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Sun and moon, bless the Lord;
praise and exalt him above all forever.

Stars of heaven, bless the Lord;
praise and exalt him above all forever.

Fire and heat, bless the Lord;
praise and exalt him above all forever.

Dew and rain, bless the Lord;
praise and exalt him above all forever.

Frost and chill, bless the Lord;
praise and exalt him above all forever.

Mountains and hills, bless the Lord;
praise and exalt him above all forever.

Seas and rivers, bless the Lord;
praise and exalt him above all forever.

You sea monsters and all water creatures, bless the Lord;
praise and exalt him above all forever.

All you birds of the air, bless the Lord;
praise and exalt him above all forever.

All you beasts, wild and tame, bless the Lord;
praise and exalt him above all forever.

The book of Daniel, Chapter 3

So whether you eat or drink, or whatever you do, do everything for the glory of God.

1 Corinthians 10:31
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ABSTRACT

The concentration of measure phenomenon is a nonlinear equivalent of the law

of large numbers that deals with real valued Lipschitz functions and includes linear

functionals such as the sample mean. In the first part of this dissertation we study

functions that take values in more general metric-like spaces and have the property

that they are invariant under coordinate permutations. In Chapter 1 we study func-

tions that take values in the space of convex bodies, in Chapter 2 we study order

statistics and in Chapter 3 we prove abstract concentration inequalities for functions

taking values in an arbitrary metric space.

In the second part of the dissertation we study the central limit theorem. We

show that if one conditions on certain tail events then convergence to the normal

distribution can be achived without having to take a large number of summands. In

fact 2 summands is enough.

The results presented here are taken from the author’s papers [25], [27], [28] and

[29]. In order to streamline the exposition, we have not included all of the results.

We urge the reader to consult the published versions when they become available.
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EXTENDED ABSTRACT

Concentration of measure

Let µ denote a probability measure on R such that∫
R
|x|dµ(x) <∞

The centroid of µ is defined as∫
R
xdµ(x)

The law of large numbers is the general phenomenon that if X = (Xi)
n
1 is a large

random sample from µ then the sample mean

x =
1

n

n∑
i=1

Xi (0.0.1)

typically approximates the centroid of µ. Although x is a random quantity, it has a

distribution that is heavily concentrated around a single non-random quantity. There

are various precise formulations of this principle, and many other linear functionals

of the sample are similarly concentrated.

The concentration of measure phenomenon is a beautiful nonlinear extension of

the law of large numbers that has various manifestations. Note that the sample mean

in equation (0.0.1) is of the form x = f(X) where f : Rn → R is Lipschitz with

Lipschitz constant Lip(f) = n−1/2. A result going back to Lévy (see [57] section 2

and appendix V) is that if f : Rn → R is any Lipschitz function (not necessarily the

sample mean) and X = (Xi)
n
1 is an i.i.d. sequence of random variables each with the

standard normal distribution, then with probability at least 1− exp(−cλ2),

|f(X)− Ef(X)| ≤ λLip(f) (0.0.2)

vi



The unit vector Y = ||X||−1
2 X is uniformly distributed on the unit sphere Sn−1 and

Lévy’s inequality can be cast in the setting of a Lipschitz function f : Sn−1 → R, in

which case inequality (0.0.2) becomes

|f(Y )− Ef(Y )| ≤ λLip(f)√
n

A similar inequality, due to Talagrand [69], guarantees concentration of convex Lips-

chitz functions with respect to product measures on the unit cube [0, 1]n.

The concentration of measure phenomenon is not only a pleasing generalization of

the law of large numbers, but plays a significant role in functional analysis and convex

geometry. Lévy’s inequality was the basis of Vitali Milman’s proof of Dvoretzky’s

theorem on the ubiquity of ellipsoidal sections of convex bodies, or in the language of

functional analysis, Hilbertian subspaces of Banach spaces. Let K ⊂ Rn be a convex

body that contains the origin as an interior point. The Minkowski functional of K is

defined as

||x||K = inf{t > 0 : x ∈ tK}

When K is symmetric, || · ||K is a norm. The associated Banach space (Rn, || · ||K)

is a Hilbert space precisely when K is an ellipsoid. By appropriately positioning the

body K, one may control the Lipschitz constant of || · ||K and conclude that on most

of the sphere it oscillates very little. Where || · ||K has such limited oscillation, it

is roughly proportional to the Euclidean norm, and after some careful footwork, one

can actually produce a linear subspace of dimension c log n on which this happens.

In fact most sections of K of dimension no larger than c log n are roughly ellipsoidal.

Geometric aspects of the concentration of measure phenomenon are central to this

dissertation.

vii



Random polytopes

In Chapter 1 we study the convex hull Pn = conv{xi}n1 , where (xi)
n
1 is a large

i.i.d. sample from a probability measure µ on Rd that decays rapidly. We assume

that µ has a non-vanishing density function of the form f(x) = exp(−g(x)), where

g is a convex function. Such functions are referred to as log-concave. We show that

Pn approximates a deterministic body F1/n called the floating body which serves

as a multivariate quantile. Both of these bodies can also be approximated using

the contours of the density f . Our main result is that with probability at least

1− c(log n)−1000,

dL(Pn, F1/n) ≤ 1 + c
log log n

log n

where c > 0 does not depend on n and dL(K,L) is the logarithmic Hausdorff distance

between convex bodies K and L defined as

dL(K,L) = inf{λ > 1 : ∃x ∈ int(K ∩ L), λ−1(K − x) + x ⊂ L ⊂ λ(K − x) + x}

If int(K ∩ L) = ∅ we define dL(K,L) = ∞. When µ decays super-exponentialy, one

can obtain bounds in terms of the Hausdorff distance between Pn and F1/n. In the

case of the standard multivariate normal distribution, Pn is eventually an enormous

convex body, say the size of the sun, that varies by less than a millimeter from the

Euclidean ball of radius
√

2 log n. In the one dimensional case, our results reduce

to the Gnedenko law of large numbers regarding the maximum and minimum of a

random sample.

viii



Order statistics

In Chapter 2 we return to the one dimensional case of a random sample (xi)
n
1

from a probability measure on R with cumulative distribution function F . The ran-

dom quantity of interest is the sequence of order statistics (x(i))
n
1 , which is the non-

decreasing rearrangement of the coordinates of x. We view this as a random element of

the space `n∞ which is Euclidean space endowed with the `∞ norm ||x||∞ = max{|xi|}n1 .

Provided that the support of µ is connected and the tails of µ decay rapidly, one can

predict the entire sequence of order statistics (simultaneously) with high accuracy.

This too is an extension of the Gnedenko law of large numbers.

An abstract setting

In Chapter 3 we prove abstract concentration inequalities for Lipschitz functions

into an arbitrary metric space. Although they seem more general, they represent

another interpretation of the results presented in Chapter 2, and our work is simply

to translate into a new mathematical language. Let (Ω, ρ) denote an arbitrary metric

space. We show that for a Lipschitz function f : Sn−1 → Ω that is invariant under

coordinate permutations, if x and y are independent vectors uniformly distributed on

Sn−1 then with probability at least 1− c(log n)−1000,

ρ(f(x), f(y)) ≤ c
log log n

log n
Lip(f)

This result is probably not sharp. Using a different technique, we expect to improve

it to a bound of the form ρ(f(x), f(y)) ≤ cn−αLip(f) for some fixed α > 0, possibly

α = 1/4.
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The central limit theorem

In the final chapter of the dissertation we change gear and focus on another

phenomenon; the central limit theorem. The classical central limit theorem is, at a

very fundamental level, an asymptotic result. One considers a large i.i.d. sample (Xi)
n
1

of random variables with mean zero and unit variance and studies the normalized sum

Zn =
1√
n

n∑
i=1

Xi

One can also consider other linear combinations with coefficients taken from a unit

vector ν ∈ Sn−1 with small `∞ norm. Our main contribution is to remove the asymp-

totic nature of the theorem by conditioning on certain tail events. In this setting

n = 2 is sufficient, although one can consider any value of n.

We condition on events of the form

Eθ,T =
{∑

θiXi = T
}

where T > 0 is large, θ ∈ Sn−1 and min{|θi|}n1 is not too small. The event Eθ,T has

measure zero, although we provide a sensible definition for such conditioning. Indeed,

one could condition on the event

Eθ,T,ε =
{∑

θiXi ∈ [T − ε, T + ε]
}

which has positive measure and then let ε→ 0. We also assume that the tails of the

distribution of each Xi have a certain log-concave property. Under these assumptions,

the distribution of any other linear combination, say

∑
νiXi

x



is approximately normal. As an example of such linear combinations, one could take

θi = (−1)i/
√
n and νi = 1/

√
n for all 1 ≤ i ≤ n.

Even though we deal with linear combinations, this phenomenon is inherently

nonlinear. For example, the mean of
∑
νiXi (conditioned on Eθ,T ) is a nonlinear

function of the parameters involved. It is the solution to an optimization problem

and, in certain cases, can be found using the method of Lagrange multipliers.

We present the results in a slightly more general setting and consider the restric-

tion of functions with various regularity properties to affine subspaces. Our theory

mirrors, and also contrasts, an extensive existing theory for projections.
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Chapter 1

A Multivariate Gnedenko Law of
Large Numbers

The Gnedenko law of large numbers [34] states that if F is the cumulative distribution

of a probability measure µ on R such that for all ε > 0

lim
t→∞

F (t+ ε)− F (t)

1− F (t+ ε)
=∞ (1.0.1)

then there are functions δ, T and P defined on N with

lim
n→∞

δn = 0 (1.0.2)

lim
n→∞

Pn = 1 (1.0.3)

such that for any n ∈ N and any i.i.d. sample (γi)
n
1 from µ, with probability Pn we

have

|max{γi}n1 − Tn| < δn

We define 0/0 = ∞ to allow for the trivial case when µ has bounded support. The

condition (1.0.1) implies super-exponential decay of the tail probabilities 1 − F (t),

i.e. for all c > 0,

lim
t→∞

ect(1− F (t)) = 0

1



The converse is almost true and can be achieved if we impose some sort of regularity

on F . One such regularity condition is log-concavity (see Section 1.2). Of course all

of this can be re-worded in multiplicative form. Provided 1−F (t) is regular enough

and decays super-polynomially, i.e. for any m ∈ N,

lim
t→∞

tm(1− F (t)) = 0

then (1.0.2) and (1.0.3) hold, and with probability Pn,

∣∣∣∣max{γi}n1
Tn

− 1

∣∣∣∣ ≤ δn

Note that rapid decay of the left hand tail provides concentration of min{γi}n1 , and

that [min{γi}n1 ,max{γi}n1 ] = conv{γi}n1 .

In this chapter we extend the Gnedenko law of large numbers to the multivariate

setting. We consider a large collection of i.i.d. random vectors {xi}n1 in Rd that follow

a log-concave distribution µ with density function f . The object of interest is the

convex hull Pn = conv{xi}n1 , which is called a random polytope. It is shown that

with high probability, Pn approximates a deterministic body F1/n called the floating

body, which is what remains of Rd after deleting all open half-spaces H such that

µ(H) < 1/n. As in the one dimensional case, the way in which Pn approximates F1/n

depends on how rapidly µ decays. Of primary interest is a quantitative analysis in

terms of the number of points, and in this regard our results are essentially optimal

(see Section 1.7).

The fact that the floating body can be used in order to model random polytopes

is well known in the setting where µ is the uniform distribution on a convex body (see

for example [8] and [10]). Our main contribution is to study this approximation in

2



the more general setting of log-concave measures. Unlike the former case, the objects

that we study can have many different shapes as n → ∞ and are not limited to lie

within a bounded region of space.

The notion of a multivariate Gnedenko law of large numbers has also been con-

sidered by Goodman [35] in the setting of Gaussian measures on seperable Banach

spaces. In his paper he shows that with probability 1, the Hausdorff distance between

the sample {xi}n1 and the ellipsoid
√

2 log n E converges to zero as n → ∞, where E

is the unit ball of the reproducing kernel Hilbert space associated to µ.

1.1 Main Results

Let d ≥ 1, n ≥ d + 1 and let µ be a log-concave probability measure on Rd with a

density function f = dµ/dx. This means that f is of the form f(x) = exp(−g(x))

where g is convex. Let (xi)
n
1 denote a sequence of i.i.d. random vectors in Rd with

distribution µ, and consider the random polytope Pn = conv{xi}n1 . For any x ∈ Rd,

define

f̃(x) = inf
H
µ(H)

where H runs through the collection of all open half-spaces that contain x. For any

δ > 0, the floating body is defined as

Fδ = {x ∈ Rd : f̃(x) ≥ δ} (1.1.1)

Note that Fδ is the intersection of all closed half-spaces H such that µ(H) ≥ 1/n, and

is therefore convex. If H is any open half-space that contains the centroid of µ, then

µ(H) ≥ e−1 (see Lemma 5.12 in [51] or Lemma 3.3 in [12]) hence Fδ is non-empty

3



provided that δ ≤ e−1. Such a floating body was defined by Schütt and Werner [65]

in the case where µ is the uniform distribution on a convex body. We define the

logarithmic Hausdorff distance between convex bodies K,L ⊂ Rd as,

dL(K,L) = inf{λ ≥ 1 : ∃x ∈ int(K ∩ L), λ−1(L− x) + x ⊂ K ⊂ λ(L− x) + x}

where we use the convention that inf(∅) = ∞. The main result of the chapter is as

follows:

Theorem 1. There exist universal constants c, c′, c̃ > 0 with the following property.

Let q ≥ 1, d ∈ N and n ≥ c exp exp(5d) + c′q3. Let µ be a probability measure on Rd

with a log-concave density function, (xi)
n
1 an i.i.d. sample from µ, Pn = conv{xi}n1

and F1/n the floating body as in (1.1.1). With probability at least 1− 3d+3(log n)−q,

dL(Pn, F1/n) ≤ 1 + c̃d(d+ q)
log log n

log n
(1.1.2)

The strategy of the proof is to use quantitative bounds in the one dimensional case

to analyze the Minkowski functional of Pn in different directions. The idea is simple,

however there are some subtle complications. The lack of symmetry is a complicating

factor, and the fact that the half-spaces of mass 1/n do not necessarily touch F1/n

adds to the intricacy of the proof.

We define f to be p-log-concave if it is of the form f(x) = c exp(−g(x)p) where g

is a non-negative convex function and c > 0.

Theorem 2. For all q > 0, p > 1 and d ∈ N, and any probability measure µ on Rd

with a non-vanishing p-log-concave density function, there exist c, c̃ > 0 such that for

all n ∈ N with n ≥ d + 2, if (xi)
n
1 is an i.i.d. sample from µ, Pn = conv{xi}n1 and

4



F1/n is the floating body as in (1.1.1), then with probability at least 1− c̃(log n)−q we

have

dH(Pn, F1/n) ≤ c
log log n

(log n)1− 1
p

(1.1.3)

Theorem 2 can easily be extended to a much larger class of log-concave distribu-

tions. Using Theorem 1, any bound on the growth rate of diam(F1/n) automatically

transfers to a bound on dH(Pn, F1/n).

Our prototypical example is the class of distributions introduced by Schechtman

and Zinn [64] of the form f(x) = cdp exp(−||x||pp), where 1 ≤ p < ∞ and cp =

p/(2Γ(p−1)). For these distributions, Pn ≈ (log(cdpn))1/pBd
p . Of particular interest

is the Gaussian distribution, where p = 2. In this case (actually for the standard

Gaussian distribution), Bárány and Vu [9] obtained a similar approximation (see

Remark 9.6 in their paper) and showed that there exist two radii R and r, both

functions of n and d, such that for any fixed d ≥ 2 both r, R = (2 log n)1/2(1 + o(1))

as n → ∞, and with ’high probability’ rBd
2 ⊂ Pn ⊂ RBd

2 . Their sandwiching result

served as a key step in their proof of the central limit theorem for Gaussian polytopes

(asymptotic normality of various functionals such as the volume and the number of

faces).

In the setting where µ is the uniform distribution on a convex body, the floating

body is usually denoted by Kδ. In this context it is trivial that limn→∞ dH(Pn, K) = 0

(almost surely) and the phenomenon of interest is the rate at which Pn approached

the boundary of K. Bárány and Larman [8] proved that for n ≥ n0(d),

c′vold(K\K1/n) ≤ Evold(K\Pn) ≤ c′′(d)vold(K\K1/n)

The reader may be interested to contrast our results with the results in [14]. The

5



results presented here require a very large sample size and guarantee a precise ap-

proximation, somewhat in the spirit of the ’almost-isometric’ theory of convex bodies.

On the other hand, the results presented in [14] describe a type of approximation in

the spirit of the ’isomorphic’ theory, and are most interesting specifically in high

dimensional spaces.

We also study two other deterministic bodies that serve as approximants to the

random body. Define

f ](x) = inf
H

∫
H
f(y)dH(y)

where H runs through the collection of all hyperplanes that contain x, and dH stands

for Lebesgue measure on H. For any δ > 0, define the bodies

Dδ = Cl{x ∈ Rd : f(x) ≥ δ}

Rδ = Cl{x ∈ Rd : f ](x) ≥ δ}

where Cl(E) denotes the closure of a set E. By log-concavity of f , both Dδ and Rδ

are convex.

Theorem 3. Let d ∈ N and let µ be a probability measure on Rd with a non-vanishing

log-concave density function. Then we have

lim
δ→0

dL(Fδ, Dδ) = 1 (1.1.4)

lim
δ→0

dL(Fδ, Rδ) = 1 (1.1.5)

Similar results hold in the Hausdorff distance for log-concave distributions that

decay super-exponentially.
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Let X ∈ Rd be a random vector with distribution µ. The random variable

− log f(X) is a sort of differential information content (see [13]). The differential

entropy of µ is defined as

h(µ) = −E log f(X)

= −
∫
Rd
f(x) log f(x)dx

and the entropy power defined as N(µ) = exp(2d−1h(µ)). Note that the distribution

of − log f(X) can be expressed in terms of the function δ 7→ µ(Dδ),

P{− log f(X) ≤ t} = µ(Dδ) : δ = e−t

Because of the rapid decay of f , the body Dδ acts as an essential support for the

measure µ. For δ = e−d, this was studied by Klartag and Milman [43] (see Lemma

2.2 and Corollary 2.4 in their paper). Bobkov and Madiman later provided a more

precise description. In [13] they show that the variance of − log f(X) is at most Cd,

where C > 0 is a universal constant, and that in high dimensional spaces, f(X)2/d is

strongly concentrated around N(µ). Theorem 1.1 in their paper can be written as

µ{x ∈ Rd : N(µ)d/2δ ≤ f(x) ≤ N(µ)d/2δ−1} ≥ 1− 2δp(d)

provided δ ∈ (0, 1), where p(d) = 16−1d−1/2. In Lemma 16 we show that if µ is

isotropic and has a continuous density function, then for all δ < exp(−11d log d− 7),

µ{x ∈ Rd : f(x) ≥ δ} ≥ 1− αdδ(log δ−1)d (1.1.6)

where αd = exp(d2(2 log d + c1)). In a fixed dimension, inequality (1.1.6) displays

the natural quantitative behaviour of µ(Dδ) as δ → 0 and is sharp up to a factor of

log δ−1.
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Let Kd denote the collection of all convex bodies in Rd. For all K,L ∈ Kd, define

dBM(K,L) = inf{λ ≥ 1 : ∃x ∈ Rd, ∃T , K ⊂ TL ⊂ λ(K − x) + x} (1.1.7)

where T represents any affine transformation of Rd. This is a modification of the

classical Banach-Mazur distance between normed spaces (origin symmetric bodies).

Theorem 4. For all d ∈ N, there exists a probability measure µ on Rd with the

following universality property. Let (xi)
∞
1 be an i.i.d. sample from µ, and for each

n ∈ N with n ≥ d + 1 let Pn = conv{xi}n1 . Then with probability 1, the sequence

(Pn)∞d+1 is dense in Kd with respect to dBM .

Throughout the chapter we will make use of variables c, c̃, c1, c2, n0, m etc. At

times they represent universal constants and at other times they depend on parame-

ters such as the dimension d or the measure µ. Such dependence will always be clear

from the context, and will either be indicated explicitly as cd, c(d), n0(d) etc., or im-

plicitly as in Theorem 2, where c and c̃ depend on q, p, d and µ. Half-spaces shall be in-

dexed as Hθ,t = {x ∈ Rd : 〈x, θ〉 ≥ t} and hyperplanes as Hθ,t = {x ∈ Rd : 〈x, θ〉 = t},

where θ ∈ Sd−1 and t ∈ R.

1.2 Background

Most of the material in this section is discussed in [6], [7], [54] and [57]. We denote

the standard Euclidean norm on Rd by || · ||2. For any ε > 0, an ε-net in Sd−1 is a

subset N such that for any distinct ω1, ω2 ⊂ N , ||ω1− ω2||2 > ε, and for all θ ∈ Sd−1

there exists ω ∈ N such that ||θ − ω||2 ≤ ε. Such a subset can easily be constructed

using induction. By a standard volumetric argument we have

|N | ≤
(

3

ε

)d
(1.2.1)
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By induction, any θ ∈ Sd−1 can be expressed as a series

θ = ω0 +
∞∑
i=1

εiωi (1.2.2)

where each ωi ∈ N and 0 ≤ εi ≤ εi. To see this, express θ = ω0 + r0, where ω0 ∈ N

and ||r0||2 ≤ ε. Then express ||r0||−1r0 ∈ Sd−1 in a similar fashion and iterate this

procedure.

Define the functional

||x||N = max{〈x, ω〉 : ω ∈ N}

As an easy consequence of the Cauchy-Schwarz inequality, provided ε ∈ (0, 1) we have

(1− ε)||x||2 ≤ ||x||N ≤ ||x||2 (1.2.3)

which implies that

Bd
2 ⊂ BN ⊂ (1− ε)−1Bd

2 (1.2.4)

where BN = {x : ||x||N ≤ 1}. The body BN is what remains if one deletes all

half-spaces that are tangent to Bd
2 at points in N .

A convex body is a compact convex subset of Euclidean space with nonempty

interior. For a convex body K ⊂ Rd that contains the origin as an interior point, its

Minkowski functional is defined as

||x||K = inf{λ > 0 : x ∈ λK}

for all x ∈ Rd. By convexity of K, one can easily show that || · ||K obeys the triangle

inequality. The dual Minkowski functional is defined as

||y||K◦ = sup{〈x, y〉 : x ∈ K}
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for all y ∈ Rd, and the polar of K is

K◦ = {y ∈ Rd : ||y||K◦ ≤ 1}

By the Hahn-Banach theorem, K◦◦ = K.

The Hausdorff distance dH between K and L is defined as

dH(K,L) = max{max
k∈K

d(k, L); max
l∈L

d(K, l)}

By convexity this reduces to

dH(K,L) = sup
θ∈Sd−1

| sup
k∈K
〈k, θ〉 − sup

l∈L
〈l, θ〉 |

= sup
θ∈Sd−1

|(||θ||K◦ − ||θ||L◦)|

We define the logarithmic Hausdorff distance between K and L about a point x ∈

int(K ∩ L) as

dL(K,L, x) = inf{λ ≥ 1 : λ−1(L− x) + x ⊂ K ⊂ λ(L− x) + x}

provided int(K ∩ L) 6= ∅, and

dL(K,L) = inf{dL(K,L, x) : x ∈ int(K ∩ L)}

Note that

log dL(K,L, 0) = sup
θ∈Sd−1

| log ||θ||K − log ||θ||L|

The following relations follow from the definitions above,

dL(K,L, 0) = dL(K◦, L◦, 0)

dL(TK, TL) = dL(K,L) (1.2.5)
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where T is any invertible affine transformation. In addition one can check that,

dBM(K,L) ≤ dL(K,L)2

dH(K,L) ≤ diam(K)(dL(K,L)− 1) (1.2.6)

hence all of our bounds in terms of dL apply equally well to dBM . For large bodies,

dH is more sensative than dL. More precisely, if r > 1 and rBd
2 + x ⊂ K for some

x ∈ Rd, and if dH(K,L) ≤ 1/2, then

dL(K,L) ≤ 1 + 2r−1dH(K,L) (1.2.7)

By a simple compactness argument, there is an ellipsoid of maximal volume EK ⊂

K. This ellipsoid is called the John ellipsoid [7] associated to K. It can be shown

that Ek is unique and has the property that K ⊂ d(Ek − x) + x, where x is the center

of Ek. In particular, dL(Ek, K) ≤ d.

In [26] it is shown that provided λ < 8−d, we have

dL(K,Kλ, x) ≤ 1 + 8λ1/d (1.2.8)

where x is the centroid of K and Kδ is the floating body inside K.

The cone measure on ∂K is defined as

µK(E) = vold({rθ : θ ∈ E, r ∈ [0, 1]})

for all measurable E ⊂ ∂K. The significance of the cone measure is that it leads to

a natural polar integration formula (see [58]); for all f ∈ L1(Rd),∫
Rd
f(x)dx = d

∫ ∞
0

∫
∂K

rd−1f(rθ)dµK(θ)dr (1.2.9)

A probability measure µ is called isotropic if its centroid lies at the origin and its

covariance matrix is the d× d identity matrix.
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A function f : Rd → [0,∞) is called log-concave (see [43]) if

f(λx+ (1− λ)y) ≥ f(x)λf(y)1−λ

for all x, y ∈ Rd and all λ ∈ (0, 1). Any such function can be written in the form

f(x) = e−g(x) where g : Rd → (−∞,∞] is convex. If f is the density of a probability

measure µ, then it must decay exponentially to zero. In this case g lies above a cone,

i.e.

g(x) ≥ m||x||2 − c (1.2.10)

with m, c > 0. As a consequence of the Prékopa-Leindler inequality [6], if x is a

random vector with log-concave density and y is any fixed vector, then 〈x, y〉 has a

log-concave density in R. Log-concave functions are very rigid. One such example of

this rigidity (see Lemma 5.12 in [51]) is the fact that if H is any half-space containing

the centroid of µ, then µ(H) ≥ e−1. Another example (see Theorem 5.14 in [51]) is

that if µ is isotropic, then

2−7d ≤ f(0) ≤ d(20d)d/2 (1.2.11)

(4πe)−d/2 ≤ ||f ||∞ ≤ 28ddd/2 (1.2.12)

and if ||x||2 ≤ 1/9 then,

2−8d ≤ f(x) ≤ d2d(20d)d/2 (1.2.13)

Let 1 ≤ p < ∞. If g : Rd → [0,∞] is convex and limx→∞ g(x) = ∞, then the

probability measure with density given by

f(x) = ce−g(x)p
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will be called p-log-concave. This is a natural generalization of the normal distribu-

tion. If f is p-log-concave, then it is also p′-log-concave for all 1 ≤ p′ ≤ p.

Let Hd denote the collection of all d−1 dimensional affine subspaces (hyperplanes)

of Rd. The Radon transform of a log-concave function f : Rd → [0,∞) is the function

Rf : Hd → [0,∞) defined by

Rf(H) =

∫
H
f(y)dH(y)

where dH is Lebesgue measure on H. The Radon transform is closely related to the

Fourier transform. See [48] for a discussion of these operators and their connections

to convex geometry.

1.3 The One Dimensional Case

Let f be a non-vanishing log-concave probability density function on R associated to

a probability measure µ. In particular, f(t) = e−g(t) where g : R→ R is convex. For

t ∈ R, define

J(t) =

∫ t

−∞
f(s)ds

u(t) = − log(1− J(t))

The cumulative distribution function J is a strictly increasing bijection between R

and (0, 1). The following lemma is a standard result (see e.g. Theorem 5.1 in [51]

for the statement, and the references given there). However we include a short proof

here for completeness.

Lemma 5. u is convex
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Proof. Assume momentarily that g ∈ C2(R). For t ∈ (0, 1) define

ψ(t) = f(J−1(1− t))

Note that

ψ′′(t) =
−g′′(J−1(1− t))

ψ(t)
≤ 0

Hence ψ is concave. In addition, limt→0 ψ(t) = limt→1 ψ(t) = 0. Hence, the function

κ(t) = ψ(t)/t is non-increasing on (0, 1) and the function f(t)/(1−J(t)) = κ(1−J(t))

is non-decreasing on R. Since u′(t) = f(t)/(1− J(t)), u is convex.

If g /∈ C2(R), then the result follows by approximation (convolve µ with a Gaus-

sian).

Lemma 6. If T ≥ 1 and x > 2T log T , then (log x)/x < T−1.

Proof. Since the function y = e−1x is tangent to the strictly concave function y =

log x, the function y = (log x)/x has a global maximum of e−1 and is decreasing on

[e,∞). We now consider two cases. In case 1, T < e and therefore (log x)/x ≤ e−1 <

T−1. In case 2, T ≥ e. Since (log T )/T < 2−1, it follows that log(2 log T ) < log T .

For x′ = 2T log T ,

log x′

x′
=

log T + log(2 log T )

2T log T
<

1

T

Since x > x′ > e, (log x)/x < (log x′)/x′ and the result follows.

The following lemma is a quantitative version of the Gnedenko law of large num-

bers for log-concave probability measures on R.

Lemma 7. Let q ≥ 1 and n ≥ 120q2(2 + log q)2. Let µ be a probability measure

on R with a non-vanishing log-concave density function and cumulative distribution
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function J , and let (γi)
n
1 be an i.i.d. sample from µ. With probability at least 1 −

2(log n)−q,∣∣γ(n) − J−1(1− 1/n)
∣∣

J−1(1− 1/n)− Eµ
≤ 6q

log log n

log n
(1.3.1)

where γ(n) = max{γi}n1 and Eµ denotes the centroid of µ.

Proof. We shall implicitly make use of Lemma 6 several times throughout the proof.

Let a = (log n)−q and b = q log n. It follows that 0 < a < b < ne−1. Set s = J−1(1−

b/n) and t = J−1(1−a/n). As mentioned in the preliminaries (see also Lemma 3.3 in

[12]), 1− J(Eµ) ≥ e−1, hence u(Eµ) ≤ 1. Since b/n < e−1, we have Eµ < s < t. By

convexity of u we have the inequality (s−Eµ)−1(u(s)−u(Eµ)) ≤ (t−s)−1(u(t)−u(s))

which can be rewritten as

J−1(1− a/n)− J−1(1− b/n)

J−1(1− b/n)− Eµ
≤ log b− log a

log n− log b− 1
(1.3.2)

Since 2qe log
√
n ≤
√
n, it follows that log(qe log n) ≤ 1

2
log n which implies that

log b− log a

log n− log b− 1
≤ 3q log log n

log n− log(qe log n)
≤ 6q

log log n

log n

By independence,

P{J−1(1− b/n) ≤ γ(n) ≤ J−1(1− a/n)}

=
(

1− a

n

)n
−
(

1− b

n

)n
≥ 1− a− e−b

≥ 1− 2(log n)−q

If the event {J−1(1− b/n) ≤ γ(n) ≤ J−1(1− a/n)} occurs, then the event defined by

inequality (1.3.1) also occurs.
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Although Lemma 7 applies to the multiplicative version of the Gnedenko law of

large numbers, it also recovers the additive version as long as

J−1(1− 1/n) = o

(
log n

log log n

)
(1.3.3)

If, in the proof, we take a−1 = b = log(m) n (the mth iterate of the logarithm), then

the probability bound becomes 1 − 2(log(m) n)−1, and the right hand side of (1.3.1)

becomes

4 log(m+1) n

log n

provided n > n0(m).

1.4 Main Proofs

Since Lebesgue measure depends on the underlying Euclidean structure of Rd, so does

the definition of f = dµ/dx, and therefore also the definition of Dδ = Cl{x : f(x) ≥

δ}. A natural variation of the body Dδ which does not depend on Euclidean structure

is the body

D\
δ = Cl{x ∈ Rd : f(x) ≥ τ−1

d 9d| det cov(µ)|−1/2δ}

where the quantity

τd = vold−1(Bd−1
2 )

∫ 1

1/2

(1− t2)(d−1)/2dt (1.4.1)

represents the volume of the set {x ∈ Rd : ||x||2 ≤ 1, x1 ≥ 1/2}. Associated to D\
δ

are three ellipsoids that play a central role in our proof. The John ellipsoid of D\
δ is

denoted ED\δ and the centroid of ED\δ will be denoted Oδ. We also consider

E ]δ = 3d(ED\δ −Oδ) +Oδ (1.4.2)
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and

E [δ =
1

2
(ED\δ −Oδ) +Oδ (1.4.3)

The advantage of using D\
δ is that we may place µ in different positions at various

stages of our analysis. We first position µ to be isotropic and then position it so that

ED\δ = Bd
2 . We include the proofs of Lemma 8 and Lemma 9 in Section 1.5.

Lemma 8. There exists a universal constant c > 0 with the following property. Let

d ∈ N, let µ be a log-concave probability measure with a continuous density function

f , and let δ < c exp(−5d2 log d). Let H be a half-space (either open or closed) with

µ(H) = δ and let E ]δ and E [δ be defined by (1.4.2) and (1.4.3) respectively. Then

H ∩ E ]δ 6= ∅ (1.4.4)

H ∩ E [δ = ∅ (1.4.5)

Consequently,

E [δ ⊂ Fδ ⊂ E ]δ

We shall use the Euclidean structure corresponding to ED\δ in order to compare

F1/n and Pn. The following lemma together with Lemma 8 allows us to do so.

Lemma 9. Let d ∈ N and let K and L be convex bodies in Rd such that rBd
2 ⊂ K ⊂

RBd
2 for some r, R > 0. Let 0 < ρ < 1/2 and 0 < ε < (16R/r)−1, and let N be an

ε-net in Sd−1. Suppose that for each ω ∈ N ,

(1− ρ)||ω||L ≤ ||ω||K ≤ (1 + ρ)||ω||L (1.4.6)

Then for all x ∈ Rd we have

(1 + 2ρ+ 28Rr−1ε)−1||x||L ≤ ||x||K ≤ (1 + 2ρ+ 28Rr−1ε)||x||L (1.4.7)
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In particular,

dL(K,L) ≤ dL(K,L, 0) ≤ 1 + 2ρ+ 28Rr−1ε (1.4.8)

Proof of Theorem 1 . By convolving µ with a Gaussian measure of the form

φλ,d(x) = λ−dφd(λ
−1x)

where φd(x) = (2π)−d exp(−2−1||x||22) is the standard normal density function, and

taking λ→ 0, we may assume that the density of µ is continuous and non-vanishing.

This is possible because the bounds in the theorem do not depend on µ. The condition

n ≥ c exp exp(5d) + c′q3 insures that the probability bound is non-trivial. It is also

sufficiently large so that we may use Lemma 8 with δ = 1/n and Lemma 7 with

q′ = d+ q. Let ε = (log n)−1. By applying a suitable affine transformation, we may

assume that ED\
1/n

= Bd
2 . By Lemma 8, if Hθ,t is a half-space with µ(Hθ,t) = 1/n, then

1/2 ≤ t ≤ 3d (1.4.9)

This implies that 1/2Bd
2 ⊂ F1/n ⊂ 3dBd

2 . For each θ ∈ Sd−1, the function fθ(t) =

− d
dt
µ(Hθ,t) is the density of a log-concave probability measure µθ on R with cumulative

distribution function Jθ(t) = 1−µ(Hθ,t). Furthermore, the sequence (〈θ, xi〉)ni=1 is an

i.i.d. sample from this distribution. Recalling the definition of the dual Minkowski

functional, for any y ∈ Rd

||y||P ◦n = sup{〈x, y〉 : x ∈ Pn}

= max
i=1...n

〈xi, y〉

We use this notation even when 0 /∈ Pn. Let N denote a generic ε-net in Sd−1 and

consider the function

f̃N (x) = inf{µ(Hω,t) : ω ∈ N , t = 〈ω, x〉}
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For all δ > 0, define the discrete floating body

FNδ = {x ∈ Rd : f̃N (x) ≥ δ}

Note that f̃(x) = infN f̃N (x) and Fδ = ∩NFNδ , where N runs through the collection

of all ε-nets in Sd−1. By (1.4.9), 1
2
Bd

2 ⊂ FN1/n ⊂ 3dBN and by (1.2.3) we have

1/2Bd
2 ⊂ FN1/n ⊂ 4dBd

2 which implies that (4d)−1Bd
2 ⊂ (FN1/n)◦ ⊂ 2Bd

2 . For each

θ ∈ Sd−1, we have

Eµθ ≥ J−1
θ (e−1)

≥ J−1
θ (1/n)

Combining this and (1.3.1), with probability at least 1− 2(log n)−d−q we have that,∣∣||θ||P ◦n − J−1
θ (1− 1/n)

∣∣
J−1
θ (1− 1/n)− J−1

θ (1/n)
≤ 6(d+ q)

log log n

log n

Since both −J−1
θ (1/n) and J−1

θ (1 − 1/n) lie in the interval [1/2, 3d], both have

roughly the same order of magnitude and we have

(1− ρ)J−1
θ (1− 1/n) ≤ ||θ||P ◦n ≤ (1 + ρ)J−1

θ (1− 1/n)

where

ρ = 42d(d+ q)
log log n

log n

With probability at least 1− ε−d3d+1(log n)−d−q = 1− 3d+1(log n)−q, this happens for

all ω ∈ N . Hence,

(1 + ρ)−1Pn ⊂ FN1/n

which implies that

(1− ρ)||θ||P ◦n ≤ ||θ||(FN1/n)◦

19



for all θ ∈ Sd−1. On the other hand, for all ω ∈ N we have

||ω||P ◦n ≥ (1− ρ)J−1
ω (1− 1/n)

≥ (1− ρ)||ω||(FN
1/n

)◦

By (1.4.7),

(1 + 4ρ+ 224dε)−1||x||P ◦n ≤ ||x||(FN1/n)◦ ≤ (1 + 4ρ+ 224dε)||x||P ◦n (1.4.10)

for all x ∈ Rd. Let M be any other ε-net in Sd−1. By the calculations above, with

probability at least 1− 3d+1(log n)−q,

(1 + 4ρ+ 224dε)−1||x||P ◦n ≤ ||x||(FM1/n)◦ ≤ (1 + 4ρ+ 224dε)||x||P ◦n (1.4.11)

for all x ∈ Rd. By the union bound, with probability at least 1 − 3d+2(log n)−q > 0,

both (1.4.10) and (1.4.11) hold. Since both FN1/n and FM1/n are deterministic bodies,

the only way that this can be true is if

(1 + 4ρ+ 224dε)−2FN1/n ⊂ FM1/n ⊂ (1 + 4ρ+ 224dε)2FN1/n

Since F1/n = ∩MFM1/n, where the intersection is taken over all ε-nets in Sd−1, we

have

(1 + 4ρ+ 224dε)−2FN1/n ⊂ F1/n ⊂ (1 + 4ρ+ 224dε)2FN1/n

Combining this with the polar of (1.4.10) gives that with probability at least

1− 3d+3(log n)−q we have

(1 + 4ρ+ 224dε)−3Pn ⊂ F1/n ⊂ (1 + 4ρ+ 224dε)3Pn

from which the result follows by the inequality (1 + ε′)3 ≤ 1 + 12ε′ valid if 0 ≤ ε′ ≤

1.
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Lemma 10. Let g : Rd → [0,∞) be convex with limx→∞ g(x) =∞, let K ⊂ Rd be a

convex body containing 0 in its interior, and let p > 1. Then there exist c1, c2 > 0

such that for all x ∈ Rd,

g(x)p ≥ c1||x||pK − c2 (1.4.12)

Proof. We leave the easy proof of this to the reader.

Lemma 11. Let p > 1, d ∈ N and let µ be a p-log-concave probability measure on

Rd. Then there exist c1, c2, t0 > 0 such that for all θ ∈ Sd−1 and all t ≥ t0,

µ(Hθ,t) ≤ c1t
1−pe−c2t

p

(1.4.13)

where Hθ,t = {x ∈ Rd : 〈x, θ〉 ≥ t}.

Proof. For all t ≥ 1 we have

e−t
p ≤ − d

dt

(
p−1t1−pe−t

p)
= p−1(p− 1)t−pe−t

p

+ e−t
p

≤ p−1(2p− 1)e−t
p

Hence, by the fundamental theorem of calculus,

(2p− 1)−1t1−pe−t
p ≤

∫ ∞
t

e−s
p

ds ≤ p−1t1−pe−t
p

(1.4.14)

Since the image of a p-log-concave probability measure under an orthogonal trans-

formation is p-log-concave, we may assume without loss of generality that θ = e1 =

(1, 0, 0, 0 . . .). By (1.4.12), there exist c1, c2 > 0 such that for all x ∈ Rd,

f(x) ≤ c1e
−c2||x||pp
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where ||x||pp =
∑d

i=1 |xi|p. Hence,

µ(Hθ,t) ≤
∫
Hθ,t

c1e
−c2||x||ppdx

=

∫ ∞
t

c3e
−c2spds (1.4.15)

The result now follows from a change of variables, (1.4.15) and (1.4.14).

Proof of Theorem 2. Let c1, c2 and t0 be the constants appearing in Lemma 11. Let

n0 > c1 + exp(2−1c2t
p
0). Without loss of generality, t0 > 1 and n > n0. Set α =

(2c−1
2 log n)1/p and consider any x ∈ Rd with ||x||2 > α. Let θ = ||x||−1

2 x and t =

(α + ||x||2)/2. Since t > α > t0 and n > c1, Lemma 11 implies that

µ(Hθ,t) < c1n
−2 < n−1

Since ||x||2 > t, x ∈ int(Hθ,t). By definition of the floating body, x /∈ F1/n. Since

this is true for all such x, diam(F1/n) ≤ 2α = c4(log n)1/p. The result now follows

from Theorem 1 and the relation (1.2.6) between the Hausdorff and the logarithmic

Hausdorff distances.

1.5 Technical Lemmas

This section contains some technical results on the rigidity of log-concave functions

that enable us to obtain a lower bound on the sample size.

Lemma 12. There exist universal constants c1, c2 > 0 such that for all d ∈ N,

cd1d
−d/2 ≤ vold(B

d
2) ≤ cd2d

−d/2

Proof. This follows from Stirling’s formula and the expression vold(B
d
2) = πd/2(Γ(1 +

d/2))−1 (see Corollary 2.20 in [48] or p.11 in [59]).
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Lemma 13. There exists a universal constant c > 0 with the following property. Let

d ∈ N and let µ be an isotropic log-concave probability measure on Rd with density

function f . For all x ∈ Rd,

f(x) ≤ e−αd||x||2+βd

where αd = cdd−d/2 and βd = 11d log(d) + 7.

Proof. We first consider the case d ≥ 2. The volume of a cone in Rd with height

h and base radius r is d−1rd−1hvold−1(Bd−1
2 ). For any x ∈ Rd, let Ax be the cone

with vertex x and base (1/9)Bd
2 ∩ x⊥. Then vold(Ax) = d−19−d+1||x||2vold−1(Bd−1

2 ) >

e−4d+3||x||2vold−1(Bd−1
2 ). By log-concavity of f and inequality (1.2.13), for all y ∈ Ax,

f(y) ≥ min{f(x), 2−8d} (1.5.1)

If f(x) ≥ 2−8d, then

1 ≥
∫
Ax

f(y)dy ≥ 2−8dvold(Ax) > e−10d+3||x||2vold−1(Bd−1
2 )

and it follows that

||x||2 <
e10d−3

vold−1(Bd−1
2 )

Hence, if ||x||2 ≥ e10d−3/vold−1(Bd−1
2 ) then f(x) < 2−8d and (1.5.1) becomes f(y) ≥

f(x). Then

1 ≥
∫
Ax

f(y)dy ≥ f(x)vold(Ax) > f(x)e−4d+3||x||2vold−1(Bd−1
2 )

which implies that

f(x) <
e4d−3

vold−1(Bd−1
2 )
||x||−1

2
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If x̃ ∈ Rd obeys ||x̃||2 = e10d−3/vold−1(Bd−1
2 ), then

f(x̃) < e−6d (1.5.2)

For any x ∈ Rd with ||x||2 ≥ e10d−3/vold−1(Bd−1
2 ), we have the convex combination

e10d−3

vold−1(Bd−1
2 )

x

||x||2
=

e10d−3

||x||2vold−1(Bd−1
2 )

x+

(
1− e10d−3

||x||2vold−1(Bd−1
2 )

)
0

Set

x̃ =
e10d−3

vold−1(Bd−1
2 )

x

||x||2

Using concavity of log f and inequality (1.5.2),

−6d ≥
(

e10d−3

||x||2vold−1(Bd−1
2 )

)
log f(x) +

(
1− e10d−3

||x||2vold−1(Bd−1
2 )

)
log f(0)

After some simplification, and using inequality (1.2.11), we get

f(x) ≤ exp
(
−de−10d+3vold−1(Bd−1

2 )||x||2 − 7d log 2
)

If, on the other hand, ||x||2 < e10d−3/vold−1(Bd−1
2 ), then by (1.2.12)

f(x) ≤ ||f ||∞ ≤ dd/228d

≤ exp(−de−10d+3vold−1(Bd−1
2 )||x||2 + 11d log d)

The case d = 1 is simpler and we leave the details to the reader. First show that

f(28) ≤ 2−8 and then proceed as in the case d ≥ 2 to obtain f(x) ≤ exp(−2−9|x|+ 7)

for all x ∈ R. The result now follows from Lemma 12.

Corollary 14. There exist universal constants c1, c2 > 0 with the following property.

Let d ∈ N and let µ be an absolutely continuous isotropic log-concave probability

measure. For all δ < e−11d log d−7,

Dδ ⊂ cd1d
d/2(log δ−1)Bd

2
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In particular, vold(Dδ) ≤ c2 exp(d2 log d)(log δ−1)d.

Proof. By (1.2.11), Dδ 6= ∅. By the bounds on δ, it follows that 11d log d+7 ≤ log δ−1.

The result now follows from lemmas 13 and 12.

Lemma 15. There exists a universal constant c > 0 with the following property. Let

d ∈ N and let µ be an isotropic log-concave probability measure with density f . Let

r > 1 and x ∈ Rd. If f(x) < 2−8d then

f(rx) ≤ f(x) exp(−cdd−d/2(r − 1)||x||2) (1.5.3)

Proof. Let g = − log f . By Lemma 13 and Lemma 12, there exists a universal

constant c2 > 0 such that f(x̃) ≤ e−6d for all x̃ with ||x̃||2 ≥ cd2d
d/2, see in particular

(1.5.2). Let x ∈ Rd be the point specified in the statement of the lemma. We

consider two cases. In the first case ||x||2 ≥ cd2d
d/2. Let x̃ = cd2d

d/2||x||−1
2 x. By

inequality (1.2.11), f(0) ≥ 2−7d. By convexity of g and the definition of c2,

g(rx)− g(x)

(r − 1)||x||2
≥ g(x̃)− g(0)

||x̃||
= ||x̃||−1

2 ln
f(0)

f(x̃)
≥ c−d2 d1−d/2

In the second case, ||x||2 < cd2d
d/2. Recall that, by hypothesis, f(x) < 2−8d. Therefore,

g(rx)− g(x)

(r − 1)||x||2
≥ g(x)− g(0)

||x||
≥ ||x||−1

2 ln
f(0)

f(x)
≥ ln(2)c−d2 d1−d/2

from which the result follows with c = (2c2)−1.

Lemma 16. There exists a universal constant c1 > 0 with the following property.

Let d ∈ N and let µ be an isotropic log-concave probability measure with a continuous

density function f . For all δ < e−11d log d−7,

µ(Rd\Dδ) ≤ αdδ(log δ−1)d (1.5.4)

where αd = c1 exp(3d2 log d).
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Proof. Since f is continuous, for all θ ∈ ∂Dδ we have f(θ) = δ. By the polar

integration formula (1.2.9) and inequality (1.5.3),

µ(Rd\Dδ) =

∫
Rd\Dδ

f(x)dx

= d

∫ ∞
1

∫
∂Dδ

rd−1f(rθ)dµDδ(θ)dr

≤ d

∫ ∞
1

∫
∂Dδ

rd−1δ exp(−cdd−d/2(r − 1)||θ||2)dµDδ(θ)dr

By (1.2.13) and the fact that δ < 2−8d, we have 1/9Bd
2 ⊂ Dδ. By Corollary 14,

µ(Rd\Dδ) ≤ d

∫ ∞
1

∫
∂Dδ

rd−1δ exp(−cdd−d/2(r − 1)9−1)dµDδ(θ)dr

= δvold(Dδ)d

∫ ∞
1

rd−1 exp(−cd2d−d/2(r − 1))dr

≤ βdδ(log δ−1)dd exp(d2 log d+ c3))

where

βd =

∫ ∞
1

rd−1 exp(−cd2d−d/2(r − 1))dr

Set ωd = cd2d
−d/2 and t = ωdr. Recall the definition of the gamma function Γ(z) =∫∞

0
e−rrz−1dr. By a change of variables and Stirling’s formula,

βd ≤ exp(ωd)

∫ ∞
0

rd−1 exp(−ωdr)dr

≤ c4ω
−d
d

∫ ∞
0

td−1e−tdt

≤ exp(2−1d2 log d+ c5d
2)

from which the result follows.

Lemma 16 is optimal in δ up to a factor log δ−1 as can be seen from the example

f(x) = 2−d exp(−||x||2), in which case µ(Rd\Dδ) ≥ cdδ(log δ−1)d−1 for δ < δ0(d). To

see this, apply the polar integration formula just as in the proof of Lemma 16.
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Lemma 17. There exists a universal constant c > 0 such that for all d ∈ N, if t > d5d

then
√
t ≥ c(log t)d.

Note that the inequality fails for t = d2d.

Proof. There exists d0 ∈ N such that for all d > d0, (2d)4d < d5d. Consider any such

d. Set T = 2d and x = log t. Since (2d)4d < d5d < t, it follows that 2T log T < x. By

Lemma 6, (log x)/x < T−1, or equivalently

log log t

log t
<

1

2d

which is in turn equivalent to
√
t ≥ (log t)d. By elementary analysis, the number

c′ = inf{t1/2(log t)−d : d ≤ d0, t > d5d}

is strictly positive and the result follows with c = min{c′, 1}.

Lemma 18. There exists a universal constant c̃ > 0 with the following property. Let

d ∈ N and let µ be an isotropic log-concave probability measure with a continuous

density function f . For all δ < c̃ exp(−5d2 log d),

µ(Rd\2Dτ−19dδ) < δ

where τ = τd = vold−1(Bd−1
2 )

∫ 1

1/2
(1− t2)(d−1)/2dt.

Proof. Consider the quantity αd = exp(d2(2 log d + c1)). By concavity, 1 − t2 ≥

3(1−t)/2 for all 1/2 ≤ t ≤ 3/4. By a change of variables and Lemma 12, one sees that

τ > cd2d
−d/2. Let κ = τ−19dδ. Consider any y ∈ ∂(2Dκ). Then x = y/2 ∈ ∂Dκ and we

have the convex combination x = 1
2
0 + 1

2
y. By log-concavity, f(x) ≥ f(0)1/2f(y)1/2

and by inequality (1.2.11),

f(y) ≤ f(x)2

f(0)
< 28dκ2
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and y /∈ Dε with ε = 28dκ2. Since this is true for all y ∈ ∂(2Dκ), Dε ⊂ 2Dκ. For a

sufficiently small choice of c̃ (chosen independently of d), ε < e−11d log d−7. By Lemma

16,

µ(Rd\2Dκ) ≤ µ(Rd\Dε) ≤ αdε(log ε−1)d

≤ e10dαdτ
−2δ2(2 log δ−1 − log(cd3τ

−2))d

≤ e10dαdτ
−2δ2(log δ−1)d

= δ(ce10dαdτ
−2δ1/2)c−1δ1/2(log δ−1)d

where c is the constant from Lemma 17. By the bound imposed on δ, ce10dαdτ
−2δ1/2 <

1. The result now follows from Lemma 17.

Recall that EK denotes the John ellipsoid of a convex body K and that EK ⊂ K ⊂

d(EK − x0) + x0, where x0 is the center of EK .

Lemma 19. Let K ⊂ Rd be a convex body with 0 ∈ K. Then 2K ⊂ 3d(EK−x0)+x0.

Proof. By applying a suitable linear transformation, we may assume that EK = Bd
2 +

x0. Take any x ∈ K. Since max{||x0 − x||2, ||x0||2} ≤ d, it follows that ||x||2 ≤

||x0||2 + ||x− x0||2 ≤ 2d and that ||x0 − 2x||2 ≤ ||x0 − x||2 + ||x− 2x||2 ≤ 3d.

Lemma 20. Let E be an ellipsoid with centroid O and let H be a hyperplane with

vold(H ∩ E)× vold(B
d
2) < τdvold(E). Then H and 1

2
(E − O) +O are disjoint.

Proof. The truth of the lemma is invariant under affine transformations of E and we

may therefore assume that E = Bd
2 . The result now follows from the definition of τd

(see equation (1.4.1) and the fact that τd = vold{x ∈ Rd : ||x||2 ≤ 1, x1 ≥ 1/2}.
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Proof of Lemma 8. Consider τ = τd defined by (1.4.1). We may assume that µ is

in isotropic position, which implies that D\
δ = Dτ−19dδ. Lemma 18 and Lemma 19

together imply that H ∩ E ]δ 6= ∅. For each x ∈ D\
δ, f(x) ≥ τ−19dδ. Therefore

δ ≥ µ(H∩ED\δ) ≥ τ−19dδvold(H∩ED\δ) which implies that vold(H∩ED\δ) ≤ τ9−d. Since

the density function f is continuous and τ−19dδ < 2−8d, inequality (1.2.11) implies

that (9−1 + κ)Bd
2 ⊂ D\

δ for some κ > 0. Since ED\δ is the ellipsoid of maximal volume

inside D\
δ, we have vold(ED\δ) > 9−dvold(B

d
2). From the definition of E [δ and Lemma 20,

we see that H∩ E [δ = ∅. Finally, the claim that E [δ ⊂ Fδ follows from the definition of

Fδ while the claim that Fδ ⊂ E ]δ follows from the Hahn-Banach theorem (any x /∈ E ]δ

lies in an open half-space H with H∩E ]δ = ∅ and therefore µ(H) < δ and x /∈ Fδ).

Proof of Lemma 9. Note that 1+ρ ≤ (1−ρ)−1 ≤ 1+2ρ and 1−ρ ≤ (1+ρ)−1 ≤ 1−ρ/2,

and the same inequalities hold for ε. Since rBd
2 ⊂ K ⊂ RBd

2 , we have that

R−1||x||2 ≤ ||x||K ≤ r−1||x||2

for all x ∈ Rd. Combining this with (1.4.6) gives

R−1(1 + ρ)−1 ≤ ||ω||L ≤ r−1(1− ρ)−1

for all ω ∈ N . Consider any θ ∈ Sd−1. By the series representation (1.2.2) and the

triangle inequality,

||θ||L ≤ r−1(1− ρ)−1(1− ε)−1

Hence ||x||L ≤ r−1(1−ρ)−1(1−ε)−1||x||2 for all x ∈ Rd. Using the triangle inequality
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in a bit of a different way,

||θ||L ≥ ||ω0||L −
∞∑
i=1

εi||ωi||L

≥ R−1(1 + ρ)−1 − r−1ε(1− ε)−1(1− ρ)−1

≥ R−1/2− 4r−1ε

= R−1(1− 8Rr−1ε)/2

≥ (4R)−1

which holds since 8Rr−1ε ≤ 1/2. Thus,

||θ||L ≤ ||ω0||L + ||θ − ω0||L

≤ (1− ρ)−1||ω0||K + r−1(1− ρ)−1(1− ε)−1ε

≤ (1− ρ)−1(||θ||K + ||ω0 − θ||K) + r−1(1− ρ)−1(1− ε)−1ε

≤ (1− ρ)−1||θ||K + r−1(1− ρ)−1ε(1 + (1− ε)−1)

≤ (1− ρ)−1||θ||K +Rr−1(1− ρ)−1ε(1 + (1− ε)−1)||θ||K

≤ (1 + 2ρ)(1 + 3Rr−1ε)||θ||K

≤ (1 + 2ρ+ 6Rr−1ε)||θ||K

where ω0 is the element of N that minimizes ||θ − ω0||2. On the other hand,

||θ||K ≤ ||ω0||K + ||θ − ω0||K

≤ (1 + ρ)||ω0||L + r−1ε

≤ (1 + ρ)(||θ||L + ||ω0 − θ||L) + r−1ε

≤ (1 + ρ)||θ||L + r−1(1 + ρ)(1− ρ)−1(1− ε)−1ε+ r−1ε

≤ (1 + ρ)||θ||L + 7r−1ε · 4R||θ||L

≤ (1 + ρ+ 28Rr−1ε)||θ||L
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The result follows by positive homogeneity.

1.6 Proof of Theorem 3

Fix µ and d as in the statement of Theorem 3. Let f be the density of µ and let

g = − log f . All variables in this section depend on both d and µ.

Lemma 21. There exist c, ε0 > 0 such that for all ε ∈ (0, ε0),

µ(Rd\Dε) < cε
(
log ε−1

)d
(1.6.1)

Proof. Since µ has a log-concave density, it necessarily has a nonsingular covariance

matrix, and there exists an affine map T such that µ′ = Tµ is isotropic. The density

of µ′ is

f̃(x) = det(T−1)f(T−1x)

and Dε = T−1D̃ε̃, where ε̃ = ε detT−1 and D̃ε̃ = {x : f̃(x) ≥ ε̃}. Since µ′ is isotropic,

we may use Lemma (16), which gives

µ(Rd\Dε) = µ′(Rd\D̃ε̃)

≤ c′ε̃(log ε̃−1)d

≤ cε
(
log ε−1

)d

Lemma 22. For any x ∈ Rd there exist c′, δ0 > 0 and a function p : (0, δ0)→ (0,∞)

such that for all δ ∈ (0, δ0),

p(δ) ≤ c′
log log δ−1

log δ−1
(1.6.2)
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and

Fδ ⊂ (1 + p)(Dδ − x) + x (1.6.3)

Proof. Let c > 0 be the constant in (1.6.1). A brief analysis of the function t 7→

ct (log t−1)
d

shows that there exists δ0 > 0 and a function ε = ε(δ) defined implicitly

for all δ ∈ (0, δ0) by the equation δ = cε (log ε−1)
d
. We can take δ0 small enough to

ensure that ε < δ and that log δ−1 < log ε−1 < 2 log δ−1. If we define

p(δ) = 3
log ε−1 − log δ−1

log δ−1

then δ1+p/2 < ε and (1.6.2) holds. Since Dε is both compact and convex, for any

point y ∈ Dε there exists (by the Hahn-Banach theorem), a closed halfspace H with

y ∈ H and H ∩ Dε = ∅. Since H ⊂ Rd\Dε, (1.6.1) implies that µ(H) < δ and by

definition of Fδ, y /∈ Fδ. This goes to show that Fδ ⊂ Dε. Let x ∈ Rd. For any

θ ∈ Sd−1 consider the function fθ(t) = f(x + tθ) = e−gθ(t), t ∈ R. This notation

differs slightly from that in the proof of theorem 1. If ε is small enough then for all

θ ∈ Sd−1 there is a unique v > 0 such that fθ(v) = ε; we denote this number by

f−1
θ (ε). We may assume that δ0 < min{1, f(x)2}. Note that 1 < δ/ε < δ−p/2 and

log δ−1 + log f(x) ≥ 1/2 log δ−1. By convexity of gθ, for any 0 < s < v we have

s−1(gθ(s) − gθ(0)) ≤ (v − s)−1(gθ(v) − gθ(s)). Taking v = f−1
θ (ε) and s = f−1

θ (δ),

this becomes

f−1
θ (ε)− f−1

θ (δ)

f−1
θ (δ)

≤ log ε−1 − log δ−1

log δ−1 + log f(x)

< p (1.6.4)

Inequality (1.6.4) reduces to f−1
θ (ε) ≤ (1 + p)f−1

θ (δ). Since this holds for any

θ ∈ Sd−1, Dε ⊂ (1 + p)(Dδ − x) + x and (1.6.3) follows.
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Lemma 23. There exists δ0 > 0 such that for all δ ∈ (0, δ0) we have the relation

(1 + 8λ1/d)−1(Dδ − x′) + x′ ⊂ Fδ (1.6.5)

where λ = vold(Dδ)
−1 and x′ is the centroid of Dδ.

Proof. Let δ0 be such that vold(Dδ0) > 8d. We use the notation (Dδ)λ for the convex

floating body with parameter λ > 0 corresponding to the uniform probability measure

on Dδ. If H is any half-space with µ(H) < δ, then vold(H∩Dδ) < 1. Hence (Dδ)λ ⊂

Fδ, where λ = vold(Dδ)
−1. The result now follows from inequality (1.2.8).

Lemma 24. Let K,L ⊂ Rd be convex bodies such that there exist x, x′ ∈ int(K ∩L)

and 0 < r < (8d)−1 for which

(1 + r)−1(K − x) + x ⊂ L ⊂ (1 + r)(K − x′) + x′ (1.6.6)

Then

dL(K,L) ≤ 1 + 8dr (1.6.7)

Proof. Since the statement of the lemma is invariant under affine transformations of

K and L, we may assume without loss of generality that the John ellipsoid of K is Bd
2 .

Hence Bd
2 ⊂ K ⊂ dBd

2 and ||x||2,||x′||2 ≤ d. Note also that L ⊂ 3dBd
2 . Using these

facts and manipulating (1.6.6) in the obvious way, we see that both of the following

relations hold

L ⊂ K + 2drBd
2

K ⊂ L+ 4drBd
2

By definition of the Hausdorff distance, dH(K,L) ≤ 4dr. Since Bd
2 ⊂ K, dL(K,L) ≤

(1− 4dr)−1 ≤ 1 + 8dr.
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Proof of equation (1.1.4). Since limδ→0 p(δ) = limδ→0 λ(δ) = 0, equation (1.1.4) now

follows from (1.6.3), (1.6.5) and (1.6.7).

Remark 1. There is no lower bound on the growth rate of vold(Dδ), indeed the

function could grow arbitrarily slowly. However in the case of the Schechtman-Zinn

distributions, vold(Dδ) = (log(cdp/δ))
d/pvold(B

d
p) and we leave it to the reader to com-

bine this with (1.6.3), (1.6.2) and (1.6.5) to obtain a quantitative upper bound on

dL(Fδ, Dδ).

Proof of equation (1.1.5). Let ε > 0 be given. Using the notation from the proof of

theorem 1, for any θ ∈ Sd−1 we define

fθ(t) = − d

dt
µ(Hθ,t)

This function is the density of a log-concave probability measure on R with cumulative

distribution function Jθ(t) = 1− µ(Hθ,t). By Fubini’s theorem we have

fθ(t) = Rf(Hθ,t)

Define α = inf{fθ(0) : θ ∈ Sd−1}. By (1.2.10) there exists t0 > 0 such that if

β = sup{fθ(t0) : θ ∈ Sd−1}, then β < α. Since f is non-vanishing, Sd−1 is compact

and the function θ 7→ fθ(t) is continuous, β > 0. Define gθ(t) = − log fθ(t) and let

λ = t−1
0 (logα − log β) and ∆ = max{1, λ−1 log λ−1}. By definition of α, β and λ,

for all θ ∈ Sd−1 we have t−1
0 (gθ(t0) − gθ(0)) ≥ λ. By convexity of gθ, if u > v ≥ t0

then gθ(u) ≥ gθ(v) + λ(u − v), which translates into fθ(u) ≤ fθ(v)e−λ(u−v). Let

δ0 < inf{fθ(t0 + 1) : θ ∈ Sd−1} be such that ∆ε−1Bd
2 ⊂ Fδ0 . Consider any δ < δ0

and momentarily fix θ ∈ Sd−1. Let s = J−1
θ (δ) and denote by t = f−1

θ (δ) the unique
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positive number such that fθ(t) = δ. Consider the hyperplane Hθ,t and the half-space

Hθ,s. Note that

µ(Hθ,s) = Rf(Hθ,t) = δ

By log-concavity we have fθ(u) ≥ δ0 for all 0 < u < t0 + 1, hence t > t0 + 1. By the

fundamental theorem of calculus and the fact that fθ(u) ≥ δ for all u ∈ [t − 1, t] we

have

µ(Hθ,t−1) > µ{x ∈ Rd : t− 1 ≤ 〈θ, x〉 ≤ t}

=

∫ t

t−1

fθ(u)du

≥ δ

hence Hθ,s ⊂ Hθ,t−1 which implies that s > t− 1 > t0. Thus, if s ≤ t then |s− t| ≤ 1.

If s > t then

δ =

∫ ∞
s

fθ(u)du

≤ fθ(s)

∫ ∞
s

e−λ(u−s)du

≤ δe−λ(s−t)λ−1

from which it follows that s−t ≤ λ−1 log λ−1. Either way, |s−t| ≤ max{1, λ−1 log λ−1} =

∆. Since ∆ε−1Bd
2 ⊂ Fδ0 , it follows that (1− ε)s ≤ t ≤ (1 + ε)s. Since this holds for

all θ ∈ Sd−1 we have

(1− ε)Fδ ≤ Rδ ≤ (1 + ε)Fδ
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1.7 Optimality

Let Φ denote the cumulative standard normal distribution on R,

Φ(t) = (2π)−1/2

∫ t

−∞
e−

1
2
s2ds

By (1.4.14) there exists c > 0 such that for all n ≥ 3,

Φ−1(1− 1/n) ≥ c(log n)1/2 (1.7.1)

Lemma 25. For all q > 0 and all d ∈ N, there exists c, c̃ > 0 such that for all

n ≥ d + 1, if (xi)
n
1 is an i.i.d. sample from the standard normal distribution on Rd

and Pn = conv{xi}n1 , then with probability at least 1 − c̃(log n)−q(d−1)/2 both of the

following events occur,

dH(Pn, F1/n) ≥ c(log n)−
1
2
−q (1.7.2)

dL(Pn, F1/n) ≥ 1 + c(log n)−1−q (1.7.3)

Proof. A standard result in approximation theory ([40] p. 326) is that for any poly-

tope Km ⊂ Rd with at most m vertices,

dH(Km, B
d
2) > cd

(
1

m

) 2
d−1

(1.7.4)

Since F1/n = Φ−1(1− 1/n)Bd
2 , inequality (1.7.1) implies that

dH(Km, F1/n) > cd(log n)1/2

(
1

m

) 2
d−1

By a result of Raynaud [61], the number of vertices of Pn, denoted by f0(Pn), obeys

the inequality Ef0(Pn) < c̃d(log n)(d−1)/2. By Chebyshev’s inequality we have

P{f0(Pn) > (log n)
(d−1)(q+1)

2 } ≤ Ef0(Pn)

(log n)
(d−1)(q+1)

2

< c̃d(log n)−
q(d−1)

2
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and if the complement of this event occurs, then so does (1.7.2). By (1.7.4) and

(1.2.6) we get

dL(Km, B
d
2) > 1 + cd

(
1

m

) 2
d−1

Since dL is preserved by invertible affine transformations (as per (1.2.5)), the same

inequality holds for all Euclidean balls. This gives (1.7.3).

We can choose q to be arbitrarily small, in which case (1.7.2) and (1.7.3) comple-

ment Theorem 1 and Theorem 2.

1.8 Proof of Theorem 4

If Ω is a convex subset of a real vector space and Kd is the collection of all convex

bodies in Rd, then we define a function κ : Ω → Kd to be concave if for all x, y ∈ Ω

and all λ ∈ (0, 1) we have

λκ(x) + (1− λ)κ(y) ⊂ κ(λx+ (1− λ)y)

If Ω has an ordering then we define κ to be non-decreasing if for all x, y ∈ Ω with

x ≤ y we have κ(x) ⊂ κ(y).

Lemma 26. If κ : [0,∞) → Kd is concave, non-decreasing and ∪t∈[0,∞)κ(t) = Rd,

then the function g : Rd → [0,∞) defined by

g(x) = inf{t ≥ 0 : x ∈ κ(t)} (1.8.1)

is convex. Furthermore, κ is continuous with respect to the Hausdorff distance and

for all t > 0

κ(t) = {x ∈ Rd : g(x) ≤ t} (1.8.2)
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Proof. By hypothesis, κ(0) 6= ∅. If 0 /∈ κ(0), then we define κ](t) = κ(t)− x0, where

x0 ∈ κ(0). The function κ] enjoys all of the properties that κ does, and the function

g](x) = inf{t ≥ 0 : x ∈ κ](t)}

is related to g by the equation g](x) = g(x + x0). Note that 0 ∈ κ](0). If the

lemma holds for the functions κ] and g], it will necessarily hold for κ and g. We may

therefore, without loss of generality, assume that 0 ∈ κ(0). For any 0 < ε < t we

have the convex combination

t =
ε

t+ ε
0 +

t

t+ ε
(t+ ε)

Exploiting the concavity of κ, this leads to

κ(t+ ε) ⊂ t+ ε

t
κ(t)

Similarly,

t− ε
t

κ(t) ⊂ κ(t− ε)

Hence κ is continuous with respect to the Hausdorff distance. By definition of g,

κ(t) ⊂ {x ∈ Rd : g(x) ≤ t}. Since κ(t) is a closed set, if x /∈ κ(t) then d(x, κ(t)) > 0

and by continuity of κ, g(x) > t. This implies (1.8.2). Consider any x, y ∈ Rd and

λ ∈ (0, 1). Let t = g(x) and s = g(y). By (1.8.2), x ∈ κ(t) and y ∈ κ(s). Therefore

λx+ (1− λ)y ∈ λκ(t) + (1− λ)κ(s)

⊂ κ(λt+ (1− λ)s)

This implies that g(λx+ (1− λ)y) ≤ λt+ (1− λ)s which shows that g is convex.
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Note that the function g is a generalization of the Minkowski functional of a

convex body K, in which case κ(t) = tK. Including {0} as an honorary member of

Kd does no harm to the preceding lemma. If (Kn)∞n=1 is a sequence of convex bodies

then we define the corresponding Minkowski series as,

∞∑
n=1

Kn =

{
∞∑
n=1

xn : ∀n, xn ∈ Kn

}

where we take
∑
xn to have meaning only if it converges. We leave the easy proof

of the following lemma to the reader.

Lemma 27. For each n ∈ N, let αn : [0,∞) → [0,∞) be a concave function and let

Kn be a convex body with 0 ∈ Kn. Provided that

∞∑
n=1

αn(t)diam(Kn) <∞

for all t ≥ 0, then the function κ : [0,∞)→ Kd defined by

κ(t) =
∞∑
n=1

αn(t)Kn

is concave.

The space Kd is separable with respect to dBM and we shall use a dence sequence

(Kn)∞n=1 that is dense in Kd. Since dBM is blind to affine transformations we can

assume that the John ellipsoid of each Kn is Bd
2 . As coefficients, we shall use the

functions

αn(t) =

{
2−n

2
t : 0 ≤ t ≤ 22n2

2n
2

: 22n2
< t <∞

Note that for large values of n, the dominant coefficient at the value t = 22n2
is
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αn. In fact
∑

j 6=n αj(2
2n2

) is much smaller than αn(22n2
),

∑
j 6=n

αj(2
2n2

) =
n−1∑
j=1

2j
2

+ 22n2
∞∑

j=n+1

2−j
2

≤
n−1∑
j=1

2nj + 22n2
∞∑

j=n+1

2−nj

≤ 2n
2−n+2

= 2−n+2αn(22n2

)

Hence,

dBM(κ(22n2

), Kn) ≤ 1 + 2−n+2d

Thus the sequence (κ(n))∞n=1 is dense in Kd. Since each coefficient αn is non-

decreasing and concave, κ is concave and the function g as defined by (1.8.1) is

convex. Clearly, limx→∞ g(x) =∞. For some c > 0, the function

f(x) = 2−g(cx)

is the density of a log-concave probability measure µ on Rd. For each n ∈ N, D2−n =

{x ∈ Rd : f(x) ≥ 2−n} = {x ∈ Rd : g(cx) ≤ n} = c−1κ(n). Hence the sequence

(D1/n)∞n=1 is dense in Kd. By (1.1.4), the sequence (F1/n)∞n=3 is also dense in Kd.

We now use Theorem 1 with q = 1. Let K̃d denote a countably dense subset of Kd

and let K ∈ K̃d. Note that there exists an increasing sequence of natural numbers

(kn)∞1 such that limn→∞ dBM(F1/kn , K) = 1 and
∑∞

n=1 c̃(log kn)−1 < ε. By (1.1.2),

lim
n→∞

dBM(Pkn , K) = 1

with probability at least 1− ε. Since this holds for all ε > 0, K ∈ clBM{Pn : n ∈ N,

n ≥ d + 1} almost surely, where clBM denotes closure in Kd with respect to dBM .
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Since this holds for all K ∈ K̃d and K̃d is countable, K̃d ⊂ clBM{Pn : n ∈ N, n ≥ d+1}

almost surely. The result now follows since K̃d is dense in Kd.
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Chapter 2

Simultaneous concentration of
order statistics

Let µ be a probability measure on R with cumulative distribution function F and

let (xi)
∞
1 denote an i.i.d. sequence of random variables with distribution µ. For each

n ∈ N let Fn denote the empirical cumulative distribution function

Fn(t) =
1

n
|{i ∈ N : i ≤ n, xi ≤ t}|

where |A| denotes the cardinality of a set A. The Glivenko-Cantelli theorem (see e.g.

[20]) states that with probability 1,

lim
n→∞

sup
t∈R
|F (t)− Fn(t)| = 0

The Dvoretzky-Kiefer-Wolfowitz inequality ([21] and [53]) provides a quantitative

formulation of this and states that for all n ∈ N and all λ > 0, with probability at

least 1− 2 exp(−2λ2),

sup
t∈R

√
n|F (t)− Fn(t)| ≤ λ

This titanic theorem is well deserving of the name ’the fundamental theorem of statis-

tics ’ as it is the theoretical foundation behind the idea that a large independent

sample is representative of the population (see e.g. [65] p.1). Loève refers to it as the
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’central statistical theorem’ ([50] p.20) while Pitman ([60] p.79) calls it ’the existence

theorem for Statistics as a branch of Applied Mathematics ’. There is a substantial

body of literature devoted to the Glivenko-Cantelli theorem; the papers [16], [68], [70]

and [72] are of particular interest.

There is, however, a certain crudeness in this noble theorem. Asymptotically,

individual points play a negligible role and we learn very little about the finer structure

of the sample {xi}n1 . For instance, it gives us almost no information about either the

maximum or the minimum. We could take any subset of o(n) points and perturb

them as we please without affecting the convergence. Donsker’s theorem (see e.g.

[19], [49] and [52]) gives more insight into the structure of the sample. Consider the

stochastic process Xn defined on R by

Xn(t) =
√
n(Fn(t)− F (t))

Provided that F is strictly increasing and continuous, Xn converges to a re-scaled

Brownian bridge (more precisely, Xn ◦F−1 converges to a Brownian bridge on [0, 1]).

However Donsker’s theorem is plagued by a similar insensitivity to the cries of the

minority. Through the eyes of Donsker’s theorem, we can ’see’ subsets as small as

√
n but are blind to anything smaller such as subsets of size log(n).

In this chapter we provide refined forms of the Glivenko-Cantelli theorem which,

under certain conditions, guarantee tight control over all or most points in the sample,

not only individually but simultaneously. The sequence of order statistics (x(i))
n
1 is the

non-decreasing rearrangement of the sample (xi)
n
1 . Super-exponential decay of the

distribution provides simultaneous concentration of all order statistics (see theorem

28) while exponential decay provides simultaneous concentration of most order statis-
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tics and slightly weaker control over the rest (see theorems 29 and 30). We provide

quantitative bounds for log-concave distributions (see theorem 31).

Our results extend the Gnedenko law of large numbers [34], which guarantees

concentration of max{xi}n1 . They may be compared to the results in [25] where the

Gnedenko law of large numbers is extended to the multi-dimensional setting, to the

paper [36] that provides estimates of order statistics in terms of Orlicz norms and to

the article [1] that concerns optimal matchings of random points uniformly distributed

within the unit square. We refer the reader to [33] and [66] for an extensive treatment

of empirical process theory and to [4], [15] and [63] for information on order statistics.

The generalized inverse of F is the function F−1 : (0, 1)→ R defined by

F−1(x) = inf{t : F (t) ≥ x}

In theorems 28 and 29 we define 0/0 = 0 to allow for the case when the measure has

bounded support.

Theorem 28. Let µ be any probability measure on R with connected support and

cumulative distribution function F such that for all ε > 0

lim
t→∞

1− F (t+ ε)

1− F (t)
= lim

t→−∞

F (t)

F (t+ ε)
= 0 (2.0.1)

Then there exists a sequence (δn)∞1 with limn→∞ δn = 0 such that for all n ∈ N, if

(xi)
n
1 is an i.i.d. sample from µ with corresponding order statistics (x(i))

n
1 , then with

probability at least 1− δn,

sup
1≤i≤n

|x(i) − x∗(i)| ≤ δn (2.0.2)

where x∗(i) = F−1(i/(n+ 1)).
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Theorem 29. Let µ be any probability measure on R with connected support and

cumulative distribution function F such that for all ε > 0

lim sup
t→∞

1− F (t+ ε)

1− F (t)
< 1 (2.0.3)

lim sup
t→−∞

F (t)

F (t+ ε)
< 1 (2.0.4)

Let (ωn)∞1 be any sequence in N with limn→∞ ωn =∞. Then there exists a sequence

(δn)∞1 with limn→∞ δn = 0, such that for all n ∈ N, if (xi)
n
1 is an i.i.d. sample from

µ with corresponding order statistics (x(i))
n
1 , then with probability at least 1− δn,

sup
ωn≤i≤n−ωn

|x(i) − x∗(i)| ≤ δn

where x∗(i) = F−1(i/(n+ 1)).

Examples of probability distributions that satisfy the conditions of theorem 28

include the normal distribution, the Weibull distribution with shape parameter c > 1

and the chi distribution (including the Rayleigh and Maxwell distributions). Exam-

ples of distributions that satisfy the conditions of theorem 29 include the exponential

distribution, the chi-squared distribution (and more generally the gamma distribu-

tion), the Weibull distribution with shape parameter c = 1, the Laplace distribution,

the logistic distribution, and the Gumbel distribution. Note that in theorem 29 we

can take (ωn)∞1 to grow arbitrarily slowly, for example let ωn = log log log n. We thus

have tight control over almost the entire data set with the exception of a very small

proportion of points. This is substantially better than the
√
n ’visibility’ of Donsker’s

theorem. To account for the few data points that escape theorem 29 we provide the

following result.
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Theorem 30. Let µ be any probability measure on R that obeys the conditions of

theorem 29. Then there exists k > 0 such that for all T > 106 and all n ∈ N, if

(xi)
n
1 is an i.i.d. sample from µ with corresponding order statistics (x(i))

n
1 , then with

probability at least 1− 400T−1/2,

sup
1≤i≤n

|x(i) − x∗(i)| ≤ kT

A probability measure µ is called p-log-concave for some p ∈ [1,∞) if it has a

density function of the form f(x) = c exp(−g(x)p) where g is non-negative and con-

vex. The 1-log-concave distributions are simply referred to as log-concave. If µ is

p-log-concave then it is also q-log-concave for all 1 ≤ q ≤ p. Many of the prob-

ability distributions in statistics (including most of those listed above, see [3]) are

log-concave. Log-concave probability measures are of great interest in pure mathe-

matics, especially in the study of convex bodies (see for example [43] and [44]). In

economics, reliability theory and several other fields, log-concave distributions play

a very natural role, as log-concavity is intimately connected to monotonicity of the

mean-residual-lifetime function (see section 7 in [3] for more details and an extensive

list of references) . The generalized normal distributions with density functions

fp(x) =
p

2Γ(p−1)
e−|x|

p

are the primary examples of p-log-concave distributions.

Theorem 31. Let p > 1 , q > 0 and let µ be a p-log-concave probability measure on

R with cumulative distribution function F . Then there exists c > 0 such that for any

n ∈ N and any i.i.d. sample (xi)
n
1 from µ with order statistics (x(i))

n
1 , with probability

46



at least 1− c(log n)−q,

sup
1≤i≤n

|x(i) − x∗(i)| ≤ c
log log n

(log n)1−1/p

where x∗(i) = F−1(i/(n+ 1)).

The main idea behind the proof of these theorems is to first analyze the uniform

distribution on [0, 1]. We do this using a powerful representation of the empirical

point process via independent random variables that allows us to use classical results

such as the law of large numbers (in the form of Chebyshev’s inequality) and the law of

the iterated logarithm. A key step in this analysis is to exploit the inherent regularity

of order statistics which allows for control over all points based on an inspection of

merely log n carefully chosen points. We then transform the points under the action

of F−1 to analyze the general case. We introduce a new class of metrics on (0, 1)

defined by

θp(x, y) = max

{
log(x−1y)

(log x−1)1−1/p
,
log((1− y)−1(1− x))

(log(1− y)−1)1−1/p

}
(2.0.5)

for 1 ≤ p < ∞ and 0 < x ≤ y < 1. To see that each θp is indeed a metric,

note that θp(x, y) is decreasing in x and increasing in y throughout the triangular

region {(x, y) ∈ (0, 1)2 : x < y}. We show that F−1 is either Lipschitz or uniformly

continuous with respect to these metrics (depending on the assumptions imposed on

µ). After this, our main results become straightforward to prove.

There are endless variations on the main theme of this chapter. Our intention

is simply to highlight a phenomenon and introduce methods by which to study it.

Note that our results are purely asymptotic in nature and we can (and do) assume

throughout the chapter that n > n0 for some n0 ∈ N.
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2.1 The uniform distribution

Let (γi)
n
1 denote an i.i.d. sample from the uniform distribution on [0, 1] with cor-

responding order statistics (γ(i))
n
1 and let (zi)

n+1
1 be an i.i.d. sequence of random

variables that follow the standard exponential distribution. For 1 ≤ i ≤ n define

yi =

(
i∑

j=1

zj

)(
n+1∑
j=1

zj

)−1

It is of great interest to us that (yi)
n
1 and (γ(i))

n
1 have the same distribution in Rn (see

chapter 5 in [17]). This is nothing but an expression of the fact that the empirical

point process locally resembles the Poisson point process. Also of interest is the

fact that these random vectors have the same distribution as the partial sums of

a random vector uniformly distributed (with respect to Lebesgue measure) in the

standard simplex ∆n = {w ∈ Rn+1 : wi ≥ 0 ∀i,
∑

iwi = 1}. The power of

this representation is that we have an expression for (γ(i))
n
1 in terms of independent

random variables. Note that

yi =
i

n+ 1

(
1

i

i∑
j=1

zj

)(
1

n+ 1

n+1∑
j=1

zj

)−1

(2.1.1)

Both lemma 32 and lemma 34 below can be compared to the results in [73].

Lemma 32. Let T > 106 and n ∈ N. With probability at least 1 − 400T−1/2 the

following inequalities hold simultaneously for all 1 ≤ i ≤ n,

T−1 ≤ γ(i)

(
i

n+ 1

)−1

≤ T (2.1.2)

T−1 ≤ (1− γ(i))

(
1− i

n+ 1

)−1

≤ T (2.1.3)
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Proof. Let Q = 2−1T 1/2 and momentarily fix 1 ≤ i ≤ n + 1. The random vari-

able i−1
∑i

j=1 zj has mean 1 and variance i−1. Using Chebyshev’s inequality, with

probability at least 1− i−1Q−2 we have

−Q < 1− 1

i

i∑
j=1

zj < Q

The random variable

Ui = |{j ∈ N : j ≤ i, zj ≤ 2Q−1}|

follows a binomial distribution with i trials and success probability 1−exp(−2Q−1) ≤

2Q−1. Using Chebyshev’s inequality again, with probability at least 1 − 32i−1Q−1

we have Ui < i/2, which implies that i−1
∑i

j=1 zj > Q−1. Hence, with probability at

least 1− 33i−1Q−1 we have

Q−1 <
1

i

i∑
j=1

zj < Q+ 1 (2.1.4)

Let M = blog2(n)c. With probability at least 1−33Q−1
∑M

j=0 2−j−33(n+1)−1Q−1 ≥

1 − 100Q−1equation (2.1.4) holds simultaneously for i = 1, 2, 22, 23 . . . 2M and for

i = n + 1. Hence, by (2.1.1), with probability at least 1 − 100Q−1 we have that for

all such i

1

2
Q−2 i

n+ 1
≤ yi ≤ 2Q2 i

n+ 1

Since (yi)
n
1 is an increasing sequence, control over the values (y2j)

M
j=1 leads to control

over the entire sequence and, recalling the representation of (γ(i))
n
1 in terms of (yi)

n
1 ,

the bound (2.1.2) follows for all 1 ≤ i ≤ n. The bound (2.1.3) then follows by

symmetry.
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Lemma 33. Let t ∈ (0, 1) and n ∈ N. With probability at least 1 − 2 exp(−nt2/5)

the following inequality holds simultaneously for all 1 ≤ i ≤ n,

∣∣∣∣γ(i) −
i

n+ 1

∣∣∣∣ ≤ t (2.1.5)

Proof. We can assume without loss of generality that n−1 ≤ 2t/3 (otherwise the

probability bound becomes trivial). Note that since our sample is taken from the

uniform distribution we have

sup
1≤i≤n

|γ(i) − i(n+ 1)−1| ≤ n−1 + sup
1≤i≤n

|γ(i) − in−1|

= n−1 + sup
0≤t≤1

|Fn(t)− F (t)|

where F (t) = t is the cumulative distribution function and Fn is the empirical distri-

bution function. By the Dvoretzky-Kiefer-Wolfowitz inequality (as mentioned in the

introduction), with probability at least 1− 2 exp(−5−1nt2) we have

sup
0≤t≤1

|Fn(t)− F (t)| ≤ t/3

and the result follows.

Note that in the preceding proof one can also use Doob’s martingale inequality

(in the form of Kolmogorov’s inequality) and the representation of (γ(i))
n
1 in terms of

(yn)n1 , although this approach yields an inferior probability bound.

Lemma 34. Let (ωn)∞1 be any sequence in N such that limn→∞ ωn = ∞. Then for

all T > 1 and all δ ∈ (0, 1) there exists n0 ∈ N such that for all n > n0, if (γ(i))
n
1 are

the order statistics from an i.i.d. sample from the uniform distribution on [0, 1], then

with probability at least 1− δ, (2.1.2) and (2.1.3) hold for all ωn ≤ i ≤ n− ωn.
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Proof. We use the representation (2.1.1). Let T > 1 and δ ∈ (0, 1) be given. Without

loss of generality we may assume that T ≤ 2. Let (z̃i)
∞
1 denote any i.i.d. sequence

of random variables that follow the standard exponential distribution. Define the

deterministic sequence (λj)
∞
1 as follows,

λj = P{sup
i≥j

(2i log log i)−1/2

∣∣∣∣∣
i∑

k=1

(z̃k − 1)

∣∣∣∣∣ ≤ 2}

Note that (λj)
∞
1 is an increasing sequence and by the law of the iterated logarithm,

limj→∞ λj = 1. Fix n0 ∈ N with n0 ≥ 64δ−1(T 1/2 − 1)−2 such that for all n > n0 we

have the following inequalities,

λω(n) ≥ 1− δ/4(
8 log logωn

ωn

)1/2

≤ T 1/2 − 1

Now consider any n > n0 and let (γ(i))
n
1 denote the order statistics mentioned in the

statement of the lemma. With probability at least 1− δ/4, for all ω(n) ≤ i ≤ n,∣∣∣∣∣1− 1

i

i∑
j=1

zj

∣∣∣∣∣ ≤
(

8 log logωn
ωn

)1/2

≤ T 1/2 − 1

By Chebyshev’s inequality and the fact that the function u 7→ u−1 is 4-Lipschitz on

[1/2,∞), with probability at least 1− 16n−1(T 1/2 − 1)−2 ≥ 1− δ/4∣∣∣∣∣∣1−
(

1

n+ 1

n+1∑
j=1

zj

)−1
∣∣∣∣∣∣ < T 1/2 − 1

By (2.1.1), with probability at least 1 − δ/2, (2.1.2) holds for all ω(n) ≤ i ≤ n. By

symmetry, with the same probability (2.1.3) holds for all 1 ≤ i ≤ n − ω(n). The

lemma is thus proven.
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2.2 The general case

We now consider the general setting of a probability measure µ with connected sup-

port in R and cumulative distribution function F . The generalized inverse F−1 is

continuous, non-decreasing and satisfies the equation

F−1(F (t)) = t

for all t ∈ R.

Lemma 35. Let µ be a probability measure on R with connected support and cumu-

lative distribution function F that satisfies (2.0.1). Then for all T > 1 and all δ > 0

there exists η ∈ (0, 1) such that for all x, y ∈ (0, η) with T−1 ≤ xy−1 ≤ T and all

x, y ∈ (1− η, 1) with T−1 ≤ (1− x)(1− y)−1 ≤ T we have |F−1(x)− F−1(y)| ≤ δ.

Proof. Consider any T > 1 and δ > 0. By (2.0.1) there exists t0 ∈ R such that for

all t ≤ t0, TF (t) < F (t + δ). Let η1 = F (t0). Consider any x, y ∈ (0, η1) such

that T−1 ≤ xy−1 ≤ T . Without loss of generality, x < y. Let s = F−1(x) and

t = F−1(y). Then s ≤ t0, hence y ≤ Tx = TF (s) < F (s + δ), from which it follows

by applying F−1 that t ≤ s+δ and that |F−1(x)−F−1(y)| ≤ δ. Analysis of the right

hand tail is identical and provides us with η2 > 0 such that for all x, y ∈ (1 − η2, 1)

with T−1 ≤ (1−x)(1− y)−1 ≤ T we have |F−1(x)−F−1(y)| ≤ δ. The result follows

with η = min{η1, η2}.

Lemma 36. Let µ be a probability measure on R with connected support and cumu-

lative distribution function F that satisfies both (2.0.3) and (2.0.4). Then for all

δ > 0 there exists T > 1 such that for all x, y ∈ (0, 1) with T−1 ≤ xy−1 ≤ T and
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T−1 ≤ (1 − x)(1 − y)−1 ≤ T we have |F−1(x) − F−1(y)| ≤ δ. In particular, F−1 is

uniformly continuous with respect to the metric θ1 (see (2.0.5)).

Proof. Consider any δ > 0. By (2.0.4) there exists T1 > 1 and t0 ∈ R such that

for all t < t0, T1F (t) ≤ F (t + δ). Let η1 = min{F (t0), 2−1}. As in the proof

of the previous lemma, it follows that for all x, y ∈ (0, η1) with T−1
1 ≤ xy−1 ≤ T1

we have |F−1(x) − F−1(y)| ≤ δ. Similarly (using (2.0.3)), there exists T2 > 1 and

η2 ∈ (2−1, 1) such that for all x, y ∈ (η2, 1) with T−1
2 ≤ (1− x)(1− y)−1 ≤ T2 we have

|F−1(x) − F−1(y)| ≤ δ. By continuity of F−1 relative to the standard topology on

(0, 1), and by compactness of [2−1η1, 1− 2−1η2] there exists 0 < δ′ < 10−1 min{η1, η2}

such that for all x, y ∈ [2−1η1, 1−2−1η2] with |x−y| < δ′ we have |F−1(x)−F−1(y)| ≤

δ. We leave it to the reader to verify that the result holds with

T = min{T1, T2, 1 + δ′}

Proof of theorem 28. We shall construct a function h that takes an arbitrary δ ∈ (0, 1)

and produces an appropriate n0 = h(δ) ∈ N. Then, using this function we shall define

the desired sequence (δn)∞1 that is mentioned in the statement of the theorem. To

this end, let δ ∈ (0, 1) be given. Define

T = 106δ−2 (2.2.1)

By lemma 35 there exists η ∈ (0, 1) such that if x, y ∈ (0, η) and T−1 ≤ xy−1 ≤ T ,

or x, y ∈ (1 − η, 1) and T−1 ≤ (1 − x)(1 − y)−1 ≤ T , then |F−1(x) − F−1(y)| ≤ δ.

By compactness, F−1 is uniformly continuous on [η/2, 1 − η/2], which implies the
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existence of t ∈ (0, η/2) such that if x, y ∈ [η/2, 1 − η/2] and |x − y| ≤ t, then

|F−1(x)− F−1(y)| ≤ δ. Define

n0 =
⌈
5t−2 log(4δ−1)

⌉
(2.2.2)

and consider any n ≥ n0. Let (γ(i))
n
1 denote the order statistics corresponding to

an i.i.d. sample from the uniform distribution on [0, 1]. Note that we have the

representation

x(i) = F−1(γ(i)) (2.2.3)

valid for all 1 ≤ i ≤ n. By lemmas 32 and 33, as well as equations (2.2.1) and

(2.2.2), with probability at least 1 − δ inequalities (2.1.2), (2.1.3) and (2.1.5) hold

simultaneously for all 1 ≤ i ≤ n. Suppose that these inequalities do indeed hold and

consider any fixed 1 ≤ i ≤ n. Since t ≤ η/2, one of the three sets [0, η], [η/2, 1− η/2]

and [1−η, 1] contains both γ(i) and i(n+1)−1, which implies that |F−1(γ(i))−F−1(i(n+

1)−1)| ≤ δ, which is inequality (2.0.2).

Define the non-decreasing sequence (κn)∞1 by κn = max{h(e−i) : 1 ≤ i ≤ n} and

set

δn = exp(−max{i ∈ N : κi ≤ n})

where we define max ∅ = 0. It is clear that limn→∞ δn = 0. Consider any fixed

n ∈ N. If {i ∈ N : κi ≤ n} = ∅ then the probability bound is trivial, otherwise let

j = max{i ∈ N : κi ≤ n}. The result follows by the inequality h(δn) = h(e−j) ≤

κj ≤ n and by definition of the function h.

Proof of theorems 29 and 30. The proof is very similar to that of theorem 28. We
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use the representation (2.2.3). The main difference is that we use lemmas 34 and 36

instead of lemmas 32 and 35. The details are left to the reader.

2.3 Log-concave distributions

The following two lemmas are modifications of lemmas 6 and 9 in [25].

Lemma 37. Let µ be a log-concave probability measure on R with cumulative distri-

bution function F . Then there exists c > 0 such that for all 0 < x < y < 1,

|F−1(y)−F−1(x)| ≤ cmax

{∣∣F−1(y)
∣∣ log(x−1y)

log y−1
,
∣∣F−1(x)

∣∣ log((1− x)/(1− y))

log(1− x)−1

}
(2.3.1)

Proof. By theorem 5.1 in [51] (see lemma 5 in [25] for a proof) F is log-concave. Hence

the function u(t) = − logF (t) is convex (and strictly decreasing). Let Eµ denote

the centroid of µ (the expected value of a random variable with distribution µ). By

lemma 5.12 in [51] (see also lemma 3.3 in [12]) F (Eµ) ≥ e−1, hence u(Eµ) ≤ 1. By

convexity of u we have the inequality (t−s)−1(u(t)−u(s)) ≤ (Eµ−t)−1(u(Eµ)−u(t)),

which is valid for all s < t < Eµ. Let 0 < x < y < min{e−2, F (0), F (−2Eµ)} and

define s = F−1(x) and t = F−1(y). Then we have

F−1(y)− F−1(x) ≤ (Eµ− F−1(y))
log(x−1y)

log y−1 − u(Eµ)

It follows from the restrictions on y that F−1(y) < 0 and that |F−1(y)| ≥ 2 |Eµ|.

Since y < F (Eµ)2, it follows that log y−1 > 2u(Eµ) and (2.3.1) follows for such x and

y with c = 4. For other values of x and y, inequality (2.3.1) follows by compactness,

continuity and symmetry.
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Lemma 38. Let p ≥ 1 and let µ be a p-log-concave probability measure on R with

cumulative distribution function F . Then there exists c > 0 such that for all x ∈

(0, 1),

|F−1(x)| ≤ cmax{(log x−1)1/p, (log(1− x)−1)1/p} (2.3.2)

As a consequence of (2.3.2) and (2.3.1), F−1 is Lipschitz with respect to the metric

θp (see (2.0.5)).

Proof. By lemma 9 in [25] (which holds for p ≥ 1) there exists c1, c2 > 0 and t0 > 1

such that for all t < −t0, F (t) ≤ c1|t|1−p exp(−c2|t|p). Let η1 = min{F (−t0), c−1
1 } and

consider any x ∈ (0, η1). Let t = F−1(x). Hence x = F (t) ≤ c1|t|1−p exp(−c2|t|p),

which implies that

|F−1(x)| = −t

≤ (c−1
2 (log c1 + log x−1))1/p

≤ 21/pc
−1/p
2 (log x−1)1/p

The result now follows by symmetry, compactness and continuity.

Lemma 39. Let F be a cumulative distribution function associated to a log-concave

probability measure. Then there exists c > 0 such that for all ε ∈ (0, 1/2) and all

x, y ∈ [ε, 1− ε],

|F−1(x)− F−1(y)| ≤ cε−1|x− y|

Proof. This follows from lemmas 37 and 38 with p = 1 and the inequality log t ≤

t− 1.

56



Proof of theorem 31. By lemmas 32, 37 and 38, with probability at least 1−400(log n)−q,

for all i ≤ n3/4 and all i ≥ n− n3/4 we have

|x(i) − x∗(i)| ≤ c
log log n

(log n)1−1/p

Let I = [2−1n−1/4, 1− 2−1n−1/4]. By lemma 39, for all x, y ∈ I we have

|F−1(x)− F−1(y)| ≤ cn1/4|x− y|

By lemma 33, with probability at least 1 − 2 exp(−5n1/4), for all 1 ≤ i ≤ n we

have

|γ(i) − i(n+ 1)−1| ≤ n−3/8

Hence for all n3/4 ≤ i ≤ n − n3/4 both γ(i) and i(n + 1)−1 are elements of I and

the result follows.
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Chapter 3

Concentration inequalities for
Lipschitz functions into an
arbitrary metric space

Typical concentration results include Lévy’s concentration of Lipschitz functions with

respect to Haar measure on high dimensional spheres and Talagrand’s concentration

of convex Lipschitz functions with respect to product measures on high dimensional

cubes. These results assume that the range of the Lipschitz function is contained in

R and break down when the range is allowed to be high dimensional. The identity

map provides the simplest such example. As long as the dimension of the range is

much less than that of the domain, however, one can reclaim a similar concentration

inequality.

Proposition 40. Let n ∈ N, let (X, || · ||K) denote any Banach space of dimension

N < ∞ and let f : Sn−1 → X be a Lipschitz function. Let x and y be independent

random vectors uniformly distributed on Sn−1. Then for all r > 0, with probability at

least 1− C exp(c1N − c2r
2n),

||f(x)− f(y)||K < rLip(f) (3.0.1)

where C, c1, c2 > 0 are universal constants.
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The proof of proposition 40 is routine and can also be applied to the case when X

is a metric space that embeds well into `M∞ for M = eo(n). The study of concentration

of functions into more general spaces was, to our knowledge, introduced by Gromov

[37] [38] [39] and has also been studied by Funano [30] [31] [32].

In all of the existing theory, the structure of the range plays a fundamental role.

We are not aware of any existing results for functions taking values in a truly arbitrary

metric space. As far as Talagrand’s inequality is concerned, where convexity of f is

required, it is not entirely clear even what the statement of such an extension would

be.

In this chapter we show that if the Lipschitz function f is invariant under coor-

dinate permutations, then it obeys concentration inequalities that are independent

of the range. We are particularly interested in the case when the range is very com-

plicated, such as an infinite dimensional space, and the existing theory breaks down

completely.

3.1 Main results

In the spirit of Lévy’s inequality we have the following result,

Theorem 41. Let (Ω, ρ) denote any metric space and let f : Sn−1 → Ω be a Lipschitz

function that is invariant under coordinate permutations. Let x and y be independent

random vectors uniformly distributed on Sn−1. Then with probability at least 1 −

C(log n)−1000,

ρ(f(x), f(y)) ≤ c log log n√
log n

Lip(f) (3.1.1)

where C, c > 0 are universal constants and Lip(f) is taken with respect to either the
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Euclidean or the geodesic distance on Sn−1.

We expect to improve this result to a bound of the form ρ(f(x), f(y)) ≤ cn−αLip(f)

for some α > 0, perhaps α = 1/4.

For each x ∈ Rn let Tx = (x(i))
n
i=1 denote the non-decreasing rearrangement of

the coordinates of x, also known as the order statistics of x. The function T : `n2 → `n2

is rearrangement invariant as well as Lipschitz, with Lip(T ) = 1. If f : Rn → Ω is any

rearrangement invariant function , then f = f ◦T . Hence theorem 41 is equivalent to

the following lemma, which claims that most points on the unit sphere have essentially

the same coordinates, just in a different order.

Lemma 42. Let x and y be independent random vectors uniformly distributed on

Sn−1. Then with probability at least 1− C(log n)−1000,

||Tx− Ty||2 ≤
c log log n√

log n

where C, c > 0 are universal constants.

These results can easily be generalized as follows:

Theorem 43. Let 1 < p < ∞ and 1 ≤ q ≤ ∞. Let (Ω, ρ) denote any metric

space and let f : Bn
p → Ω be a Lipschitz function that is invariant under coordinate

permutations. Let Lipq(f) denote the Lipschitz constant of f with respect to the `q

metric. Let x and y be independent random vectors uniformly distributed inside Bn
p .

Then with probability at least 1− Cp(log n)−1000,

ρ(f(x), f(y)) ≤ cpn
1
q
− 1
p

log log n

(log n)1− 1
p

Lipq(f)
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where Cp, cp > 0 are constants that depend on p but not on n, q or (Ω, ρ). The same

result holds when f : ∂Bn
p → Ω and x and y are distributed according to the cone

measure on ∂Bn
p .

The final result is a variation of the Dvoretzky-Kiefer-Wolfowitz inequality from

empirical process theory that we write in a form which mirrors Talagrand’s inequality.

Proposition 44. Let (Ω, ρ) denote any metric space and let f : [0, 1]n → Ω be a

Lipschitz function that is invariant under coordinate permutations. Let x and y be

independent random vectors uniformly distributed in [0, 1]n. Then for all λ > 0, with

probability at least 1− 4 exp(−2λ2) we have,

ρ(f(x), f(y)) ≤ λLip(f)

where Lip(f) is defined relative to the Euclidean norm on [0, 1]n.

Note that the bounds are independent of n and that with probability 1−o(1), ||x−

y||2 > c
√
n. As before, the prototypical example is the function Tx = (x(i))

n
i=1. The

diameter of the unit cube [0, 1]n is
√
n, however if we ignore the order of coordinates

by allowing appropriate permutations to act on points, most of the cube is contained

in a set of bounded diameter (bounded with respect to n).

3.2 Proofs

Proof of proposition 40. A standard result is that there exists a linear embedding

T : X ↪→ `M∞ with M = 3N such that for all x ∈ X

||x||K ≤ ||Tx||∞ ≤ 2||x||K
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To see this, consider any 1-net N ⊂ ∂K. The standard bound yields |N | ≤ 3N .

By the Hahn-Banach theorem, for each y ∈ N there exists a functional y∗ ∈ ∂BX∗

such that y∗(y) = 1. The embedding is then given by x 7→ 2(y∗(x))y∈N . Note that

Lip(y∗ ◦ f) ≤ Lip(f). The result follows from Lévy’s concentration inequality, the

union bound and the formula

||f(θ)− f(ω)||K ≤ ||Tf(θ)− Tf(ω)||∞ = 2 sup
y∈N
|y∗(f(θ))− y∗(f(ω))|

Lemma 45. Let θ and θ′ be independent vectors uniformly distributed on
√
nSn−1.

Let Tθ = (θ(i))
n
1 and Tθ′ = (θ′(i))

n
1 be the corresponding order statistics. Then with

probability at least 1− c(log n)−1000, ||Tθ − Tθ′||∞ ≤ c(log log n)/
√

log n.

Proof. We can simulate θi =
(

1
n

∑n
j=1 γ

2
j

)−1/2

γi and θ′i =
(

1
n

∑n
j=1 γ̂

2
j

)−1/2

γ̂i where

γ = (γi)
n
1 and γ̂ = (γ̂i)

n
1 are independent i.i.d. N(0, 1) samples. By theorem 31

in chapter 3 (see also [27]), with probability at least 1 − c(log n)−1000, ||γ − γ̂||∞ <

c(log log n)/
√

log n. The coefficients 1
n

∑n
j=1 γ

2
j and 1

n

∑n
j=1 γ̂

2
j have expected value 1

and variance cn−1. By Chebyshev’s inequality, with probability at least 1 − cn−1/2,

we have 1 − n−1/4 < 1
n

∑n
j=1 γ

2
j < 1 + n−1/4. By theorem 31 again and the fact

that Φ−1(1− c1/n) < c2(log n)1/2, with probability at least 1− c(log n)−1000, ||γ||∞ <

c(log n)1/2. Hence, max{||γ−X||∞, ||γ̂−Y ||∞} < c(log n)1/2n−1/4. The result follows

by the triangle inequality.

Proof of lemma 42. Take x = n−1/2θ and y = n−1/2θ′. Then ||Tx−Ty||2 = n−1/2||Tθ−

Tθ′||2 ≤ ||Tθ − Tθ′||∞. The result then follows from lemma 45.
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Proof of theorem 41. This follows from lemma 42 and the inequality f(x), f(y)) ≤

ρ(f(Tx), f(Ty)) ≤ Lip(f)||Tx− Ty||2.

Proof of theorem 43. By theorem 1 in [11], we can simulate x and y as

xi =
γi(∑n

j=1 |γj|p +W1

)1/p
=

γi

n1/p
(

1
n

∑n
j=1 |γj|p + 1

n
W1

)1/p

yi =
γ̂i(∑n

j=1 |γ̂i|p +W2

)1/p
=

γ̂i

n1/p
(

1
n

∑n
j=1 |γ̂i|p + 1

n
W2

)1/p

where γ = (γi)
n
1 and γ̂ = (γ̂i)

n
1 are independent random vectors each with a density

given by f(x) = cnp exp(−||x||pp), while W1 and W2 each have the standard exponential

distribution and are also independent of x and y, and each other. By theorem 31 in

chapter 3 (see also [27]), with probability at least 1 − c(log n)−1000, ||γ − γ̂||∞ <

c(log log n)(log n)−1+ 1
p . The coefficients 1

n

∑n
j=1 |γj|p + 1

n
W1 and 1

n

∑n
j=1 |γ̂i|p + 1

n
W2

have expected value cp + n−1 and variance c′pn
−1 + n−2. By Chebyshev’s inequality,

with probability at least 1− cpn−1/2 we have

cp + n−1 − n−1/4 ≤ 1

n

n∑
j=1

|γj|p +
1

n
W1 ≤ cp + n−1 + n−1/4

Let F be the cumulative distribution of the coordinates of x and y,

F (t) =

∫ t

−∞
cpe
−|u|pdu

From chapter 1 we know that F−1(1− cpn−1) ≤ c′p(log n)1/p, and combining this and

theorem 31, with probability at least 1− cp(log n)−1000 we have ||γ||∞ < c′p(log n)1/p.

Hence, max{||γ − n1/px||∞, ||γ̂ − n1/py||∞} < cp(log n)1/pn−1/4. By the triangle in-

equality, ||n1/px − n1/py||∞ ≤ c(log log n)(log n)−1+ 1
p and the result follows from the

inequality || · ||q ≤ n1/q|| · ||∞. When x and y each have the cone measure on ∂Bn
p ,
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we use the same representation and the same proof, except without the variables W1

and W2.

Proof of proposition 44. With probability 1, all coordinates of x and y are distinct.

Consider Fx(t) = n−1|{i : xi ≤ t}| and Fy(t) = n−1|{i : yi ≤ t}|. The Dvoretzky-

Kiefer-Wolfowitz inequality states that with probability at least 1 − 2 exp(−2λ2),

sup0≤t≤1 |Fn(t)− t| ≤ λn−1/2, and likewise for Fy. Thus for all i,

| i
n
− x(i)| = |F (x(i))− x(i)| ≤ λn−1/2

| i
n
− y(i)| = |F (y(i))− y(i)| ≤ λn−1/2

By the triangle inequality, ||Tx − Ty||∞ ≤ λn−1/2 (with probability at least 1 −

4 exp(−2λ2)). The result then follows as before from the expression f = f ◦ T and

the inequality || · ||2 ≤ n1/2|| · ||∞.
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Chapter 4

A non-asymptotic central limit
theorem

Let n ∈ N and let X = (Xi)
n
1 be an i.i.d. sequence of random variables each with

cumulative distribution function F such that EXi = 0 and EX2
i = 1. The distribution

of X is thus an isotropic product measure µ. The condition that µ be isotropic is a

mild one and entails that X has mean zero and identity covariance matrix. On the

other hand, independence is a very strong condition. Define

Z =
1√
n

n∑
i=1

Xi

Classical central limit theory dictates that for large values of n the distribution of

Z approximates the standard normal distribution. Under the identification t ↔

tθ, where t ∈ R and θ = (1/
√
n, 1/

√
n . . . 1/

√
n), the random variable Z is the

orthogonal projection of X onto the one dimensional subspace spanned by θ. Many

other projections of µ have this property, including projections onto subspaces of

higher dimension. For 1 ≤ k ≤ n, the Grassmanian manifold Gn,k is the collection

of all linear subspaces of Rn of dimension k. It is a compact homogeneous space

under the action of the group On of orthogonal matrices T : Rn → Rn and is thus

endowed with a unique rotationally invariant probability measure λn,k called Haar
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measure. For each E ∈ Gn,k let PE denote the orthogonal projection of Rn onto E.

A result of Romik [62] is that there exist c1, c2, c3 > 0 (that depend on F but not

on n) such that for all ε > 0 and all k < c1ε
4n there exists a set E ⊂ Gn,k with

λn,k(E) > 1− c2ε
−1 exp(−c3ε

4n) such that for all E ∈ E ,

sup
H
|P{PEX ∈ H} − ΦE(H)| < ε (4.0.1)

where the supremum is taken over all half spaces H ⊂ E and ΦE is the standard

normal measure on E. The metric defined by (4.0.1) is called the Tsirelson distance.

A similar result holds for the Kolmogorov metric.

The condition of independence is not fundamental to the central limit theorem

and can be replaced by a number of other regularity properties such as convexity [2]

[22] [44] [45] and symmetry [55] [56]. These regularity properties all come down to a

more fundamental property called the thin shell property [12] [18] [23] [24] [41] [46]

[67] [71]. The random vector X has the thin shell property if the random variable

||X||2/E||X||2 is concentrated around the value 1. In other words, most of the mass

of µ is contained in a spherical shell of thickness much smaller than its radius. By the

weak law of large numbers, product measures have the thin shell property. The fact

that isotropic convex bodies have the thin shell property was a profound contribution

of [44]. Provided that X is isotropic and has the thin shell property, most one

dimensional projections of X are approximately Gaussian. The converse is also true.

An excellent exposition of these ideas as well as a detailed list of references is contained

in [44], [47] and [41].

We define a section of a function f as the restriction of f to an affine subspace.

This is a natural functional generalization of a section of a convex body. If X ∈ Rn
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is a random vector with a continuous density function f that decays rapidly to zero

in all directions, then a suitable multiple of the section f |E can be thought of as

the density function of X conditional on the event {ϕ(X) = T}, where ϕ is a linear

functional, E = {x : ϕ(x) = T} and the density is taken with respect to n − 1

dimensional Lebesgue measure on E. Of course the usual definition of conditional

distribution breaks down because the event {ϕ(X) = T} has probability zero and the

section becomes our definition of such a conditional distribution.

Sections and projections are natural counterparts in convex geometry (and func-

tional analysis) and one is lead naturally to ask whether the central limit theory as

described above has an analogue for sections. In this chapter we prove several such

theorems, albeit in a different spirit to the central limit theory of projections. It is

easily seen that central sections do not obey the central limit theorem and we shall

consider sections far from the origin. A fundamental difference between the theory of

sections and projections is that for sections we do not require high dimensionality.

Our results can also be interpreted in the setting of classical probability theory

without reference to sections or projections. Conditioned on the event {ϕ(X) = T},

any other linear functional ϕ̃ such that null(ϕ̃) 6= null(ϕ) has an approximately

normal distribution.

4.1 Main results

For a function g : R → R such limt→±∞ t2g′′i (t) = ∞ we consider the following

modulus

ξg(r, t) = sup

{∣∣∣∣g′′′(w + s)

g′′(w)3/2

∣∣∣∣ : |w| ≥ t, |s| ≤ rg′′(w)−1/2

}
(4.1.1)
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We will be interested in functions g such that for all r > 0,

lim
t→∞

ξg(r, t) = 0 (4.1.2)

This is a relatively natural condition satisfied by many functions and we discuss it

further in section 4.3. As an example, consider the functions g(t) = |t|p (p > 1) for

which we have

ξg(r, t) ≤ 2t−p/2

valid for all r and t such that r ≤ cpt
p/2. As another example, consider the function

g(t) = et + e−t for which we have

ξg(r, t) ≤ exp(2t− e3t/2)

valid for all r and t such that r ≤ tet/2. Let φn denote the standard normal density

function on Rn,

φn(x) = (2π)−n/2e−||x||
2
2/2

Note that the density of any absolutely continuous product measure can be written

as

f(x) = exp

(
−

n∑
i=1

gi(xi)

)

Theorem 46. Let n ≥ 2 and for each 1 ≤ i ≤ n let gi : R→ R be a convex function

with corresponding modulus ξi as defined by (4.1.1). Let ξ(r, t) = maxi ξi(r, t). As-

sume that there exist σ > 1, ω > 0 such that for all 1 ≤ i ≤ n and 1 ≤ j ≤ n, and all

t ∈ R with |t| > t0,

g′j(σ
−1t) < g′i(±t) < g′j(σt) (4.1.3)
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g′′i (t) > ωt−1g′i(t) (4.1.4)

Consider the function f(x) = exp (−
∑n

i=1 gi(xi)). There exist c, c̃ > 0 with the

following property: for all θ ∈ Sn−1 with q = min1≤i≤n |θi| 6= 0, all r > 0, and all

T > 0 with nr3ξ(r, c̃qcT ) < 6, there exists α > 0, y ∈ Rn and a linear injection Q

: Rn−1 → {θ}⊥ such that 〈θ, y〉 = T and for all x ∈ Rn−1 with ||x||2 ≤ r,∣∣∣∣αf(Qx+ y)

φn−1(x)
− 1

∣∣∣∣ < nr3ξ(r, c̃qcT )

In the special case of theorem 46 where gi = g for all 1 ≤ i ≤ n and θ =

(1/
√
n, 1/

√
n, . . . 1/

√
n), we can take

α = (2π)−(n−1)/2 exp(ng(T/
√
n))

and we can express Q = βQ̃ where Q̃ : Rn−1 → θ⊥ is a linear isometry independent

of T and

β =
1√

g′′(T/
√
n)

Of particular interest are the functions f(x) = e−||x||
p
p (1 < p <∞). These functions

were studied in the papers [64] and [25] and have an interesting geometry.

Corollary 47. For any 1 < p < ∞, define f : `p → R by f(x) = e−||x||
p
p. For all

n ∈ N, all compact sets Ω ⊂ Rn and all ε > 0 there exists α > 0 and an affine

injection T : Rn → `p such that

sup
x∈Ω
|αf(Tx)− φn(x)| < ε

4.2 A simple example

Consider the function f : R2 → R defined by

f(x) = e−(x41+x42)
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For T > 0 we parameterize the line x1 + x2 = T as x1 = T/2 + st, x2 = T/2 − st,

where s > 0 is a scale parameter to be determined in a moment. We express

f(T/2 + st, T/2− st) = exp

(
−
(

1

8
T 4 + 3T 2s2t2 + 2s4t4

))

Setting α = exp(T 4/8)/
√

2π and s = 1/(T
√

6) yeilds the correct variance

αf(T/2 + st, T/2− st) =
1√
2π
e−

1
2
t2 exp

(
− 1

18T 4
t4
)

For large values of T , the factor exp (−T−4t4/18) is approximately equal to 1 for all

t in the interval [−
√
T ,
√
T ] and the approximation by the normal density function

is seen to hold.

4.3 Further discussion

Consider a polynomial g(x) = a+bx+cx2 +dx3 and the corresponding normalization

g(c−1/2x) = a + bc−1/2x + x2 + dc−3/2x3. If dc−3/2 is small, then g resembles a

quadratic function around zero in the sense that the quadratic term becomes large

while the cubic term is still negligible. This happens, for example, on the interval

−c−1/4d−1/6 ≤ x ≤ c−1/4d−1/6. If in addition g′(0) = 0, then for c̃ = e−a/
√

2π the

function f(x) = c̃e−g(x/
√
c) = exp(−dc−3/2x3)φ1(x) approximates the standard normal

density function on an interval [−R,R] for some large value of R, say R = c1/4d−1/6.

This is the motivation for studying the modulus defined by (4.1.1).

To see that condition (4.1.2) is not too restrictive, consider the following lemma

which we prove later on.

Lemma 48. If ω : [0,∞)→ R is any differentiable function with limt→∞ t2ω(t) =∞,
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then for all ε > 0

lim inf
t→∞

∣∣∣∣ ω′(t)ω(t)1+ε

∣∣∣∣ = 0

The function ω plays the role of g′′ and we take ε = 1/2. There are two reasons

why not every function satisfies (4.1.2). The first is that there could be infinite

oscillation in the tails of |g′′′(t)|g′′(t)−3/2 whereby the lim inf is zero but the lim sup

is strictly positive. The second is due to the perturbation s, however the condition

limt→±∞ t
2g′′(t) =∞ implies that |s| is only a small proportion of |w|. The appearance

of w is simply to insure that ξ(r, t) is non-increasing in t; one could just as well erase

it and use t instead.

Conditions (4.1.3) and (4.1.4) are not fundamental to theorem 46 and are only

imposed to obtain a quantitative bound. Their role is to provide a linear lower bound

on the growth of the coordinates of y as T →∞. Without them the coordinates of y

would still converge to ∞, just not at a linear rate.

4.4 Proofs

The proof below is split into two parts for ease of reading. The fundamental ingredi-

ents are contained mainly in the second part.

Proof of theorem 46. Part 1: Without loss of generality θi > 0 for all 1 ≤ i ≤ n.

Consider the function g : Rn → R defined by g(x) =
∑n

i=1 gi(xi). By convolution

with a smooth test function we may assume that ∇g(x) exists for all x ∈ Rn and

that g is strictly convex. By (4.1.4) there exist c1, t1 > 0 such that g′i(t) > c1t
ω

for all t > t1 and all 1 ≤ i ≤ n. Define T1 = sup{g′i(t) : 1 ≤ i ≤ n, t ≤ t0} and

consider any T > max{
√
nt1, c

−1/ω
1

√
nq−1/ωT

1/ω
1 }. Restricted to the affine subspace
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E = {x ∈ Rn : 〈x, θ〉 = T}, the function g attains a minimum at some point y ∈ E.

By the theory of Lagrange multipliers, this point satisfies ∇g(y) = λθ for some

λ 6= 0, i.e. g′i(yi) = λθi for all 1 ≤ i ≤ n. Since T =
∑
θiyi ≤ ||θ||1 max{yi}n1 and

1 ≤ ||θ||1 ≤
√
n, it follows that for some 1 ≤ k ≤ n, yk = max{yi}n1 ≥ T/

√
n > t1.

Hence g′k(yk) > c1y
ω
k ≥ c1n

−ω/2T ω and for all 1 ≤ i ≤ n, g′i(yi) = λθi ≥ qλθk =

qg′k(yk) ≥ c1qn
−ω/2T ω > T1 (by definition of T ). By definition of T1, yi > t0 (for all

i). By (4.1.4), for all k > 1 and s > t0, g′i(ks) > kωg′i(s). Hence, if s1 > s2 > t0 then

s1

s2

<

(
g′i(s1)

g′i(s2)

)1/ω

(4.4.1)

We consider two cases. In case 1, yi ≥ σ−1yk. In case 2, yi < σ−1yk and we can apply

inequality (4.4.1) which gives

σ−1yk
yi

<

(
g′i(σ

−1yk)

g′i(yi)

)1/ω

<

(
g′k(yk)

g′i(yi)

)1/ω

=

(
θk
θi

)1/ω

≤ q−1/ω

and yi > σ−1q1/ωyk ≥ σ−1q1/ωn−1/2T . In either case,

yi > c̃qcT

Part 2: Any two Hilbert spaces of the same dimension are linearly isometric. Since

the norm || · ||] defined by

||z||] =

(
n∑
i=1

z2
i g
′′
i (yi)

)1/2

is Hilbertian, there exists a linear embedding Q : Rn−1 → {θ}⊥ such that ||Qz′||] =

||z′||2 for all z′ ∈ Rn−1. Fix any x ∈ Rn−1 and express x = ru with r ≥ 0 and

u ∈ Sn−2. Let η = Qu and define

ψ(s) = − log(α(t)f(sη + y))

= (n− 1) log
√

2π −
n∑
i=1

gi(yi) +
n∑
i=1

gi(sηi + yi)
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By definition of ξ, for all t ∈ R, all 1 ≤ i ≤ n and all s′ with |s′| < r/
√
g′′i (yi),∣∣∣∣g′′′i (yi + s′)

g′′i (yi)3/2

∣∣∣∣ < ξ(r, yi) ≤ ξ(r, cqcT )

By the chain rule, ψ(0) = (n− 1) log
√

2π, ψ′(0) = 〈η,∇g(y)〉 = 0, ψ′′(0) = ||η||2] = 1

and

ψ′′′(s) =
n∑
i=1

ν3
i

g′′′i (yi + sηi)

g′′(yi)3/2

where νi = ηi
√
g′′(yi) for all 1 ≤ i ≤ n, and ||ν||2 = 1. Since ||ν||∞ ≤ 1, for all

s ∈ [0, r] and all 1 ≤ i ≤ n the quantity s′ = sηi obeys |s′| ≤ r/
√
g′′i (yi). Hence

|ψ′′′(s)| ≤ nξ(r, cqcT )

and by Taylor’s theorem,

sup
s∈[0,r]

|ψ(s)− 1

2
s2 − (n− 1) log

√
2π| ≤ 6−1nr3ξ(r, cqcT )

which gives

∣∣∣∣α(t)f(Ttx+ tθ)

φn−1(x)
− 1

∣∣∣∣ < exp
(
6−1nr3ξ(r, cqcT )

)
− 1

the result follows from the inequality 1 + δ ≤ eδ ≤ 1 + 3δ valid for all δ ∈ [0, 1].

Proof of lemma 48. Suppose that the result does not hold. Then there exists t0, c > 0

such that for all t > t0, ω(t) > t−2 and |ω′(t)| > cω(t)1+ε. In particular, ω′(t) 6=

0 and ω is either strictly increasing on (t0,∞), or strictly decreasing on (t0,∞).

Hence ω′ does not change sign on (t0,∞). If ω′ < 0 then ω decays exponentially

(or quicker) violating the inequality ω(t) > t−2. Thus ω′ > 0. Since ω is injective

on (t0,∞) it satisfies an autonomous differential equation ω′(t) = Θ(ω(t)), where
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Θ(s) = ω′(ω−1(s)) and Θ(s) > cs1+ε for all s > s0. Note that,

∫ ω(t)

s0

1

Θ(s)
ds = t− ω−1(s0) (4.4.2)

(just differentiate both sides to see why). This is a contradiction because the left hand

side of (4.4.2) is bounded (as a function of t) while the right hand side is not.
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