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Abstract

Passive source localization is a commonly used technology which can be applied to many areas,

such as radar, sonar, microphone array, sensor network and wireless communication system. If

an unknown source radiates some signals, the signal will be received by some receivers. The

source location can be estimated based on the received signals using passive source localization

technology. A lot of positioning methods have been derived on this subject, such as time of

arrivals (TOAs), time differences of arrival (TDOAs), angle of arrivals (AOAs).

This thesis is mainly based on Chan and Ho’s two stage closed form TDOAs source localization

method. However, Chan and Ho’s method assume the sensor positions are known and all of the

sensors are perfectly synchronized.

Three topics that affect the accuracy of the source localization are discussed in this thesis in the

presence of sensor position manifold uncertainties, in the presence of clock-bias error and in the

presence of both sensor position manifold uncertainties and clock-bias error.

At first, we develop an estimator for source localization when measurement noise and sensor

position manifold uncertainties are present. We modify a weighting matrix that accounts for

the sensor position manifold error to improve the source location estimation. Then, we use

simulation to analyse the performance of the proposed estimator. The simulation result shows

that the proposed method reaches the CRLB performance for both the near-field and distant

sources in the small error region. Furthermore, the proposed method has been provn that its

performance reaches CRLB theoretically.

Secondly, we develop an algorithm for source localization in the presence of measurement noise

and unknown but fixed clock offsets. The main idea of this estimator is to group the sensors with

the same synchronization clocks together to form mN sub-arrays. We transformed the original

TDOA values to the new TDOA values of which the reference sensors are different for different

sub-arrays so that the clock offsets are eliminated within a sub-array. The simulation results

show that the proposed method reaches the CRLB performance for both the near-field and

distant sources in the small error region. The performance of the proposed method in reaching

CRLB has been provn theoretically under the small noise condition.

Finally, we develop an estimator for source localization in the presence of measurement noise,
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sensor position manifold uncertainties and clock-bias error. The weighting matrix takes into

account of the measurement noise and the sensor position manifold uncertainties. In addition,

we group the sensors with the same synchronization clocks together to form mN sub-array and

use the new transformed TDOA values which allow us to eliminate the clock offsets within a sub-

array. The simulation result shows that the proposed method reaches the CRLB performance for

both the near-field and distant sources in the small error region. The performance of reaching

the CRLB has been proved theoretically under the small noise condition.
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Chapter 1

Introduction

1.1 Background

Passive source localization is a commonly used technology which can be apply in many areas,

such as radar [1,2], sonar [3-6], microphone array [7-9], sensor network [10-14] and wireless com-

munication [15-18] system. If an unknown source radiate some signal, and the signal will be

received by some receivers. The source location can be estimate base on the received signals

using the passive source localization technology. After many years study on this subject, a lot

of methods have been derived using time of arrivals(TOAs), time differences of arrival(TDOAs)

[19-25], angle of arrivals(AOAs) [26-28].

TOA refers to the travel time of a radio signal from a single transmitter to a remote single

receiver. TOA after multiplied by signal propagation speed is the distance from the transmitter

to the receiver. TOA defines a circle at the receiver position in which the emitting source

will lie. In absence of noise, the source location is at the intersection of the circles from three

receivers. Because TOA method need the absolute time of arrival,time stamping the signal

and synchronization between transmitter and receiver is needed. Figure 1.1 shows the TOA

localization approach, where s1, s2, s1 are receivers. the intersection of the three circles is the

source location.
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Figure 1.1: Source localization using TOAs

TDOA is the difference of arrival time of a source signal arrived at two different receivers.

TDOAs can be calculated by subtraction of two TOA measurements, or it can be obtained

by cross-correlating the two received signal. A constant TDOA locus is a hyperbola. Source

location can be estimated by solving a nonlinear hyperbolic equations. Both TOA and TDOA

techniques need synchronization. However, no time-stamping the signal is needed for TDOA.

Figure 1.2 will illustrates the TDOA localization methods, where s1, s2, s1 are receivers. The

intersection of hyperbolic curves give the location.

AOA refers to angel of arrival. AOA uses direction information instead of distance infor-

mation to estimate the source location. AOA defines a bearing line that passes through the

source. Figure 1.3 demonstrates the AOA localization method, where s1, s2, s1 are receivers,

The intersection of bearing lines is the source location.

This thesis is based on TDOAs for source localization. The proposed estimators, however,

can be easily extended to TOA and AOA position localization algorithm in a straight forward

manner.

2



Figure 1.2: Source localization using TDOAs

Figure 1.3: Source localization using AOAs
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1.2 Localization Accuracy

Localization accuracy depend on different factors, for example, measurement noise, geometric

distribution of the sensor and source, nonlinear of sight, sensor position error and clock-bias

error. In this thesis, we will discuss sensor position manifold uncertainties and clock-bias error

and combination of the two error.

1.2.1 Manifold Uncertainty

Previous study on TDOA localization usually assumes sensor positions are known and accurate.

However, sensor positions may have some error. Some previous work has been done on this

subject[29,30]. However, they paid more attention on handling independent sensor uncertainties.

In practice, sensor uncertainty may have some relations between each other. If these relations are

considered, better localization accuracy can be achieved than considering all sensor uncertainty

as independent Gaussian noise.

For example, in Figure 1.4, the entire sensor array contains two sub-arrays. The sensors in each

sub-array are mounted at fixed position. In this case, each sub-array can be drifted and all its

sensors have the same amount of position error. If all the sensors have independent error, it will

be sixteen dimensions of uncertainty. However, since all sensors in one sub-array move together,

it only has four dimensions of uncertainty. So, there is some hope that the estimation accuracy

can be improved.

1.2.2 Clock Bias Uncertainty

The TDOA localization method needs synchronization among the sensors. However, a sensor

array may have more than one clocks. This thesis provide a method which does not need to

synchronize different clocks within an array.

Some work has been done in sensor self localization without synchronization [31,32]. It uses

differential TDOA (dTDOAs) to cancel out unknown clock offsets. However, it requires all

sensors to transmit some signals. In this thesis, sensors don’t need to transmit signals. Source

location can be estimated using a passive sensor array. For example, consider Figure 1.5 where,
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Figure 1.4: Illustration of manifold sensor uncertainty

s1, s2, s1, are receivers and r1, r2, r3 are TOAs. we have two clocks and the receivers have the

same clock are grouped together. Each sub-array has one own clock, clock 1 and clock 2. we

choose sensor 1 as reference sensor, the TDOAs are r21 = r2 − r1 and r31 = r3 − r1. In absence

of TDOAs noise, because s1 and s3 have different clocks and hence r31 contains clock bias. As

result, using r21 and r31 to localize the source will give very large localization error.

1.2.3 Manifold error and Clock Bias uncertainty

The two kinds of error may happen at the same time, and this thesis will consider this situation

as well Figure 1.6 illustrate this situation, which both manifold sensor uncertainty and clock

bias error exist.
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Figure 1.5: Illustration of clock bias uncertainty

Figure 1.6: Illustration of in the presence of sensor position manifold uncertainties and clock-bias

uncertainties
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1.3 Motivation

1.3.1 Manifold Uncertainty

In a sensor array, quite often sensors are fix on a structure and the structure may be moved or

rotated because of wind, vibration. In this situation, the position uncertainties of al the sensors

in the structure are the same. If the dependency can be explored properly, a more accurate

source location estimate can be achieved than considering all sensor uncertainties are indepen-

dent.

For example, consider a sensor array with a number of sensor mounted, which is placed along

the highway to detect wild animals that might cross the road. The sensing system is need to

inform the driver to avoid the accident. But, because of the wind, the rain and the vibration

caused by vehicles, the position of the sensor array may be moved or rotated. But the relative

position of the sensors remain unchanged. We shall call this sensor position uncertainties as

sensor manifold uncertainties.

1.3.2 Clock Bias Uncertainty

If a sensor array has several sub-arrays, and each sub-array has its own clock, different sub-arrays

will have clock bias with one another.When their clock are not synchronized. for example, this

could be due to the large geometric distances among the sub-arrays. This thesis will provide a

method to solve this problem.

For example, consider the situation that one sensor array has several sub-arrays. The sub-arrays

are separated and the sensors in one sub-array is close to each other. Sensors can be synchronized

using Bluetooth technology. Because of the small range coverage of Bluetooth, only sensors in

the same sub-array can be synchronized. Each sub-array has its own clock and the clock of

different sub-arrays are not synchronized. In this case, method proposed in this thesis can be

applied.
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1.3.3 Combination of Manifold and Clock Bias Uncertainty

If one sensor array has several sub-arrays that are far from each other, each sub-array has its

own clock. When the sub-arrays are fixed on several objects, the sensors will have manifold un-

certainty. In this case, it is reasonable to propose a algorithm which can handle both manifold

uncertainty and clock bias uncertainty together.

1.4 Contribution

This thesis addresses the problem of TDOA localization in the presence of sensor manifold un-

certainties and /or synchronization clock bias errors. The main contributions include:

(1) The study of localization accuracy in the presence of these errors. through the CRLB anal-

ysis based on Gaussian noise model.

(2) The development of estimators to obtain the optimum source location estimate.

(3) The analysis of the proposed estimators.

For the first contribution, the study through the CRLB analysis based on Gaussian noise model.

For the second contribution, three algorithms are proposed in the thesis. The first one is to solve

source localization in the presence manifold uncertainty of the sensors. Since the position uncer-

tainties in different sensors are related dimension of uncertainties can be reduced. Estimation

accuracy can be improved by exploring manifold sensor error uncertainties than assuming all

sensor uncertainties are independent. If there is no relationship among the sensor positions, the

method proposed in this thesis also can handle this situation. The new method can be viewed

as an generalization for the previous study of independent position errors as well.

The second algorithm is the estimation of the source position in the presence of clock bias error

among different sub-arrays in a sensor array. It can be applied to the situation where a sensor

array has more than one clock and only the sensors within a sub-array can have perfect synchro-

nization.

The third estimator is to address the situation when both manifold sensor uncertainties and

clock bias uncertainties are presence at the same time.

8



For the third contribution, we have conducted the analysis of the performance of the proposed

estimators in both simulations study and theoretical proofs. The three proposed estimators

achieve optimal performance both in simulation and in theory over the small error region.

9



Chapter 2

Localization Basics

In this Chapter, we will introduce some basic topics in localization, including basic idea about the

Cramr-Rao lower Bound(CRLB), the TDOA localization algorithm, the Taylor-series technique

and the closed-form two-stage algorithm.

2.1 Cramer-Rao lower Bound(CRLB)

Cramer-Rao lower Bound(CRLB) provide a lower bound on the variance of any unbiased es-

timator[33,34]. It gives optimal variance and alerts us if it is impossible to find an unbiased

estimator whose variance is less than the bound.

CRLB is obtained from probability density function(PDF) of the collection of data measure-

ments x that is parameterized with respect to the unknown parameter θ. It is assumed that if

PDF satisfies

E

[
∂lnp(x;θ)

∂θ

]
= 0 (2.1)

Then the variance of any unbiased estimator θ̂ must satisfies

cov(θ̂) ≥ −E
[
∂2lnp(x;θ)
∂θθT

]−1
(2.2)

In this thesis, we will compare compare CRLB with simulation result to see if mean-square error

reach CRLB which is the optimal permance. Then, we will prove variance of the estimated

source location is equals to CRLB theoretically
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Figure 2.1: Source localization using TDOAs

2.2 TDOA localization

As mentioned in Chapter 1, TDOA is the difference of arrival time of a source signal arrived at

two different receivers. A constant TDOA locus is a hyperbola. Source location can be estimated

by solving a set of nonlinear hyperbolic equations.

Figure 2.1 shows a example of TDOA localization. s1, s2, s3 are receivers. The intersection of

hyperbolic curves is the source location. We shall denote the true distance between the source

and ith receiver as roi

roi = ‖uo − si‖ (2.3)

where ‖ ∗ ‖ represents the 2-norm. TDOA measurement, after multiplied by the signal propaga-

tion speed, between sensor i and sensor 1 is

ri1 = ri − r1 + ni1, i = 2, 3, . . . ,M (2.4)

ni1 is the TDOA noise, that is assumed to be zero-mean Gaussian noise In TDOA localization,

we use the measurements ri1, i = 2, 3, . . . ,M to estimate source location uo.

11



2.3 Taylor-series Method

The basic idea of Taylor-series method [19] is an iterative algorithm to locate the source. It

starts with a initial guess and improving the estimation at each step by adding the local linear

least-sum square error correction to the previous estimation. Let uo = [xo, yo, zo]T to be the

source location. Sensor positions are represented by S = [sT1 , . . . , s
T
M ] where si = [xi, yi, zi]

T for

i=1, . . . , M is the sensor position of the ith sensor. The range from source to the ith sensor is

roi = ‖uo − si‖ =
√

(xo − xi)2 + (yo − yi)2 + (zo − zi)2 (2.5)

Then the true TDOA is related to uo by

roi1 = roi − ro1, i = 2, 3, . . . ,M. (2.6)

Let ni1 be TDOA noise for the ith sensor. We represent ri1 as

ri1 = roi1 + ni1. (2.7)

In matrix form

f(uo) = T = M−E (2.8)

where

T =

[
ro21 . . . roM1

]T
(2.9)

M =

[
r21 . . . rM1

]T
(2.10)

E =

[
n21 . . . nM1

]T
(2.11)

The error term E has a covariance matrix Q.

Q = E

[
EET

]
(2.12)

If ug is the guess value then we can express the true source location uo as

u = ug + ∆u (2.13)

We expand f(u) in Taylor-series

f(u) |u=ug
+A∆u = M−E (2.14)

12



where

A =
∂f(u)

∂u
=
∂T

∂u
(2.15)

∂T

∂u
=

[
(uo−s2)T

ro2
− (uo−s1)T

ro1
, . . . , (u

o−sM )T

roM
− (uo−s1)T

ro1

]
(2.16)

(2.14) can be rewritten as

A∆u = W−E (2.17)

where

W = M− f(u) |u=ug (2.18)

Choosing ∆u that gives least weighted squared error

∆u = [ATQ−1A]−1ATQ−1W (2.19)

We update ug by replace it with

ug = ug + ∆ug (2.20)

Then, we repeat (2.19) and (2.20). The final estimate is obtained when ug converges to a stable

value and ∆ug goes to zero.

Although the Taylor-series method can provide the least weighted squared error estimator for

the TDOA localization problem, it needs a initial guess which is close enough to the source

location. Otherwise it can only provide local minimum solution rather than the globe minimum

source location.

2.4 Closed-form Two Stage Method

Another approach to solve this localization problem is the closed-form two stage solution pro-

posed by Chan and Ho [20]. The advantage of this method is that no initial guess is needed and

it is not iterative. This closed form method reaches CRLB in small noise condition. We will

introduce the idea of Chan and Ho’s two stage method in this section.

Stage 1:

Let uo = [xo, yo, zo]T to be the source location. The sensor positions are represented by

S = [sT1 , . . . , s
T
M ]T where si = [xi, yi, zi]

T for i=1, . . . , M is the sensor position of the ith

13



sensor.

The range from source to the ith sensor is

roi = ‖uo − si‖ =
√

(xo − xi)2 + (yo − yi)2 + (zo − zi)2 (2.21)

Then the TDOA is

ri1 = ri − r1, i = 2, 3, . . . ,M (2.22)

Let ni1 be TDOA noise for the ith sensor. ni1 = c∆ti1, where ∆ti1 is TDOA noise and c is the

signal propagation speed. we represent ri1 as

ri1 = roi1 + ni1 (2.23)

In absence of noise, TDOA for the ith sensor is

roi1 = roi − ro1, i = 2, 3, . . . ,M. (2.24)

rewrite (2.24) as

roi1 + ro1 = roi , i = 2, 3, . . . ,M. (2.25)

Squaring both sides, gives

ro2i1 + 2roi1r
o
1 + ro21 = ro2i . (2.26)

Substituting (2.21) into (2.26) and simplifying

ro2i1 + 2roi1r
o
1 = sTi si − sT1 s1 − 2(si − s1)Tuo (2.27)

Expressing roi1 = ri1 − ni1 and ignoring n2i1we have

r2i1 − 2ri1ni1 + 2ri1r
o
1 − 2ro1ni1 = sTi si − sT1 s1 − 2(si − s1)Tuo (2.28)

(2.28) can be rewritten as

2roi ni1 = r2i1 − sTi si + sT1 s1 + 2(si − s1)Tuo + 2ri1r
o
1 (2.29)

In matrix form, it can be expressed as

ε1 = B1n = h1 −G1ϕ
o
1 (2.30)
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where

B1 = 2



ro2

ro3

. . .

roM


(2.31)

h1 =


r221 − sT2 s2 + sT1 s1

...

r2M1 − sTMsM + sT1 s1

 (2.32)

G1 = −2


(s2 − s1)T r21

...

(sM − s1)T rM1

 (2.33)

n = [n21, . . . , nM1]T (2.34)

ϕo1 =

[
uo ro1

]T
(2.35)

In this case, weighted least-square (WLS) technique [33] can be applied and the result is

ϕ1 = (GT
1 W1G1)−1GT

1 W1h1 (2.36)

and the covariance matrix of ϕ1 is

cov(ϕ1) = (GT
1 W1G1)−1 (2.37)

The weighting matrix W is calculated using

W1 = E[ε1ε
T
1 ]−1 = (BT

1 QB1)−1 (2.38)

Stage 2:

In Stage 2, we make use r1 in ϕ1 to refine the estimation of the source location. Let ϕo2 =

[(xo − x1)2, (yo − y1)2, (zo − z1)2]T

(uo − s1)� (uo − s1) = ϕ2 (2.39)

Since ϕ1(1 : 3) is an estimator of uo, ie ϕ1(1 : 3) = uo + ∆ϕ1(1 : 3), where ∆ϕ1(1 : 3) is the

estimation noise. Thus replacing uo in (2.39) by ϕ1(1 : 3)−∆ϕ1(1 : 3)

(ϕ1(1 : 3)o−s1)�(ϕ1(1 : 3)o−s1)−2(ϕ1(1 : 3)o−s1)�∆ϕ1(1 : 3)o = (uo−s1)�(uo−s1) (2.40)

15



or

2(ϕ1(1 : 3)−∆ϕ1(1 : 3))�∆ϕ1(1 : 3) = (ϕ1(1 : 3)−s1)� (ϕ1(1 : 3)−s1)− (uo− s1)� (uo− s1)

(2.41)

where the second order noise ∆ϕ1(1 : 3)�∆ϕ1(1 : 3) has been ignored.

Recall that ϕ1(4) = ro1 + ∆r1, where ∆ri is the estimation noise.

(ϕ1(4)−∆ϕ1(4))2 = (uo − s1)T (uo − s1) (2.42)

Expanding the left side and ignoring ∆ϕ1(4)2

2ϕ1(4)∆ϕ1(4) = ϕ1(4)2 − (uo − s1)T (uo − s1) (2.43)

We express (2.41) and (2.43) in matrix form

ε2 = B2∆ϕ1 = h2 −G2ϕ2 (2.44)

where

B2 = 2

diag(uo − s1)

ro1

 (2.45)

h2 =

(ϕ1(1 : 3)− s1)� (ϕ1(1 : 3)− s1)

ϕ1(4)2

 (2.46)

G2 =



1 0 0

0 1 0

0 0 1

1 1 1


(2.47)

The WLS solution for stage 2 is

ϕ2 = (GT
2 W2G2)−1GT

2 W2h2 (2.48)

The covariance matrix of ϕ2 is

cov(ϕ2) = (GT
2 W2G2)−1 (2.49)

where the weighting matrix is W2 = E[ε2ε
T
2 ]−1 = [B2cov(ϕ1)BT

2 ]−1.

The source location estimate u = [x, y, z]T can be obtained from ϕ2

u = P[
√
ϕ2(1),

√
ϕ2(2),

√
ϕ2(3)]T + s1 (2.50)
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where

P = diag[sgn(ϕ1(1)− x1), sgn(ϕ1(2)− y1), sgn(ϕ1(3)− z1)]. (2.51)

According to (2.50), subtracting both sides by s1, squaring and taking differential,

∆u = B−13 ∆ϕ2 (2.52)

where

B3 = 2


xo − x1

yo − y1

zo − z1

 (2.53)

The covariance matrix of the final source position estimator is

cov(u) = B−13 cov(ϕ2)B−T3 (2.54)

2.5 Summary

In this chapter, we introduce the basic idea of CRLB, which is a benchmark of optimal variance

for any unbiased estimator. Taylor series[4] and Chan and Ho’s method[3], the two source

localization method, are also introduced in this chapter. Taylor series needs initial guess and

only converge to the local minimum solution and Chan and Ho’s method needs small noise

condition.
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Chapter 3

Cramer-Rao lower Bound(CRLB)

Cramer-Rao lower Bound(CRLB) provides a lower bound on the variance of any unbiased es-

timator. It gives optimal variance and alerts us it is impossible to find an unbiased estimator

whose variance is less than the bound.

In this chapter, we will construct mathematic models for manifold sensor uncertainties, clock-

bias error and the presence of the two kinds of uncertainties. Cramer-Rao lower Bound of the

source location estimate under manifold sensor uncertainties, clock-bias error and the both kind

of error will be derived according to the mathematic models.

3.1 CRLB Due to Measurement noise only

We will derive CRLB for TDOA source localization when the noise appear in TDOA measure-

ments only.

Let uo = [xo, yo, zo]T to be the source location. Sensor positions are represented by S =

[sT1 , . . . , s
T
M ]T where si = [xi, yi, zi]

T for i=1, . . . , M is the sensor position of the ith sensor.

The roi is the range from source to the ith sensor. If we choose sensor 1 as reference and denote

range difference of roi and ro1 as roi1 = roi − ro1, the TDOA measurement sensor i and sensor 1 is

ri1 = roi1 + ni1 (3.1)
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where ni1 is the measurement noise that is assumed as zero mean Gaussian. Let us collect(M-1)

TDOA measurements as r = [r21, r31, . . . , rM1]T . The pdf of r parameterized on uo is

p(r;uo) = (
1√
2π

)M−1
1

|Qr|
1
2

exp{−1

2
(r− ro)TQ−1r (r− ro)} (3.2)

where Qr is the covariance matrix of measurement noise and ro = [ro21, r
o
31, . . . , r

o
M1]T .

As mentioned in Chapter 2, if the pdf satisfies,

E

[
∂lnp(r;uo)

∂uo

]
= 0 (3.3)

Then the variance of any unbiased estimator u of uo must satisfy

CRLB(u) ≥
(
−E

[
∂2lnp(r;uo)
∂uo∂uoT

])−1
(3.4)

To obtain CRLB, first we calculate lnp(r;u)

lnp(r;uo) = −M − 1

2
ln(2π)− 1

2
ln|Qr| −

1

2
(r− ro)TQ−1r (r− ro) (3.5)

The expectation of first order derivative of lnp(r;uo) is

E

[
∂lnp(r;uo)

∂uo

]
= E

[
− 1

2 ( ∂r
o

∂uo )TQ−1r (r− ro)− 1
2 (r− ro)TQ−1r ( ∂r

o

∂uo )

]
= 0 (3.6)

So that (3.3) is satisfied.

cov(u) ≥
(
−E

[
∂2lnp(r;u)
∂uo∂uoT

])−1
(3.7)

where

E

[
∂2lnp(r;u)
∂uo∂uoT

]
= (

∂ro

∂uo
)TQ−1r (

∂ro

∂uo
) (3.8)

and

∂ro

∂uo
=

[
(u−s2)
ro2
− (uo−s1)

ro1
, . . . , (u

o−sM )
roM

− (uo−s1)
ro1

]T
(3.9)

3.2 CRLB for TDOA Source Localization in the Presence

of Measurement noise and Manifold Sensor Uncertain-

ties

In this section, we will discuss mathematic model of TDOA Source Localization in the presence

of Manifold Sensor Uncertainties in addition to measurement noise. CRLB for TDOA source
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localization will be obtained based on that model.

In the case of sensor manifold error, the position error of different sensors are related to each

other. Let p be a random vector of length L where L ≤ 3M . Then we model the sensor position

vector as

s = so + Vp (3.10)

=


so1

...

soM

+


V1

...

VM


3M×L

pL×1 (3.11)

where V = [VT
1 , . . . ,V

T
M ]T is a known matrix. vi is transformation matrix which shows the

relation between random vector p and the position uncertainties of the ith sensor. If V is

a 3M × 3M identity matrix and p is a 3M × 1 random vector, the manifold sensor position

uncertainties become independent uncertainties. f is assumed to be zero mean Gaussian.

We take both measurement noise and sensor position manifold uncertainties into account in

deriving the CRLB. The unknown source position is uo = [xo, yo, zo]T , the measurement vector

is x = [rT ,pT ]T and the unknown parameter vector is θo = [uoT ,pT ]T .

The pdf of x can be written as

p(x;θ) = (
1√
2π

)M−1
1

|Qr|
1
2

exp{−1

2
(r− ro)TQ−1r (r− ro)}

·( 1√
2π

)L
1

|Qp|
1
2

exp{−1

2
pTQ−1r p} (3.12)

Thus

lnp(x;θ) = −M − 1

2
ln(2π)− 1

2
ln|Qr|−

1

2
(r−ro)TQ−1r (r−ro)− L

2
ln(2π)− 1

2
ln|Qp|−

1

2
pTQ−1r p

(3.13)

The expectation of first order derivative of nature logarithm of the pdf is

E

[
∂lnp(x;θ)

∂θ

]
= E

∂lnp(x;θ)∂uo

∂lnp(x;θ)
∂p



= E

−( ∂r
o

∂uo )TQ−1r (r− ro)

−Q−1p p

 = 0 (3.14)
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and (3.3) is satisfied. Thus the CRLB of θ is

cov(θ) ≥
(
−E

[
∂2lnp(x;θ)
∂θ∂θT

])−1
(3.15)

where

E

[
∂2lnp(x;θ)
∂θ∂θT

]
= E

∂
2lnp(x;θ)
∂uo∂uoT

∂2lnp(x;θ)
∂uo∂pT

∂2lnp(x;θ)
∂p∂uoT

∂2lnp(x;θ)
∂p∂pT

 (3.16)

The partial derivatives in (3.16) are

E

[
∂2lnp(x;θ)
∂uo∂uoT

]
= (

∂ro

∂u
)TQ−1r (

∂ro

∂u
) (3.17)

E

[
∂2lnp(x;θ)
∂uo∂pT

]
= (

∂ro

∂uo
)TQ−1r (

∂ro

∂p
) (3.18)

E

[
∂2lnp(x;θ)
∂p∂uoT

]
= (

∂ro

∂p
)TQ−1r (

∂ro

∂uo
) (3.19)

E

[
∂2lnp(x;θ)
∂p∂pT

]
= (

∂ro

∂p
)TQ−1r (

∂ro

∂p
) + Qp (3.20)

where Qr is covariance matrix of measurement noise vector n and Qp is the covariance of random

vector p.

∂ro

∂u
=

[
(uo−s2)
ro2

− (uo−s1)
ro1

, . . . , (u
o−sM )
roM

− (uo−s1)
ro1

]T
(3.21)

∂ro

∂p
=

[(
(uo−s2)TV2

ro2
− (uo−s1)TV1

ro1

)T
, . . . ,

(
(uo−sM )TVM

roM
− (uo−s1)TV1

ro1

)T]T
(3.22)

In this study, we are interested only in CRLB of the source position u. It is the upper 3 × 3

block of CRLB(θ) Denote the four block matrix in (3.16) as

E

[
∂2lnp(x;θ)
∂θ∂θT

] E
[
∂2lnp(x;θ)
∂uo∂uoT

]
E

[
∂2lnp(x;θ)
∂uo∂pT

]
E

[
∂2lnp(x;θ)
∂p∂uoT

]
E

[
∂2lnp(x;θ)
∂p∂pT

]
 (3.23)

=

 X Y

YT Z

 (3.24)

According to the inverse of block matrix, X−1 is

CRLB(u) = (X−YZ−1XT )−1 (3.25)

= X−1 + X−1Y(Z−YTX−1Y)−1YTX−1 (3.26)

In this section, CRLB in presence of manifold sensor position uncertainties in TDOA localiza-

tion system is derived. It provide a benchmark for the performance of a estimator for the source

location when the measurement noise and manifold sensor position uncertainties are presented.
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3.3 CRLB for TDOA Source Localization in the Presence

of Measurement Error and Clock-bias Uncertainties

In this section, we first derive mathematic model of TDOA source localization in the presence

of clock-bias error. The CRLB of the source localization in the presence of clock-bias error will

be obtained using that model.

The unknown source position is uo = [xo, yo, zo]T and the known sensor position is si =

[xi, yi, zi]
T .

Let us further assume that the sensor array can be decomposed into N sub-arrays. Within each

sub-array the sensors are synchronized with the same clocks. However, the clocks among differ-

ent sub-arrays are not synchronized and have clock bias δj , j = 2, 3, . . . , N with respect to the

first sub-array. Let us choose the first sensor as reference for TDOA measurements.

The TDOA measurements

ri1 =‖ uo − si ‖ − ‖ uo − s1 ‖ +ni1, i = 2, . . . ,m1

ri1 =‖ uo − si ‖ − ‖ uo − s1 ‖ +δo2 + ni1, i = m1 + 1, . . . ,m2 (3.27)

. . .

ri1 =‖ uo − si ‖ − ‖ uo − s1 ‖ +δoN + ni1, i = mN−1 + 1, . . . ,mN

where δ = [δ2, . . . , δN ]T is the clock-bias vector. we shall assume in this study δ is deterministic

and not random. {s1, . . . , sm1}, {sm1+1, . . . , sm2}, . . . , {smn−1+1, . . . , smn} are different sub-

arrays.

We can write the TDOA measurements in vector form as

r = ro + n + Fδo (3.28)

where r = [r21, . . . , rMN ,1]T , n = [n21, . . . , nMN ,1]T and

F =



m1−1︷ ︸︸ ︷
0, . . . , 0,

m2−m1︷ ︸︸ ︷
1, . . . , 1,0, . . . , 0

0, . . . , 0, 1, . . . , 1, 0, . . . , 0

. . .

mN−1+1︷ ︸︸ ︷
0, . . . , . . . , . . . , 0,

mN−mN−1︷ ︸︸ ︷
1, . . . , 1



T

(3.29)
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Denote the unknown parameter vector be θo = [uo, δo]T and the measurement vector be x = r,

the pdf in the presence of measurement noise and clock-bias error is

p(x;θo) = (
1√
2π

)M−1
1

|Qr|
1
2

exp{−1

2
(r− ro − Fδo)TQ−1r (r− ro − Fδo)} (3.30)

The natural logarithm of the pdf is

lnp(x; θ) = −M − 1

2
ln(2π)− 1

2
ln|Qr| −

1

2
(r− ro − Fδo)TQ−1r (r− ro − Fδo) (3.31)

Taking expectation of the nature logarithm of the PDF,

E

[
∂lnp(x;θ)

∂θ

]
= E

∂lnp(x;θ)∂uo

∂lnp(x;θ)
∂δo



= E

−( ∂r
o

∂uo )TQ−1r (r− ro − Fδo)

−FTQ−1r (r− ro − Fδo)

 (3.32)

= 0 (3.33)

and (3.3) is satisfied.

CRLB(θo) ≥
(
−E

[
∂2lnp(x;θ)
∂θ∂θT

])−1
(3.34)

where

E

[
∂2lnp(x;θ)
∂θ∂θT

]
= E

∂
2lnp(x;θ)
∂uo∂uoT

∂2lnp(x;θ)
∂u∂δoT

∂2lnp(x;θ)
∂δo

∂uoT

∂2lnp(x;θ)
∂δo

∂δoT

 (3.35)

The partial derivatives in (3.35) are

E

[
∂2lnp(x;θ)
∂uo∂uoT

]
= (

∂ro

∂uo
)TQ−1r (

∂ro

∂uo
) (3.36)

E

[
∂2lnp(x;θ)
∂uo∂δoT

]
= (

∂ro

∂uo
)TQ−1r F (3.37)

E

[
∂2lnp(x;θ)
∂δo

∂uoT

]
= FTQ−1r (

∂ro

∂uo
) (3.38)

E

[
∂2lnp(x;θ)
∂δo

∂δoT

]
= FTQ−1r F (3.39)

where Qr is covariance matrix of measurement noise vector n, and

∂ro

∂uo
=

[
(u−s2)
ro2
− (u−s1)

ro1
, . . . , (u−sM )

roM
− (u−s1)

ro1

]T
. (3.40)
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We are interested in the source position uo. The CRLB of the source position u is the upper

left 3× 3 block of CRLB(θo). Denote

E

[
∂2lnp(x;θ)
∂θ∂θT

]
=

E
[
∂2lnp(x;θ)
∂uo∂uoT

]
E

[
∂2lnp(x;θ)
∂uo∂δoT

]
E

[
∂2lnp(x;θ)
∂δo

∂uoT

]
E

[
∂2lnp(x;θ)
∂δo

∂δoT

]
 (3.41)

=

 X Y

YT Z

 (3.42)

According to the block matrix inversion formular, CRLB(uo)

CRLB(uo) = (X−YZ−1XT )−1 (3.43)

= X−1 + X−1Y(Z−YTX−1Y)−1YTX−1 (3.44)

In this section, the CRLB for the TDOA source localization problem which contains clock-bias

error is derived. It provides the minimum achievable variance of an estimator for source location

in the presence of measurement noise and clock-bias error.

3.4 CRLB for TDOA Source Localization in the Presence

of Combination of manifold and Clock-bias Uncertain-

ties

In this section, we shall consider the presence of all three kinds of errors in estimating the source

position. We shall started by construct a mathematic model for the measurement and sensor

positions. Then,we will derive the CRLB using the models.

The measurement vector is x = [rT ,pT ]T and the unknown parameter vector is θo = [uoT ,pT , δoT ]T .

Following Section 3.2, the sensor position vector is modeled as

s = so + Vp (3.45)

=


so1

...

soM

+


V1

...

VM


3M×L

pL×1 (3.46)
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where p is a zero-mean Gaussian random vector, V = [VT
1 , . . . ,V

T
M ]T and Vi is transformation

matrix which shows the relation between random vector p and the position uncertainties of ith

sensor.

From Section 3.3, TDOA measurements are

ri1 =‖ uo − si ‖ − ‖ uo − s1 ‖ +ni1, i = 1, . . . ,m1

ri1 =‖ uo − si ‖ − ‖ uo − s1 ‖ +δo2 + ni1, i = m1 + 1, . . . ,m2 (3.47)

ri1 =‖ uo − si ‖ − ‖ uo − s1 ‖ +δoN + ni1, i = mN−1 + 1, . . . ,mN

Or in vector form,

r = ro + n + Fδo (3.48)

where r = [r21, . . . , rMN ,1] and

F =



m1−1︷ ︸︸ ︷
0, . . . , 0,

m2−m1︷ ︸︸ ︷
1, . . . , 1,0, . . . , 0

0, . . . , 0, 1, . . . , 1, 0, . . . , 0

. . .

mN−1+1︷ ︸︸ ︷
0, . . . , . . . , . . . , 0,

mN−mN−1︷ ︸︸ ︷
1, . . . , 1



T

(3.49)

where δo = [δo2 , . . . , δ
o
N ]T is the clock-bias.

The pdf of x is

p(x;θo) = (
1√
2π

)M−1
1

|Qr|
1
2

exp{−1

2
(r− ro − Fδo)TQ−1r (r− ro − Fδo)}

·( 1√
2π

)L
1

|Qp|
1
2

exp{−1

2
pTQ−1p p} (3.50)

Thus, the nature logarithm of p(x; θ)

lnp(x;θ) = −M − 1

2
ln(2π)− 1

2
ln|Qr| −

1

2
(r− ro − Fδo)TQ−1r (r− ro − Fδo)

−L
2
ln(2π)− 1

2
ln|Qp| −

1

2
pTQ−1p p (3.51)
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Expectation of first order derivative of nature logarithm of the PDF is

E

[
∂lnp(x;θo

)

∂θo

]
= E


∂lnp(x;θo

)
∂uo

∂lnp(x;θo
)

∂p

∂lnp(x;θo
)

∂δo



= E


−( ∂r

o

∂uo )TQ−1r (r− ro − Fδo)

−Q−1p p

−FTQ−1r (r− ro − Fδo)

 (3.52)

= 0

and (3.3) is satisfied. Thus

CRLB(θo) ≥
(
−E

[
∂2lnp(x;θo

)

∂θo
∂θoT

])−1
(3.53)

where

E

[
∂2lnp(x;θo

)

∂θo
∂θoT

]
= E


∂2lnp(x;θo

)
∂uo∂uoT

∂2lnp(x;θo
)

∂uo∂pT

∂2lnp(x;θo
)

∂uo∂δoT

∂2lnp(x;θo
)

∂p∂uoT

∂2lnp(x;θo
)

∂p∂pT

∂2lnp(x;θo
)

∂p∂δoT

∂2lnp(x;θo
)

∂δo
∂uoT

∂2lnp(x;θo
)

∂δo
∂pT

∂2lnp(x;θo
)

∂δo
∂δoT

 (3.54)

The partial derivatives in (3.54) are

E

[
∂2lnp(x;θ)
∂uo∂uoT

]
= (

∂ro

∂uo
)TQ−1r (

∂ro

∂uo
) (3.55)

E

[
∂2lnp(x;θ)
∂uo∂pT

]
= (

∂ro

∂uo
)TQ−1r (

∂ro

∂p
) (3.56)

E

[
∂2lnp(x;θ)
∂p∂uoT

]
= (

∂ro

∂p
)TQ−1r (

∂ro

∂uo
) (3.57)

E

[
∂2lnp(x;θ)
∂p∂pT

]
= (

∂ro

∂p
)TQ−1r (

∂ro

∂p
) + Qp (3.58)

E

[
∂2lnp(x;θ)
∂uo∂δoT

]
= (

∂ro

∂u
)TQ−1r F (3.59)

E

[
∂2lnp(x;θ)
∂δo

∂uoT

]
= FTQ−1r (

∂ro

∂uo
) (3.60)

E

[
∂2lnp(x;θ)
∂δo

∂δoT

]
= FTQ−1r F (3.61)

where Qr is covariance matrix of measurement noise vector n, Qp is the covariance of random

vector p

∂ro

∂u
=

[
(u−s2)
ro2
− (u−s1)

ro1
, . . . , (u−sM )

roM
− (u−s1)

ro1

]T
(3.62)

∂ro

∂p
=

[(
(u−s2)TV2

ro2
− (u−s1)TV1

ro1

)T
, . . . ,

(
(u−sM )TVM

roM
− (u−s1)TV1

ro1

)T]T
. (3.63)
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The CRLB of uo is the upper left 3× 3 block of CRLB(θo) Denote

E

[
∂2lnp(x;θ)
∂θ∂θT

]
=


E

[
∂2lnp(x;θo

)
∂ uo∂uoT

]
E

[
∂2lnp(x;θo

)
∂uo∂pT

]
E

[
∂2lnp(x;θo

)

∂uo∂δoT

]
E

[
∂2lnp(x;θo

)
∂p∂uoT

]
E

[
∂2lnp(x;θo

)
∂p∂pT

]
E

[
∂2lnp(x;θo

)

∂p∂δoT

]
E

[
∂2lnp(x;θo

)

∂δo
∂uoT

]
E

[
∂2lnp(x;θo

)

∂δo
∂pT

]
E

[
∂2lnp(x;θo

)

∂δo
∂δoT

]


(3.64)

=



X11 X12 X13 }3

XT
12 X22 X23 }L

XT
13︸︷︷︸ XT

23︸︷︷︸ X33︸︷︷︸ }N

3 L N


(3.65)

Using the inversion formula, the upper left (L+ 3)× (L+ 3) block of the CRLB(θo) is
X11 X12

XT
12 X22

−
X13

X23

X−133

[
XT

13 XT
23

]
−1

(3.66)

=

X11 −X13X
−1
33 X

T
13 X12 −X13X

−1
33 X

T
23

XT
12 −X23X

−1
33 X

T
13 X22 −X23X33−1XT

23


−1

(3.67)

Thus, the upper left 3× 3 block of (3.66) is

CRLB(uo)−1 = (X11 −X13X
−1
33 X

T
13)

−(X12 −X13X
−1
33 X

T
23)(X22 −X23X

−1
33 X

T
23)−1(XT

12 −X23X
−1
33 X

T
13)(3.68)

Substituting (3.55)-(3.61) into (3.68), give the CRLB of the source position when the observation

noise, manifold sensor position uncertainties and clock-bias error are present.

3.5 Summary

In this chapter, we derive four CRLB. The first one is the CRLB only in presence of measurement

noise. Then we derive the CRLB in the presence of measurement noise and sensor position

manifold uncertainties, the CRLB in the presence of measurement noise and clock-bias error,

and the CRLB when all the three kind of noise exist.
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Chapter 4

A New Estimator and

Performance Analysis of Source

Localization in the Presence of

Manifold Sensor Position

Uncertainties

In this chapter, we will develop an estimator for source localization when measurement noise and

sensor position manifold uncertainties are present and analysis its performance. This estimator

has closed-form solution and is obtained based on the two stage approach from Chan and Ho’s

closed-form algorithm. The simulation result of the proposed algorithm will be given. In the last

part of this chapter, we will prove the theoretically the performance of the proposed algorithm

reaches the CRLB.
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4.1 Mathematic Derivation

Denote uo = [xo, yo, zo]T as unknown source location and soi as the unknown sensor position

of ith sensor, i = 1, . . . , M . si is the known noisy sensor position of the ith sensor, where

si = soi + ∆si and ∆si is the sensor position error. We shall model ∆si = Vip, where p is a

random vector with length L and Vi is the transformation matrix relates the random vector p

and the position uncertainties of the ith sensor. Thus

si = soi + Vip (4.1)

Denote s = [sT1 , . . . , s
T
M ]T and V = [VT

1 , . . . ,V
T
M ]T , then

S = So + Vp (4.2)

From the emitted source signal in reaching the sensors, we have M-1 TDOA ri1 measurements

ri1 = roi1 + ni1, i = 2, 3, . . . ,M (4.3)

where ri1 is the true TDOA and ni1 is the noise that is zero mean Gaussian. Sensor s1 is the

reference sensor in computing TDOAs.

The true range from source to the ith sensor is

roi = ‖uo − soi ‖ =
√

(xo − xoi )2 + (yo − yoi )2 + (zo − zoi )2 (4.4)

Stage 1:

Without loss of generality, true TDOA measurement is equal to

roi1 = roi − ro1, i = 2, 3, . . . ,M, (4.5)

or

roi1 + ro1 = roi , i = 2, 3, . . . ,M. (4.6)

For the ith sensor, we substituting (4.4) into (4.6) and after squaring

ro2i1 + 2roi1r
o
1 + 2(soi − so1)Tuo + soT1 so1 − soTi soi = 0 (4.7)

Expressing roi1 = ri1 − ni1 and soi = si + Vip, we have

r2i1 − 2ri1ni1 + n2i1 + 2ri1r
o
1 − 2ro1ni1 + 2(si −Vip− s1 + V1p)Tuo

+(s1 −V1p)T (s1 −V1p)− (si −Vip)T (si −Vip) = 0. (4.8)
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Ignoring the 2nd order noise terms and rearranging

2roi ni1 + 2(uo − si)
TVip− 2(uo − s1)TV1p

= r2i1 − sTi si + sT1 s1 + 2(si − s1)Tuo + 2ri1r
o
1 (4.9)

Because ro1 is the true value, it depends on the true position of s1. We can express it as

ro1 = ‖uo − so1‖ = ‖uo − s1 + ∆s1‖ ≈ r̃o1 + ρTuo,s1V1p (4.10)

where r̃o1 = ‖uo − s1‖ and ρuo,s1 ≈
(uo−s1)
‖uo−s1‖ represents the unit vector from s1 to uo. (4.9) now

becomes

2roi ni1 + 2(uo − si)
TVip− 2(uo − s1 + ri1ρuo,s1)TV1p

= r2i1 − sTi si + sT1 s1 + 2(si − s1)Tuo + 2ri1r̃
o
1 (4.11)

The unknown vector is ϕo1 =

[
uoT r̃o1

]T
. In matrix form, we can express (4.11) as

ε1 = B1n + Dp = h1 −G1ϕ
o
1 (4.12)

where

B1 = 2



ro2

ro3

. . .

roM


(4.13)

D = 2


(uo − s2)TV2 − (uo − s1 + r21ρuo,s1)TV1

...

(uo − sM )TV2 − (uo − s1 + rM1ρuo,s1)TVM

 (4.14)

h1 =


r221 − sT2 s2 + sT1 s1

...

r2M1 − sTMsM + sT1 s1

 (4.15)

G1 = −2


(s2 − s1)T r21

...

(sM − s1)T rM1

 (4.16)
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and n = [n21, . . . , nM1]T is the noise vector.

In this case, weighted least-square (WLS) technique can be applied to estimate ϕ1 and the result

is

ϕ1 = (GT
1 W1G1)−1GT

1 W1h1 (4.17)

The covariance matrix of ϕ1 is

cov(ϕ1) = (GT
1 W1G1)−1 (4.18)

The weighting matrix W1 is calculated using

W1 = E[ε1ε
T
1 ]−1 = (B1QBT

1 + DQpD
T )−1 (4.19)

where Q is the covariance matrix of n and Qp is the covariance matrix of p.

Stage 2:

Stage 2 follows stage 2 in Chan and Ho’s method[3], we refine the estimation of the source

location using r̃1 in ϕ1. Let ϕo2 = [(xo − x1)2, (yo − y1)2, (zo − z1)2]T

(uo − s1)� (uo − s1) = ϕo2 (4.20)

Since ϕ1(1 : 3) is an estimator of uo, ie ϕ1(1 : 3) = uo + ∆ϕ1(1 : 3), where ∆ϕ1(1 : 3) is the

estimation noise. Thus replacing uo in (4.20) by ϕ1(1 : 3)−∆ϕ1(1 : 3)

(ϕ1(1 : 3)o−s1)�(ϕ1(1 : 3)o−s1)−2(ϕ1(1 : 3)o−s1)�∆ϕ1(1 : 3)o = (uo−s1)�(uo−s1) (4.21)

or

2(ϕ1(1 : 3)− s1)�∆ϕ1(1 : 3) = (ϕ1(1 : 3)− s1)� (ϕ1(1 : 3)− s1)− (uo− s1)� (uo− s1) (4.22)

where the second order noise ∆ϕ1(1 : 3)�∆ϕ1(1 : 3) has been ignored.

Recall that ϕ1(4) = ro1 + ∆r1, where ∆ri is the estimation noise.

(ϕ1(4)−∆ϕ1(4))2 = (uo − s1)T (uo − s1) (4.23)

Expanding the left side and ignoring ∆ϕ1(4)2

2ϕ1(4)∆ϕ1(4) = ϕ1(4)2 − (uo − s1)T (uo − s1) (4.24)

We express (4.22) and (4.24) in matrix form

ε2 = B2∆ϕ1 = h2 −G2ϕ2 (4.25)
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where

B2 = 2

diag(uo − s1)

ro1

 (4.26)

h2 =

(ϕ1(1 : 3)− s1)� (ϕ1(1 : 3)− s1)

ϕ1(4)2

 (4.27)

G2 =



1 0 0

0 1 0

0 0 1

1 1 1


(4.28)

The WLS solution for stage 2 is

ϕ2 = (GT
2 W2G2)−1GT

2 W2h2 (4.29)

The covariance matrix of ϕ2 is

cov(ϕ2) = (GT
2 W2G2)−1 (4.30)

where the weighting matrix is W2 = E[ε2ε
T
2 ]−1 = [B2cov(ϕ1)BT

2 ]−1.

The source location estimate u = [x, y, z]T can be obtained from ϕ2

u = P[
√
ϕ2(1),

√
ϕ2(2),

√
ϕ2(3)]T + s1 (4.31)

where

P = diag[sgn(ϕ1(1)− x1), sgn(ϕ1(2)− y1), sgn(ϕ1(3)− z1)]. (4.32)

According to (4.31), subtracting both sides by s1, squaring and taking differential,

∆u = B−13 ∆ϕ2 (4.33)

where

B3 = 2


xo − x1

yo − y1

zo − z1

 (4.34)

The covariance matrix of the final source position estimator is

cov(u) = B−13 cov(ϕ2)B−T3 (4.35)
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xi yi zi

300 100 150

400 150 100

300 500 200

350 200 100

-100 -100 -100

200 -300 -200

Table 4.1: True Sensor Position

4.2 Simulation

The weighting matrix W1 in first stage is depend on the unknown true source and sensor po-

sitions. In practice, We set W1 to Q at first. After we have an initial estimate of the source

location, we use it to obtain W1. Then, we make use of the updated W1 to obtain more accurate

estimation of ϕ1. We repeat the stage 1 computation several times, to obtain more accurate

result. In our implementation, the number of times to repeat is set to 3.

The TDOA measurements are obtained according to r = ro + n where r is the TDOA measure-

ments with noise, ro is the true TDOA values and n is the noise vector. In simulation, ro is

calculated by roi1 = ‖uo − si‖ − ‖uo − s1‖ and the covariance matrix of n is Q.

Besides measurement noise, sensor position manifold uncertainties in the simulation are given by

s = so + Vp. The covariance matrix of p is Qp. V = [VT
1 , . . . ,V

T
M ]T where vi is 3× 3 identity

matrix.

In the simulation, we compare mse(mean-square error) with CRLB. It is obtained according to

mse =
∑K

k=1(u
o−u(k))T (uo−u(k))

K , where K is the number of ensemble runs of the proposed solu-

tion. We set K to 5000.

Table 4.1 is the sensor positions used in the simulations. Figure 4.1 is the distribution of the

sensors.

Figure 4.2 is the simulation result for a near-field source at uo = [600, 550, 650]T . Measurement

noise matrix Q is set to c2σ2 in the diagonal elements and 0.5c2σ2 otherwise. Qp, which is the

covariance matrix of p, is set to a L × L identity matrix with the noise power of c2σ2. The
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Figure 4.1: Sensor Array Distribution

CRLB of source localization in the presence of manifold sensor position error is higher than the

CRLB of source localization which has accurate sensor positions. According to this simulation,

mean-square error of the source location estimate reaches CRLB when σ is small.

Figure 4.3 is the simulation result for a near-field source uo = [600, 550, 650]T . The measure-

ment noise matrix Q is set to c2σ2 in the diagonal elements and 0.5c2σ2 otherwise. Qp is set to

0.1 times L× L identity matrix. At the beginning when σ2 is small, the performance of source

localization in the presence of manifold sensor position error is mainly effected by the sensor

manifold uncertainties because sensor manifold uncertainties is much larger than measurement

noise at first. As the measurement noise power increases, the measurement noise power becomes

much larger than the noise power of manifold sensor uncertainties and it dominates the per-

formance. In addition, the CRLB in the presence manifold sensor uncertainties becomes close

to the CRLB in absence of sensor manifold error. From this simulation, mean-square error of

source localization reaches CRLB when the measurement noise power is small.

Figure 4.4 is the simulation result for a near-field source at uo = [600, 550, 650]T . The Measure-

ment noise matrix Q is fixed to 1 in the diagonal elements and 0.5 otherwise times 0.1. Qp is set

to a L×L identity matrix times the noise power of c2σ2. Because the measurement noise power

is fixed, The CRLB of the source location estimate in presence of measurement noise only is a

horizontal line. When the power of the sensor position manifold error is small, the two CRLBs
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Figure 4.2: Near-field source localization in the presence of manifold sensor position uncertainties

Figure 4.3: Near-field source localization in the presence of manifold sensor position uncertainties

-fix Qp
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Figure 4.4: Near-field source localization in the presence of manifold sensor position uncertainties

-fix Q

with and without sensor position manifold error are close to each other. When the power of

sensor position manifold error become much larger than the fixed measurement noise power, the

CRLB of source localization in presence of manifold uncertainties is higher than the one without

manifold uncertainties. The mean-square error of the source location estimate reaches the CRLB

when the sensor position manifold error is small.

Figure 4.5 is the simulation result for the distant source at uo = [2000, 2500, 3000]T . The

measurement noise matrix Q is set to c2σ2 in the diagonal elements and 0.5c2σ2 otherwise. Qp,

which is the covariance matrix of p, is set to a L × L identity matrix with the noise power

of c2σ2. Comparing to the near-field source localization in Figure 4.2, the mean-square error

diverges from CRLB earlier for the distant source. However, the mean-square error remains to

reach the corresponding CRLB if the noise is small enough.

Figure 4.3 is the simulation result for a far-field source uo = [2000, 2500, 3000]T . The mea-

surement noise matrix Q is set to c2σ2 in the diagonal elements and 0.5c2σ2 otherwise. Qp

is set to a 0.1 times an L × L identity matrix. At the beginning when σ2 is small, the per-

formance of source localization in the presence of manifold sensor position error is dominated

by the sensor manifold uncertainties because it is much larger than the measurement noise. As

the measurement noise power increases, the measurement noise power dominates the localization
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Figure 4.5: Distant source localization in the presence of manifold sensor position uncertainties

performance. In addition, the CRLB in the presence manifold sensor uncertainties becomes close

to the CRLB in absence of sensor manifold error. From this simulation, the mean-square error

of source localization reaches the CRLB when the measurement noise power is small, but the

performance diverges earlier from the bound than that of the near-field case.

Figure 4.7 is the simulation result for the distant source uo = [2000, 2500, 3000]T . The measure-

ment noise power is fixed. Q is fixed to 0.1 times 1 in the diagonal elements and 0.5 otherwise.

Qp is set to a L × L identity matrix times the noise power of c2σ2. The CRLB of the source

location estimate in presence of measurement noise only is a horizontal line as σ2 increase. When

the power of sensor position manifold error is small, the two CRLBs of with and without sensor

position manifold error are close to each other. When the power of sensor position manifold error

becomes much larger than the fixed measurement noise power, CRLB of source localization in

presence of manifold uncertainties is higher than the one without manifold uncertainties. The

mean-square error of source localization reaches CRLB when the sensor position manifold error

is small, but the performance diverges from the bound earlier than the near-field case.
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Figure 4.6: Distant source localization in the presence of manifold sensor position uncertainties

-fix Qp

Figure 4.7: Distant source localization in the presence of manifold sensor position uncertainties

-fix Q
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4.3 Mathematic Proof of Optimum Performance of the

Proposed Estimator for Source Localization in the P-

resence of Sensor Position Manifold Uncertainties

In this section, we will prove that the Mean-square Error of the proposed estimator achieves the

CRLB performance. The CRLB of source localization in the presence of sensor position mani-

fold error has been given in Chapter 3. Now, we evaluate the covariance of the source location

estimate from the proposed estimator.

cov(u)−1 = BT
3 cov(ϕ2)−1B3

= BT
3 G

T
2 B
−1
2 GT

1 B
−T
1 (Q + B−11 DQpD

TB−T1 )−1B−11 G1B
−1
2 G2B3 (4.36)

Let 
G3 = B−11 G1B

−1
2 G2B3

G4 = B−11 D

, (4.37)

After using matrix inversion Lemma, we have

cov(u)−1 = GT
3 (Q + G4QpG

T
4 )−1G3

= GT
3 Q
−1G3 −GT

3 Q
−1G4(Q−1p + GT

4 Q
−1G4)GT

4 Q
−1G3 (4.38)

Substituting (4.13), (4.16), (4.26), (4.28) and (4.34), G3 becomes

G3 = B−11 G1B
−1
2 G2B3

= −


x2−x1

ro2
+ r21(x

o−x1)
ro2 r̃

o
1

y2−y1
ro2

+ r21(y
o−y1)

ro2 r̃
o
1

z2−z1
ro2

+ r21(z
o−z1)

ro2 r̃
o
1

...
...

...

xM−x1

roM
+ rM1(x

o−x1)
roM r̃o1

yM−y1
roM

+ rM1(y
o−y1)

roM r̃o1

zM−z1
roM

+ rM1(z
o−z1)

roM r̃o1



= −


(s2−s1)T

roj
+ r21(u

o−s1)T
ro2 r̃

o
1

...

(sM−s1)T
roM

+ rM1(u
o−s1)T

roM r̃o1

 (4.39)
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where we assume Bo
2∆ϕ ≈ 0 is valid. The (j − 1)th row of G3 is

−
(

(sj−s1)T
roj

+
rj1(u

o−s1)T
roj r̃

o
1

)
= −

(
(soj−s

o
1+Vjp−V1p)

T

roj
+

(roj1+nj1)(u
o−so1−V1p)

T

roj (r
o
1−ρT

uo,s1
V1p)

)
= −

(
(soj−s

o
1)

T

roj
+

roj1(u
o−so1)

T

roj r
o
1

)
(if C1 and C2 are satisfied)

=
(uo − soj)

T

roj
− (uo − so1)T

ro1

and hence

G3 =
∂ro

∂uo
(4.40)

where, 
C1 :

nj1

roj
= 0, j = 2, . . . ,M

C2 :
‖Vjp‖
roj

= 0, j = 1, . . . ,M

(4.41)

Substituting (4.14) and (4.13) into G4

G4 = B−11 D

=


(uo−s2)TV2−(uo−s1+r21ρuo,s1

)TV1

ro2

...

(uo−sM )TVM−(uo−s1+rM1ρuo,s1
)TV1

roM

 (4.42)

The (j − 1)th row of G4 is

(uo − soj −∆sj)
TVj − (uo − so1 −∆s1 + rj1ρuo,s1)TV1

roj

=
(uo − soj −∆sj)

TVj − (uo − so1 −∆s1 + (roj1 + ni1) (uo−s1)
r̃o1

)V1

roj

=
(uo − soj)

TVj − (uo − so1 + roj1
(uo−so1)

ro1
)V1

roj
(if C1 and C2 are satisfied)

=
(uo − soj)

TVj

roj
− (uo − so1)TVi

ro1

and hence

G4 =
∂ro

∂p
(4.43)

Covariance Matrix of u is,

cov(u) = (
∂r

∂u
)TQ−1(

∂r

∂u
)− (

∂r

∂u
)TQ−1(

∂r

∂p
)

(
Q−1p + ( ∂r∂p )TQ−1( ∂r∂p )

)−1
(
∂r

∂p
)TQ−1(

∂r

∂u
)

= CRLB(uo) (4.44)

Hence the performance of the proposed estimator reaches CRLB performance when the condition

(C1) and (C2) are satisfied.
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4.4 Summary

In this Chapter, we proposed an algorithm of the source localization problem in the presence of

measurement noise and sensor position manifold uncertainties. Then, simulation result shows

that the proposed method reached the CRLB performance for both near-field and distant source

in small error region. In the final part of the chapter, the proposed method has been provn that

its performance reaches CRLB theoretically.
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Chapter 5

A New Estimator and

Performance Analysis of Source

Localization in the Presence of

Clock-bias Error

In this chapter, we will develop an algorithm for source localization in the presence of measure-

ment noise and clock-bias error. This algorithm is a closed-form method based on Chan and

Ho’s closed-form solution. The simulation result of the proposed algorithm and the theoretical

proof that the proposed algorithm reaches CRLB will be given in this chapter.

5.1 Mathematic Derivation

In this section, we will derive a algorithm of source localization when the measurement noise

and clock-bias error exist.

The unknown source position is uo = [xo, yo, zo]T and the known sensor position is si =

[xi, yi, zi]
T . Let us further assume that the sensor array can be decomposed into N sub-arrays

and the ith sub-array has (mi −mi−1) elements, i = 1, 2, . . . , N . Here, m0 is zero and the total
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number of sensor is M = mN . Within each sub-array the sensors are synchronized with the same

clocks. However, the clocks among different sub-arrays are not synchronized and have clock bias

δj , j = 2, 3, . . . , N with respect to the first sub-array. Let us choose the first sensor of the first

sub-array as reference for TDOA measurements.

From the emitted source signal, we have mN − 1 TDOA ri1 measurements.

ri1 =‖ uo − si ‖ − ‖ uo − s1 ‖ +ni1, i = 2, . . . ,m1

ri1 =‖ uo − si ‖ − ‖ uo − s1 ‖ +δo2 + ni1, i = m1 + 1, . . . ,m2 (5.1)

. . .

ri1 =‖ uo − si ‖ − ‖ uo − s1 ‖ +δoN + ni1, i = mN−1 + 1, . . . ,mN

where δo = [δo2 , . . . , δ
o
N ]T is the clock-bias vector. We shall assume in this study δ is deterministic

and not random. {s1, . . . , sm1
}, {sm1+1, . . . , sm2

}, . . . , {smN−1+1, . . . , smN
} are different sub-

arrays.

Although different sub-arrays have clock bias between each other, sensors within a sub-array are

synchronized.

Hence, we can convert the mN−1 measurements in (5.1) to the following mN−N TDOA values:

ri,mj−1+1 = ri,1 − rmj−1+1,1,


i = mj−1 + 2, . . . ,mj

j = 1, 2, . . . , N

(5.2)

where sensor mj−1 + 1 in the jth sub-array is used as a reference for the TDOAs within the

sub-array. The above mN −N TDOA values are free of clock bias. The proposed algorithm is

derived based on (5.2).

Stage 1:

If the ith sensor is in the jth sub-array, we have

roi = romj−1+1 + roi,mj−1+1 (5.3)

Taking square of both side and expanding,

ro2i,mj−1+1 + 2roi,mj−1+1r
o
mj−1+1 = sTi si − sTmj−1+1smj−1+1 − 2(si − smj−1+1)Tuo (5.4)
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Let ni,mj−1+1 be noise of ri,mj−1+1, which is related to the noise in the original TDOA noise

ni,mj−1+1 = ni,1 − nmj−1+1,1. we can represent ri,mj−1+1 as

roi,mj−1+1 = ri,mj−1+1 − ni,mj−1+1 (5.5)

Hence, (5.4) can be expressed as

2roi ni,mj−1+1 = r2i,mj−1+1 − sTi si + sTmj−1+1smj−1+1 + 2(si − smj−1+1)Tuo + 2ri,mj−1+1r
o
mj−1+1

(5.6)

For all N sub-arrays, we have mN −N equations:

2ro2n21 = r221 − sT2 s2 + sT1 s1 + 2(s2 − s1)Tuo + 2r21r
o
1

...

2roi ni,mj−1+1 = r2i,mj−1+1 − sTi si + sTmj−1+1smj−1+1 + 2(si − smj−1+1)Tuo

+2ri,mj−1+1r
o
mj−1+1

...

2romN
nmN ,mN−1+1 = r2mN ,mN−1+1 − sTmN

smN
+ sTmN−1+1smN−1+1

+2(smN
− smN−1+1)Tuo + 2rmN ,mN−1+1r

o
mN−1+1

(5.7)

Let the unknown vector be ϕo1 = [uoT , ro1, r
o
m1+1, . . . , r

o
mN−1+1]T , where rmj−1+1, j = 1, 2, . . . , N

are nuisance variables. Expressing (5.7) in matrix form,

ε1 = B1na = h1 −G1ϕ
o
1 (5.8)

where

B1 = 2



ro2

. . .

rom1

. . .

romN−1+2

. . .

romN


(mN−N)×(mN−N)

(5.9)
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h1 =



r221 − sT2 s2 + sT1 s1

...

r2m1,1 − sTm1
sm1

+ sT1 s1

...

r2mN−1+2,mN−1+1 − sTmN−1+2smN−1+2 + sTmN−1+1smN−1+1

...

r2mN ,mN−1+1 − sTmN
smN

+ sTmN−1+1smN−1+1


(mN−N)×1)

(5.10)

G1 = −2



(s2 − s1)T r21 0 . . . 0

...
...

...
. . .

...

(sm1
− s1)T rm1,1 0 . . . 0

...
...

...

(smN−1+2 − smN−1+1)T 0 . . . 0 rmN−1+2,mN−1+1

...
...

. . .
...

...

(smN
− smN−1+1)T 0 . . . 0 rmN ,mN−1+1


(mN−N)×(N+3)

(5.11)

and na is the noise vector of the modified TDOA measurements in (5.2),

na =

[
n21 . . . nm1,1 nm1+2,m1+1 . . . nm2,m1+1 . . . nmN−1+2,mN−1+1 . . . nmN ,mN−1+1

]T
.

(5.12)

It is related to the TDOA measurement noise vector n through

na = An (5.13)

where

A =



D1

D2

. . .

DN


(5.14)

is a block diagonal matrix whose first block is

D1 = Im1−1×m1−1

and the ith block is

Di =

[
−1(mj−mj−1−1)×1 I(mj−mj−1−1)×(mj−mj−1−1)

]
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The covariance matrix of na is

cov(na) = E

[
nan

T
a

]
= E

[
An(An)T

]
= AE

[
nnT

]
AT

= AQAT (5.15)

= Qa (5.16)

The weighted least-square (WLS) technique can be applied to estimate ϕ1 and the result is

ϕ1 = (GT
1 W1G1)−1GT

1 W1h1 (5.17)

and the covariance matrix of ϕ1 is

cov(ϕ1) = (GT
1 W1G1)−1. (5.18)

The weighting matrix W1 is calculated using

W1 = E[ε1ε
T
1 ]−1 = (BT

1 QaB1)−1. (5.19)

Stage 2:

In stage 2, we refine the source location estimate in ϕ1(1 : 3) using ro1, r
o
m1+1, . . . , rmN−1+1.

Let ϕo2 = [xo2, yo2, zo2]T . Since ϕ1(1 : 3) is an estimator of uo, ϕ1(1 : 3) = uo + ∆ϕ1(1 : 3),

where ∆ϕ1(1 : 3) is the estimation noise. Thus

(ϕ1(1 : 3)o −∆ϕ1(1 : 3))� (ϕ1(1 : 3)o −∆ϕ1(1 : 3)) = uo � uo (5.20)

ϕ1(1 : 3)o �ϕ1(1 : 3)o − 2ϕ1(1 : 3)o �∆ϕ1(1 : 3)o = uo � uo (5.21)

or

2ϕ1(1 : 3)�∆ϕ1(1 : 3) ≈ ϕ1(1 : 3)�ϕ1(1 : 3)− uo � uo. (5.22)

Recall that ϕ1(j + 3) = romj−1+1 + ∆rmj−1+1, j = 1, . . . , N , where ∆rmj−1+1 is the estimation

noise. Hence

(ϕ1(j + 3)−∆ϕ1(j + 3))2 = (uo − smj−1+1)T (uo − smj−1+1) (5.23)
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Expanding (5.23) and substituting uo = ϕ1(1 : 3)−∆ϕ1(1 : 3) we have

2sTmj−1+1∆ϕ1(1 : 3)+2ϕ1(j+3)∆ϕ1(j+3) = ϕ1(j+3)2+2sTmj−1+1ϕ1(1 : 3)−sTmj−1+1smj−1+1−uoTuo

(5.24)

Over all j from 1 to N , we obtain

2sT1 ∆ϕ1(1 : 3) + 2ϕ1(4)∆ϕ1(4) = ϕ1(4)2 + 2sT1 ϕ1(1 : 3)− sT1 s1 − uoTuo

...

2sTmN−1+1∆ϕ1(1 : 3) + 2ϕ1(N + 3)∆ϕ1(N + 3)

= ϕ1(N + 3)2 + 2sTmN−1+1ϕ1(1 : 3)− sTmN−1+1smN−1+1 − uoTuo

. (5.25)

We can express (5.22) and (5.25) in matrix form as

ε2 = B2∆ϕ1 = h2 −G2ϕ2 (5.26)

where

B2 = 2



diag(ϕ1(1 : 3))

sT1 ϕ1(4)

...
. . .

sTmN−1+1 ϕ1(N + 3)


(5.27)

h2 =



ϕ1(1 : 3)�ϕ1(1 : 3)

ϕ1(4)2 + 2sT1 ϕ1(1 : 3)− sT1 s1

...

ϕ1(N + 3)2 + 2sTmN−1+1ϕ1(1 : 3)− sTmN−1+1smN−1+1


(5.28)

G2 =



1 0 0

0 1 0

0 0 1

1 1 1

...

1 1 1



(5.29)

The WLS solution for stage 2 is

ϕ2 = (GT
2 W2G2)−1GT

2 W2h2. (5.30)
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The weighting matrix is W2 = E[ε2ε
T
2 ]−1 = [B2cov(ϕ1)BT

2 ]−1 = B−T2 (GT
1 W1G1)B−12 , where

(5.18) has been used.

The covariance matrix of ϕ2 is

cov(ϕ2) = (GT
2 W2G2)−1 (5.31)

The source location estimate u = [x, y, z]T can be obtained from ϕ2 using

u = P[
√
ϕ2(1),

√
ϕ2(2),

√
ϕ2(3)]T (5.32)

where

P = diag[sgn(ϕ1(1)), sgn(ϕ1(2)), sgn(ϕ1(3))]. (5.33)

According to (5.32), squaring and taking differential,

∆u = B−13 ∆ϕ2 (5.34)

where

B3 = 2


xo

yo

zo

 . (5.35)

The covariance matrix of the final source position estimator is

cov(u) = B−13 cov(ϕ2)B−T3 . (5.36)

5.2 Simulation

The weighting matrix W1 is dependent on the unknown true source position. In our simulation,

we first initialize it to Qa = AQAT , which is the covariance matrix of the transformed noise

vector na = An. Then we have an initial estimate of the source localization by applying (5.17)

and use it to update W1. Using the new W1, we can have a more accurate result of ϕ1. In our

simulation, the number of times to repeat the computation of ϕ1 and the update of W1 is set

to 2.

In the simulation a total of 12 sensors is used. Table 5.1 gives the sensor positions used in

simulation. Figure 5.1 is the geometric distribution of the sensors.
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xi 30 40 30 350 100 200 200 500 300 -400 300 400

yi 10 15 50 200 -100 200 100 400 400 200 500 400

zi 15 10 20 100 100 300 -150 400 -200 300 -400 200

Table 5.1: True Sensor Positions

Figure 5.1: Distribution of sensors

49



Figure 5.2: Near-field source localization in the presence of two clock offsets

The TDOA measurements are obtained according to r = ro + n where r is the TDOA measure-

ments with noise, ro is the true TDOA values and n is the noise vector. In simulation, ro is

calculated by roi1 = ‖uo − si‖ − ‖uo − s1‖ and Q is the the covariance matrix of n.

Besides measurement noise, we have clock-bias error in the simulation. All the sensors can be

divided into several sub-arrays. Within one sub-array, the sensors are synchronized. However,

the clocks among different sub-arrays are not synchronized. The clock bias δi are generated

randomly in each ensemble run.

In the simulation, we compare mse(mean-square error) with CRLB. It is obtained according to

mse =
∑K

k=1(u
o−u(K))T (uo−u(K))

K , where K is the number of ensemble run of the proposed solution

and u(K) is the source location estimate of the proposed algorithm at ensemble run K. We set

K to 5000.

Figure 5.2 is the simulation result for a near-field source of uo = [600, 550, 650]T . The measure-

ment noise matrix Q is set to c2σ2 in the diagonal elements and 0.5c2σ2 otherwise. We have 3

sub-arrays in this simulation and Table 5.2 shows the sensor positions of the three sub-arrays.

From the figure, the CRLB with the clock-bias error is higher than the CRLB in the absence

of the clock-bias error. The accuracy of source localization decreases because clock-bias error is

introduced. The performance of the proposed estimator reach the CRLB when the noise power

is small.
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Sub-array 1 Sub-array 2 Sub-array 3

xi 30 40 30 350 100 200 200 500 300 -400 300 400

yi 10 15 50 200 -100 200 100 400 400 200 500 400

zi 15 10 20 100 100 300 -150 400 -200 300 -400 200

Table 5.2: Sensor positions of the 3 sub-arrays

Figure 5.3: Near-field source localization in the presence of three clock offsets

Figure 5.3 is the simulation where we have three clock bias values. The source is a near-field

source at uo = [600, 550, 650]T . The measurement noise matrix Q is set to c2σ2 in the diagonal

elements and 0.5c2σ2 otherwise.Table 5.3 is the grouping of the sensors in the sub-arrays. From

the figure, CRLB in the presence the clock-bias error is higher than the CRLB in the absence of

the clock-bias error. The performance of the estimator reaches the CRLB when the noise power

is small. However, having three clock offsets has performance diverging from the CRLB earlier

compare to the case in Figure 5.3 where there are only two clock bias offsets.

Figure 5.4 is the simulation result for the distant source uo = [2000, 2500, 3000]T . The mea-

surement noise matrix Q is set to c2σ2 in the diagonal elements and 0.5c2σ2 otherwise. Table

5.2 is the sensor positions of the 3 sub-arrays. From the figure, we observe the CRLB with the

clock-bias error is higher than the CRLB in the absence of the clock-bias error.The mean square

error of the distant source in Figure 5.4 diverges from the CRLB earlier of the near-field source.
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Sub-array 1 Sub-array 2 Sub-array 3 Sub-array 4

xi 30 40 30 350 100 200 200 500 300 -400 300 400

yi 10 15 50 200 -100 200 100 400 400 200 500 400

zi 15 10 20 100 100 300 -150 400 -200 300 -400 200

Table 5.3: Sensor position of 4 sub-arrays

Figure 5.4: Distant source localization in the clock-bias error of two clock offsets
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Figure 5.5: Distant source localization in the clock-bias error of three clock offsets

Nevertheless the performance of the estimator reaches the CRLB when the noise power is small.

Figure 5.5 is the simulation for the distant source at uo = [2000, 2500, 3000]T with three clock

bias offsets. The measurement noise matrix Q is set to c2σ2 in the diagonal elements and 0.5c2σ2

otherwise. Table 5.3 gives the sensor positions of the simulation. From Figure 5.5, the CRLB in

the presence the clock-bias error is higher than the CRLB in the absence of the clock-bias error.

The performance of the estimator reaches the CRLB when the noise power is small. However,

mean square error of three clock bias offsets diverges from the CRLB earlier than that when we

have only two clock bias. In addition, mean square error of far-field source diverges earlier than

the mean square error of the near-field source.

5.3 Mathematic Proof of Optimum Performance of the

Proposed Estimator for Source Localization in the P-

resence of Clock-bias Error

In this section, we will prove the mean square error of the proposed estimator achieve the CRLB

performance. The CRLB of the source localization in the presence of clock-bias error has been
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given in chapter 3. We will evaluate the covariance of the proposed estimator and compare it

with the CRLB

cov(u)−1 = BT
3 cov(ϕ2)−1B3

= BT
3 G

T
2 B
−T
2 GT

1 B
−T
1 (AQAT )−1B−11 G1B

−1
2 G2B3 (5.37)

Under the situation in which Bo−1
2 ∆ϕ ≈ 0, B2 ≈ Bo

2, where B2 is defined in (5.27) and Bo
2 is

B2 with all the noisy quantities replaced by the true value. Applying the block matrix inversion

lemma on Bo
2 gives

B−12 ≈ 1

2



[diag(uo)]−1 O

−


sT1
ro1

...

sTmN−1+1

romN−1+1

 [diag(uo)]−1


1
ro1

. . .

1
romN−1+1




(5.38)

Substituting (5.9),(5.11),(5.29) and (5.35), we have

B−11 G1B
−1
2 G2B3

= −



(s2−s1)T
ro2

+ r21(u
o−s1)T
ro2r

o
1

...

(sm1
−s1)T

rom1

+
rm1,1(u

o−s1)T

rom1
ro1

...

(smN−1+2−smN−1+1)
T

romN−1+2
+

rmN−1+2,mN−1+1(u
o−sN−1+1)

T

romN−1+2r
o
mN−1+1

...

(smN
−smN−1+1)

T

romN

+
rmN,mN−1+1(u

o−smN−1+1)
T

romN
romN−1+1



(5.39)
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If the measurement noise is small enough compare to the distance between the source and sensors,

the condition C1 :
nj1

roj
≈ 0, j = 2, . . . ,M is satisfied. As a result,

B−11 G1B
−1
2 G2B3

= −



(s2−s1)T
ro2

+
ro21(u

o−s1)T
ro2r

o
1

...

(sm1−s1)
T

rom1

+
rom1,1(u

o−s1)T

rom1
ro1

...

(smN−1+2−smN−1+1)
T

romN−1+2
+

romN−1+2,mN−1+1(u
o−smN−1+1)

T

romN−1+2r
o
mN−1+1

...

(smN
−smN−1+1)

T

romN

+
romN,mN−1+1(u

o−smN−1+1)
T

romN
romN−1+1



=



(uo−so2)
T

ro2
− (uo−so1)

T

ro1

...

(uo−som1
)T

rom1

− (uo−so1)
T

ro1

...

(uo−somN−1+2)
T

romN−1+2
−

(uo−somN−1+1)
T

romN−1+1

...

(uo−somN
)T

romN

−
(uo−somN−1+1)

T

romN−1+1



=



∂ro21
∂uo

...

∂rom1,1

∂uo

...

∂romN−1+2,mN−1+1

∂uo

...

∂romN,mN−1+1

∂uo


= A

∂ro

∂uo
(5.40)

where ro = [ro21, . . . , r
o
mN ,1]T .

Substituting (5.40) into (5.37), we have

cov(u)−1 = (
∂ro

∂uo
)TAT (AQAT )−1A

∂ro

∂uo
. (5.41)
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From Chapter 3, the CRLB of the proposed estimator is

CRLB(uo)−1 = (
∂ro

∂uo
)T
[
Q−1 −Q−1F(FTQ−1F)−1FTQ−1

]
∂ro

∂uo
. (5.42)

If we denote Ã = Q
1
2AT and F̃ = Q−

1
2F,

AT (AQAT )−1A = Q−
1
2 Ã(Ã

T
Ã)−1Ã

T
Q−

1
2 (5.43)

and

Q−1 −Q−1F(FTQ−1F)−1FTQ−1 = Q−
1
2

[
I− F̃(F̃

T
F̃)−1F̃

T

]
Q−

1
2 (5.44)

where I is a (mN − 1)× (mN − 1) identity matrix.

Note that Ã(Ã
T
Ã)−1Ã

T
is the projection matrix onto the subspace defined by the columns of

Ã.

F̃(F̃
T
F̃)−1F̃

T
is the projection matrix onto the subspace defined by the columns of F̃.

Ã
T
F̃ = AQ

1
2Q−

1
2F

= AF

= O (5.45)

where the definition of A in (5.14) and that of F (3.29) have been used. (5.45) indicates that the

columns of Ã and that of F̃ are orthogonal to each other. Also, the columns of them together

span the entire space of dimension mN − 1. Thus Ã
T

and F̃ are orthogonal. We have

Ã(Ã
T
Ã)−1Ã

T
= I− F̃(F̃

T
F̃)−1F̃

T
(5.46)

as a result, using (5.43), (5.44) and 5.46

(
∂ro

∂uo
)TAT (AQAT )−1A

∂ro

∂uo
= (

∂ro

∂uo
)T
[
Q−1 −Q−1F(FTQ−1F)−1FTQ−1

]
∂ro

∂uo
(5.47)

In other word,

cov(u)−1 = CRLB(u)−1 (5.48)

Or,

cov(u) = CRLB(u) (5.49)

When the condition C1 is satisfied.
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5.4 Summary

In this chapter, we proposed an estimator of the source localization problem in the presence

of measurement noise and clock unknown but fixed offset. Then, simulation results shows that

the proposed method reached the CRLB performance for both near-field and distant sources in

small error region. In the final part of the chapter, the performance of the proposed method in

reaching CRLB has been proved theoretically under the small noise condition.
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Chapter 6

Source Location Estimator and

Performance Analysis in the

Presence of Measurement Noise,

Sensor Position Manifold

Uncertainties and Clock-bias

Error

In this chapter, we will develop an estimator for source localization in the presence of measure-

ment noise, sensor position manifold uncertainties and clock-bias error. The proposed algorithm

is a closed-form method based on Chan and Ho’s closed-form solution. The simulation result

of the proposed algorithm and the theoretical proof that the proposed algorithm reaches CRLB

will be given in this chapter.
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6.1 Mathematic Derivation

In this section, we will derive a algorithm of source localization when the measurement noise,

sensor position manifold uncertainties and clock-bias error are all present.

The unknown source position is uo = [xo, yo, zo]T and the unknown true sensor position of ith

sensor is soi = [xoi , y
o
i , z

o
i ]T , i = 1, . . . , M . si is the known noisy sensor position of the ith

sensor, where si = soi + ∆si and ∆si is the sensor position error. We shall represent ∆si = Vip,

where p is a random vector with length L and Vi is the transformation matrix that relates the

random vector p and the position uncertainties of the ith sensor.

Thus

si = soi + Vip (6.1)

Denoting s = [sT1 , . . . , s
T
M ]T and V = [VT

1 , . . . ,V
T
M ]T , then

s = so + Vp (6.2)

Let us further assume that the sensor array can be decomposed into N sub-arrays and the ith

sub-array has (mi − mi−1) elements, i = 1, 2, . . . , N . Here, m0 is zero and the total number

of sensors is M = mN . Within each sub-array the sensors are synchronized with the same

clocks. However, the clocks among different sub-arrays are not synchronized and have clock bias

δj , j = 2, 3, . . . , N with respect to the first sub-array. Let us choose the first sensor of the first

sub-array as reference for TDOA measurements.

From the emitted source signal, we have mN − 1 TDOA measurements ri1.

ri1 =‖ uo − si ‖ − ‖ uo − s1 ‖ +ni1, i = 2, . . . ,m1

ri1 =‖ uo − si ‖ − ‖ uo − s1 ‖ +δo2 + ni1, i = m1 + 1, . . . ,m2 (6.3)

. . .

ri1 =‖ uo − si ‖ − ‖ uo − s1 ‖ +δoN + ni1, i = mN−1 + 1, . . . ,mN

where δo = [δo2 , . . . , δ
o
N ]T is the clock-bias vector. we shall assume in this study δ is deterministic

and not random. {s1, . . . , sm1
}, {sm1+1, . . . , sm2

}, . . . , {smN−1+1, . . . , smN
} are different sub-

arrays.

Although different sub-arrays have clock bias between each other, the sensors within a sub-array
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are synchronized.

We can convert the mN − 1 measurements in (6.3) to the following mN −N TDOA values:

ri,mj−1+1 = ri,1 − rmj−1+1,1,


i = mj−1 + 2, . . . ,mj

j = 1, 2, . . . , N

(6.4)

where sensor mj−1 + 1 in the jth sub-array is used as a reference for the TDOAs within the

sub-array. The above mN −N TDOA values are free of clock bias.

Stage 1:

If the ith sensor is in the jth sub-array, we have

roi = romj−1+1 + roi,mj−1+1. (6.5)

Taking square of both side and expanding,

ro2i,mj−1+1 + 2roi,mj−1+1r
o
mj−1+1 + 2(soi − somj−1+1)Tuo + soTmj−1+1s

o
mj−1+1 − soTi soi = 0 (6.6)

Expressing roi,mj−1+1 = ri,mj−1+1 − ni,mj−1+1 and soi = si −Vip, where, ni,mj−1+1 is the noise

of ri,mj−1+1, which is related to the original TDOA noise as ni,mj−1+1 = ni,1 − nmj−1+1,1, we

have

2roi ni,mj−1+1 + 2(uo − si)
TVip− 2(uo − smj−1+1)TVmj−1+1p

= r2i,mj−1+1 − sTi si + sTmj−1+1smj−1+1 + 2(si − smj−1+1)Tuo + 2ri,mj−1+1r
o
mj−1+1 (6.7)

Because romj−1+1 is the true value, it depends on the true positions of smj−1+1. Expressing

romj−1+1 = ‖uo − somj−1+1‖ = ‖uo − smj−1+1 + ∆smj−1+1‖ ≈ r̃omj−1+1 + ρTuo,smj−1+1
Vmj−1+1p

(6.8)

where r̃omj−1+1 = ‖uo − smj−1+1‖ and ρuo,smj−1+1
≈ (uo−smj−1+1)

‖uo−smj−1+1‖ represents the unit vector

from s1 to uo,

2roi ni,mj−1+1 + 2(uo − si)
TVip− 2(uo − smj−1+1 + ri,mj−1+1ρuo,smj−1+1

)TVmj−1+1p

= r2i,mj−1+1 − sTi si + sTmj−1+1smj−1+1 + 2(si − smj−1+1)Tuo + 2ri,mj−1+1r̃
o
mj−1+1 (6.9)
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For all sensors, we have mN −N equations.

2ro2n21 + 2(uo − s2)TV2p− 2(uo − s1 + r21ρuo,s1)TV1p

= r221 − sT2 s2 + sT1 s1 + 2(s2 − s1)Tuo + 2r21r̃
o
1

...

2roi ni,mj−1+1 + 2(uo − si)
TVip− 2(uo − smj−1+1 + ri,mj−1+1ρuo,smj−1+1

)TVmj−1+1p

= r2i,mj−1+1 − sTi si + sTmj−1+1smj−1+1 + 2(si − smj−1+1)Tuo + 2ri,mj−1+1r̃
o
mj−1+1

...

2romN
nmN ,mN−1+1 + 2(uo − smN

)TVmN
p− 2(uo − smN−1+1 + rmN ,mN−1+1ρuo,smN−1+1

)TVmN−1+1p

= r2mN ,mN−1+1 − sTmN
smN

+ sTmN−1+1smN−1+1 + 2(smN
− smN−1+1)Tuo + 2rmN ,mN−1+1r̃

o
mN−1+1

(6.10)

Assume ϕo1 = [uoT , r̃o1, r̃
o
m1+1, . . . , r̃

o
mN−1+1]T . Express (6.10) in matrix form,

ε1 = B1na + Dp = h1 −G1ϕ
o
1 (6.11)

where

B1 = 2



ro2

. . .

rom1

. . .

romN−1+2

. . .

romN


(Nm−N)×(Nm−N)

(6.12)
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D = 2



(uo − s2)TV2 − (uo − s1 + r21ρuo,s1)TV1

...

(uo − sm1
)TVm1

− (uo − s1 + rm1,1ρuo,s1)TV1

...

(uo − smN−1+2)TVmN−1+2 − (uo − smN−1+1 + rmN−1+2,mN−1+1ρuo,smN−1+1
)TVmN−1+1

...

(uo − smN
)TVmN

− (uo − smN−1+1 + rmN ,mN−1+1ρuo,smN−1+1
)TVmmN−1+1


(Nm−N)×1

(6.13)

h1 =



r221 − sT2 s2 + sT1 s1

...

r2m1,1 − sTm1
sm1 + sT1 s1

...

r2mN−1+2,mN−1+1 − sTmN−1+2smN−1+2 + sTmN−1+1smN−1+1

...

r2mN ,mN−1+1 − sTmN
smN

+ sTmN−1+1smN−1+1


(Nm−N)×1

(6.14)

G1 = −2



(s2 − s1)T r21 0 . . . 0

...
...

...
. . .

...

(sm1
− s1)T rm1,1 0 . . . 0

...
...

...

(smN−1+2 − smN−1+1)T 0 . . . 0 rmN−1+2,mN−1+1

...
...

. . .
...

...

(smN
− smN−1+1)T 0 . . . 0 rmN ,mN−1+1


(Nm−N)×(N+3)

(6.15)

na is the noise vector of the modified TDOA measurements,

na =

[
n21 . . . nm1,1 nm1+2,m1+1 . . . nm2,m1+1 . . . nmN−1+2,mN−1+1 . . . nmN ,mN−1+1

]T
.

(6.16)
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It is related to the TDOA measurement noise vector n through

na = An (6.17)

where

A =



D1

D2

. . .

DN


(6.18)

is a block diagonal matrix whose first block is

D1 = I(m1−1)×(m1−1)

and the ith block is

Di =

[
−1(mj−mj−1−1)×1 I(mj−mj−1−1)×(mj−mj−1−1)

]

The covariance matrix of na is

cov(na) = E

[
nan

T
a

]
= E

[
An(An)T

]
= AE

[
nnT

]
AT

= AQAT (6.19)

= Qa. (6.20)

The weighted least-square (WLS) technique can be applied to estimate ϕ1(1 : 3) and the result

is

ϕ1 = (GT
1 W1G1)−1GT

1 W1h1 (6.21)

and the covariance matrix of ϕ1 is

cov(ϕ1) = (GT
1 W1G1)−1. (6.22)

The weighting matrix W1 is calculated using

W1 = E[ε1ε
T
1 ]−1 = (B1QaB

T
1 + DQpD

T )−1. (6.23)
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Stage 2:

In stage 2, we refine the source localization estimate in ϕ1(1 : 3) using r̃o1, r̃
o
m1+1, . . . , r̃mN−1+1.

Let ϕo2 = [xo2, yo2, zo2]T . Since ϕ1(1 : 3) is an estimator of uo, ϕ1(1 : 3) = uo + ∆ϕ1(1 : 3),

where ∆ϕ1(1 : 3) is the estimation noise. Thus

(ϕ1(1 : 3)o −∆ϕ1(1 : 3))� (ϕ1(1 : 3)o −∆ϕ1(1 : 3)) = uo � uo (6.24)

ϕ1(1 : 3)o �ϕ1(1 : 3)o − 2ϕ1(1 : 3)o �∆ϕ1(1 : 3) ≈ uo � uo (6.25)

or

2ϕ1(1 : 3)�∆ϕ1(1 : 3) = ϕ1(1 : 3)�ϕ1(1 : 3)− uo � uo, (6.26)

Where the second order noise terms is ignored. Recall that ϕ1(j+3) = romj−1+1 +∆rmj−1+1, j =

1, . . . , N , where ∆rmj−1+1 is the estimation noise. Hence

(ϕ1(j + 3)−∆ϕ1(j + 3))2 = (uo − smj−1+1)T (uo − smj−1+1) (6.27)

Expanding (6.27) and substituting uo = ϕ1(1 : 3)−∆ϕ1(1 : 3) we have

2sTmj−1+1∆ϕ1(1 : 3)+2ϕ1(j+3)∆ϕ1(j+3) = ϕ1(j+3)2+2sTmj−1+1ϕ1(1 : 3)−sTmj−1+1smj−1+1−uoTuo.

(6.28)

Over all j from 1, . . . , N , we obtain

2sT1 ∆ϕ1(1 : 3) + 2ϕ1(4)∆ϕ1(4) = ϕ1(4)2 + 2sT1 ϕ1(1 : 3)− sT1 s1 − uoTuo

...

2sTmN−1+1∆ϕ1(1 : 3) + 2ϕ1(N + 3)∆ϕ1(N + 3)

= ϕ1(N + 3)2 + 2sTmN−1+1ϕ1(1 : 3)− sTmN−1+1smN−1+1 − uoTuo

. (6.29)

We can express (6.26) and (6.29) in matrix form as

ε2 = B2∆ϕ1 = h2 −G2ϕ2 (6.30)

where

B2 = 2



diag(ϕ1(1 : 3))

sT1 ϕ1(4)

...
. . .

sTmN−1+1 ϕ1(N + 3)


(6.31)
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h2 =



ϕ1(1 : 3)�ϕ1(1 : 3)

ϕ1(4)2 + 2sT1 ϕ1(1 : 3)− sT1 s1

...

ϕ1(N + 3)2 + 2sTmN−1+1ϕ1(1 : 3)− sTmN−1+1smN−1+1


(6.32)

G2 =



1 0 0

0 1 0

0 0 1

1 1 1

...

1 1 1



(6.33)

The WLS solution for Stage 2 is

ϕ2 = (GT
2 W2G2)−1GT

2 W2h2. (6.34)

The covariance matrix of ϕ2 is

cov(ϕ2) = (GT
2 W2G2)−1 (6.35)

where the weighting matrix is W2 = E[ε2ε
T
2 ]−1 = [B2cov(ϕ1)BT

2 ]−1 = B−T2 (GT
1 W1G1)B−12 .

The source location estimate u = [x, y, z]T can be obtained from ϕ2 using

u = P[
√
ϕ2(1),

√
ϕ2(2),

√
ϕ2(3)]T (6.36)

where

P = diag[sgn(ϕ1(1)), sgn(ϕ1(2)), sgn(ϕ1(3))]. (6.37)

According to (6.36), squaring and taking differential give

∆u = B−13 ∆ϕ2 (6.38)

where

B3 = 2


xo 0 0

0 yo 0

0 0 zo

 . (6.39)

The covariance matrix of the final source position estimate is

cov(u) = B−13 cov(ϕ2)B−T3 . (6.40)
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xi 30 40 30 350 100 200 200 500 300 -400 300 400

yi 10 15 50 200 -100 200 100 400 400 200 500 400

zi 15 10 20 100 100 300 -150 400 -200 300 -400 200

Table 6.1: True Sensor Positions

Figure 6.1: Distribution of sensors

6.2 Simulation

The weighting matrix W1 is dependent on the unknown true source position. In our simulation,

we first initialize it to Qa = AQA, which is the covariance matrix of the transformed noise

vector na = An. Then we have an initial estimate of the source localization and use it to update

W1. Using the new W1, we can have a more accurate result. In our simulation, the number of

times to repeat the update of W1 and the computation of ϕ1(1 : 3) is set to 2.

In this simulation a total of 12 sensors is used. Table 6.1 gives the sensor positions used in

simulation. Figure 6.1 is the geometric distribution of the sensors.

The TDOA measurements are obtained according to r = ro + n where r is the TDOA measure-

ments, ro is the true TDOA values and n is the noise vector. In the simulation, ro is calculated

by roi1 = ‖uo − si‖ − ‖uo − s1‖ and the covariance matrix of n is Q.

Besides measurement noise, we have clock-bias error in the simulation. All the sensors can be

divided into several sub-arrays. Within one sub-array, the sensors are synchronized. However,
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Figure 6.2: Near-field source localization in the presence of measurement noise, sensor position

manifold uncertainties and clock-bias errors; the number of unknown clock offsets is 2

the clocks among different sub-arrays are not synchronized. The clock bias δi are generated

randomly in each ensemble run.

Sensor position manifold uncertainties in the simulation are given by s = so + Vp. The covari-

ance matrix of p is Qp. We set sensor position uncertainties related to each other when sensor

is from the same sub-array and independent when sensors are in different sub-arrays.

In the simulation, we compare mse(mean-square error) with the CRLB. It is obtained according

to mse =
∑K

k=1(u
o−u(K))T (uo−u(K))

K , where K is the number of ensemble runs of the proposed

solution. We set K to 5000.

Figure 6.2 is the simulation result for a near-field source at uo = [600, 550, 650]T . The mea-

surement noise matrix Q is set to c2σ2 in the diagonal elements and 0.5c2σ2 otherwise. Qp, is

set to a L×L identity matrix with the noise power of c2σ2. We have two unknown clock offsets

in sub-arrays 2 and 3 in this simulation and Table 6.2 shows the sensor positions of sub-arrays.

From the figure, the CRLB with the sensor position manifold uncertainties and clock-bias error

is higher than the CRLB with measurement noise only. The performance of the proposed esti-

mator reaches the CRLB when the noise power is small.

Figure 6.3 shows the simulation when we have three unknown clock-bias values for a near-field

source uo = [600, 550, 650]T . The measurement noise matrix Q is set to c2σ2 in the diagonal
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Sub-array 1 Sub-array 2 Sub-array 3

xi 30 40 30 350 100 200 200 500 300 -400 300 400

yi 10 15 50 200 -100 200 100 400 400 200 500 400

zi 15 10 20 100 100 300 -150 400 -200 300 -400 200

Table 6.2: Sensor position of 3 sub-arrays

Figure 6.3: Near-field source localization in the presence of measurement noise, sensor position

manifold uncertainties and clock-bias errors; the number of unknown clock offsets is 3
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Sub-array 1 Sub-array 2 Sub-array 3 Sub-array 4

xi 30 40 30 350 100 200 200 500 300 -400 300 400

yi 10 15 50 200 -100 200 100 400 400 200 500 400

zi 15 10 20 100 100 300 -150 400 -200 300 -400 200

Table 6.3: Sensor positions of 4 sub-arrays

Figure 6.4: Distant source localization in the presence of measurement noise, sensor position

manifold uncertainties and clock-bias errors; the number of unknown clock offsets is 2

elements and 0.5c2σ2 otherwise. Qp, is set to a L × L identity matrix with the noise power of

c2σ2. We have 4 sub-arrays in this simulation. Table 6.3 is the grouping of the sensors in the

sub-arrays. From the figure, the CRLB in the presence of sensor position manifold uncertainties

and clock-bias error is higher than the CRLB without them. The performance of the estimator

reaches the CRLB when the noise power is small. However, having three clock offsets has per-

formance diverging from the CRLB earlier compare to the Figure 6.2 where there are only two

clock offsets.

Figure 6.4 is the simulation result for the distant source at uo = [2000, 2500, 3000]T with two

clock bias offsets. The measurement noise matrix Q is set to c2σ2 in the diagonal elements and

0.5c2σ2 otherwise. Qp, is set to a L × L identity matrix with the noise power of c2σ2. Table

6.2 shows the sensor position of the 3 sub-arrays in this simulation. From the figure, we can
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Figure 6.5: Distant source localization in the presence of measurement noise, sensor position

manifold uncertainties and clock-bias errors; the number of unknown clock offsets is 3

observe that the CRLB with the sensor position manifold uncertainties and clock-bias error is

higher than the CRLB in the absence of them. The mean square error of the distant source

diverges from the CRLB earlier than the mean square error of near-field source by comparing

Figure 6.4 and Figure 6.2. Nevertheless, the performance of the estimator reach CRLB when

the noise power is small.

Figure 6.5 is the simulation for the distant source at uo = [2000, 2500, 3000]T . The measure-

ment noise matrix Q is set to c2σ2 in the diagonal elements and 0.5c2σ2 otherwise. Qp, is set to

a L× L identity matrix with the noise power of c2σ2. Table 6.3 shows gives the sensor position

of the 4 sub-arrays. From Figure 6.5, the CRLB in the presence of sensor position manifold

uncertainties is higher than the CRLB in the absence of them. The performance of the esti-

mator reaches the CRLB when the noise power is small. However, the mean square error with

three clock-bias offset diverges from the CRLB earlier. Compared to the case when we have two

clock-bias offsets as shown in Figure 6.5. In addition, mean square error of the distant source

diverges earlier than the mean square error of the near-field source.
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6.3 Mathematic Proof of the Optimum Performance of the

Proposed Estimator for Source Localization in the P-

resence of Sensor Position Manifold Uncertainties and

Clock-bias Error

In this section, we shall prove the mean square error of the proposed estimator achieves the

CRLB performance. The CRLB of the source localization in the presence of clock-bias error has

been given in chapter 3. We will evaluate the covariance matrix of the proposed estimator and

compare it with the CRLB.

cov(u)−1 = BT
3 cov(ϕ2)−1B3 (6.41)

= BT
3 G

T
2 B
−T
2 GT

1 B
−T
1 (QT

a + B−11 DQpD
TB−T1 )−1B−11 G1B

−1
2 G2B3

Denote 
G3 = B−11 G1B

−1
2 G2B3

G4 = B−11 D

(6.42)

We have

cov(u)−1 = GT
3 (Qa + G4QpG

T
4 )−1G3

= GT
3 Q
−1
a G3 −GT

3 Q
−1
a G4(Q−1p + GT

4 Q
−1
a G4)GT

4 Q
−1
a G3 (6.43)

Under the situation in which Bo−1
2 ∆ϕ ≈ 0, B2 ≈ Bo

2, where B2 is defined in (6.31) and Bo
2 is

B2 with all the noisy quantities replaced by the true value. Applying the block matrix inversion

lemma on Bo
2 gives

B−12 ≈ 1

2



[diag(uo)]−1 O

−


sT1
ro1

...

sTmN−1+1

romN−1+1

 [diag(uo)]−1


1
ro1

. . .

1
romN−1+1




(6.44)
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Substituting (6.12),(6.15),(6.31),(6.33) and (6.39), we have

G3 = B−11 G1B
−1
2 G2B3

= −



(s2−s1)T
ro2

+ r21(u
o−s1)T
ro2 r̃

o
1

...

(sm1−s1)
T

rom1

+
rm1,1(u

o−s1)T

rom1
r̃o1

...

(smN−1+2−smN−1+1)
T

romN−1+2
+

rmN−1+2,mN−1+1(u
o−smN−1+1)

T

romN−1+2r̃
o
mN−1+1

...

(smN
−smN−1+1)

T

romN

+
rmN,mN−1+1(u

o−smN−1+1)
T

romN
r̃omN−1+1



(6.45)
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If the measurement noise is small enough compare to the distance between the source and sensors,

the condition C1 :
nj1

roj
≈ 0, j = 2, . . . ,M and C2 :

‖Vjp‖
roj

= 0, j = 1, . . . ,M are satisfied.

G3 = −



(so2−s
o
1)

T

ro2
+

ro21(u
o−so1)

T

ro2r
o
1

...

(som1
−so1)

T

rom1

+
rom1,1(u

o−so1)
T

rom1
ro1

...

(somN−1+2−s
o
mN−1+1)

T

romN−1+2
+

romN−1+2,mN−1+1(u
o−somN−1+1)

T

romN−1+2r
o
mN−1+1

...

(somN
−somN−1+1)

T

roM
+

romN,mN−1+1(u
o−somN−1+1)

T

romN
romN−1+1



=



(uo−so2)
T

ro2
− (uo−so1)

T

ro1

...

(uo−som1
)T

rom1

− (uo−so1)
T

ro1

...

(uo−somN−1+2)
T

romN−1+2
−

(uo−somN−1+1)
T

romN−1+1

...

(uo−somN
)T

romN

−
(uo−somN−1+1)

T

romN−1+1



=



∂ro21
∂uo

T

...

∂rom1,1

∂uo

T

...

∂romN−1+2,mN−1+1

∂uo

T

...

∂romN,mN−1+1

∂uo

T


= A

∂ro

∂uo
(6.46)
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where ro = [ro21, . . . , r
o
mN ,1]T .

Substituting (6.13) and (6.12) into G4, if C1 and C2 are satisfied, we have

G4 = B−11 D (6.47)

=



(uo−s2)TV2−(uo−s1+r21ρuo,s1
)TV1

ro2

...

(uo−sm1 )
TVm1−(u

o−s1+rm1,1ρuo,s1
)TV1

rom1

...

(uo−smN−1+2)
TVmN−1+2−(uo−smN−1+1+rmN−1+2,mN−1+1ρuo,smN−1+1

)TVmN−1+1

romN−1+2

...

(uo−smN
)TVmN

−(uo−smN−1+1+rmN,mN−1+1ρuo,smN−1+1
)TVmN−1+1

romN



=



(uo−so2)
TV2−(uo−so1+r

o
21ρuo,so1

)TV1

ro2

...

(uo−som1
)TVm1−(u

o−so1+r
o
m1,1ρuo,so1

)TV1

rom1

...

(uo−somN−1+2)
TVmN−1+2−(uo−somN−1+1+r

o
mN−1+2,mN−1+1ρuo,so

mN−1+1
)TVmN−1+1

romN−1+2

...

(uo−somN
)TVmN

−(uo−somN−1+1+r
o
mN,mN−1+1ρuo,so

mN−1+1
)TVmN−1+1

romN



=



(uo−so2)
TV2

ro2
− (uo−so1)

TV1

ro1

...

(uo−som1
)TVm1

rom1

− (uo−so1)
TV1

ro1

...

(uo−somN−1+2)
TVmN−1+2

romN−1+2
−

(uo−somN−1+1)
TVmN−1+1

romN−1+1

...

(uo−somN
)TVmN

romN

−
(uo−somN−1+1)

TVmN−1+1

romN−1+1



=



∂ro21
∂p

T

...

∂rom1,1

∂p

T

...

∂romN−1+2,mN−1+1

∂p

T

...

∂romN,mN−1+1

∂p

T



= A
∂ro

∂p
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Substituting (6.46) and (6.47) into (6.41), we have

cov(u)−1 = GT
3 Q
−1
a G3 −GT

3 Q
−1
a G4(Q−1p + GT

4 Q
−1
a G4)GT

4 Q
−1
a G3 (6.48)

= (
∂ro

∂uo
)TAT (AQAT )−1A(

∂ro

∂uo
)− (

∂ro

∂uo
)TAT (AQAT )−1A(

∂ro

∂p
)[

(∂r
o

∂p )TAT (AQAT )−1A(∂r
o

∂p ) + Q−1p

]−1
(
∂ro

∂p
)TAT (AQAT )−1A(

∂ro

∂uo
).

From Chapter 3, the CRLB of proposed estimator is

CRLB(uo)−1 = (
∂ro

∂uo
)T
[
Q−1 −Q−1F(FTQ−1F)−1FTQ−1

]
∂ro

∂uo
(6.49)

−(
∂ro

∂uo
)T
[
Q−1 −Q−1F(FTQ−1F)−1FTQ−1

]
∂ro

∂p
(6.50)[

(∂r
o

∂p )T
[
Q−1 −Q−1F(FTQ−1F)−1FTQ−1

]
∂ro

∂p + Qp

]−1
(6.51)

(
∂ro

∂p
)T
[
Q−1 −Q−1F(FTQ−1F)−1FTQ−1

]
∂ro

∂uo
(6.52)

Denoting Ã = Q
1
2AT and F̃ = Q−

1
2F,

AT (AQAT )−1A = Q−
1
2 Ã(Ã

T
Ã)−1Ã

T
Q−

1
2 (6.53)

Q−1 −Q−1F(FTQ−1F)−1FTQ−1 = Q−
1
2

[
I− F̃(F̃

T
F̃)−1F̃

T

]
Q−

1
2 (6.54)

where I is a (mN − 1)× (mN − 1) identity matrix.

Note that Ã(Ã
T
Ã)−1Ã

T
is the projection matrix onto the subspace defined by the columns of

Ã.

F̃(F̃
T
F̃)−1F̃

T
is the projection matrix onto the subspace defined by the columns of F̃. Using

the definition of A and F in (6.18) and (3.29)

Ã
T
F̃ = AQ

1
2Q−

1
2F = AF (6.55)

= O.

(6.55) indicates that the columns of Ã and that of F̃ are orthogonal to each other. Also, the

columns of them together span the entire space of dimension mN − 1. Thus

Ã(Ã
T
Ã)−1Ã

T
= I− F̃(F̃

T
F̃)−1F̃

T
(6.56)

Or from (6.53) and (6.54),

AT (AQAT )−1A = Q−1 −Q−1F(FTQ−1F)−1FTQ−1 (6.57)
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As a result,

cov(u)−1 = CRLB(u)−1. (6.58)

That is

cov(u) = CRLB(u) (6.59)

when condition C1 and C2 are satisfied.

6.4 Summary

In this chapter, we proposed an estimator of the source localization problem in the presence of

measurement noise, sensor position manifold uncertainties and clock-bias error. Then, simulation

result shows that the proposed method reached the CRLB performance for both near-field and

distant source in small error region. In the final part of the chapter, the performance of reaching

the CRLB has been proven theoretically under the small noise condition.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

Source localization using TDOA in the presence of sensor position manifold uncertainties and

clock-bias offsets, and both the sensor position manifold uncertainties and clock-bias error have

been investigated in this thesis. For each of the three cases, first we derived the CRLB of the

localization problem. Then, we proposed a computationally efficient closed form estimator of

the source location. Simulation were conducted to examine the performance of the proposed es-

timator. Finally, the proposed estimator has been proven that it reaches the CRLB performance

theoretically.

A summary of this research is as follows.

First, we introduced the basic idea of source localization and gave the reasoning of the presence

of sensor position manifold uncertainties, clock-bias error and the presence of the two kinds of

error.

Then we introduced the concept and the definition of the CRLB. The basic idea of the Taylor-

series method and the Chan and Ho’s method were also introduced. These two methods were

originally developed in the presence of measurement noise only.

In Chapter 3, first, we presented the CRLB with measurement noise only. We next derived the

CRLB for source localization in the presence of measurement noise and sensor position man-

ifold uncertainties, the CRLB in the presence of measurement noise and clock-bias error, and
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the CRLB in the presence of measurement noise, sensor position manifold uncertainties and

clock-bias error. The CRLBs in the latter three cases are bigger than the CRLB when only

measurement noise exists because of the presence of other kinds of errors.

In Chaper 4, 5 and 6, we proposed three estimators to locate the source for the three cases.

The first estimator is proposed for the localization problem with measurement noise and sensor

position manifold uncertainties. It is a non-iterative method based on Chan and Ho’s method.

The basic idea is to use the weighting matrix W1 in Stage 1 to account for the sensor position

manifold uncertainties to improve the source location estimation.

The second estimator is also based on Chan and Ho’s method and is used to obtain the source

location in the presence of measurement noise and clock-bias offsets. The main idea of this

estimator is to group the sensors with the same clock together to form mN sub-arrays. We

transformed the original TDOA values to the new TDOA values of which the reference sensors

are different for different sub-arrays so that the clock-bias offsets are absent within a sub-array.

Through the use of the transformed TDOA measurements, we came up with a closed form esti-

mator of the source location that can reach the CRLB accuracy.

The third source localization estimator is for the case of having measurement noise, sensor po-

sition manifold uncertainties and clock-bias offsets. This method combines the previous two

proposed technique together. The weighting matrix W1 takes care of the measurement noise

and sensor position manifold uncertainties. Different sub-arrays are created to eliminate the

unknown clock offsets by transforming the TDOA measurements, and closed form solution was

derived.

The simulations are given for the three proposed estimators and the simulations validated the

theoretical analysis that their performance reaches the CRLB under small the noise condition.

7.2 Future Work

In this section, we will discuss some future work on this research topic.

First of all, for sensor position manifold uncertainties, it is worth to investigate moving sensor

scenario. If the movement speed of the sensors are related to each other, such as the sensors are
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in the same mobile platform, it is possible to get a better performance for the source location

estimate by exploring the relationships among sensor velocity uncertainties.

For clock-bias offsets, the present work models them as fixed unknown value. However, they

can be modeled as random parameters with certain known probability density functions. The

performance of the source location estimate in the presence of clock-bias offsets could be im-

proved. by making use of the prior information about the clock offsets. The CRLB needs to be

re-derived and new estimator is needed.

In this thesis, we only consider the use of TDOA to locate the source in the presence of sensor

position manifold uncertainties and clock-bias offsets. It is also interesting to investigate the

estimators based on other positioning measurements such as TOA and AOA when the two kinds

of errors are present.
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