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Abstract

Background: Recently introduced pathway-based approach is promising and advantageous to
improve the efficiency of analyzing genome-wide association scan (GWAS) data to identify disease
variants by jointly considering variants of the genes that belong to the same biological pathway.
However, the current available pathway-based approaches for analyzing GWAS have limited power
and efficiency.

Results: We proposed a new and efficient permutation strategy based on SNP randomization for
determining significance in pathway analysis of GWAS. The developed permutation strategy was
evaluated and compared to two previously available methods, i.e. sample permutation and gene
permutation, through simulation studies and a study on a real dataset. Results showed that the
proposed permutation strategy is more powerful and efficient with greatly reducing the
computational complexity.

Conclusion: Our findings indicate the improved performance of SNP permutation and thus
render pathway-based analysis of GWAS more applicable and attractive.

Background

Genome-wide association scan (GWAS) study is becom-
ing a popular and power method to identify genes
underling complex disorders/traits [1-3]. Recent GWAS
studies have discovered a number of novel genes for
complex diseases, such as type 2 diabetes [4], inflam-
matory bowel disease [5], osteoporosis [6] and so on.
However, most of current analysis methods for GWAS
data were developed for analyzing individual SNPs.

Simultaneously analyzing multiple SNPs/genes to detect
their combined effect on phenotypes is still a challenge.
Pathway analysis is an effective method that detect joint
effects of SNPs or genes within a pathway in an attempt
to make biologically meaningful interpretations of the
GWAS data [7-12]. Moreover, pathway-based analyses of
genomic data are more powerful to detect small variant
effects, which may not be detectable even in very large
GWAS studies.
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Wang and his colleagues developed an enrichment score
based pathway method for GWAS [9] by modifying the
Gene Set Enrichment Analysis (GSEA) algorithm used in
gene expression data [13]. In this method, genes are pre-
ranked by the statistic evaluating association significance
for a gene, and then an enrichment score is calculated to
evaluate the concentration of genes within a pathway at
the top of the entire ranked gene list of the genome. To
estimate the significance of the enrichment score,
permutation is a key procedure in this method [9,13].
Two permutation strategies, sample randomization and
gene randomization, were then used by Wang et al to
determine the significance of this concentration [9]. The
sample randomization strategy shuffles phenotypes and
re-calculates the statistic of association for each SNP and
each gene in order to obtain the enrichment scores in
each permutation. This permutation procedure is widely
accepted as linkage disequilibrium (LD) structure among
SNPs retained, however, this type of permutation is
extremely time-consuming and memory-intensive as
association analyses are required to be performed across
the whole genome for each permutation. For gene
randomization strategy, the gene statistics are shuffled
and only the enrichment scores are re-calculated in each
permutation. Although gene randomization can easily
accomplish a large number of permutations in a short
period of time, it may generate an improper null
distribution of the testing statistic due to the partial
usage of genome-wide association information (only the
gene statistics are permuted), and thus might lead to
misleading conclusion. Moreover, the performance of
the two strategies can be largely inconsistent: sample
randomization tends to be conservative while gene
randomization yields small p values for most of the
tested pathways. Overall, the above mentioned situa-
tions highlighted the computational challenges of the
pathway-based analysis of GWAS. To the best of our
knowledge, no existing study has evaluated the perfor-
mance of these two permutation strategies under the
situation of GWAS.

In this study, we proposed a new and efficient permuta-
tion strategy based on SNP randomization for the
significance assessment in pathway-based analysis. Our
approach not only dramatically reduced the computa-
tional complexity but also improved the power to detect
potential pathways involving genes with joint effects on
complex disorders/traits. Extensive simulations were
conducted to assess the performance of the proposed
strategy, the sample randomization and gene randomi-
zation strategies. We also applied the three permutation
strategies to a real dataset (see [6]) for studying their
relative performance. Our findings indicated that using
SNP permutation can improve the performance of
pathway-based GWAS.

http://www.biomedcentral.com/1471-2105/10/429

Methods

Pathway-based analysis algorithm

To make this article self-contained, herein we briefly
describe the pathway-based analysis algorithm that was
recently extended to GWAS by Wang et al. [9]. Suppose
N SNPs mapped to M genes in the whole genome have
been genotyped in a sample with either population-
based or family-based design. A general genome-wide
association analysis has been conducted to obtain the
test statistic r; (i < N; for example, y° for case/control
association test or t/F for continuous trait association
test) for each SNP. Then, a statistic is constructed from
SNP-level statistics to represent the statistic value for
each gene, denoted as g; (j < M). Given various numbers
of SNPs located in a gene with diverse LD structure
among them, so far, it is not quite clear what the best
strategy is to condense statistics for multiple SNPs within
a gene into a single value for the gene. Following Wang
et al [9], the largest absolute statistic value among all
SNPs in and surrounding a gene (e.g. < 500 kb) is used
to represent the statistic value of the gene, but in
principle any properly combined statistic may also be
used in pathway analysis [7,11,14]. For all of the M
genes, we denote the sorted statistic values in a
descending order as g,..., gu. For any given pathway/
gene set S consisting of Ng genes, an enrichment score
(ESs), which is a weighted Kolmogorov-Smirnov-like
(K-S-like) running sum statistic [9,13], is calculated to
reflect the overrepresentation of the genes within the set
S at the top of the entire gene list:

)y |iIkR*|_ )y M—lNS} (1)

Gye8, "<k G2, k*<k

ES¢ = Max
S 1SkSN5{

Where Nr = CZS | 8i* | . For a given gene rank k, the term
o€

before the minus sign in Equation (1) evaluates the
fraction of genes in S presenting up to k by weighting
their association statistic, while the term behind the
minus sign penalizes for the fraction of the genes not in S
presenting up to k. The higher the concentration of the
association signal in S at the top of the ranked gene list,
the greater the value for ESg will be observed.

Permutation strategies

Permutation processes are adopted to approximate the
null distribution for the test statistic of each pathway/
gene set ( Esg“” ) to assess its statistical significance. Two
permutation strategies, sample randomization and gene
randomization, have been adopted by Wang et al. [9]
However, as indicated previously, these strategies are
either time-consuming or inappropriate in generating
null distributions. In this study, we proposed a new
permutation strategy of randomizing SNPs to assess the
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significance of an observed ESg for a given pathway S. In
each permutation, this approach shuffles all SNPs across
the genome and calculates the statistic for each gene. The
scheme of SNP permutation process as well as the other
two existing permutation processes is depicted in Fig. 1.
In detail, the SNP permutation algorithm proceeds as
following:

Step 1: Perform general genome-wide association ana-
lyses to determine the SNP-phenotype association
statistic for every SNP in the collected dataset.

Step 2: Shuffle all SNPs across the genome to generate a
permuted GWAS dataset.

Step 3: With the permuted dataset, as analyzing the
observed dataset, calculate the association statistic for
each gene and compute the enrichment statistic (ESs) for
each pathway/gene set using Formula (1).

Step 4: Repeat Steps 2 and 3 till to complete a pre-set
number of times (e.g. 100,000) to get the null distribu-
tion of ES, for each pathway/gene set.

Step 5: Based on the pool of null distributions of ESg
over all pathways/gene sets, determine the significance
of each pathway/gene set according to following
strategy.

http://www.biomedcentral.com/1471-2105/10/429

Estimating significance

Nominal p value for a pathway/gene set is estimated as
the fraction of permutations where ES; is greater than the
observed one.

pgwrminal = percentage Of(Eng” > Esgbserue) (2)

Nominal p value or ESg may not be comparable between
pathways/gene sets which usually have different number
of genes. To make the enrichment score comparable
between pathways, a normalized ES[9] is constructed
based on the mean and standard deviation of ESM!,
which is defined as

ESg —mean(ESg”ll)

sp(espully

NESg = (3)

Similar to general GWAS, multiple-testing adjustment is
needed to correct the large number of pathways/gene sets
tested simultaneously. False-discovery rate (FDR), a
procedure frequently used to control the fraction of
expected false-positive findings to stay below a certain
threshold, is utilized to adjust for multiple testing and
to compare the performance of the three strategies [15].
For a pathway/gene set S with NEsgbse”’e, FDR (denoted
as ¢s) is calculated as the ratio between the fraction
of permutations over all pathways/gene sets

Genotypes Phenotypes
SNP permutation
< > A
SNP
1234 il 0| ssess n
Sample
Subjects< T wenenimion Il permutation
21 g gm v
Gene - -
h Gene permutation -
Figure |

The scheme of different permutation processes. Horizontal dashed lines denote genome-wide genotype information
of a study subject. Vertical lines denote SNP positions. Black boxes represent regions in which SNPs are annotated to a

specificgene.
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with NES™! > NES$* and the fraction of tested
pathways/gene sets with NES?™ > NE§™ [9].

percentage of (NES mill per all s > NESgbserve)
percentage of (NES observe pyer il SZNEsgbse“’e)

(4)

Experimental datasets

A Caucasian GWAS sample including 1,000 unrelated
subjects selected from our established and expanding
genetic repertoire was used for both the simulation
studies and the experimental study [6]. Affymetrix
Mapping 250k Nsp and Affymetrix Mapping 250k Sty
arrays were applied to genotype a total of 500,568 SNPs
for the 1,000 DNA samples. After quality control (detail
elsewhere [6]), 312,172 SNPs relating to 14,585 genes
(SNPs that are > 500 kb away from any gene were
discarded, since most enhancers and repressors are
< 500 kb away from genes, and most LD blocks are
< 500 kb.) were retained for further exploration. SNPs
mapping to multiple genes (very rare) were annotated to
a single gene based on the following hierarchy: coding >
intronic > 5'upstrean > 3’upstream [16]. Bone mineral
density (BMD) at hip was measured for each subject.

BioCarta pathway database http://www.biocarta.com/
genes/allPathways.asp was used to construct gene sets
for pathway-based analysis. In total, 263 pathways
annotated for humans were collected. Gene coverage
for a pathway specifies the percentage of genes in a
pathway which are present in the observed GWAS
dataset [17]. In order to avoid misleading conclusions
due to scanty representation as well as overly narrow or
broad functional categories, 166 pathways with as least
85% gene coverage and containing 10-200 genes over
our GWAS data were selected for following analysis.

Simulation studies

Using our experimental genotype data, we carried out
simulation studies to compare the proposed permuta-
tion strategy with sample randomization and gene
randomization, based on the distribution and signifi-
cance of ¢s obtained through the three permutation
strategies under two scenarios.

Scenario 1: It aimed to demonstrate the differences in the
distributions of g5 for the three permutation approaches
under the null hypothesis of no marker-phenotype
association across the genome. It was simulated by
randomly generating the phenotype data according to a
standard normal distribution.

http://www.biomedcentral.com/1471-2105/10/429

Scenario 2: It aimed to illustrate the differences in the
distributions of ¢s for the three permutation approaches
under the null hypothesis that there are existing gene-
disease associations but no gene set enriched with genes
ranking at the top of the entire gene lists in the genome.
We randomly selected one gene from each of the
166 pathways. After removing duplications, seventy-
five unique genes remained. Phenotype data were then
simulated under the assumption that each of the
75 genes accounting for 1% genetic variation.

Before general association analyses and pathway ana-
lyses, population stratification was tested and controlled
in the experimental GWAS dataset. The population
stratification inflation factor A for the sample (standard
Pearson’s chi-square test for contingency tables) [18]
equaled to 1.01, suggesting that population stratification
does not contribute to inflation in our studied sample.
With each simulated dataset, general genome-wide
association analyses were carried out by using software
PLINK (version 1.05) [19]. We applied the A correction
to the association test statistic, which were obtained by
Wald test implemented in PLINK. The adjusted statistics
were then used for subsequent pathway-based analyses.

To compare the gg distributions, 100,000 SNP and gene
permutations were conducted under both simulation
scenarios and for the real dataset, respectively, but only
1000 sample permutations were performed due to the
extreme computational complexity.

Results

Simulation studies

Fig.2 shows the p value quartile-quartile plot of general
genome-wide association analysis and ¢s value distribu-
tion of the three permutation strategies under scenario 1.
Under the null hypothesis of no marker-phenotype
association, p values of genome-wide association were
uniformly distributed and fitted the expected distribu-
tion very well (Fig. 2A). For pathway-based test (Fig. 2B),
sample permutation and SNP permutation had approxi-
mately correct type 1 error rate, but gene permutation
had an inflated type I error rate. Specifically, with a
q value cutoff of 0.05, four (4/166*100% = 2.41%) and
nine (9/166*100% = 5.42%) pathways were detected as
significant by sample randomization and SNP randomi-
zation, respectively, but gene permutation claimed about
sixty percent of the pathways as enriched with significant
association results.

Fig. 3 presents the p value quartile-quartile plot of general
genome-wide association analysis and ¢s value distribu-
tion of the three permutation strategies under scenario 2.
With simulated genetic association, we observed an
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Figure 2

Results of general genome-wide association analysis and pathway analysis under scenario I. A is quartile-quartile
plot of general genome-wide association analysis. B is the g, value distribution of 166 pathways for the three permutation
approaches in pathway analysis. Times of 100,000 permutations were performed for SNP or gene randomization and

1,000 permutations for sample randomization.
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Results of general genome-wide association analysis and pathway analysis under scenario 2. A is quartile-quartile
plot of general genome-wide association analysis. B is the g, value distributions of 166 pathways for the three permutation
approaches. Times of 100,000 permutations were performed for SNP or gene randomization and 1,000 permutations for
sample randomization.

excess number of SNPs in the tail of statistical distribu-  ‘enriched’ with highly significant genes and the g5 values
tion showing association to the phenotype (Fig. 3A).  should be uniformly distributed. Indeed, sample permu-
Since the genes were chosen at random to contribute to  tation recognized no enriched pathway. However, the
phenotype, no pathway/gene set was expected to be  gene permutation method detected most of the pathways
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Table I: Runtime comparison for three permeation methods

http://www.biomedcentral.com/1471-2105/10/429

Permutation methods Computation resource

Times of permutation Runtime (hour)

Scenario | Scenario 2
Sample One Cluster of 4 nodes, each of which has 8 Intel® 1,000 12.32 12.35
Pentium® P4 2.0 GHz processor, 7 GB RAM
SNP Intel® Pentium® 4 3.4 GHz dual processors 100,000 2.81 2.81
and 2.0 GB RAM
Gene Intel® Pentium® 4 3.4 GHz dual processors 100,000 1.90 1.89

and 2.0 GB RAM

(91.56%) as significant with a g value cutoff of 0.05. The
SNP permutation approach exhibited an intermediate
performance with only one gs value less than 0.05
(Fig. 3B).

To evaluate computation efficiency, we also assessed the
CPU runtime required by the three permutation strate-
gies in the simulation studies. Computation time as well
as computation resources used in the simulation studies
were summarized in Table 1. Analyses of SNP permuta-
tion and gene permutation were performed on a regular
desktop computer. Considering the extreme computa-
tion intensity, only 1000 sample permutations were
performed on a much more powerful cluster computer.
If we run sample permutation on the same desktop
computer as used for gene/SNP permutation, it took
about half an hour to complete a single genome-wide
association scan. Clearly, sample permutation is of
extreme computational intensity, and SNP permutation
is comparably time efficient as gene permutation.

Application to the empirical GWAS dataset

We evaluated and compared the relative performance of
the study strategies by analyzing an empirical dataset,
the aim of which was to explore osteoporosis susceptible
genes. General genome-wide association analysis for hip
BMD was conducted previously [6]. In this study, we
performed the pathway-based analysis and the test
results from the three permutation strategies are shown
in Fig. 4. Sample permutation demonstrated very limited
power as all gg values were greater than 0.10. While
Results obtained from gene permutation showed high
false error rate since more than one hundred pathways
get gs values less than 0.05, which sharply contrast with
those reported by sample permutation (correlation
coefficient equals -0.16). Interestingly, signals generated
by SNP permutation were analogous to those from
sample permutation with similar trends and shapes but
steeper peaks. The ¢s values obtained by SNP permuta-
tion were highly correlated with those obtained by
sample permutation, with a correlation coefficient of

4.5
°~ gene
4.0 F % sample I
snp lIl
3.5 1 1; ,'n‘ ¢
3.0 H plcePathway !|| "ll
| |
225 1y ? 31
%3 -1" '4‘ 9 Iy
T %0 Id?l II: ?\ Iaqfﬂ P 'll G‘W(i:? 9 9
I\ I'le \ ol | /
L5 fyi \i b 5’,? ? 4] &ﬂi Al ‘Lgl\?o’ \ 1“ ’6&%"{5‘%? ﬁas;ﬂ%?
1.0 r ! ® i \
4 i HIKa| AT
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ALSTL W B WY 3%
A A X %
.0
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Figure 4

Pathway-based genome-wide association results for the experimental dataset. Results for randomization of gene,
sample, and SNP are colored in blue, red, and black, respectively. The X-axis shows the tested pathways. The Y-axis is the log

of observed g, value.
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0.87 (p < 0.001). SNP permutation detected Phospho-
lipase C-epsilon pathway (plcePathway) of the most
statistically significance of enrichment after adjustment
for multiple testing (g5 < 0.01).

Although plcePathway is a proposed model for b2-AR-
and prostanoid-receptor-mediated PLC and calcium
signaling [20], its relevance to osteoporosis or bone
mineral density has been reported in previous studies.
Some genes in the plcePathway have been considered as
important modulating factors for bone development or
remodeling. For example, genetic variants of the andro-
gen receptor may contribute to variation in bone mass as
well as to predisposition to osteoporosis [21-24]. More-
over, prostanoid is reported to play an important role in
the regulation of both the resorption and formation of
bone [25-27].

Discussion

Genome-wide association analysis has become a main-
stay in genomic and genetic research [1,2]. Traditional
strategies for GWAS have focused on identifying indivi-
dual SNPs/genes that exhibit association with diseases or
phenotypes. Although useful, they fail to detect biolo-
gical processes that are broadly distributed across an
entire network of genes which have subtle effect at the
individual level [3,28]. In contrast, pathway-based
analysis for GWAS, allowing researchers to consider a
group of biologically related genes simultaneously, is
appealing [9,13,29].

Pathway-based approach for GWAS has a number of
advantages. First, pathway-based approach integrates a
group of genes belonging to the same pathway/gene set
in the background of the entire gene list in a genome-
wide scan. Second, it preserves gene-gene correlations
among specific gene sets when testing for significance.
Third, pathway-based approach easily interprets a large
scale association study by identifying pathways or gene
set processes rather than focusing on high scoring genes,
and allows researchers to refine gene subsets to elucidate
biological mechanisms. Fourth, it is robust to back-
ground noises and is more likely to detect genes with
moderate effects.

Permutation is a crucial process for assessing significance
in pathway analysis of gene expression data [29-31], so
as in pathway analysis of GWAS [9]. It is essential to
develop efficient permutation schemes to facilitate
applications of pathway-based GWAS. Different permu-
tation strategies relate to different concepts of null
hypothesis and give p-values with different meanings in
pathway analysis of GWAS. Sample permutation assumes
that the structure of genome is fixed and generates

http://www.biomedcentral.com/1471-2105/10/429

the distribution of the enrichment statistic under the
assumption of no genetic effects on the disease or
phenotype in question. Thus the p values from sample
permutation mean the chance of the top hits clustering
within a given pathway assuming the structure of the
genome in the sample and that there are no true genetic
effects. Gene permutation assumes that the risk is fixed
and generates the distribution of the test statistic under
the assumption that the true gene effects are randomly
scattered among genes in different pathways. SNP
permutation also assumes that the risk is fixed but
generates the distribution of the test statistic under the
assumption that the true SNP effects are randomly
scattered across the genome. Thus the p values from
both SNP permutation and gene permutation both mean
that the chance of the top hits clustering within a given
pathway assuming the given genetic effects but no high
risk pathways. Since the null distributions are not all the
same for the three permutation strategies, cautions are
needed in explaining the results from pathway analyses
using a specific permutation process.

Our newly proposed permutation strategy of SNP
randomization is informative and efficient. On one
hand, comparing to gene permutation, SNP permutation
is more rational since it assumes that the existed genetic
effects are randomly scattered across genome rather than
among genes. In pathway analyses, the statistics for a
gene are combined from SNP-level statistics. The
randomization of the integrated gene statistics ignores
the variation of the number of SNPs between genes. For
example (please refer to Fig. 1), suppose gene A and gene
B are in a gene list, where gene A consists of 10 SNPs
while gene B has 20 SNPs, and T,, Ty present the gene
statistics for gene A and B, separately. When we shuffle
the gene statistics in a permutation, gene A may take the
statistic value Tz, which is based on 20 rather than 10
SNPs. The distributions for gene statistics are expected to
be different to construct from statistics of different
number of SNPs. With more times of gene permutation,
the number of SNPs related to the combined gene
statistics for a gene from genome varies greatly, which
introduces quite a lot of noises in the significance
determination process. This may partly explain the
inflated type I error rate of gene permutation. Since
SNP permutation shuffles the SNP-level statistics and
calculates gene statistic in each permutation, it over-
comes the above problem in gene permutation. On the
other hand, comparing to sample randomization, SNP
randomization not only is highly efficient but also
maintains the acceptable accuracy level (i.e. SNP
randomization is not subject to an inflation of type I
error rate). Although previous strategy of sample
permutation is well accepted, it has not been widely
applied due to its huge computation requirement to
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pursue a large number of replications. Given millions
of genotyped markers in thousands of subjects for current
GWAS, very limited replications (such as 1,000) of
sample randomization can be obtained within a reason-
able time frame. Overall, SNP randomization as proposed
in current study inherits the merit from sample permuta-
tion making full use of the observed data and eliminates
the problem of computation intensity at the same time.
SNP randomization also combines the advantage of gene
permutation that utilizes the output of general GWAS
instead of raw genotype data. Therefore, SNP permuta-
tion is not only powerful but also cost-effective.

One potential limitation of SNP randomization might
be that the independent SNP sampling may not preserve
the linkage disequilibrium among SNPs and the correla-
tion structures among functionally related genes. In our
own experience, this potential problem can be overcome
by increasing the number of randomization times. The
larger the number of permutation, the more accurate the
null distribution will be, and thus more truly reflect the
distribution of enrichment of gene-phenotype associa-
tion signals by random. Actually, it can be seen from the
results of our empirical dataset (see Fig. 4), where ¢s
values determined from SNP permutation (100,000
randomizations) is highly correlated with those from
sample permutation (1,000 randomizations). Based on
our application, over 50,000 SNP permutations will
produce relatively stable null distribution for signifi-
cance determination (The results, not shown, of 50,000,
100,000 and 150,000 SNP permutations were almost the
same).

Recently, two new algorithms were proposed for path-
way analysis of GWAS [7,8]. Yu et al. proposed one
algorithm based on adaptive rank truncated product
statistic to combine evidence of associations over
different SNPs/genes within a pathway [7]. O’Dushlaine
et al. proposed the other algorithm which constructs a
ratio of significant SNPs to all SNPs within a pathway
and compares this ratio to a distribution of ratios based
on permutations [8]. Both methods employed sample
permutation for assessment of the significance of tested
pathways. It is possible to integrate our proposed
SNP permutation strategy into their pathway analysis
methods in the context of GWAS.

Conclusion

We report here a SNP permutation scheme that is
capable of effectively approximating a comprehensive
null distribution to determine statistical significance,
which will greatly facilitate pathway-based analysis for
genome-wide data. With the improved performance and
the implementation of our new SNP permutation

http://www.biomedcentral.com/1471-2105/10/429

strategy, pathway-based GWAS approach becomes
more attractive and can be more broadly applied to
genome-wide association datasets. Along with single
marker/gene based analysis, pathway-based GWAS will
enhance our understanding of pathogenesis of complex
disorders.
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