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Abstract
Background: The identification of promoter regions that are regulated by a given transcription
factor has traditionally relied upon the identification and distributions of binding sites recognized
by the factor. In this study, we have developed a tandem machine learning approach for the
identification of regulatory target genes based on these parameters and on the corresponding
binding site information contents that measure the affinities of the factor for these cognate
elements.

Results: This method has been validated using models of DNA binding sites recognized by the
xenobiotic-sensitive nuclear receptor, PXR/RXRα, for target genes within the human genome. An
information theory-based weight matrix was first derived and refined from known PXR/RXRα
binding sites. The promoter region of candidate genes was scanned with the weight matrix. A novel
information density-based clustering algorithm was then used to identify clusters of information
rich sites. Finally, transformed data representing metrics of location, strength and clustering of
binding sites were used for classification of promoter regions using an ensemble approach involving
neural networks, decision trees and Naïve Bayesian classification. The method was evaluated on a
set of 24 known target genes and 288 genes known not to be regulated by PXR/RXRα. We report
an average accuracy (proportion of correctly classified promoter regions) of 71%, sensitivity of
73%, and specificity of 70%, based on multiple cross-validation and the leave-one-out strategy. The
performance on a test set of 13 genes showed that 10 were correctly classified.

Conclusion: We have developed a machine learning approach for the successful detection of gene
targets for transcription factors with high accuracy. The method has been validated for the
transcription factor PXR/RXRα and has the potential to be extended to other transcription factors.

Background
Nucleic acid binding sites recognized by transcription fac-
tors are comprised of families of short, related, often

degenerate sequences that share a common function. This
degeneracy may be represented in the form of a position-
specific weight matrix (PWM) [1,2]. In fact, PWMs have
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been widely applied [2,3] and several databases host them
[4,5].

Using information theory, the degree of conservation of
an individual member (both known and predicted) of
that family and its corresponding weight matrix may be
quantified in terms of bits of information [1]. The
strength of experimental binding has been shown to cor-
relate with the predicted value of binding strength in bits
for individual transcription factor binding sites [6]. We
have used this approach, for example, to successfully find
potential splice sites and to predict the probability that a
given splice site will be used [7,8].

Regions upstream of transcription initiation sites typically
contain multiple potential heterogeneous binding sites
recognized by the same transcription factor. However,
such sites can be found in the promoter regions of both
genes that are, and those that aren't, regulated by the same
factor [9], suggesting that additional sequence or struc-
tural properties are needed to discriminate true target
genes from those which are not regulated by a particular
factor. This paper addresses the problem of the identifica-
tion of target genes for xenobiotic-sensitive transcription
factors in the human genome by using a combination in
tandem of information theory, a novel information den-
sity-based clustering (IDBC) algorithm and machine
learning approaches for classification.

As proof of concept, binding sites recognized by the
nuclear receptor transcription factor, the pregnane X
receptor (PXR), are used to develop an algorithm that
identify genomic target genes regulated by this factor. The
algorithm exploits a PWM that accurately models the
affinity of the protein for these sequences [6]. PXR is a lig-
and-activated transcription factor that heterodimerizes
with the 9-cis retinoic acid receptor X (RXR) to form PXR/
RXRα. Following exposure to xenobiotics like rifampin,
clotrimazole, ritonavir, phenobarbital and hyperforin,
and endogenous compounds like lithocholic acid steroids
[10], PXR/RXRα binds response elements in the promot-
ers of regulated genes to induce gene expression.

Results
An information theoretic approach has high recall in
identifying promoter elements bound by PXR/RXRα.
Given a representative weight matrix, sensitivity is essen-
tially 100%. However, information theory weight matri-
ces are not sufficient to discriminate between true and
false positives, since binding sites were also found within
the promoter regions of genes known not to be regulated
by PXR/RXRα. The analysis of total information content
in positive versus negative sites shows that, on average, the
information is concentrated more in stronger sites in the
case of regulated genes (Fig. 1). Figure 1 shows the ratios

between the fractions of the sum of the information con-
tent found in regulated versus unregulated genes at each
binding strength. For example, if we consider sites that
have a binding strength of 17 bits, we first count the
number of such sites found in regulated genes and multi-
ply this by 17. The resulting number is then divided by the
total number of bits for all sites, irrespective of strength,
and this yields the average fraction of information content
in a promoter region that is found in sites with a bit
strength of 17. If the same calculation is carried out for
genes known to be unrelated to PXR/RXRα, the ratio of
the fraction computed for regulated genes to that for unre-
lated/unregulated genes gives the corresponding y-axis
value in Fig. 1. Thus, the graph shows that a 10-fold higher
proportion of total information content is found within
sites having a strength of 17 bits in regulated versus unreg-
ulated promoters. However, note that this is an observa-
tion based on an average quantity, and no significant
differences are evident at sites that are 18, 20 or 21 bits in
strength. It was apparent from our preliminary studies (of
CYP3A4, CYP3A7 and other genes) that multiple binding
sites were necessary for transcriptional activation. None of
the promoters examined to date contain a single strong
binding site, rather they contain multiple sites. Putatively,
a few moderately strong sites might increase the odds of a
transcription factor recognizing a promoter that is then
bound to the strongest site(s) in the region. Therefore, in
this paper, we have outlined a tandem machine-learning
approach for the characterization of PXR/RXRα genomic
signatures that takes into account the density, strength,
and location of the sites predicted by information theory.
In effect, the unknown function for successful regulation
of a gene that we are trying to approximate may be
expressed as F(B, D, S) where B = the frequency distribu-
tion of binding site strengths, D = the set of distances of
binding sites from the transcription start site and S = the
spacing (or density-based clusters) between the sites for a
given promoter region.

The information gain ratio with respect to classification of
a region as positive or negative was computed for each
attribute (see Feature Selection under Methods). The gain
ratio rather than information gain was used to accommo-
date the fact that the number of possible states for the dis-
tribution differs from attribute to attribute. The attributes
with the highest information gain ratios were considered
for further analysis. Based on this analysis, the attributes
with the highest gain ratios were found to be the number
of clusters (0.79), total information (0.75), number of
sites (0.7), information within clusters (0.67), informa-
tion in top three clusters (0.62), and information over (x
= 6) bits (0.5). Hence, these attributes were used for anal-
ysis with classification algorithms.
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The results of the learning from the classification algo-
rithms are summarized in Tables 1, 2. We expected to get
progressively better performance in the sequence Naïve
Bayesian, Decision trees, Neural Networks (Log-Sigmoid)
and Neural Networks (Radial Basis Function). This is in
keeping with the limiting assumption of Naïve Bayes
learning that all attributes have independent probability
distributions and the progressively flexible allowance for
boundaries in dimensional hyperspace. For example,
decision trees are limited to the use of hyperplanes that
are perpendicular to some attribute or variable. Neural
networks based on backpropagation relax this require-
ment to allow hyperplanes to adopt any orientation. The
use of radial basis functions allows further flexibility in

the partitioning of hyperspace. Contrary to expectation,
all these methods exhibited comparable average perform-
ance. However, the NNs had the most consistent perform-
ance, i.e., they showed the least variance in performance
with respect to choice of training set.

We also tested the performance of the prediction methods
on a test set of 13 genes (Table 3) that had not been
included in either training or validation sets. The methods
individually classified between 8 and 11 of the 13 genes
correctly and a jury prediction correctly classified 10 of the
13 genes. The proportion of correct classification (77%)
on this test set is in line with the performance noted in
cross-validation of the training data (Tables 1, 2).

Higher proportion of information content lies within stronger sites in promoter regions of regulated genesFigure 1
Higher proportion of information content lies within stronger sites in promoter regions of regulated genes. A 
histogram representing strengths of putative binding sites for the transcription factor RXR/RXRα is shown. The x-axis repre-
sents the binding strength of a site in bits. The y-axis represents the relative ratio between the proportions of total information 
found at the corresponding strength in regulated and unregulated promoter regions (10 kb upstream of respective genes).
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One of the questions raised by the IDBC analysis was to
what extent did the genomic organization of predicted
binding sites determine whether a particular gene was
classified as a target for PXR/RXRα. We first considered the
possibility that treating DNA strands separately might for
promoter regulation, however experimental studies have

shown that functional PXR/RXRα sites can occur on either
strand and enhance transcription of genes regulated by
this factor [6]. We then looked for trends in inter-site spac-
ing. There is a bias (Fig. 2) in the periodicity of the sepa-
rations of sites within clusters, indicating a preference for
separation of sites by helical turn length, ie. 10 bp (and

Table 1: Results of cross-validation by Decision Trees and the Naïve Bayes Classifier

Method/Performance DECISION TREES NAïVE BAYES CLASSIFIER

3-way CROSS VALIDATION
ACCURACY 71 72
SENSITIVITY 63 83
SPECIFICITY 71 70
LEAVE-ONE-OUT STRATEGY
ACCURACY 63 68
SENSITIVITY 70 79
SPECIFICITY 63 68

Table 2: Results of cross-validation by Neural Networks

Method/Performance NEURAL NETWORKS NEURAL NETWORKS

Log Sigmoid Radial Basis Function

3-way CROSS VALIDATION
ACCURACY 62 73
SENSITIVITY 71 77
SPECIFICITY 62 73
LEAVE-ONE-OUT STRATEGY
ACCURACY 77 78
SENSITIVITY 75 67
SPECIFICITY 77 78

Table 3: Predictive performance on a test set of genes

Test Gene Neural Network Naïve Bayes Decision Tree True Class

CYP3A4 P P P P
CYP3A7 N P P P
CYP3A5 N N N P
SRP P P P P
CYP51A1 N N N P
CRYZ P P P P
SMN2 P P P P
HOXA9 N N N N
CDC2L5 N N N N
AKAP9 P P N N
VIK N N N N
ATP5J2 P N N N
PFKB4 N N N N
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multiples thereof), which is consistent with multimeric
protein recognition across the same face of the helix. The
information maxima within PXR/RXRα binding sites are
also separated by 10 bp, also consistent with major groove
recognition [11]. However, the length of the binding site
is considerably longer than this spacing, suggesting that
binding site cluster recognition may in some way be medi-
ated by interactions involving overlapping or alternating
half sites. Surprisingly, this distribution is evident in pro-
moter regions of both genes that are regulated PXR/RXRα
(solid lines, Fig 2) and those whose expression is
unchanged in response to rifampin (dotted lines, Fig. 2).
There was no evidence of higher order chromatin accessi-
bility to binding sites, since there was no preference for
nucleosome phasing (160–200 bp) of binding sites (not
shown).

Discussion
The importance of clustered binding sites as an indicator
of a regulatory region has been noted in several studies.
One of the first [12] modeled the occurrence of clusters as
a Poisson process in order estimate a p-value. However,
this study required exact matches to consensus sequences,

rather than PWMs and did not identify putative binding
sites. The objective was to maximize specificity at the cost
of recall. Berman et al. [13] used a program called CIS-
ANALYST for the recognition of clusters of binding sites in
the Drosophila genome. CIS-ANALYST uses a window-
based approach to cluster sites solely based on physical
location, without regard to strength of the sites. Further,
cluster boundaries are coarse because they depend on the
simple rule of collapsing overlapping windows. There-
fore, the size of the cluster is on the order of a multiple of
the parametric window size. MSCAN [14] aims to detect
regulatory regions in genomes by clustering binding sites
for all transcription factors. Both CIS-ANALYST and
MSCAN use PWMs [1,2], clearly a superior alternative to
consensus sequence detection of binding sites. However,
a fixed window size is used for the detection of clusters by
MSCAN, and the computed p-values represent an upper
bound. Several other studies also use a fixed-size window
[15,16]. Cluster-Buster [17] scans whole genomes with
PWMs using dynamic programming to efficiently com-
pute the log likelihood ratio of a clustered model to that
of a random background model. It is not clear what
threshold should be used to determine if the results
obtained are significant.

The algorithm, the underlying information PWMs, and
the nature of the present study distinguish the current
approach from previous work. IDBC uses the metric of
information density for delineating clusters of binding sites.
Thus, the criterion for clustering is not the distances sepa-
rating the binding sites per se, but is proportional to the
number of bits of information. This implies that the size
of a cluster may be highly variable, being influenced by
both binding strength and the number of constituent
sites. Neither is a rigid requirement for the number of sites
imposed (a single site could also potentially constitute a
cluster), nor is the boundary of a cluster constrained.
Some studies [14,17] claim to obviate the need for train-
ing data. This is strictly not true as a PWM implicitly rep-
resents a trained model, but such studies do offer the
advantage of not needing a known list of regulated genes.
Such methods may be valuable as preliminary screening
tools, especially when there is paucity of training data. But
approaches that use training data have the potential to
yield higher specificity and sensitivity such as that
reported in the present study. Better discrimination
between regulated and unregulated genes can be achieved
by having suitable positive and negative examples from
which to automate learning. This will help to map a tran-
scription factor to a comprehensive set of cognate gene
targets.

Despite the high level of performance we report, it is nec-
essary to consider why our accuracy is limited. Possible
explanations are:

Plot of inter-site distance and information contentFigure 2
Plot of inter-site distance and information content. 
The x-axis represents the spacing between a pair of sites 
expressed in number of bases, whereas the y-axis represents 
the corresponding pair-wise sum of information for all occur-
rences at a given spacing. The y-axis value is expressed in 
terms of a Z-score – units of standard deviation from the 
mean. The solid line represents the curve for a set of genes 
known to be regulated by PXR/RXRα, while the dotted line 
represents genes known to be unaffected by PXR/RXRα.
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i) The effect of 3D higher order structure of DNA has not
been taken into account in the study, other than looking
for periodicity in location of the sites. This might result in
a difference to accessibility of different promoter regions
by transcription factors.

ii) For some of the genes, the concomitant presence of
binding sites for other transcription factors might be
important. Or, in general, other additional factors may be
important. In other words, PXR/RXRα might be necessary,
but not sufficient, for activation/repression of some of the
target genes.

iii) The negative training set may be confounded by cryp-
tic PXR/RXRα target genes whose expression did not
change in response to rifampin treatment in the HepG2
hepatic cell line. Since PXR/RXRα appears to be more
broadly expressed [18], it is quite plausible that some tar-
get genes containing binding site signatures may not have
been activated or repressed in the HepG2 background.
These false negative assignments may be rectified by
analysis of expression in appropriate tissues treated with
PXR ligands.

iv) The analysis has been limited to the 10 kb region
upstream of each gene. Though this is likely to be the most
representative region for the vast majority of genes, this
may ignore the presence of control elements in other loca-
tions in a few cases.

v) The classification boundaries might be highly complex.
This is supported by the fact that we noticed a slight
improvement upon changing the neural network architec-
ture from standard backpropagation with log-sigmoid
functions to RBF learning. The former is theoretically lim-
ited by its use of hyperplanes while the latter uses Gaus-
sian distributions to divide multidimensional space.

Conclusion
We have presented a tandem machine learning approach
for the computational identification of target genes for a
given transcription factor. The locations and organization
of binding sites alone are insufficient to discriminate
genes regulated by a transcription factor from other gene
targets. The strength of the approach is based on the
tandem use of information-theoretic weight matrices, a
novel density-based clustering approach and machine
learning methods for classification. The method has been
validated for the transcription factor PXR/RXRα, and has
the potential for the improved identification of transcrip-
tional regulatory targets across the entire genome [19].

Methods
An overview of the general approach to the problem is
given in Fig. 3. Each stage in the process was performed as
follows.

Search for potential binding sites
The information-theoretic approach for refinement of
binding site models of known and predicted binding sites
has been described previously [1,7,8]. The initial binding
site model, derived from 15 previously reported PXR
binding sites, was found to be significantly biased towards
consensus sequence-like recognition sites based on their
high individual information contents (Ri) [6]. The corre-
sponding PWM derived from this data failed to detect
weak and intermediate strength binding sites and inaccu-
rately predicted their binding affinities. With progressive
model refinement incorporating newly identified, experi-
mentally-validated sites, the Ri values tended towards a
Gaussian distribution. Using the refined PWM, the Ri val-

Overview of tandem machine learningFigure 3
Overview of tandem machine learning. For each gene, 
the PWM representing binding sites for PXR/RXRα was used 
to scan the 10 kb region upstream of the transcription start 
site to generate a list of the location and strength of individ-
ual binding sites. This list was used to generate summary fea-
tures, e.g., the total number of sites, total information 
content. It was also used as input for IDBC to generate clus-
ters. A second set of summary features was extracted from 
the clustering obtained, e.g., total number of clusters, total 
information content within clusters. The combined list of fea-
tures for each promoter region constituted a single data item 
for input to one of several machine-learning algorithm.

Location and Strength of Binding Sites

Summarization Information Density Clustering

Number of

Sites

Total

Information

Number of

clusters

Clustered
Information

Decision Trees, Neural Networks, Naïve Bayesian Classifier

Prediction

Promoter Region Scan
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ues more accurately measured the affinity of known regu-
latory sequences and more comprehensively identified
predicted sites, consistent with the expectations from
information theory [1] and the findings seen in refined
models of other genome-wide protein-nucleic acid inter-
actions [6]. This motivated our selection of the PXR/RXRα
information PWM [6] for the present study.

We scanned the promoter regions (10 kb upstream of
transcription start sites (TSS)) on both strands of 24 genes
known to be regulated by PXR/RXRα (Table 4) for binding
sites and 288 genes known to be negative based on litera-
ture and microarray data. The location and strength of
binding sites for each promoter region were recorded for
use in subsequent steps.

Information density-based clustering (IDBC)
IDBC is a modified version of the DBSCAN density-based
clustering algorithm [20]. Implicitly, all clustering algo-
rithms are based on the notion of density of data points in
multi-dimensional space. Approaches such as DBSCAN
explicitly use density of the distribution of data as a metric
for clustering. IDBC supplements the consideration of
spatial density with the additional contribution of infor-
mation density. We define information density as being
proportional to the magnitude of information content
that is packed into small areas of the promoter region (see
'neighborhood information content' below). This is used
as the basis for finding clusters of information rich sites.
The steps of the algorithm are:

1. For each site s, calculate the neighborhood information
content (nic) as being the total of pairwise sums of the
information content for the site s and each site lying
within distance d (number of bases) of s.

2. For every site s that has an nic exceeding a threshold
parameter I, create a cluster by promoting s to the role of
a cluster center c and including all sites within its neigh-
borhood as members.

3. In the first phase of merging clusters (Fig. 4), consider
all pairs of clusters with centers ci and cj. If ci is a member
of the cluster with cj as its center and vice versa, then merge
the two clusters and replace the center with the stronger of
the sites ci and cj. If they are equal in strength, the center
containing more sites is made the center of the new clus-
ter, while the other center is relegated to being just a site.
The process is iterated until no ci occurs in more than a
single cluster.

4. In the second phase of merging, all s that belong to
more than one cluster are exclusively allocated to the clus-
ter with the stronger c.

5. In the re-evaluation phase, a final check is made to
ensure that each cluster fulfils the criterion of minimum
information density (as in step 2) after the possible real-
location of sites in the preceding step. Clusters failing the
check are dissolved into individual sites.

Note that the redundant counting in the pair-wise sums of
step 1 is intentional in favoring stronger sites towards
becoming cluster centers. For example, given two sites si
and sj in the same neighborhood, such that si has higher
information content than sj, si is more likely to qualify as
a cluster center as it will have a larger nic.

The parameters d and I were determined as follows. A ran-
domly chosen training sample of positive (regulated) and
negative (unregulated/unrelated) genes was used for
several rounds of IDBC with a range of values for d and I.
At the end of each IDBC round, the total clustered infor-
mation content, i.e., the sum of information content of all
sites found within any cluster across the entire promoter
region was computed. The final values chosen (d = 370; I
= 24) were those that gave the largest difference in the
mean values of total information content within clusters
between the positive and negative training sets. The final
clustering resulting from this algorithm allows for high
total information content within clusters in more ways
than one. Cluster membership can be attained by either
the proximity of a few strong sites or several closely
packed sites of moderate strength. Also, note that since the
IDBC algorithm operates on the notion of information
density and not an absolute inter-site distance, there is no
constraint placed on a requirement for symmetric clusters.
In other words, there is no enforced arbitrary bound on
the location of ci with respect to the edge of a cluster.

Table 4: Genes known to be regulated by PXR/RXRα based on 
[25] and/or microarray analysis

ABCB11 LTB4R
ABCB4 SLC17A4
ABCC2 SLC21A14
AV6993471 SLC21A8
CHST7 SLC21A9
CYP2A3 SLC2A10
CYP2B6 UGT1A1
CYP2C8 UGT1A3
CYP2C9 UGT1A4
CYP3A43 UGT1A6
CYP4F3 UGT1A9
GSTA2 UGT2B15

1This is a spliced EST, possibly an incomplete gene.
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Feature selection
The following summarized features were derived as
attributes for further analysis.

a) The sum of information content of all binding sites
with positive Ri in a promoter region.

b) The total number of binding sites in a promoter region.

c) Information over x bits – This is the same as "a" except
that sites with Ri less than x bits are not included in the
sum. Based on training data, x was set to 6 bits.

d) The total number of clusters rich in information con-
tent found in each region by the IDBC algorithm.

e) The total information within clusters. This is the same
as "a" except that sites not lying within any cluster are not
included in the sum. This is a metric of how clustered the
information is.

f) Information in top three clusters – The sum of informa-
tion in the three highest information bearing clusters.

Information Density Based Clustering (IDBC) AlgorithmFigure 4
Information Density Based Clustering (IDBC) Algo-
rithm. The steps of IDBC are described in the Methods sec-
tion. Panel A shows the location of putative binding sites 
upstream of the transcription start site. The vertical height of 
each bar indicates the strength of the respective binding site. 
Panel B shows the initial list of 4 clusters derived from the 
first iteration of the algorithm. This includes an example of an 
overlap where one of the sites is shared between clusters 3 
and 4. Panel C shows the result of a refining step where the 
overlapping point is resolved, exclusively, to cluster 3. Since 
the single site in cluster 4 is not strong enough to be a clus-
ter, the final clustering has only 3 clusters.

A

B

C

1 2 3 4

1 2 3

ROC plot for Neural Network cross-validationFigure 5
ROC plot for Neural Network cross-validation. The 
training data was divided into multiple (n = 4 in this figure) 
non-overlapping sets. Each of the n sets was used to train a 
different neural network (NN) and tested on the remaining 
data. A Receiver Operating Curve was generated for each 
trained network by calculating specificity and sensitivity for 
different values of the cut-off for the output value to discrim-
inate between regulated and unregulated gene targets. The 
ideal curve would be collinear with the y-axis for x = 0, and 
then run parallel to the x-axis as the line y = 1.
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Experimental data used for training and validation
Genes whose expression is regulated by PXR/RXRα
(defined as "positive" in machine learning algorithms) or
which are unchanged in response to treatment with the
PXR ligand, rifampin, (defined as "negative") were identi-
fied by microarray analysis and from published literature.
Microarray studies were carried out using HepG2-PXR cell
lines were generated that stably expressed PXR. HepG2
cells were grown in MEM-alpha medium containing 10%
fetal bovine serum and 1% penicillin/streptomycin at at
37C in 5% CO2. HepG2 cells were plated in P60 dishes at
50,000 cells per well. Twenty-four hours later cells were
transfected with 5000 ng of human PXR-pcDNA3 (to cre-
ate HepG2-PXR) or pcDNA3 (InVitrogen) (to create
HepG2-NEO) by calcium phosphate co-precipitation and
individual clones selected with 1000 µg/ml of G418.
Clones were screened for protein expression of PXR and
the clone with the highest expression of both was chosen
for further study (HepG2-PXR). HepG2-PXR cells were
treated with 10 uM rifampin for 48 hrs. HepG2-NEO
transfected cells treated for 48 hrs with DMSO served as
the control. RNA was isolated from the transfected cell
lines from two independent experiments. RNA quality
was verified with the "Lab-On-A-Chip" system (Agilent
Technologies), reverse transcribed, and cRNA was labeled
with Cy3 and and Cy5, respectively for the HepG2-PXR
and HepG2-NEO lines. HG-U95 oligonucleotide microar-
rays (Affymetrix) were hybridized with a mixture of con-
trol and HepG2-PXR cRNA and analyzed with the Agilent
Gene Array Scanner. Gene expression values were calcu-
lated using Affymetrix Microarray Suite software to com-
pare changes in gene expression between the HepG2-NEO
treated with DMSO vs. HepG2-PXR cells treated with
rifampin. Genes whose expression is unchanged in
response to rifampin are interpreted to be unregulated by
PXR/RXRα. This assumption may only be valid for the
present transfected HepG2 cell lines and it is conceivable
that the regulatory status of these genes may be different
in other tissues that normally express PXR/RXRα.

Classification algorithms
The summary attributes described in the previous section
were separately used as input for the construction of deci-
sion trees. Decision trees, neural networks (NN) and the
naïve Bayes classifier were used separately, and as part of
jury prediction. The J48 algorithm implemented in the
WEKA suite of machine learning algorithms [21] based on
the C4.5 decision tree builder algorithm [22] was used in
this experiment.

The Stuttgart Neural Network Simulator (SNNS) [23] was
used for neural network analysis. All attribute values were
normalized by the value two standard deviations higher
than the respective means observed in the training set, in
order to constrain all values to lie in the range between 0

and ~1. For standard backpropagation, a single hidden
layer with 2 neurons was used and the log-sigmoid func-
tion used for all layers. The latter gives a smooth output in
the range of 0–1 that lends itself to probabilistic interpre-
tation. A receiver operating curve (ROC) plot (Fig. 5)
based on the training set was used to select the output
value for optimal partition. Neural networks were also
evaluated by using radial basis functions (RBF) [24] for
the neurons in the hidden layer. In this case, the hidden
layer had 3 neurons. In both cases, early stopping with
keeping the size of the NN to the minimum necessary was
used to reduce the possibility of overfitting.

In addition, the naïve Bayes classifier was used. The train-
ing set was used to compute a frequentist estimate of the
probabilities of observing each value of the attribute in
either positive or negative genes. Then, given a set of
attributes for a gene in a test set, the assignment to the
positive or negative class was made by considering the rel-
ative probabilities for finding such a promoter region in
positive versus negative genes.

Data-partitioning for training, validation, and testing
The data was partitioned n-ways (n = 3 or 4), with each
partition being left out of the training and being validated
in turn. In addition, given the small number of known
positives, leave-out-one validation was also carried out,
where each example was left out of the training and then
subjected to prediction. Balanced training was carried out
by having the same number of positive and negative
examples being presented to the classification algorithms.
The test set of 13 genes was not part of the training set.

The PWM was derived from 48 validated binding sites [6],
including 3 individual binding sites that are present in the
CYP3A4 and CYP3A5 promoter regions used to train the
model. The neural network should exhibit little if any bias
towards recognition of genes containing these 3 specific
sequences, because it depends on multiple orthogonal
features, and does not imply circularity for the following
reasons: i) The sites included from CYP3A4 and CYP3A5
represent only 6% of sites in the model and less than 0.1%
of those that are predicted within the respective promoter
regions used to train the model. ii) The strength of these
individual binding sites (see Fig. 3) is just one of the
metrics used as input for the learning algorithm. Most of
the training data are based on the locations of the binding
sites and their spatial relationships. These criteria are
unrelated to binding site strength per se. iii) Finally, the
approach fails to yield the correct prediction for CYP3A5,
which would had been expected should the validated
binding site information contents had disproportionate
effect on the NN outcome.
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