ).  The 

only difference in inventory cost between the two scenarios is that the reduction in 

inventory cost of the first is proportional to the emergency demand x whereas the 

reduction in inventory cost of the second is proportional to the depleted safety stock s. 

Given the inventory holding costs outlined in equation (11) as well as the 

procurement and transportation costs shown separately in equations (9-10), the total costs 

of the second replenishment scenario can be illustrated in equation (12). 
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The final cost scenario for the third irregular replenishment scenario incurs the 

total costs illustrated separately in equations (13-15).  The probability for these costs to 

incur is equal to pτ, which is the probability for an emergency demand to occur after the 

scheduled order leaves the supplier.  Since the emergency demand occurs during the 

scheduled order lead time, an emergency order equal to the size of the emergency 

demand is necessary to begin the next inventory cycle at an identical inventory level. 
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Thus, as compared to the costs of the regular replenishment scenario shown in 

equations (1-3), the costs of this scenario shown in equation (13-15) are only increased 

by the procurement and transportation costs associated with replenishing the inventory 

that was reduced by the emergency demand x.  That is, as compared to the procurement 

costs of the regular replenishment scenario shown in equation (1), the procurement costs 

of this scenario shown in equation (13) are increased by only the additional fixed and unit 

costs to procure the emergency order of size x from the supplier.  Similarly, as compared 

to the transportation costs of the regular replenishment scenario shown in equation (2), 

the transportation costs of this scenario shown in equation (14) are increased by only the 

additional fixed and unit costs to ship the emergency order of size x via the more 

expensive air transportation method. 

Lastly, the inventory holding cost shown in equation (15) is identical to that for 

the regular replenishment scenario shown in equation (3).  In both scenarios, the 

inventory level decreases at a constant demand rate and the final inventory level is equal 

to the safety stock level.  So the inventory holding cost is proportional to the inventory 

cycle length, the constant demand rate, and the constant safety stock level.  Combined 

with the prior costs, the total cost of this third scenario can be illustrated in equation (16).   
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3.3.2 Objective Function 

The objective of the proposed model is to determine the optimal scheduled order 

quantity Q and the safety stock level s that minimize the expected total cost per unit time 

with respect to procurement, transportation, inventory, and energy costs of a part required 

by a production system that has a probability p of stochastic emergency demand x, which 

follows f(x), between regularly scheduled orders from suppliers and distributors.  The 

expected total cost per unit time of the inventory model shown in equation (17) is the 

aggregated products of the total costs and corresponding probability of each 

replenishment scenario divided by the inventory cycle length T. 
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Based on the probability of each of the four replenishment scenarios, the objective 

function shown in equation (17) is separated into each of the four scenarios (a-d).  The 

total cost per unit time of the scenario illustrated in (17a) is associated with the regular 

replenishment scenario in which no emergency demand occurs during the inventory 

cycle.  The probability of such a scenario with no emergency demand within an inventory 

cycle is (1 – pT).  Conversely, the probability for a single occurrence of emergency 

demand during the entire inventory cycle is pT.   

Given an occurrence of emergency demand during an inventory cycle, one of 

three irregular replenishment scenarios will arise depending on the time point and the 

quantity of the emergency demand during the inventory cycle.  If the emergency demand 

occurs before the regularly scheduled order leaves the supplier within the first (T – τ) 

time units of the inventory cycle, either the first or the second irregular replenishment 

scenario will arise with a probability of p(T – τ).   

The total cost per unit time of the first irregular replenishment scenario is depicted 

in equation (17b).  The probability of this scenario is equal to the product of the 

following two probabilities:  the first being the probability p(T – τ) that an emergency 

demand occurs before the scheduled order leaves the supplier and the second being the 

probability f(x ≤ s) that an emergency demand is less than or equal to the safety stock.  If 

the emergency demand is greater than the safety stock as it is for second irregular 

replenishment scenario, the probability of the scenario equals the product of the next two 

probabilities:  the probability p(T – τ) that an emergency demand occurs before the 

scheduled order leaves the supplier and the probability f(x > s) that an emergency demand 
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is greater than the safety stock level.  The total cost per unit time associated to this 

irregular replenishment scenario is illustrated in equation (17c).   

The final piece of the objective function (17d) is the total cost per unit time of the 

third and last irregular replenishment scenario.  In this final scenario, the emergency 

demand occurs after the regularly scheduled order leaves the supplier or distributor 

within the last τ time units of the inventory cycle; thus, the probability that the third 

irregular replenishment scenario will arise is pτ.  Together, the equations illustrate the 

expected total costs per unit time of the inventory model of a product with a probability p 

of stochastic emergency demand x between regularly scheduled orders. 

Given that in each scenario a regularly scheduled order quantity Q is delivered 

from the supplier at the beginning of each inventory cycle, the objection function in (17) 

can be rewritten as following:  
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 In equation (18), the total cost per unit time of the regularly scheduled order 

quantity Q is disconnected from each of the replenishment scenarios since it is incurred 
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regardless of the scenario.  So, equation (18a) depicts the procurement, transportation, 

and inventory cost per unit time of the regularly scheduled order quantity Q which is 

incurred during the regular replenishment cycle as well as each of the irregular 

replenishment cycles.  Equations (18b-d), on the other hand, depict the additional 

expected cost per unit time of each of the irregular replenishment scenarios.  

 The additional expected cost per unit time of the first irregular replenishment 

scenario is depicted in equation (18b).  In this scenario, the emergency demand that 

occurs before the scheduled order leaves the supplier is less than the safety stock level.  

So, even though no inventory stock-outs will occur before the next scheduled order is 

delivered from the supplier, a portion of the safety stock is depleted and requires 

replenishment by the beginning of the next inventory cycle.  Thus, the scheduled order 

quantity is increased by an amount equal to the emergency demand x in order to replenish 

the inventory level to the target (Q + s) by the beginning of the next inventory cycle. 

 The additional expected cost per unit time depicted in (18b) for this scenario 

consists of an increase to the procurement and transportation costs but a decrease to the 

inventory cost.  In particular, the procurement and transportation costs are increased by 

the unit costs to procure and ship the emergency demand x by way of ground 

transportation.  The inventory cost, on the other hand, decreases by an amount 

proportional to the emergency demand x and the length of time – equal to half the time 

period (T + τ) – remaining after the emergency demand reduces the inventory level.  

Since the decrease in inventory cost will always be less than the increase in the 

procurement and transportation costs, the expected cost per unit time depicted in (18b) 

for this scenario will always be positive – an increase to the total cost.  
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The second irregular replenishment scenario, which is similar to the first irregular 

replenishment scenario, incurs the additional expected costs per unit time that are 

depicted in equation (18c).  In this scenario, the emergency demand that occurs before the 

scheduled order leaves the supplier is greater than the safety stock level.  So, without an 

emergency order, the inventory level will decrease to zero before the beginning of the 

next inventory cycle.  Thus, an emergency order of size (x – s) which satisfies only the 

emergency demand not satisfied by the safety stock in the current inventory cycle is 

triggered immediately; and the next scheduled order is increased by a quantity equal to 

the completed depleted safety stock level s.   

Overall, the additional expected cost per unit time illustrated in (18c) for this 

scenario is greater than that of any other scenario.  For one, procurement costs are 

increased by a fixed cost to procure the emergency order as well as the unit costs to 

procure an amount of parts equal to the emergency demand between the two 

replenishment methods.  Secondly, the transportation costs are increased by three factors:  

the fixed cost to ship the emergency order via the more expensive air transportation; the 

unit costs to ship the larger regularly scheduled order which replenishes the completely 

depleted safety stock with ground transportation; and lastly, the unit costs to ship the 

emergency order of size (x – s) with air transportation.  Even with the decrease in 

inventory cost – which like the first irregular replenishment scenario is decreased by an 

amount proportional to the depleted safety stock and the length of time remaining after 

the emergency demand depletes the safety stock – the additional expected cost per unit 

time for this scenario will always be positive and greater than that of any other scenario. 
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The third and final irregular replenishment scenario incurs the additional expected 

total costs per unit time depicted in equation (18d).  In this scenario, the emergency 

demand occurs after the scheduled order leaves the supplier so that without an emergency 

order, the inventory level at the beginning of the next inventory cycle will be less than the 

targeted (Q + s) level.  The resultant cost of this necessary emergency order is additional 

fixed and variable costs to procure and transport an order size equal to the size of the 

emergency demand x via the more expensive but faster mode of air transportation. 

Both the previous formulations of the objective function in equations (17) and 

(18) are structured in a way that can be logically understood with respect to each 

replenishment scenario.  However, these formulations can and should be simplified.  Yet 

before doing so, the function x(cg + eg) is added and subtracted to parts (18c-d) so as to 

not actually change the result of the objective function but aid in later simplification.   
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Given the revised objective function in equation (19), a few assumptions can be 

introduced to assist in simplifying the objective function.  For one, the inventory cycle 

length T is a function of the regularly scheduled order quantity Q and the constant 
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demand D.  Specifically, the inventory cycle length T is equivalent to the quotient of the 

scheduled order quantity Q and the constant demand D.  So, from this point on, every 

instance of T in the objective function is replaced with the quotient of Q and D.   

Another approach to simplify the readability of the objective function is to replace 

parameters that are summed multiple times with representative symbols.  For instance, 

since the sum (ca + ea – cg – eg) appears multiple times in the objective function, it is 

hereby replaced by the symbol δ.  Thus, every time the symbol δ appears in the objective 

function, it will represent the difference between the unit costs of air transportation and 

the unit costs of ground transportation (ca + ea – cg – eg).  Since it is already assumed that 

all the transportation costs via air transportation are greater than those via ground 

transportation (ca + ea > cg + eg), it can also be assumed that δ, which represents the 

positive difference between the two costs, is greater than zero (δ > 0).  Likewise, the sum 

(ko + kg) is hereby replaced by the symbol γ; the sum (ko + ka) is hereby replaced by the 

symbol α; and lastly, the sum (co + eo + cg + eg) is hereby replace by the symbol β.  Given 

these replacements, the objective function can be rewritten as the following: 
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Equation (20) can then be simplified into the final form of the objective function which is 

shown in equation (21): 
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3.4 Solution Procedure 

The economically optimal solution to operating an inventory system under 

constant demand and a probability of stochastic emergency demand is defined by the 

inventory policy that minimizes the total cost per unit time.  Since the inventory policy is 

determined by two decision variables – safety stock s and order quantity Q – the optimal 

solution set contains all values of s and Q such that the derivative of the total cost per unit 

time is equal to zero.  Therefore, the optimal decisions s and Q must satisfy 

 0Q)TC(s, =
ds
d    and    0Q)TC(s, =

dQ
d .    (22-23) 

The optimal policy must also satisfy the conditions for which the Hessian matrix 

below is positive-definite.  This additional condition guarantees that the solution is the 

optimal minimum cost and not a maximum cost or some other local optimal cost.  

 



















=∇
Q)TC(s,Q)TC(s,

Q)TC(s,Q)TC(s,
Q*)TC(s*,

2

2
2

Qd
d

dsdQ
d

dsdQ
d

sd
d

    (24) 



47 | P a g e  
 

 

3.4.1 First-Order Derivative Condition 

The first set of optimal conditions are derived by setting the first order derivative 

of the total cost per unit with respect to the safety stock level s and the scheduled order 

quantity Q equal to zero.  The derivative of the total cost per unit time with respect to the 

safety stock level s is shown in equation (25): 
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The derivative in (25) can be rewritten in a simpler form as shown in equation (26). 
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Thus, one condition the optimal solution must satisfy is that the first order partial 

derivative of the total cost per unit value with respect to the safety stock quantity s be 

equal to zero as shown in equation (27).  
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The second optimal conditions is derived by setting the first order derivative of 

the total cost per unit with respect to the scheduled order quantity Q equal to zero.  This 

first order derivative with respect to the scheduled order quantity Q is shown in (28): 
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After integrating equation (28), the derivative can be written as the following:  
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For easier simplification later, the derivative can be the rewritten as the following:  
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The derivative can then be simplified to the following:  
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Thus, the second condition that the optimal solution set must satisfy in which the first 

order partial derivative of the total cost per unit time with respect to the scheduled order 

quantity Q is equal to zero is shown in equation (32): 
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So, the first set of optimal conditions that are derived by setting the first order 

derivative of the total cost per unit time with respect to the safety stock level s and the 

scheduled order quantity Q equal to zero are shown again in equations (33) and (34): 
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3.4.2 Second-Order Derivative Condition 

The second set of optimal conditions satisfies the conditions for which the 

Hessian matrix (35) is positive-definite.  This condition guarantees that the solution is the 

global optimal minimum cost and not a maximum cost or some other local optimal cost.   
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There are at least two conditions that the Hessian matrix must satisfy for it to be 

defined as positive definite.  For one, the matrix must be symmetric.  That is, the 

components in the diagonals of the matrix must share the same sign.  For a matrix to be 

positive-definite, the components of the primary diagonal must be positive.  Secondly, 

the determinant of the matrix must be positive.  The determinant of the Hessian matrix in 

(35) is illustrated in (36). 
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In order to determine whether the Hessian matrix is positive-definite, the second 

order partial derivatives of the total cost per unit time with respect to the safety stock 

level s and the scheduled order quantity Q must be determined.  The second order partial 

derivative of the total cost per unit time with respect to the safety stock level s alone is 

derived from the equation (33) and shown in equation (37): 
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 The second order partial derivative of the total cost per unit time with respect to 

the scheduled order quantity Q alone is derived from the equation (34) and shown in 

equation (38).  Equation (39) is the simplified form of the second order partial derivative 

with respect to Q.  
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 The second order partial derivative of the total cost per unit time with respect to 

first the safety stock level s and then the scheduled order quantity Q is derived from the 

equation (33) and shown in equation (40).  This second order partial derivative can be 

simplified to the form in equation (41). 
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 To verify the equations, the second order partial derivative of the total cost per 

unit time with respect to first the scheduled order quantity Q and then the safety stock 

level s is derived from the equation (34) and shown in equation (43).  This should be 

equivalent to the second order partial derivative derived in equation (40) and simplified 

in equation (41). 

 [ ] [ ])()(1)(
22

)(Q)TC(s, 2

2

22 ssfsFssf
D
h

Q
Dh

Q
D

psfp
Q
D

dQds
d

−−+







++−−=

ττδτα  (42) 

 ( ) ( ))(1
2

)(1
2

)(Q)TC(s, 2 sF
D
h

psF
h

sf
Q
D

p
dQds

d
−







−







−







 ++







−=

τδατ
  (43) 

 As expected, second order partial derivative of the total cost per unit time with 

respect to the safety stock level s and to the scheduled order quantity Q in equations (41) 

and (43) are equivalent even though each was derived from a different first order partial 

derivative.   Thus, the derivations thus far are at least mathematically accurate. 
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 Now that the second order partial derivatives of the total cost per unit time are 

derived, the Hessian matrix can be determined and thus the second set of solution 

conditions.  The Hessian matrix for the current model is shown in equation (44).  The 

determinant of this Hessian is shown in equation (45). 
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 To satisfy the condition for which the Hessian matrix in (44) is positive definite, 

the matrix must first be symmetric.  That is, the components in the diagonals of the 

matrix must share the same sign.  Since the components in the bottom-left to top-right 

diagonal are the same second-order derivative of the total cost, it can be inferred that the 

components in this diagonal share the same sign.  Though the sign of this diagonal is 

inconsequential, the sign of the components in the top-left to bottom-right diagonal must 

be positive in order for the matrix to be positive definite.  Thus, it is necessary to prove 

that these components are positive. 

 The component in the top-left of the matrix is the second order partial derivative 

of the total cost per unit time with respect to the safety stock level s alone as shown in 
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equation (37).  In order to logically determine the sign of this diagonal component, the 

equation in (37) is separated into several segments shown in equations (46-48). 

 The first segment of the equation in the top-left position of the matrix shown in 

(46) consists of the ratio of constant demand to order quantity.  This ratio is equivalent to 

the inverse of the inventory cycle length.  Given the fact that the scheduled order lead 

time is always less than the length of the inventory cycle, the product the prior ratio – the 

inverse of the inventory cycle length – and the scheduled order lead time will always be 

less than one.  So the first segment of the top-left matrix component is always positive.   

)1(
Q
D

p
τ

−            (46) 

)(' sfα−            (47) 

)(
22

sf
h

D
hQ








 ++
τδ          (48) 

 The other segments of the top-left matrix component shown in equations (47-48) 

are multiplied by the first segment illustrated in equation (46) to obtain equation (37). 

For the entire component to be positive, the sum of the segments in equations (47-48) 

must also be positive.  It is simple to observe that the segment illustrated in equation (48) 

is always positive, because all the terms and the signs in the equation are positive. 

 However, the segment illustrated in equation (47) cannot be easily assumed as 

positive or negative since it comprises the derivative of a probability distribution 

function.  Depending on the distribution for the emergency demand, equation (47) may 

be positive or negative.  If the derivative of the probability distribution function is less 

than or equal to zero, then equation (47) is positive and thus the whole equation is 

guaranteed to be positive.  However, if the derivative of the probability distribution 
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function is greater than zero, then equation (47) is negative and the sum of the equation 

(47) and (48) may either be positive or negative.   

 In order for the top-left component of the Hessian matrix to be positive and 

partially satisfy the conditions for which the Hessian matrix is positive definite, the 

optimal solution must satisfy the necessary condition in which sum of equations (47) and 

(48) are greater than zero and thus positive as shown in (49): 
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 In addition to the requirement for the top-left component of the Hessian matrix, 

there is a requirement for the bottom-right component of the Hessian matrix in order for 

the matrix to partially satisfy the conditions for which the Hessian matrix is positive 

definite.  The component in the bottom-right of the matrix is the second order partial 

derivative of the total cost per unit time with respect to the scheduled order quantity Q 

alone as shown in equation (39).  In order to logically determine the sign of this diagonal 

component, the equation in (39) is separated into two segments shown in (50-51).   
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 The first segment of the equation as shown in (50) consists of all positive terms 

and signs; whereas the second segment of the equation in (51) consists of all positive 

terms but a negative sign.  Even with the negative sign, the segment illustrated in 

equation (51) is always positive because the term being subtracted – the cumulative 

probability of a continuously distribution – is always less than or equal to one.  Thus, the 
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segment in equation (51) is always positive; and the whole portion of the bottom-right 

component of the Hessian matrix is always positive. 

Consequently, there are then only two conditions necessary for Hessian Matrix to 

be positive definite.  For one, the Hessian matrix in (44) must satisfy the condition in (49) 

such that the diagonals of the matrix share the same sign and the primary diagonal from 

top-left to bottom-right is positive.  Secondly, the solution set must satisfy the condition 

in (52) in which the determinant of the Hessian matrix is greater than zero. 
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3.4.3 Summary of Solution Conditions 

The economically optimal solution to operating an inventory system under 

constant demand and a probability of stochastic emergency demand is defined by the 

inventory policy that minimizes the total cost per unit time.  Since the inventory policy is 

determined by two decision variables – safety stock s and order quantity Q – the optimal 

solution set contains all values of s and Q such that the first-order partial derivatives of 

the total cost per unit time are equal to zero and the Hessian matrix of the second-order 

partial derivatives is positive definite.  Therefore, the optimal decisions s and Q must 

satisfy two sets of optimal conditions. 
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The first set of optimal conditions are derived by setting the first order derivative 

of the total cost per unit with respect to the safety stock level s and the scheduled order 

quantity Q equal to zero.  These conditions which are reiterated in (53) and (54) 

guarantee that the total cost per unit time is either minimized or maximized. 
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The second set of conditions guarantees that the total cost per unit time is a global 

minimum and not a local minimum or even a global maximum.  These conditions which 

are reiterated in (55) and (56) satisfy the necessary requirements for the Hessian matrix of 

the second-order partial derivatives of the total cost per unit time to be positive-definite.  

That is, conditions for which the Hessian matrix is symmetric with positive diagonals and 

the determinant of the Hessian matrix to be greater than zero.  
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CHAPTER 4 

NUMERICAL ANALYSIS & RESULTS 

 

The purpose of the inventory model developed in the previous sections is to 

determine an optimal inventory policy under explicit energy cost considerations.  

Specifically, the objective of the model is to find an inventory policy with optimal sizes 

for a scheduled order quantity Q, a safety stock level s, and an inventory cycle length T 

that minimizes the expected total cost per unit time of a part with a fairly regular demand 

but a small probability of emergency demand.  Such an inventory policy is expected to be 

applicable for production systems with constant production rates but small, underlying 

possibilities for undesirable circumstances to threaten the planned production schedules. 

In order to illustrate the effect of energy on inventory policies, the inventory 

model developed in the previous sections is numerically analyzed with respect to changes 

in energy cost as well as numerous other model parameters that are reasonable to similar 

production environments.  The resultant inventory policy decisions and respective 

logistics costs for the various model parameters are analyzed and compared to the 

traditional EOQ model in order to further validate the inventory model and illustrate the 

cases in which it is most effective.   
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4.1  Numerical Analysis Parameters 

In the numerical analysis to follow, most of the model parameters are initially 

varied between only two levels in order to identify the key parameters that affect 

inventory policy decisions and the resultant logistics costs.  These parameters are 

organized into the following three logistics functions:  supply procurement, production, 

and transportation.   After key parameters are identified, the levels at which the key 

parameters vary need not be limited to the two initial levels in the subsequent analysis.  

Nevertheless, the purpose of varying most of the model parameters by only two levels in 

the analysis is to discover and understand the environments in which the inventory 

policies are most significantly affected by changes to energy cost as well as the 

environments in which the proposed inventory model is most cost effective. 

 

4.1.1 Supply Procurement Parameters 

The first set of model parameters are the purchasing costs associated with the 

procurement of raw materials or unfinished products from a supplier or distributor 

required by the production system.  These procurement costs include a fixed purchasing 

cost ko to order any number of products from the supplier, a variable purchasing cost eo 

associated to the energy consumed in order to supply a single unit of the product, and a 

variable purchasing cost co associated to everything but the energy cost to supply a single 

unit of the product.  As displayed in Table 4.1, the fixed purchasing cost and the total 

variable purchasing costs (co + eo) are varied between two levels that are reasonable to 

the procurement activities at similar production environments. 



59 | P a g e  
 

 

Table 4.1: Supply Procurement Parameters 

 

4.1.2 Production Parameters 

The second set of model parameters are the factors associated with the demand of 

the production system.  Again, the production system is characterized with a limited 

manufacturing capacity.  As a result, customer orders can be processed very early and 

delivered at a much later date.  So, production schedules are planned far in advance, and 

the production rate is fairly constant from regardless of the actual customer demand. 

Even though the production rate and thus the demand of raw materials and 

unfinished products by the production system are fairly constant, there is a possibility for 

undesirable circumstances to arise and threaten the intricately planned production 

schedule.  The inventory model developed in the previous sections is expected to be 

applicable for production systems with constant production rates but small, underlying 

possibilities for undesirable circumstances to threaten the production schedule. 

Though the possibility of more than one undesirable circumstance occurring 

within any inventory cycle is so small it is presumed negligible in the proposed model, 

the volume of the emergency demand generated by the undesirable circumstance can be 

any number.  Furthermore, the probability and the total cost for any of the irregular 

replenishment scenarios depend on the random size of the emergency demand.  So, the 

optimal inventory policy is contingent upon the probability distribution of the emergency 

demand volume generated by the undesirable circumstance. 
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The inventory model developed in the previous sections is formulated in such a 

way that any probability distribution can be selected to represent that of the stochastic 

emergency demand.  In the subsequent analysis of the inventory model, two different 

distributions – the Uniform distribution and the Exponential distribution – are selected to 

portray the behavior of the emergency demand in similar manufacturing systems. 

While the objective function and solution approaches are rewritten with respect to 

either the Uniform distribution or the Exponential distribution in the subsequent sections, 

the model parameters for the two distributions used in the numerical analysis are shown 

in Table 4.2.   For both distributions, the mean emergency demand varies between two 

levels – low and high – which depend on the size of the regular demand.  Hence, there are 

essentially four levels at which the mean emergency demand varies in the subsequent 

numerical analysis.  This assumption is reasonable given that the volume of the 

emergency demand depends partially on the regular demand from the production system. 

 

Table 4.2: Production Parameters 

 

In addition to the varying levels of regular and emergency demand, Table 4.2 

shows the probability of the emergency demand held constant throughout all the 

numerical analysis to follow.  The value is assumed to be 0.01 in order to represent the 

very small probability of an undesirable circumstance occurring during an inventory 
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cycle and the negligible possibility of more than one undesirable circumstance occurring 

during an inventory cycle. 

 

4.1.3 Transportation Parameters 

The third set of model parameters are factors associated to transportation 

activities.  These parameters include the transportation lead time of the regularly 

scheduled order as well as the transportation costs.  Like many of the aforementioned 

parameters, the transportation lead time τ varies between two levels – short and long – as 

shown in Table 4.3.  Ground shipment often requires a three to five day lead time, but 

sometimes requires an even longer lead time for various reasons including longer 

shipping distance.  Furthermore, the total lead time which includes the supplier or 

manufacturing lead time may be even longer. 

 

Table 4.3: Transportation Parameters 

 

In addition to lead time, Table 4.3 shows the values at which transportation cost 

vary in the subsequent analysis.  Since transportation costs are dependent on several 

factors including shipping distance, package weight, and fuel cost, the transportation 

costs in the subsequent analysis vary based on changes to these factors.  That is, each 
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component of transportation cost for either transportation mode m M (g, a) varies 

between two levels for each factor that affects the respective cost component. 

The first transportation cost factor shown in Table 4.3 – distance – is related to all 

the transportation cost components and varies between two levels – near and far.  Since 

the fixed transportation cost km to ship any number of parts via either transportation mode 

m M (g, a) is dependent only on the distance of the shipment, these fixed transportation 

costs vary between only two levels that are dependent upon the two levels at which the 

shipping distance varies.   

Alternatively, the variable transportation cost cm associated to everything but the 

energy cost to ship a single unit of the product via either transportation mode m M (g, a), 

is dependent on both the shipping distance and the package weight.  Similarly to the 

shipping distance, the package weight varies between two levels – light and heavy.  So, 

the unit cost cm to ship a product for either transportation mode m M (g, a) varies between 

four levels – two levels of weight for each level of the two levels of shipping distance. 

The final transportation cost em associated to the energy consumed in order to ship 

a single unit of the product via either transportation mode m M (g, a) is dependent on 

shipping distance, package weight, and energy cost.  Though this cost component is 

incurred due to transportation activities, it is strongly related to energy cost and thus 

presented in the following section with energy parameters. 

 

4.1.4 Energy Parameters 

The set of model parameters associated to energy cost and consumption is directly 

related to the variable energy cost to procure or ship a single product.  More specifically, 
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the energy parameters shown in Table 4.4 affect the unit purchasing cost eo associated to 

the energy consumed to procure a single unit of product as well as the unit transportation 

cost em associated to the energy consumed to ship a single unit of product via either 

transportation mode m M (g, a). 

 

Table 4.4: Energy Parameters 

 

The first energy parameter shown in Table 4.4 affects the unit energy purchasing 

cost eo to procure a single product.  This cost is related to the energy consumed by any 

activity not including transportation before the product ships to the production system.  

Throughout the subsequent analysis, the unit energy purchasing cost eo is modeled as a 

proportion of the total unit purchasing cost (co + eo) to procure a single unit of product, 

rather than a function of the energy source, energy cost, and energy consumption.  

However, since the total unit purchasing cost already varies between two levels as shown 

in Table 4.1 with the supply procurement parameters, the energy proportion of the total 

unit purchasing cost only affects the individual unit costs to procure a single product and 

not the total unit cost to procure a product. 

The second energy parameter shown in Table 4.4 affects the unit transportation 

cost em associated to the energy consumed to ship a single unit of product via either 

transportation mode m M (g, a).  As noted previously, the unit energy cost to ship is 

dependent upon shipping distance, package weight, and energy cost.  Generally, 
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transportation and shipping businesses base the energy cost portion of the total unit 

shipping cost on a fuel surcharge rate, which is a function of fuel cost and shipping mode.  

An example of such a fuel surcharge rate utilized by a major logistics company in 2010 

for two possible transportation modes is shown in Figure 4.1. 

 

Figure 4.1: Fuel Surcharge Rates with respect to Fuel Cost 

  

In addition to a fuel surcharge rate, transportation and shipping businesses often 

base the unit energy cost em to ship a product on a function of shipping distance and 

package weight.  Since the unit shipping cost cm not associated to energy is already a 

function of shipping distance and package weight, transportation and shipping businesses 

frequently use the product this function and the function of fuel surcharge rate to price 

the unit energy cost to ship via a specified transportation mode.   

Accordingly, the unit energy cost em to ship a single unit of product via either 

transportation mode m M (g, a) is modeled in the subsequent analysis as the product of 

the unit shipping cost cm and the fuel surcharge rate rm.  The model parameters for these 
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energy factors in the subsequent numerical analysis are shown in Tables 4.3 and 4.4 as 

well as Figures 4.1.  As shown in Table 4.3, the unit shipping cost cm varies between two 

values for package weight for each of the two values at which the shipping distance 

varies.  The fuel cost varies between the two levels shown in Table 4.4; and the 

parameters for the fuel surcharge rate rm excluding the fuel cost for either transportation 

mode m M (g, a) are held constant and shown in Figure 4.1. 

 

4.1.5 Miscellaneous Parameters 

The final set of model parameters are those that are specified for the subsequent 

numerical analysis but not included in the prior sets of parameters.  These include the 

time unit of the model and the inventory cost parameters.  As shown in Table 4.5, the 

time unit of the inventory model is held constant to one day throughout all the subsequent 

analysis.  So, the resultant logistics costs of the inventory decisions are presented in terms 

of costs per day; and, the resultant inventory cycle length is presented in terms of days. 

 

Table 4.5: Miscellaneous Parameters 

 

In addition to the model time unit, Table 4.5 shows the inventory cost parameters 

that are held constant throughout the subsequent analysis.  Similarly to most textbooks 

and research, the unit inventory holding cost per time period is modeled as a function of 

the total unit procurement costs (co + eo) and the inventory holding cost rate rh per time 
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period.  Because the annual inventory holding cost rate varies between 25 and 50 percent 

in most textbooks and research, the annual inventory holding cost rate in the subsequent 

analysis is held constant at 30 percent.  This rate and thus the unit inventory holding cost 

is translated into days, however, for the subsequent analysis. 

 

4.1.6 Summary of Model Parameters 

Given the five sets of parameters described above, a table summarizing all the 

parameters for the following numerical analysis is shown in Table 4.6.  

 

Table 4.6: Model Parameters for Numerical 
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4.2  Numerical Solution Approach given Uniform Distribution 

 Assuming that the emergency demand is distributed uniformly between a 

minimum point a and a maximum point b, the inventory model formulated in Chapter 3 

can be modified to the following objective function and solution conditions.  Given the 

modifications, the model is numerically analyzed over a variety of parameters.  Finally, 

the solution to the inventory model is compared to a traditional economic ordering policy 

assuming again that the emergency demand is distributed uniformly. 

 

4.2.1 Objective Function 

With the assumption that the emergency demand x follows a uniform distribution 

from minimum a to a maximum b, the total cost per unit time can be written as follows: 
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After integrating the distribution, equation (57) transforms to equation (58): 
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The final objective function with the assumption that the emergency demand follows a 

continuous uniform distribution is shown in equation (59): 
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4.2.2 Optimal Solution Conditions 

For the solution of operating an inventory system under constant demand and a 

probability of uniformly distributed emergency demand to be economically optimal, it 

must satisfy two sets of conditions.  The first set of conditions states that in order to 

minimize or maximize the total cost per unit time the optimal solution must satisfy the 

condition in which the first-order derivatives of the total cost per unit time are equal to 

zero.  The second set of conditions states that in order to minimize the total cost per unit 

time, the optimal solution must satisfy the conditions in which the Hessian matrix of the 

second-order derivatives of the total cost per unit time is positive-definite.   

The first set of optimal conditions are derived by setting the first order derivatives 

of the total cost per unit with respect to the safety stock level s and the scheduled order 

quantity Q equal to zero.  The condition in which the derivative of the total cost per unit 

time with respect to the safety stock level s is equal to zero shown in equation (60); and 

the condition in which the derivative of the total cost per unit time with respect to the 

scheduled order quantity Q is equal to zero is shown in equation (61). 
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The second set of optimal conditions in which the Hessian matrix (35) is positive-

definite requires the second-order partial derivatives of the total cost per unit time with 

respect to the safety stock level s and the scheduled order quantity Q be determined first.  

For the assumption that the emergency demand is uniformly distributed, the second order 

partial derivative of the total cost per unit time with respect to the safety stock level s 

alone is shown in equation (62).  The second order partial derivative of the total cost per 

unit time with respect to the scheduled order quantity Q alone is shown in equation (63).  

Finally, the second order partial derivative of the total cost per unit time with respect to 

the safety stock level s and the scheduled order quantity Q is shown in equation (64). 
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 Given the second order partial derivatives of the total cost per unit time, the 

Hessian matrix for the inventory problem with a probability of uniformly distributed 

emergency demand between regularly scheduled orders can be written as the following:   
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 The second set of optimal conditions in which the solution set satisfies the 

conditions for which the Hessian matrix (65) is positive-definite guarantees that the 

solution is at the global optimal minimum.  For a positive definite matrix, two conditions 

must be satisfied.  For one, the matrix must be symmetric.  That is, the components in the 

diagonals of the matrix must share the same sign.  Secondly, the determinant of the 

matrix must be positive.  Given the emergency demand distribution, the previously 

derived conditions shown in (55) and (56) can be redeveloped as (66) and (67). 
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4.2.3 Numerical Solution Procedure 

 Before a numerical solution can be generated for the inventory model given the 

uniformly distributed volume of emergency demand, the safety stock level s and the 

scheduled order quantity Q must be derived.  The solution for safety stock level s and 

scheduled order quantity Q are derived from the first-order optimal solution conditions 

shown in (60) and (61), respectively, as follows: 
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 The equations for safety stock level s and scheduled order quantity Q shown in 

(68) and (69) are nonlinear.  In fact, if the two equations in (68) and (69) are combined to 

form a function of the scheduled order quantity Q, the equation would be a polynomial to 

the sixth degree.  Given this complexity, a numerical solution must be determined 

through an iterative process.  The iterative solution process for the inventory model with 

uniformly distributed emergency demand size is as follows: 

STEP 0: Estimate an initial value of the safety stock level starting at the 

minimum level of the emergency demand a.  Label the value so. 

STEP 1: Calculate the scheduled order quantity from equation (69) using the 

estimated initial value of safety stock so.  Only calculate the positive 

root to the quadratic function in (69) because the scheduled order 

quantity must be greater than 0 and thus not negative.  Label the 

positive value of the scheduled order quantity as Q1. 

STEP 2: Calculate the safety stock level from equation (68) using the value of 

the scheduled order quantity Q1 derived in the prior step .  Label the 

value of the safety stock s1. 
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STEP 3: If s1 = so, solve the inequalities in equations (66) and (67) given the 

scheduled order quantity Q1 derived in STEP 1 and the safety stock 

level s1 derived in STEP 2 to test the second-order solution conditions. 

 Otherwise, if s1 ≠ so, increment the initial value of safety stock so by 

1% of the difference between the minimum and the maximum 

emergency demand and go to STEP 1 to repeat the process. 

STEP 4: If the second-order solution conditions are TRUE, the numerical 

solution for the inventory policy consists of the scheduled order 

quantity Q1 derived in STEP 1 and the safety stock level s1 derived in 

STEP 2.  Solve for other results including cost and cycle length. 

 Otherwise, if the second-order solution conditions are FALSE, 

increment the initial value of safety stock so by 1% of the difference 

between the minimum and the maximum emergency demand and go to 

STEP 1 to repeat the process. 

STOP: If no solution is found, the inventory policy should be identical to a 

traditional EOQ model with zero safety stock. 

 

4.2.4 Comparative Solution with Traditional EOQ Model 

The numerical solution derived in the previous section for the inventory model 

given a uniformly distributed volume of emergency demand is compared to a traditional 

EOQ model.  In the traditional EOQ model, the regular demand generated by the 

production schedule is satisfied by the constant order quantity; and any emergency 

demand generated by undesirable circumstances is satisfied by a more expensive 



73 | P a g e  
 

emergency order from a supplier or distributor via the more expensive mode of 

transportation – air.  Thus, there is zero safety stock.  So, given a traditional EOQ model, 

the total cost per unit time is shown in equation (70); and the optimal scheduled order 

quantity derived by taking the first derivative of total cost function with respect to the 

scheduled order quantity in equation (71) is shown in equation (72). 
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4.3  Numerical Solution Approach given Exponential Distribution 

The numerical solution to the inventory model in this section corresponds to the 

assumption that the emergency demand volume follows an Exponential distribution with 

mean µ-1.  Given the assumption on the probability distribution of emergency demand 

size, the inventory model formulated in Chapter 3 can be modified to develop the 

following objective function and solution conditions.  Given these modifications, the 

model is numerically analyzed with a variety of changes to the parameters. 

 

4.3.1 Objective Function 

With the assumption that the emergency demand quantity x follows an 

exponential distribution with a mean µ-1, the total cost per unit time is as follows: 

( )sQ
h

pDp
Q
D

2
2

11
Q)TC(s, ++








++
















++=

µ
β

µ
δατγ    (73a) 

  ( )[ ]∫
∞ −−+








−+

s

xdxesx
Q
D

p µµδατ
1      (73b) 

  




 +







−− ∫∫

∞ −−

s

xs x dxsedxxe
Q
D

D
Qh

p µµ µµτ
0

2

2
    (73c) 

After integrating the distribution, equation (73) transforms to equation (74): 
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The final objective function with the assumption that the emergency demand follows a 

continuous Exponential distribution is shown in equation (75): 
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4.3.2 Optimal Solution Conditions 

For the solution of operating an inventory system under constant demand and a 

probability of exponentially distributed emergency demand to be economically optimal, it 

must satisfy two sets of conditions.  The first set of conditions states that in order to 

minimize or maximize the total cost per unit time the optimal solution must satisfy the 

condition in which the first-order derivatives of the total cost per unit time are equal to 

zero.  The second set of conditions states that in order to minimize the total cost per unit 

time, the optimal solution must satisfy the conditions in which the Hessian matrix of the 

second-order derivatives of the total cost per unit time is positive-definite.   

The first set of optimal conditions are derived by setting the first order derivatives 

of the total cost per unit with respect to the safety stock level s and the scheduled order 

quantity Q equal to zero.  The condition in which the derivative of the total cost per unit 

time with respect to the safety stock level s is equal to zero shown in equation (76); and 

the condition in which the derivative of the total cost per unit time with respect to the 

scheduled order quantity Q is equal to zero is shown in equation (77). 
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The second set of optimal conditions in which the Hessian matrix (35) is positive-

definite requires the second-order partial derivatives of the total cost per unit time with 

respect to the safety stock level s and the scheduled order quantity Q be determined first.  

For the assumption that the emergency demand is exponentially distributed, the second 

order partial derivative of the total cost per unit time with respect to the safety stock level 

s alone is shown in equation (78).  The second order partial derivative of the total cost per 

unit time with respect to the scheduled order quantity Q alone is shown in equation (79).  

Finally, the second order partial derivative of the total cost per unit time with respect to 

the safety stock level s and the scheduled order quantity Q is shown in equation (80). 
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 Given the second order partial derivatives of the total cost per unit time, the 

Hessian matrix for the inventory problem with a probability of exponentially distributed 

emergency demand between regularly scheduled orders can be written as the following:   
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 The second set of optimal conditions in which the solution set satisfies the 

conditions for which the Hessian matrix (81) is positive-definite guarantees that the 

solution is at the global optimal minimum.  For a positive definite matrix, two conditions 

must be satisfied.  For one, the matrix must be symmetric.  That is, the components in the 

diagonals of the matrix must share the same sign.  Secondly, the determinant of the 

matrix must be positive.  Given the emergency demand distribution, the previously 

derived conditions shown in (55) and (56) can be redeveloped as (82) and (83). 
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4.3.3 Numerical Solution Procedure 

 Before a numerical solution can be generated for the inventory model given the 

exponentially distributed volume of emergency demand, the safety stock level s and the 

scheduled order quantity Q must be derived.  The solution for safety stock level s (as a 

function of the exponential value e) and scheduled order quantity Q are derived from the 

first-order optimal solution conditions shown in (76) and (77), respectively, as follows: 
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 The equations for safety stock level s and scheduled order quantity Q shown in 

(84) and (85) are nonlinear.  Nevertheless, if the two equations in (84) and (85) are 

combined to form a function of the scheduled order quantity Q and not the safety stock 

level s, the equation would be a polynomial to the fourth degree as shown in (86).  Such a 

polynomial is solvable provided a rough numerical process.   

 0234 =++++ FEQCQBQAQ        (86a) 

  where ( )pDhA −= µ2         (86b) 

   ( )( )[ ]hhKpDhDB 2−−−= τµ       (86c) 

   ( )γτµ 22 +−= DKDhC        (86d) 

   ( )( )[ ]KhhKKpDD τττγµ 223 +−+−=      (86e) 

   ( )KpKDE τγµτ += 24        (86f) 

  and ( )hK τδαµ ++= 22        (86g) 

 Given that there are four numerical solutions to the scheduled order quantity Q 

derived by solving for the four roots to the fourth degree polynomial equation (86a-g), a 

short iterative process is required to determine the final solutions for the inventory policy.  

The short iterative solution process for the inventory model with exponentially 

distributed emergency demand size is as follows: 

STEP 0: Derive the four roots to the fourth degree polynomial equation (86a-g) 

for the scheduled order quantity.  Label the values of the scheduled 

order quantity Q1, Q2, Q3, and Q4. 
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STEP 1: Calculate the safety stock level from equation (84) for each value of 

the scheduled order quantity Q1, Q2, Q3, and Q4 derived in STEP 0.  

Label the value of the safety stock s1, s2, s3, and s4 

STEP 2: Check whether each respective pair of values for the scheduled order 

quantity Q and the safety stock level s found in STEP 0 and STEP 1, 

respectively, satisfy the inequalities:  Q ≥ 0 and s ≥ 0.  Go to STEP 3 

with any of the respective pairs that satisfy the above inequalities. 

 Otherwise, if no pairs satisfy the above inequalities, go to STEP 4. 

STEP 3: Test the second-order solution conditions in equations (82-83) given 

the solution pairs from STEP 2.  If the conditions are TRUE, a solution 

to the inventory model given the current parameters has been found.   

 Otherwise, if the conditions are FALSE, go to STEP 4. 

STEP 4: No solution is found for the inventory policy given the current model 

parameters.  Thus, the inventory policy should be identical to a 

traditional economic ordering policy with zero safety stock. 

 

4.3.4 Comparative Solution for Traditional EOQ Model 

The numerical solution derived in the previous section for the inventory model 

given an exponentially distributed volume of emergency demand is compared to a 

traditional EOQ model.  With a traditional economic order policy, the regular demand 

generated by the production schedule is satisfied by a regular order quantity; and any 

emergency demand generated by undesirable circumstances is satisfied by a more 

expensive emergency order from a supplier or distributor via the more expensive mode of 
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transportation – air.  Thus, there is zero safety stock.  So, given a traditional economic 

ordering policy, the total cost per unit time is shown in equation (87); and the optimal 

scheduled order quantity derived by taking the first derivative of total cost function with 

respect to the scheduled order quantity in equation (88) is shown in equation (89). 
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Note, the traditional economic ordering policy does not change with respect to the 

distribution of the emergency demand.  In fact, the traditional model is not related to the 

emergency demand at all.  Rather, the emergency demand only affects the total 

procurement and transportation cost and thus the total cost of the policy. 
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4.4  Numerical Analysis & Results 

In order to illustrate the effect of energy on inventory policy decisions and 

corresponding logistics costs, the inventory model developed in the previous sections is 

numerically analyzed with respect to changes in energy cost as well as numerous other 

model parameters.  The resultant inventory policy decisions and respective logistics costs 

for the various model parameters are compared to those of a traditional economic 

ordering policy to further validate the inventory model and illustrate the cases in which 

the proposed model is most cost effective.  That is, the purpose of varying most of the 

model parameters between two levels for this analysis is to discover and understand the 

situations in which the inventory policies are most significantly affected by changes to 

energy cost as well as the situations in which the proposed model is most effective. 

 

4.4.1 Effect of Model Parameters with respect to Energy Cost 

In the analysis, the model parameters described in Section 4.1 are each varied 

between two levels in order to analyze the effect of each model parameter on various 

results including inventory policy decisions and logistics costs.  Since the effect of energy 

cost is one of the primary focuses in this research, the results analyzed in the analysis are 

in terms of changes with respect to energy cost.  That is, each result represents the 

difference between the result given high energy cost and the result given low energy cost.  

So, in the analysis, each model parameter excluding energy cost is varied between two 

levels in order to analyze the effect of each model parameter on changes to various 

results with respect to energy cost. 
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The results collected from the comparative analysis are analyzed statistically via 

the analysis of variance.  For each response, which represents the change in an inventory 

policy decision or logistics cost with respect to energy cost, the analysis of variance 

determines a degree of significance for each model parameter’s effect on the response.  

As the degree of significance decreases (or increases), the effect becomes more important 

(or less important) to the response.  Only if the degree of significance is less than or equal 

to 0.050 is the effect particularly significant to the response.   

In the subsequent presentation of the results, the significance of each effect on 

each response is presented as one of five levels of significance.  Since there are two 

numerical analyses conducted for each of the two distributions assumed to represent the 

volume of the emergency demand, the specific degree of significance for each model 

parameter on each response may vary between the two analyses.  However, the general 

conclusions of the two analyses are reasonably identical.  So, rather than displaying the 

degree of significance for each model parameter on each response as an average between 

the two analyses, the degree of significance is marked as one of five levels. 

The five levels at which the degree of significance is presented in the subsequent 

presentation of the results for the analysis of variance include < 0.001, < 0.050, < 0.100, 

< 0.50, and > 0.75.  If the degree of significance is marked as either < 0.001 or < 0.050, 

the effect is significant to the response; otherwise, the effect is not significant to the 

response.  Nevertheless, a degree of significance marked as < 0.100 is still considered 

noteworthy in the analysis of variance results of this comparative analysis given the slight 

variances between the results of the two numerical analyses conducted for each of the 

two distributions assumed to represent the volume of the emergency demand. 
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In addition to presenting the degree of significance of each model parameter’s 

effect on changes in various results with respect to energy cost, the subsequent results for 

the analysis of variance display the relationship of each model parameter on changes in 

various results with respect to energy cost.  Such a relationship may either be positive, 

negative, or negligible.  If the relationship is positive, the change in the result with 

respect to energy cost increases as the model parameter increases; whereas, if the 

relationship is negative, the change in the result with respect to energy cost decreases as 

the model parameter increases.   

The results of the analysis of variance which include both the degree of 

significance and the relationship of each model parameter on changes to inventory policy 

decisions and logistics costs with respect to energy cost are shown in Tables 4.7-4.12.  

While Tables 4.8-4.12 present the effect of each model parameter on the change in 

logistics costs with respect to energy cost, Table 4.7 presents the effect of each model 

parameter on the change in inventory policy decisions with respect to energy cost.  Since 

the traditional inventory policy decisions do not change as energy cost changes, only the 

results concerning the changes in the proposed inventory policy decisions with respect to 

energy cost are shown in Table 4.7. 

The responses presented in Table 4.7 include the changes in the inventory cycle 

length, the scheduled order quantity, the safety stock, and the probability of an 

emergency order with respect to energy cost for the proposed inventory policy.  Whereas 

the change in each inventory decision with respect to energy cost – otherwise known as 

the response – is presented in a set of two columns, each model parameter is presented in 

a single row.  So, each row of displays the effect of the specified model parameter on the 
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response(s); and each column of displays the effects of all the model parameters on the 

response.  In particular, for each response, the left column displays the degree of 

significance a model parameter affects the response, and the right column displays the 

relationship a model parameter has on the response. 

 

Table 4.7: Effect of Model Parameters on Changes to Inventory Decisions  

with respect to Energy Cost for the Proposed Inventory Policy  

 

For each response shown in Table 4.7, both the product weight and the average 

emergency demand are found to be significant to the change in the inventory decision 

with respect to energy cost.  In particular, these two parameters, unlike the other 

parameters, directly affect the transportation cost required to fulfill an emergency 

demand.  For example, as energy cost increases, the difference between the unit energy 

cost to ship a product via a faster, less energy efficient mode such as air and a slower, 

more energy efficient mode such as ground increases significantly.  Similarly, as either 

one of these two parameters increase, the difference between the total energy cost to ship 

the emergency demand via an emergency order and a regularly scheduled order increases.  

Thus, the inventory decisions in the proposed inventory model change significantly as 

either one of these two parameters change with respect to energy cost in order to reduce 
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the possibility of an expensive emergency order and likewise reduce the expected total 

cost of fulfilling an emergency demand. 

In the proposed inventory model, unlike the traditional economic ordering policy, 

this possibility of an emergency order may be decreased by adding or increasing safety 

stock.  However, safety stock affects not only the possibility of an emergency order, but 

also the inventory cycle length which subsequently affects the scheduled order quantity 

and both the probability of an emergency demand and an emergency order.  If the regular 

demand of the production system remains constant, a significant increase in safety stock 

causes a significant increase to the inventory cycle length and proportionally, a 

significant increase to the scheduled order quantity.  Yet, if the regular demand of the 

production system changes with respect to energy cost, a significant increase in the safety 

stock does not significantly affect the inventory cycle length because the scheduled order 

quantity, which is related to the inventory cycle length, is significantly affected by the 

change in the regular demand.   

So, as the regular demand changes with respect to energy cost, the level of safety 

stock becomes more significant to reducing the possibility of an expensive emergency 

order and likewise the expected total cost of fulfilling an emergency demand.  In fact, the 

degree of significance for the regular demand on the change in safety stock with respect 

to energy cost is the lowest compared to all the other parameters.  Likewise, the degree of 

significance for the regular demand on the change in either the scheduled order quantity 

or the probability of an emergency order is one of the lowest compared to all other 

parameters.  The only response regular demand does not significantly affect is the change 

in the inventory cycle length with respect to energy cost.  
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Therefore, the three model parameters determined to be most significant to 

changes in inventory decisions with respect to energy cost for the proposed inventory 

policy are the regular demand, the average emergency demand, and the product weight.  

The remaining parameters are not considered noteworthy to the proposed inventory 

policy because neither one is significant to more than two of the responses shown in 

Table 4.7.  Transportation distance, for instance, is insignificant to each and every 

inventory decision, even as energy cost changes.  The primary reason that these model 

parameters are less significant than the three factors discussed prior to changes in 

inventory decisions with respect to energy cost is that these parameters do not 

significantly affect the size or the cost to replenish an emergency demand as energy cost 

changes.  Thus, each of the remaining factors is insignificant to the change in both the 

scheduled order quantity and the safety stock; and the other inventory decisions shown in 

Table 4.7 are less significantly affected by the remaining factors as energy cost changes. 

Since neither energy cost nor emergency demand is explicitly considered in the 

traditional EOQ model, any change in energy cost is negligible to the inventory policy 

decisions.  Consequently, any change in energy cost is also insignificant to both the total 

procurement cost and the total inventory cost for the traditional policy.  The only logistics 

activity affected by energy cost in the traditional policy is transportation.   

Conversely, all the logistics activities including procurement, transportation, and 

inventory are affected by energy cost in the proposed inventory policy because both the 

energy cost and the emergency demand are explicitly considered in the proposed model.  

So, accordingly, the effect of each model parameter on the change in the total cost of 

each activity for the proposed inventory policy is shown in Table 4.8.   
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Table 4.8: Effect of Model Parameters on Changes to Total Costs of Each Logistics 

Activity with respect to Energy Cost for the Proposed Policy 

 

Similarly to the results shown in Table 4.7, the regular demand, the average 

emergency demand, and the product weight are determined to be the most significant 

factors to the change in the total cost of each logistics activity with respect to energy cost.  

In fact, these three parameters are significant to all of the logistics activities shown in 

Table 4.8.  All of the other parameters, on the other hand, are significant to at most two 

logistics activities in the proposed inventory policy; and the transportation distance is 

insignificant to all of the logistics activities as energy cost changes. 

While not all the individual activity costs are affected by changes to energy cost 

for both the proposed inventory policy and the traditional inventory policy, the total 

transportation cost is affected by energy cost for both policies.  Likewise, the total cost of 

all the logistics activities for both policies is affected by energy cost.  So the effect of 

each model parameter on the change in total transportation cost with respect to energy 

cost for either inventory policy is shown in Table 4.9; and the effect of each model 

parameter on the change in the total cost of all activities with respect to energy cost for 

either inventory policy is shown in Table 4.10.   
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Table 4.9: Effect of Model Parameters on Changes to Total Transportation Cost 

with respect to Energy Cost for each Inventory Policy 

 

Table 4.10: Effect of Model Parameters on Changes to Total Cost of all Logistics 

Activities with respect to Energy Cost for either Inventory Policy 

 

According to the results shown in Tables 4.9-4.10, the regular demand size, the 

transportation distance, and the product weight are significant to both the change in the 

total transportation cost and the change in the total cost of all the activities with respect to 

energy cost for either inventory policy.  All of the other parameters, on the other hand, 

are not significant to either the total transportation cost or the total cost of all activities.  

The primary reason for these results is that the three key model parameters are significant 

to the size or the cost of the regularly scheduled order as energy cost changes whereas the 

other model parameters are not, even if there is no instance of an emergency demand. 

For instance, the regular demand directly affects the scheduled order quantity and 

thus indirectly affects the total cost of any logistics activity, regardless of any change in 
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energy cost.  As the regular demand increases, the scheduled order quantity increases.  

Thus, the total cost of any logistics activity to procure, transport, or store the regularly 

scheduled order quantity throughout an inventory cycle increases.  Yet, as the energy cost 

increases along with the regular demand, the proportional increase to the scheduled order 

quantity more significantly affects the total energy cost to ship the regularly scheduled 

order quantity via ground transportation. 

Similarly, both the transportation distance and the product weight affect the unit 

costs to ship a product via a specified transportation mode.  As either the transportation 

distance or the product weight increases, so too does the unit transportation cost 

associated to a specified mode.  This is true for both the unit transportation cost related to 

energy and not related to energy.  In fact, the unit transportation cost related to energy is 

proportional to the unit transportation cost not related to energy.  So, as the energy cost 

increases along with either the transportation distance or the product weight, the unit 

energy cost to ship a single product via a specified transportation mode such as ground 

transportation increases more significantly.  As a result, the change in the total 

transportation and likewise the total cost of all the logistics activities with respect to 

energy cost is significant to transportation distance, product weight, and regular demand.  

Since at least one logistics activity (transportation) is affected by changes to 

energy cost in either inventory policy, the proportion of the total cost allocated between 

procurement, transportation, and inventory activities is also affected by changes to energy 

cost.  The effects of each model parameter on these responses are shown in Table 4.11.  

According to the results, the total unit purchasing cost, the transportation distance, and 

the product weight are the only factors significant to the change in the proportion of total 
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cost allocated to either procurement or transportation activities in both inventory policies 

as energy cost changes.  Conversely, the change in the proportion of total cost allocated 

to the inventory activity is significantly affected by a majority – at least five – of the 

model parameters in both inventory policies.  However, the insignificant parameters to 

the inventory activity are not the same for both the inventory policies. 

 

Table 4.11: Effect of Model Parameters on Changes to the Proportion of Total Cost 

Allocated to each Logistics Activities with respect to Energy Cost 

 

These results, at least with regard to the change in the proportion of total cost 

allocated to either procurement or transportation activities with respect to energy cost, are 

similar to the results shown in Tables 4.9-4.10.  For instance, since both the 

transportation distance and the product weight significantly affect the total transportation 

cost as energy cost changes, the proportion of total cost allocated between procurement 

and transportation activities with respect to energy cost changes significantly but 
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proportionally.  This proportional relationship of the total cost allocation between 

procurement and transportation transpires because the two activities comprise over 98 

percent of the total cost; yet, only the total transportation cost is significantly affected by 

changes to energy cost.  So, as either the transportation distance or the product weight 

increases, for example, the total transportation cost increases, and thus the proportion of 

the total cost allocated to transportation increases while the proportion of the total cost 

allocated to procurement decreases. 

The effect of the total unit purchasing cost on the proportion of the total cost 

between procurement and transportation activities is very similar to that of the 

transportation distance and the product weight.  However, where as the transportation 

distance and the product weight significantly affect the transportation cost positively, the 

total unit purchasing cost significantly affects the transportation cost negatively.  That is, 

as the total unit purchasing cost increases, the significance of the total unit purchasing 

cost overshadows the significance of the unit transportation cost.  So, as the total unit 

purchasing cost increases with respect to energy cost, the total transportation cost 

decreases, and thus the proportion of the total cost allocated to transportation decreases 

while the proportion of the total cost allocated to procurement increases. 

The change in the proportion of the total cost allocated to inventory with respect 

to energy cost, on the other hand, is affected by a majority of the model parameters.  The 

only parameters not significant to the change in the proportion of total cost allocated to 

inventory with respect to energy cost for the traditional inventory policy include the 

average emergency demand size and the transportation lead time.  Conversely, the only 

parameter not significant to the change in the proportion of total cost allocated to 
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inventory with respect to energy cost for the proposed inventory policy is the product 

weight.  Even though the majority of the parameters are significant to this response, the 

response and likewise the reasons for the response are not significant to the analysis.  

That is, since the proportion of total cost allocated to inventory in either policy provided 

any change in model parameters or energy cost is less than 2 percent, the effects on this 

response are not significant to the analysis. 

The final results of the analysis of variance concern the effectiveness of the 

proposed inventory policy if implemented in place of the traditional inventory policy.  

Table 4.12 presents the effect of each model parameter on the change in the difference 

between the total transportation cost of the proposed inventory policy and the traditional 

inventory policy with respect to energy cost as well as the change in the difference 

between the total cost of the proposed policy and the traditional policy with respect to 

energy cost.  These changes represent the cost effectiveness of the proposed inventory 

policy on reducing the total transportation cost or similarly the total cost of all activities if 

implemented in place of the traditional policy, especially if energy cost changes. 

According to the results shown in Table 4.12, the regular demand size, the 

average emergency demand, and the product weight are the only factors significant to the 

cost effectiveness of the proposed inventory policy at reducing both the total 

transportation cost and the total cost of all the logistics activities with respect to energy 

cost if implemented in place of the traditional inventory policy.  By no coincidence, these 

key parameters are identical to the key parameters determined to be significant to 

changes in inventory decisions with respect to energy cost for the proposed inventory 

policy, as shown in Table 4.7.  Because each of these key parameters significantly affects 
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the probability of fulfilling an emergency demand with an emergency order in the 

proposed inventory policy, the expected total transportation cost of fulfilling an 

emergency demand via any of the irregular replenishment scenarios is also significantly 

affected with respect to energy cost.  That is, as the probability of an emergency order 

decreases, the expected total transportation cost to fulfill an emergency demand via the 

irregular replenishment scenarios decreases.   

 

Table 4.12: Effect of Model Parameters on Changes to the Cost Effectiveness of the 

Proposed Policy in place of the Traditional Policy with respect to Energy Cost 

 

The effects on the probability of an emergency order and other inventory 

decisions, however, only transpire in the proposed inventory policy as energy cost 

changes.  Since neither the energy cost nor the emergency demand is explicitly 

considered in traditional EOQ model, the traditional policy does not change as energy 

cost changes.  Therefore, the cost savings with respect to fulfilling the emergency 

demand via the scenarios in the proposed inventory policy as opposed to the traditional 

inventory policy which only fulfills the emergency demand by the more expensive 

emergency order increases as either one of the three key parameters increase.  This result 

is more significant as either one of the key parameters increase as energy cost changes. 
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4.4.2 Key Parameters with respect to Energy Cost 

Given the various relationships and significances of model parameters on changes 

to inventory policy decisions and logistics costs shown in Tables 4.7-4.12 with respect to 

energy, certain model parameters can be combined to illustrate situations in which 

inventory policy decisions and their respective costs are most significantly affected by 

changes to energy cost.  Furthermore, similar combinations of such key factors can 

represent situations in which the proposed inventory model is most effective at reducing 

cost if implemented in place of the traditional EOQ inventory model.  These key factors, 

according to the initial comparative analysis, include the product weight, the size of the 

regular demand per unit time, and last but not least, the size of the emergency demand per 

unit time.  All other parameters including the fixed purchasing cost, the unit purchasing 

cost, the transportation lead time, and the transportation distance are not as significant to 

changes in inventory policies and costs with respect to energy cost.   

 

Table 4.13: Parameter Levels to Validate Significant Effects of Key Parameters  

 

Consequently, in the analysis conducted to illustrate the degree of significance for 

each of the key parameters, the parameters which are least affected by changes to energy 

cost are held constant at an arbitrary level shown in Table 4.13; and the parameters which 

are most significantly affected by changes to energy cost are each independently varied 
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between two levels.  That is, only one significant factor is varied at any time.  All other 

significant factors are held at the level which results in the most significant change with 

respect to energy cost as shown in Table 4.13. 

 

4.4.3 Effects of Product Weight with respect to Energy Cost 

According to the comparative analysis, one of the most significant factors to 

changes in inventory policy decisions and the logistics costs with respect to energy cost is 

the product weight.  As noted in the introduction of the model parameters, the product 

weight affects both the non-energy related and the energy related unit cost to ship a single 

product via a specified transportation mode.  More specifically, as the product weight 

increases, so too does the unit cost to ship via a specified mode. 

Similarly, as the energy cost increases along with the product weight, the unit 

transportation cost associated to the energy required to ship a single product via a 

specified transportation mode increases more significantly.  As a result, the expected total 

transportation cost per day for both policies increases more significantly as the weight of 

the product increases with respect to energy cost.  Figure 4.2 illustrates the effect of 

product weight, in particular a light weighted product versus a heavy weight product, on 

change the in transportation cost with respect to energy cost.   As the graph on the left 

illustrates, the change in total transportation cost per day with respect to energy cost is 

more significant for products with heavier weight than products with lighter weight.   Yet 

regardless of the weight, the expected transportation cost per day for the proposed policy 

is less than that of the traditional policy, as is illustrated in the graphs on the right in 4.2.   
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Figure 4.2: Change in Expected Total Transportation Cost per Day  

with respect to Energy Cost and Product Weight for the Exponential Distribution 

 

The affect of product weight and energy cost on the daily total transportation cost 

shown in Figure 4.2 corresponds to variations in the proportion of total cost allocated to 

procurement, transportation, and inventory activities.  For either inventory policy, over 

98 percent of the total cost is allocated to procurement and transportation activities.  

However, since the procurement cost in both inventory policies is not significantly 

affected by energy cost alone, the change in the proportions of total cost allocated to 

procurement or to transportation corresponds proportionally with the change in the 

expected total transportation cost per day with respect to energy cost and product weight.   

In other words, as the change in the expected total transportation cost with respect 

to energy increases, so too do the proportion of total cost allocated to transportation 

activities.  Conversely, as the proportion of the total cost allocated to transportation 
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activities increases, the proportion of the total cost allocated to procurement decreases.  

As the graph on the left in Figure 4.3 illustrates, the change in the proportion of the total 

cost allocated to transportation with respect to energy cost increases more significantly 

provided a heavier product than a lighter product.  Similarly, the proportion of the total 

cost allocated to procurement with respect to energy decreases more significantly 

provided a heavier product than a lighter product.   

 

Figure 4.3: Change in the Proportion of Total Cost Allocated to Transportation  

with respect to Energy Cost and Product Weight for the Exponential Distribution 

 

As the two graphs on the right in Figure 4.3 illustrate, the proportion of total cost 

allocated to transportation activities is always less for the proposed inventory policy than 

the traditional inventory policy.  However, the proportion of total cost allocated to 

procurement activities for the proposed inventory policy is not always more or less than 

that of the traditional inventory policy.  The reason for these results is that the proposed 
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inventory policy, unlike the traditional inventory policy, explicitly considers energy cost 

and emergency demand in the model.  Also, the expected total procurement cost per day 

is not significantly affected by changes to energy cost for both policies. 

Consequently, like the change in the expected transportation cost per day with 

respect to energy cost, the change in the expected total cost per day with respect to 

energy cost is significantly affected by changes to product weight.  In particular, the 

change in the expected total cost per day with respect to energy increases more 

signficantly provided a heavier product than a lighter product.  Additionally, the expected 

total cost per day for the proposed inventory policy is always less than that of the 

traditional inventory policy.  This result is proportionally identical to the result illustrated 

in the graphs in Figure 4.2 for the change in the expected total transportation cost per day.   

Product weight affects not only the change in the unit energy cost to ship with a 

specified transportation mode with respect to changes in energy cost, but also the change 

in the difference in the unit energy cost to ship between specified transportation modes 

with respect to changes in energy cost.  As the energy efficiency of the transportation 

mode decreases, the rate at which the fuel surcharge changes with respect to energy cost 

increases, and the rate at which the total unit transportation cost changes with respect to 

weight increases.  So, the difference between the unit energy cost to ship a product via a 

faster, less energy efficient mode such as air and a slower, more energy efficient mode 

such as ground increases significantly with respect to weight and\or energy.   

Consequently, the need to reduce the probability of fulfilling emergency demand 

with the more expensive and energy sensitive emergency order which utilizes air 

transportation becomes more significant to minimize cost as weight increases with 
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respect to energy cost.  With regards to the proposed policy, the probability of fulfilling 

an emergency demand with the more expensive and energy sensitive emergency order 

can be decreased by adding or increasing safety stock.  So, in order to minimize this 

probability and thus minimize cost, the safety stock must increase more significantly as 

product weight increases with respect to changes in energy cost.  Figure 4.4 illustrates 

that the change in safety stock with respect to energy cost does in fact increase more 

significant provided a heavier product than a lighter product.   

 

Figure 4.4: Change in Safety Stock with respect to Energy Cost and Product Weight 

for the Exponential Distribution 

 

However, safety stock affects not only the probability of an emergency order, but 

also the inventory cycle length which subsequently affects the scheduled order quantity, 

the probability of an emergency demand, and the probability of fulfilling the emergency 

demand with an emergency order.  As safety stock increases, the inventory cycle length 

and thus the scheduled order quantity increases proportionally since there is no change in 

the regular demand.  Therefore, similarly to safety stock, both the inventory cycle length 

and the scheduled order quantity increase more significantly as weight increases with 

respect to energy cost.  This result is illustrated in two separate graphs in Figure 4.5.   
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Figure 4.5: Change in the Inventory Cycle Length and Change in the Scheduled 

Order Quantity with respect to Energy Cost and Product Weight  

for the Exponential Distribution 

 

As both graphs in Figure 4.5 illustrate, the change in the inventory cycle length 

with respect to energy cost (on the left) is proportional to the change in the scheduled 

order quantity with respect to energy cost (on the right) when the regular demand size is 

held constant.  Furthermore, the change in either the inventory cycle length or the 

scheduled order quantity with respect to energy cost for the proposed inventory policy is 

more significant for a heavier product than a lighter product but negligible for the 

traditional inventory policy.  In fact, because traditional inventory policy, unlike the 

proposed inventory policy, does not explicitly consider energy cost or emergency 

demand, the traditional inventory policy decisions do not change as product weight 

changes with respect to energy cost. 

Therefore, given that the inventory cycle length directly affects the probability of 

an emergency demand, the change in the probability of an emergency demand with 

respect to energy cost is negligible for the traditional inventory policy but significant for 

the proposed inventory policy.  Moreover, the effect of energy cost and product weight 
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on this probability is similar if not identical to that of both the inventory cycle length and 

the scheduled order quantity.  In particular, as the graph on the left in Figure 4.6 

illustrates, the change in the probability of an emergency demand with respect to energy 

cost is more significant for heavier products than lighter products. 

 
Figure 4.6: Change in the Probability of an Emergency Demand  

and Change in the Probability of an Emergency Order  

with respect to Energy Cost and Product Weight for the Exponential Distribution 

 

Similarly to the probability of an emergency demand, the probability of fulfilling 

the emergency demand with an emergency order increases as the inventory cycle length 

increases.  However, if safety stock also increases, the probability of fulfilling the 

emergency demand with an emergency order decreases.  So, the change in the probability 

of an emergency order actually decreases as energy cost increases.  Yet, as the graph on 

the right in Figure 4.6 illustrates, the change in the probability of an emergency order 

with respect to energy cost is negatively related to the product weight.  That is, the 

probability of an emergency order decreases more significantly with a light weighted 

product than a heavy weighted product.  Nevertheless, as the graph of the change in the 
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probability of an emergency demand with respect to energy cost in Figure 4.6 illustrates, 

the probability still decreases as the product weight increases. 

Since the probability of an emergency order decreases as either the product 

weight or the energy cost increase, the expected total transportation cost of fulfilling an 

emergency demand via any of the irregular replenishment scenarios also decreases as 

either the product weight or the energy cost increase.  Therefore, the cost savings with 

respect to fulfilling the emergency demand via the scenarios in the proposed inventory 

policy as opposed to the traditional inventory policy increases as either the energy cost or 

the product weight increases.  This result is realized more significantly as the product 

weight increases with respect to energy cost. 

 

Figure 4.7: Change in the Cost Effectiveness of the Proposed Inventory Policy at 

Reducing the Total Transportation Cost per Day  

and the Total Cost of all Logistics Activities per Day  

with respect to Energy Cost and Product Weight for the Exponential Distribution 

 

As a result, the total transportation cost savings per day of implementing the 

proposed inventory policy in place of the traditional inventory policy increases more 

significantly as the product weight increases with respect to energy cost.  That is, the total 
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transportation cost savings per day changes with respect to energy cost more significantly 

for a heavier weighted product than a lighter weighted product, as illustrated in the graph 

on the right in Figure 4.7.  Likewise, the total cost savings per day for all logistics 

activities of implementing the proposed inventory policy in place of the traditional 

inventory policy increases more significantly as the product weight increases with respect 

to energy cost.  This result, which is illustrated in the graph on the left in Figure 4.7, 

occurs because transportation is the only activity that comprises a large proportion of the 

total cost and is significantly affected by energy cost alone.   

 

4.4.4 Effects of Regular Demand with respect to Energy Cost 

Another very significant factor to changes in inventory policy decisions and the 

logistics costs with respect to energy cost, according to the comparative analysis, is the 

size of the regular demand.  Without any change to energy cost, the size of the regular 

demand directly affects the scheduled order quantity and thus indirectly affects the total 

procurement, transportation, and inventory cost for the regularly scheduled order.  Yet, as 

the energy cost increases along with the size of the regular demand, the proportional 

increase to the scheduled order quantity more significantly affects the total energy cost to 

ship the scheduled order quantity via a specified transportation mode.  As a result, change 

in the expected total transportation cost per day with respect to energy cost for both 

policies increases more significantly as the regular demand increases. 

The effect of the regular demand size on the change in the total transportation cost 

per day with respect to energy cost is illustrated in Figure 4.8.  In particular, the change in 

total transportation cost per day with respect to energy cost is more significant for 
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products with higher regular demand than products with lower regular demand, as 

illustrated in the graph on the left in Figure 4.8.  Yet, regardless of the size of the regular 

demand, the expected transportation cost per day for the proposed policy is less than that 

of the traditional policy, as is illustrated in the two graphs on the right in Figure 4.8.   

 

Figure 4.8: Change in Expected Total Transportation Cost per Day  

with respect to Energy Cost and Regular Demand for the Uniform Distribution 

 
The effects on the total transportation cost per day illustrated in Figure 4.8 are 

proportionally identical to the effects the same model parameters on the total cost per day 

of all logistics activities related to the inventory policy.  This response transpires because 

transportation is the only activity that comprises a large proportion of the total cost and is 

significantly affected by energy cost alone.  Procurement, on the other hand, comprises 

the remaining major proportion of the total cost but is not significantly affected by energy 

cost alone.  So, similarly to the effects illustrated in Figure 4.8, the change in the 

expected total cost per day of all the logistics activities for either policy with respect to 
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energy cost increases more significantly for products with higher volumes of regular 

demand than products with lower volumes of regular demand. 

The change in regular demand and energy cost affects not only the regularly 

scheduled order, but also the irregular replenishment scenarios.  In particular, the change 

in energy cost, regardless of a change in regular demand, affects the difference in the unit 

energy cost to ship an order via different modes of transportation.  More specifically, as 

the energy efficiency of the transportation mode decreases, the rate at which the fuel 

surcharge changes with respect to energy cost increases.  So, the difference between the 

unit energy cost to ship a product via a faster, less energy efficient mode such as air and a 

slower, more energy efficient mode such as ground increases with respect to energy cost. 

Consequently, the necessity to reduce the probability of fulfilling the emergency 

demand with the more expensive and energy sensitive emergency order which utilizes air 

transportation continues to become more significant to the objective of minimizing cost 

as energy cost increases, regardless of any change regular demand size.  This probability 

can be decreased by adding or increasing safety stock in the proposed policy.  However, 

contrary to the prior logic, the change in the safety stock is significantly affected by not 

only energy cost, but also the change in regular demand size.  That is, the change in 

safety stock with respect to energy cost is significantly affected by changes in the regular 

demand size, because the probability of fulfilling the emergency demand with an 

emergency order is affected by more than safety stock alone.   

As previously noted, safety stock affects not only the probability of an emergency 

order, but also the inventory cycle length which subsequently affects the scheduled order 

quantity, the probability of an emergency demand, and the probability of fulfilling an 
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emergency demand with an emergency order.  Without any change in the size of the 

regular demand, an increase in safety stock causes an increase to the inventory cycle 

length and subsequently, a proportional increase to the scheduled order quantity.  Yet, if 

regular demand changes along with safety stock, the change in the scheduled order 

quantity becomes more significant than the change in the inventory cycle length which is 

not affected by changes to the regular demand alone.  In fact, the change in scheduled 

order quantity with respect to energy cost is significantly affected by the regular demand 

size whereas the change in the inventory cycle length with respect to energy cost is not 

significantly affected by regular demand size. 

 

Figure 4.9: Change in the Scheduled Order Quantity with respect to Energy Cost 

and Regular Demand for the Exponential Distribution 

 

Figure 4.9 illustrates the significant effect of the regular demand size on the 

change in the scheduled order quantity with respect to energy cost.  As the graph on the 
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left in Figure 4.9 shows, the change in the scheduled order quantity with respect to 

energy cost increases more significantly for products with higher regular demand 

volumes than products with lower regular demand volumes.  Regardless of the regular 

demand size, the scheduled order quantity is always greater in the proposed inventory 

policy than the traditional inventory policy, as is illustrated in the two graphs on the right 

in Figure 4.9.  Moreover, the scheduled order quantity is always greater with higher 

regular demand sizes than lower regular demand sizes, regardless of the inventory policy. 

 

Figure 4.10: Change in Safety Stock  

and Change in the Probability of an Emergency Order  

with respect to Energy Cost and Regular Demand for the Exponential Distribution 

 

Although the inventory cycle length and likewise the probability of an emergency 

demand are not significantly affected by changes in the regular demand size with respect 

to energy cost, the two results are still significantly affected by changes to energy cost 

alone.  Consequently, as energy cost increases, the inventory cycle length as well as the 

safety stock increases, and thus the probability of fulfilling an emergency order decreases 

with respect to energy cost.  So as the graph on the left in Figure 4.10 illustrates, the 

change in safety stock with respect to energy cost increases more significantly for higher 
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regular demand volumes than lower regular demand volumes.  Yet the probability of an 

emergency order decreases more significantly for lower regular demand volumes than 

higher regular demand volumes.  Nevertheless, as the graph of the change in the 

probability of an emergency demand with respect to energy cost in Figure 4.10 illustrates, 

the probability of an emergency order still decreases as the regular demand size increases. 

Since the probability of an emergency order decreases as either the regular 

demand or the energy cost increase, the expected total transportation cost of fulfilling an 

emergency demand via any of the irregular replenishment scenarios also decreases as 

either the regular demand size or the energy cost increase.  Therefore, the cost savings 

with respect to fulfilling the emergency demand via the scenarios in the proposed 

inventory policy as opposed to the traditional current inventory policy increases as either 

the energy cost or the regular demand size increase.  That is, the cost effectiveness of 

implementing the proposed policy in place of the traditional inventory policy becomes 

more significant as eight the energy cost or the regular demand increase; however, the 

cost affectivities becomes more evident as the regular demand size increases. 

As a result, the total transportation cost savings per day of implementing the 

proposed inventory policy in place of the traditional inventory policy increases more 

significantly as the regular demand size increases with respect to energy cost.  That is, the 

total transportation cost savings per day changes with respect to energy cost more 

significantly for higher regular demand volumes than lower regular demand volumes, as 

illustrated in the graph on the right in Figure 4.11.  Likewise, the total cost savings per 

day for all logistics activities of implementing the proposed inventory policy in place of 

the traditional inventory policy increases more significantly as the regular demand size 
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increases with respect to energy cost.  This result, which is illustrated in the graph on the 

left in Figure 4.11, occurs because transportation is the only activity that comprises a 

large proportion of the total cost and is significantly affected by energy cost alone. 

 

Figure 4.11: Change in Total Cost per Day and Change in Shipping Cost per Day 

with respect to Energy Cost and Regular Demand for the Uniform Distribution 

 

4.4.5 Effects of Emergency Demand with respect to Energy Cost 

The final factor significant to the cost effectiveness of the proposed inventory 

policy over the traditional inventory policy with respect to energy cost, according to the 

comparative analysis, is the expected size of the emergency demand.  Unlike changes to 

the regular demand, changes to the expected size of the emergency demand only affect 

the irregular replenishment scenarios.  Therefore, only the inventory decisions and 

respective costs in the proposed inventory policy are affected by changes to the expected 

size of the emergency demand, because the traditional inventory policy does not consider 

emergency demand in its inventory policy decisions.  Instead, changes to the size of the 

emergency demand only affect the total procurement and the total transportation cost of 

the traditional inventory policy. 
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Though the change in the total transportation cost with respect to energy cost for 

either of the two inventory policies is not significantly affected by the change in the 

average emergency demand size, the change in the total transportation cost associated 

only to the irregular replenishment scenarios with respect to energy cost is significantly 

affected by the average emergency demand.  In particular, the change in the average 

emergency demand with respect to energy cost affects the difference in the total energy 

cost to fulfill the emergency demand via different modes of transportation.  As the energy 

efficiency of the transportation mode decreases, the rate at which the fuel surcharge 

changes with respect to energy cost increases.  So, the difference between the total energy 

cost to fulfill the emergency demand via the faster, less energy efficient air transportation 

and the slower, more energy efficient ground transportation increases more significantly 

as the size of the emergency demand increases with respect to energy cost. 

Consequently, the necessity to reduce the probability of fulfilling emergency 

demand with the more expensive and energy sensitive emergency order which utilizes air 

transportation continues to become more significant to the objective of minimizing cost 

as the size of the emergency demand increases with respect to energy cost.  So, like the 

response of the proposed model to changes in product weight or regular demand with 

respect to energy cost, the response of the proposed model to increases in the emergency 

demand volume with respect to energy cost is to add or increase safety stock in order to 

reduce the probability of fulfilling the emergency demand with an emergency order.  In 

fact, as Figure 4.12 shows, the change in the safety stock with respect to energy cost 

increases more significantly for higher average emergency demand volumes than lower 

average emergency demand volumes.   
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Figure 4.12: Change in Safety Stock with respect to Energy Cost and Average 

Emergency Demand for the Exponential Distribution 

 

However, as previously noted, the probability of fulfilling an emergency demand 

with an emergency order is affected by more than safety stock alone.  For instance, the 

inventory cycle length, which is also affected by safety stock, affects the probability of an 

emergency order as well as the probability of an emergency demand.  As the inventory 

cycle length increases, both the probability of an emergency demand and the probability 

of fulfilling the emergency demand with an emergency order increase, provided no other 

changes.  Yet, as both the safety stock and inventory cycle length increase, the 

probability of an emergency order decreases more significantly as the inventory cycle 

length increases with respect to the safety stock level. 

Since the safety stock level also affects the inventory cycle length, the inventory 

cycle length is similarly affected by changes to the average size of the emergency 

demand with respect to energy cost.  That is, as either the safety stock level or the 

average size of the emergency demand increases, the inventory cycle length increases.  

Likewise, the scheduled order quantity and the probability of an emergency demand, 

which are proportional to the inventory cycle length provided that there is no change in 
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the size of the regular demand, are increase significantly with respect co changes in the 

energy cost and the average size of the emergency demand.  These results are illustrated 

in two separate graphs in Figure 4.13. 

 

Figure 4.13: Change in the Inventory Cycle Length  

and Change in the Scheduled Order Quantity with respect to Energy Cost and 

Average Emergency Demand for the Uniform Distribution 

 

As both graphs in Figure 4.13 illustrate, the change in the inventory cycle length 

with respect to energy cost (on the left) is proportional to the change in the scheduled 

order quantity with respect to energy cost (on the right) when the regular demand size is 

held constant.  Furthermore, the change in either the inventory cycle length or the 

scheduled order quantity with respect to energy cost for the proposed inventory policy is 

more significant for a higher average emergency demand than a lower average 

emergency demand.  However, this result is only true for the proposed policy because the 

traditional policy does not explicitly consider energy cost or emergency demand. 

Since the inventory cycle length proportionally affects the probability of an 

emergency demand, the change in the probability of an emergency demand with respect 

to energy cost is significantly affected by the average emergency demand volume in the 
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proposed inventory policy.  In particular, the effect of energy cost and the average 

emergency demand size on this probability is similar if not identical to that of both the 

inventory cycle length and the scheduled order quantity.  That is, the change in the 

probability of an emergency demand with respect to energy cost is more significant for a 

higher average emergency demand size than a lower emergency demand size, as the 

graph on the left in Figure 4.14 illustrates. 

 

Figure 4.14: Change in the Probability of Emergency Demand and Change in the 

Probability of an Emergency Order with respect to Energy Cost and 

Average Emergency Demand for the Exponential Distribution 

 

Similarly to the probability of an emergency demand, the probability of fulfilling 

the emergency demand with an emergency order increases as the inventory cycle length 

increases.  However, because safety stock increases in addition to the inventory cycle 

length as the energy cost increases, the probability of fulfilling the emergency demand 

with an emergency order decreases.  Yet, as the graph on the right in Figure 4.14 

illustrates, the change in the probability of an emergency order with respect to energy 

cost is positively related to the product weight.  That is, the probability of an emergency 

order decreases more significantly with a higher average emergency demand than a lower 
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average emergency demand.  Also, as the graph on the right in Figure 4.14 shows, the 

probability of an emergency demand decreases as either the energy cost or the average 

emergency demand size increase. 

Since the probability of an emergency order decreases as either the average size 

of the emergency demand or the energy cost increase, the expected total transportation 

cost of fulfilling an emergency demand via any of the irregular replenishment scenarios 

also decreases as either the average size of the emergency demand or the energy cost 

increase.  Moreover, since the change in the probability of an emergency order with 

respect to energy cost decreases more significantly as the average size of the emergency 

demand increases, the change in the total transportation cost of fulfilling an emergency 

demand via any of the irregular replenishment scenarios with respect to energy cost 

decreases more significantly as the average size of the emergency demand increases.  

Therefore, the cost savings with respect to fulfilling the emergency demand via the 

scenarios in the proposed policy as opposed to the traditional model increases more 

significantly as the average emergency demand increases with respect to energy cost. 

As a result, the total transportation cost savings per day of implementing the 

proposed inventory policy in place of the traditional inventory policy increases more 

significantly as the average emergency demand size increases with respect to energy cost.  

That is, the total transportation cost savings per day changes with respect to energy cost 

more significantly for a higher average emergency demand size than a lower average 

emergency demand size, as illustrated in the graph on the right in Figure 4.15.  Likewise, 

the total cost savings per day for all logistics activities of implementing the proposed 

inventory policy in place of the traditional inventory policy increases more significantly 
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as the average size of the emergency demand increases with respect to energy cost.  This 

result, which is illustrated in the graph on the left in Figure 4.15, occurs because 

transportation is the only activity that comprises a large proportion of the total cost and is 

significantly affected by energy cost alone.   

 
Figure 4.15: Change in Total Cost per Day and Change in Shipping Cost per Day 

with respect to Energy Cost and Emergency Demand for the Uniform Distribution 

 

4.4.6 Summary of Numerical Analysis & Results 

The purpose of analyzing the proposed inventory policy comparatively to the 

traditional economic ordering policy with respect to changes in energy cost as well as 

numerous other model parameters is to discover and understand the environments in 

which the inventory policies are most significantly affected by changes to energy cost as 

well as the environments in which the proposed inventory model is most cost effective.  

As the analysis reveals, the three key model parameters – product weight, regular 

demand, and emergency demand – affect inventory decisions and related logistics costs 

more significantly than all other parameters as energy cost changes.  In particular, as any 

of the three key model parameters increase, the change in many of the inventory 

decisions or related logistics costs become more significant as energy cost changes.  

Furthermore, the cost effectiveness and thus savings of implementing the proposed 
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inventory policy in place of the traditional policy becomes more significant as product 

weight, regular demand, or emergency demand increase with respect to energy cost. 

Therefore, the production environments with relatively heavy product weights, 

high regular demand, and high emergency demand are most significantly affected by 

changes to energy cost.  Such environments are most receptive to the proposed inventory 

model rather than a simple economic order policy which ignores the possibility for 

emergency demand.  Nonetheless, the production environments with high levels of at 

least one of the three factors are also receptive to the proposed inventory policy since 

each factor alone significantly affects many inventory decisions and related logistics 

costs with respect to energy cost. 

Provided these results, guidelines can be developed to assist businesses in 

managing inventory or other logistics functions more efficiently and effectively as energy 

cost and consumption continue to rise.  For instance, with regard to inventory 

management, businesses with similar production environments should implement the 

proposed inventory ordering policy if the weight of the product, the regular demand of 

the product, or the emergency demand of the product is relatively high.  In particular, 

when more than one of the three factors – product weight, regular demand, and 

emergency demand – is relatively high, businesses should employ the proposed inventory 

policy rather than a simple economic ordering policy in order to effectively and 

efficiently compete globally as energy cost rises. 
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CHAPTER 5 

CONCLUSION & EXTENSIONS 

 

5.1 Conclusions 

 The inventory model developed and analyzed in this paper is based on the actual 

environment at an aircraft manufacturer.  In particular, the proposed inventory model is 

applicable for production systems with constant production rates but small, underlying 

possibilities for undesirable circumstances to threaten the intricately planned production 

schedule.  Rather than ignoring the possibility for undesirable circumstances and 

subsequently fulfilling any emergency demand with a more expensive and energy cost 

sensitive emergency order from a supplier, the proposed model provides multiple 

scenarios to fulfill the emergency demand more cost effectively.  These options include 

fulfilling the emergency demand from safety stock alone, a combination of safety stock 

and an emergency order, and lastly an emergency order alone if the regularly scheduled 

order is already in route to the production facility. 

 So, the objective of the inventory model developed in this paper was to structure 

an inventory policy under explicit energy cost considerations with optimal sizes for the 

scheduled order quantity, safety stock, and inventory cycle length that minimizes the total 

expected cost per unit time for a system with a constant production rate but a small, 

underlying possibility for undesirable circumstances to threaten the intricately planned 

production schedule.  After solution conditions and procedures were developed to ensure 

a globally optimal solution to the given problem situation, the model was comparatively 
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analyzed to a traditional economic ordering policy which satisfies the regular demand 

generated by the production system and ignores the possibility of an undesirable 

circumstance threatening the intricately planned production schedule. 

 Throughout the numerical analysis, the model parameters including the energy 

cost are varied in order to identify the key parameters that affect the inventory policy 

decisions and the resultant costs.  By varying most of the model parameters, the analysis 

unveils the environments in which inventory policies are most significantly affected by 

changes to energy cost as well as the environments in which the proposed inventory 

policy is most cost effective.  As the analysis reveals, the three key model parameters – 

product weight, regular demand, and emergency demand – affect inventory decisions and 

related logistics cost more significantly than all other parameters as energy cost changes.  

In particular, as any of these three key model parameters increase, the change in 

inventory decisions or related logistics cost becomes more significant as energy cost 

changes.  Moreover, the cost effectiveness of implementing the proposed inventory 

policy in place of the traditional inventory policy also becomes more significant as any of 

these key model parameters increase with respect to energy cost. 

 Therefore, the production environments with relatively heavy product weights, 

high regular demand, and high emergency demand are most significantly affected by 

changes to energy cost.  Such environments are also particularly receptive to the 

proposed inventory model and the cost savings it offers in comparison to the simple 

economic order policy which ignores the possibility for emergency demand.  Nonetheless, 

the production environments with high levels of at least one of the three factors are also 
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receptive to the proposed inventory policy since each factor alone significantly affects many 

inventory decisions and related logistics costs with respect to changes in energy cost. 

Provided these results, guidelines can be developed to assist businesses in 

managing inventory and many other logistics functions more efficiently and effectively 

as energy cost and consumption continue to rise.  For instance, with regard to inventory 

management, businesses with similar production environments should implement the 

proposed inventory ordering policy if the weight of the product, the regular demand of 

the product, or the emergency demand of the product is relatively high, but especially 

when all three factors are relatively high. 

 

5.2 Extensions 

There are many possible extensions to this research.  Many of the following 

extensions are based on expanding the scope of the research.  For instance, future 

research may expand the scope of the current research with regard to the inventory 

applications, the supply chain network, and the production environment. 

The first possible research extension involves broadening the scope of the 

inventory model applications.  That is, future research should develop an inventory model 

that still explicitly considers energy cost but is applicable to more production 

environments.  By developing a more generalized inventory model with respect to 

changes in energy cost, a more generalized guideline for businesses to manage inventory 

more efficiently and effectively as energy cost and consumption rise can be developed. 

The second possible research extension involves broadening the scope of the 

supply chain network.  The scope of the supply chain network can be expanding 
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vertically, horizontally, or both.  To expand the current research vertically, future 

research should consider more levels in the supply chain network.  Instead of focusing on 

at the plant level, future research can on the inventory at the plant level as it relates to 

backwards interactions from suppliers and distributors or as it relates to forwards 

interactions from warehouses, distributors, and customers. 

The scope of the supply chain network can also be expanded horizontally.  To 

expand the supply chain scope of the current research, future research should consider 

more locations at each or any level of the supply chain.  For instance, future research 

could develop an inventory model that explicitly considers energy cost in order to 

determine the optimal inventory policy for each plant location in the supply chain, 

provided there are multiple locations in the supply chain.  If the scope of the supply chain 

is expanded horizontally and vertically, an optimal inventory policy for multiple locations 

at multiple levels could be determined.   

The third possible research extension involves broadening the scope of the 

production environment by means of considering multiple products.  Thus, an inventory 

ordering model that explicitly considers the cost of energy can be developed to determine 

the optimal inventory ordering policy for all the products in a production system. 

Last but not least, the energy portion of the current research can be extended in 

the scope of the model formulation.  In particularly, the unit purchasing cost associated to 

energy should be reformulated in order to test the true significance of energy cost on the 

purchasing cost.  Rather than testing the effect of energy cost on transportation alone, the 

effect of energy cost on both production costs and thus purchasing costs and 

transportation costs should be investigated in future research. 
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