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Zero crossings or extrema of a wavelet transform constitute important signatures for signal analysis with the advantage of great
simplicity. In this paper, we introduce a fast frequency-estimation method based on zero-crossing counting in the transform
domain of a family of differential spline wavelets. The resolution and order of the vanishing moments of the chosen wavelets have
a close relation with the frequency components of a signal. Theoretical results on estimating the highest and the lowest frequency
components are derived, which are particularly useful for frequency estimation of harmonic signals. The results are illustrated
with the help of several numerical examples. Finally, we discuss the connection of this approach with other frequency estimation
methods, with the high-order level-crossing analysis in statistics, and with the scaling theorem in computer vision.

Keywords and phrases: zero crossing, spectral analysis, wavelets, B-splines, scale space, differential operators, vanishing moments,
simple consistent, convergence in probability.

1. INTRODUCTION

Zero crossings or extrema of a signal constitute very impor-
tant features that have been used in signal processing appli-
cations for detection of weak signals, search for periodicity,
white-noise testing, and so on, because of their great sim-
plicity [1]. They have also found applications in many engi-
neering fields. For example, the higher-order zero crossings
were utilized for fast detection of contractions in uterine elec-
tromyography [2] and for discrimination of discontinuous
breath sounds [3]. In computer vision, zero crossings were
usually used for detection of edges in an image [4]. In wavelet
theory, zero crossings at multiple scales were used as critical
signatures from which a signal can be reconstructed [5, 6].

The counting of the number of zero crossings is a “dirty”
but fast approximate way to estimate frequency without hav-
ing to resort to spectral analysis calculations. It provides an

alternative to the traditional spectral methods and has been
implemented in several existing software packages. Specifi-
cally, the frequency of a pure sinusoidal wave can be directly
estimated by simply counting the number of times the wave-
form crosses the point of zero amplitude. Even though zero
crossings have been used in the wavelet domain for signal re-
construction, it remains unclear how they are related to the
spectrum of a signal. An intuitive observation is that a sig-
nal of high frequency has more zero crossings in the wavelet
transform and vice versa. In addition, with the increase of
scale, the number of zero crossings will be decreased because
of the smoothing operation. Thus, it motivates us to explore
the intrinsic connection between the wavelet signatures of a
signal and its spectrum. We have found that a mathematically
rigorous characterization of their connection can be easily
established using a special class of differential wavelets intro-
duced in [7]. In order to keep the paper self-contained, we
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will briefly review the differential spline wavelets in Section 2.
In Section 3, we will introduce the notations and preliminary
results for zero-crossing estimation. In Section 4, the main
results will be derived pertaining to the connection of zero
crossings of a differential spline wavelet transform with the
frequency of a signal. The illustrations of these theoretical
results will be presented with the help of several numerical
examples. We then conclude the paper with a discussion on
the connection of the proposed method with other frequency
estimation approaches, with high-order level-crossing anal-
ysis in statistics, and with the scaling theorem in computer
vision.

2. DIFFERENTIAL SPLINE WAVELET TRANSFORMS

2.1. Definitions

The differential spline wavelet transforms are defined as a
class of continuous wavelet transforms when the wavelets are
chosen as the derivatives of B-spline functions [7]. The con-
tinuous wavelet transform of a signal X(t) is defined as

WX(s, x) =
∫
X(t)ψs(t − x)dt, s > 0, (1)

where ψs(x) = (1/s)ψ(x/s) ∈ L2(R) is the wavelet at scale
s. The mother wavelet ψ(t) is usually taken as the kth-order
derivative of a B-spline function of order n, that is,

ψ(t) = dkβn(t)
dtk

, (2)

where βn(x) is the continuous B-spline of order n generated
by the repeated n + 1 convolution of a B-spline of order 0,

βn(x) = β0 ∗ βn−1(x) =
n+1︷ ︸︸ ︷

β0 ∗ β0 ∗ · · · ∗ β0(x), x ∈ R,
(3)

and β0(x) is the 0th-order B-spline or the rectangular pulse.
The discrete sampled B-spline bnm(k) of order n and in-

teger coarseness m ≥ 1 is obtained by directly sampling the
nth-order continuous B-spline at scale m:

bnm(k) = 1
m
βn
(
k

m

)
, ∀k ∈ Z. (4)

The discrete B-spline of order n at scale m is defined by

Bnm =
n+1︷ ︸︸ ︷

B0
m ∗ B0

m ∗ · · · ∗ B0
m, (5)

where B0
m = (1/m)[1, 1, . . . , 1] is the sampled pulse of width

m.

The relation between the continuous B-spline βn(x) and
the discrete B-splines is given by the following m-scale rela-
tion [8]:

1
m
βn
(
x

m

)
=

+∞∑
k=−∞

Bnm(k)βn(x − k). (6)

2.2. Filter bank implementation

When wavelets are defined as the derivatives of B-splines, the
wavelets can be written as a linear combination of translated
B-spline bases

ψ(t) =
∑
j

g( j)βn2 (t − j), (7)

where operators g are the difference operators and βn2 is the
B-spline of order n2 (here we use n2 to distinguish it from the
B-spline of order n1 in (11)).

Specifically, according to definition (2), the kth-order
derivative filters can be derived as

g(l)( j) =
(
l

j

)
(−1) j , j = 0, 1, . . . , l, (8)

where
(
l
j

)
= l!/ j!(l − j)! is the binomial coefficient. The dif-

ferential filters of order l are simply the lth difference of the
binomials and the corresponding wavelet has the vanishing
moment of l. In the frequency domain, it has the transfer
function G(ω) = (2i sin(ω/2))l.

We list a few of the most often used difference filters of
lower orders.

(i) g(1) is the first-order difference operator. The corre-
sponding finite impulse responses (FIRs) are

g(1)(0) = −1, g(1)(1) = 1, g(1)(k) = 0 (k �= 0, 1). (9)

(ii) g(2) is the second-order difference operator. The corre-
sponding FIRs are

g(2)(−1) = 1, g(2)(0) = −2, g(2)(1) = 1,

g(2)(k) = 0 (k �= −1, 0, 1).
(10)

Since the spline spaces Snh provide close and stable ap-
proximations of L2(R), the discrete signal can be represented
using B-spline bases. We use the translated B-splines of order
n1 as the bases to approximate the signal

X(t) =
∑
k

x(k)βn1 (t − k). (11)
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By using them-refinable property (6) of the B-splines, we can
derive a cascaded filter bank algorithm for fast implementa-
tion of a continuous wavelet transform at rational scales [8]:

WX
(
m1

m2
, r
)
=m2

(
bn1+n2+1 ∗ Bn1

m2
∗Bn2

m1
∗x↑m2∗g↑m1

)
↓m2

(r),

(12)

where ↑ m and ↓ m denote upsampling and downsampling
operations by a factor of m. The computational complexity
of the above algorithm lies in the convolutions with Bn1

m2
and

Bn2
m1

, which can be fast implemented with only additions [8].
When the scale is dyadic, the computation in (12) can be

realized using a two-scale recursive formula

Sj+1X(k) = SjX ∗ h(k), (13)

W (m)
j+1X(k) = SjX ∗ g(m)(k), (14)

where W (m)
j+1X(k) denotes the mth-order differential wavelet

transform. It is themth difference of a smoothed sequence. In
this case, the above process becomes a binary summation and
difference process. The smoothing filter {h(k)} is a binomial
filter, that is, its corresponding FIRs are

h(k) =


1

2n+1

 n + 1
n + 1

2
+ k

 if |k| ≤ n + 1
2

,

0 elsewhere.

(15)

In the frequency domain, it has the transfer functionH(ω) =
(cos(ω/2))k.

3. PRELIMINARY RESULTS ON ZERO-CROSSING
STATISTICS

3.1. Notations and definitions

Let {Xt}, t = . . . ,−1, 0, 1, . . . , be a discrete-time random sig-
nal or process. If it is stationary, its covariance function

γl = E
(
Xt − µ

)(
Xt+l − µ

)
(16)

will only depend on the lag l, where µ = E(Xt) is the mean of
Xt. For simplicity and without loosing generality, we assume
that µ = 0 throughout the paper.

When l = 0, γl becomes the variance

γ0 = E
(
Xt − µ

)(
Xt − µ

)
. (17)

The autocorrelation function is obtained from normalizing
γl by γ0:

ρl = γl
γ0

, l = . . . ,−1, 0, 1, . . . . (18)

It is obvious that |ρl| ≤ 1.

The zero crossings of a stationary Gaussian time series
{Xt} are associated with a clipped binary series {Zt} defined
in [9], that is,

Zt =
1 if Xt ≥ 0,

0 otherwise.
(19)

If we define an indicator function at time t,

dt =
(
Zt − Zt−1

)2
, (20)

then dt is either 0 or 1. If dt = 1, a zero crossing occurs at
time t. The total number of zero crossings in {Xt} is given by
the sum

ZC#
(
Xt
) = d2 + · · · + dN , (21)

where ZC#(Xt) denotes the number of zero crossings in se-
quence Xt .

3.2. Zero-crossing counting for continuous spline
wavelet transform

The density of local extremaD for a stationary Gaussian pro-
cess f can be obtained based on the second- and fourth-
order derivatives of its autocorrelation function R, or equiv-
alently, based on the second- and fourth-order moments of
its spectrum P(ω) [10]:

D = 1
2π

√
−R

(4)(0)
R(2)(0)

, (22)

where the autocorrelation functions are related to the spec-
trum p(ω) by

−R(2)(0) =
∫
ω2P(ω)dω,

R(4)(0) =
∫
ω4P(ω)dω.

(23)

Using this relation, we have derived a formula for the estima-
tion of the average number of zero crossings for white noise,
or more generally, for a Brownian motion (fBm). For an fBm
signal f , its power spectrum is inversely proportional to the
power of its frequency, that is, the 1/ f law. More specifically,

P(ω) = λ
1

|ω|2H+1
, (24)

where λ is a constant and 0 < H < 1 is the Hurst parameter,
which controls the “roughness” of the fBm [11]. The realiza-
tion of fBm is fractals with dimension d = 2−H . The smaller
the Hurst parameter, the more rough or higher fractional di-
mension of a curve.

We have proven that the density of zero crossing in the
continuous spline wavelet transform has the following rela-
tionship with the scale and the order of spline [12].
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Theorem 1. For a continuous B-spline wavelet transform, the
density of zero crossing of a fractal Brownian motion at scale s
is

Ds ≈
√

3
π

1
s

√
1−H
n + 1

. (25)

From this theorem, we know that the density of zero
crossings can be used to estimate the dimension of a fractal
signal. It indicates that the roughness of a fractal curve can
be determined by the number of its zero crossings. A more
rough curve with smaller Hurst parameter H will have the
higher density of zero crossings.

If we take the scale s to be dyadic, s = 2 j , we can derive
that

log2 D2 j = − j + c,

D2 j

D2 j+1
= 2,

(26)

where c is a constant. It implies that the zero-crosssing num-
ber at the next scale is reduced to be half of the current one,
and at the log scale, the zero crossing number of an fBm is
linearly decreasing with dyadic scale j.

3.3. Zero-crossing count for discrete filtering

Zero-crossing analysis can be traced as early as in [13]. The
analysis of the statistical properties of zero crossings in a
more general discrete-time setting was pioneered by the work
in [14, 15].

Lemma 1. For a zero-mean stationary Gaussian random sig-
nal {Xt}, t = 1, . . . ,N , there exists the following relation:

ρ1 = cos
(
πE
(
ZC#

(
Xt
))

N − 1

)
. (27)

Equivalently, the average zero-crossing number
E(ZC#(Xt))/(N − 1) is given by cos−1 ρ1/π, the known
cosine formula. This lemma establishes the connection
between the expected number of zero crossings of a random
signal and its autocorrelation function ρ1. According to the
Wiener-Khintchine theorem [16], it follows that

cos
(
πE
(
ZC#

(
Xt
))

N − 1

)
=
∫ π
−π cos(ω)dF(ω)∫ π

−π dF(ω)
, (28)

where F is called the spectral distribution function of the ran-
dom signal. This formula thus gives the spectral distribution
of the zero crossings. Its continuous-time analog is given by
the formula in (22).

If {Xt} is filtered by a linear filter £ with transfer func-
tionH , the output is still a Gaussian random signal with zero
mean and its spectrum is given by |H(ω)|2dF(ω). The zero-
crossing number of the filtered signal {F(Xt)} will be related

by [10] as follows:

cos
(
πE
(
ZC#

(
£
(
Xt
)))

N − 1

)
=
∫ π
−π cos(ω)

∣∣H(ω)
∣∣2
dF(ω)∫ π

−π dF(ω)
.

(29)

4. FREQUENCY ESTIMATION IN DIFFERENTIAL
WAVELET DOMAIN

4.1. Connection of the wavelet scale with
frequency components

The connection of the scale or resolution of its differential
spline wavelet transform with the frequency components of
a signal is given by the following theorem.

Theorem 2. For a zero-mean stationary Gaussian random sig-
nal {Xt}, t = 1, . . . ,N , let ω∗ be the lowest frequency in the
spectrum. Then the number of zero crossings of the discrete
spline scale-space filtering in (13) decreases with the scale

E
(
ZC#

(
S1X

)) ≥ E
(
ZC#

(
S2X

)) ≥ · · · ≥ 0 (30)

and in the limit case as j → ∞, it converges to the lowest fre-
quency

πE
(
ZC#

(
SjX

))
N − 1

−→ ω∗. (31)

This result is a more general extension to the theorem in
[1, 15], which holds for any smoothing filtering. To prove this
theorem, we first prove the lemma described below.

Lemma 2. For a zero-mean stationary Gaussian random sig-
nal {Xt}, t = 1, . . . ,N , and letting Yt = λ1Xt + λ2Xt−1 for any
real positive λ1 and λ2, then

ZC#
(
Yt
) ≤ ZC#

(
Xt
)
. (32)

Proof. Let ρ̄1 be the correlation function of the summed pro-
cess {Yt}. By the definition and the stationariness of the se-
quence, we have

ρ̄1 = E
(
λ1Xt + λ2Xt−1

)(
λ1Xt+1 + λ2Xt

)
E
(
λ1Xt + λ2Xt−1

)2

= E
(
λ2

1XtXt+1 + λ1λ2X
2
t + λ1λ2Xt−1Xt+1 + λ2

2Xt−1Xt
)

E
(
λ2

1X
2
t + 2λ1λ2XtXt−1 + λ2

2X
2
t−1

)
= λ2

1γ1 + λ1λ2γ0 + λ1λ2γ2 + λ2
2γ1

λ2
1γ0 + 2λ1λ2γ1 + λ2

2γ0

= λ1λ2 +
(
λ2

1 + λ2
2

)
ρ1 + λ1λ2ρ2

λ2
1 + λ2

2 + 2λ1λ2ρ1
,

(33)

and so

ρ1 − ρ̄1 = −
(
1− 2ρ2

1 + ρ2
)
λ1λ2

λ2
1 + λ2

2 + 2λ1λ2ρ1
. (34)
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We know that for any real a, b, the following inequality
holds [9]:

E
(
Xt−1 − 2ρ1Xt + Xt+1

)2 ≥ 0. (35)

According to the definitions in (16), (17), and (18), expan-
sion of the left-hand side of this inequality with normaliza-
tion leads to

2− 4ρ2
1 + 2ρ2 ≥ 0. (36)

Therefore, we have

1− 2ρ2
1 + ρ2 ≥ 0. (37)

It follows that

ρ1 ≤ ρ̄1. (38)

Because the relation in (27) and the cosine function is
monotonously decreasing within [0,π], we obtain the in-
equity in (32).

We now come to prove Theorem 2. From formula (13),
we see that Sj+1 is obtained by convolution with a binomial
filter followed by a downsampling of 2. In the simplest case,
the filter is (1/2, 1/2). Thus according to Lemma 2, the num-
ber of zero crossings of Sj+1 is decreasing with the scale pa-
rameter j. Also, it is easy to verify that ZC#(Sj+1) is bounded
by 0. Therefore, according to the functional theory, it must
converge to its lower bound, which is ω∗. From the process
of this proof, it can be seen that, although we prove the theo-
rem when the scale is dyadic, it still holds if the scale is chosen
to be rational.

The asymptotic or large sample properties of a certain
type of estimator are usually desirable in statistical inference.
One such property is the simple consistency of a sequence
of estimators. A sequence of estimators {Tn} is said to be the
simple consistent estimators of parameter θ if for every ε > 0,
limn→∞ P[|Tn−θ| < ε] = 1 for every θ ∈ Ω. Another desired
property of estimators is the asymptotic unbiasedness. A se-
quence of estimators {Tn} is said to be asymptotically unbi-
ased for parameter θ if limn→∞ E[Tn] = θ for every θ ∈ Ω.
With these established concepts, we give the properties of the
estimators for the zero crossings in the following corollary.

Corollary 1. For a zero-mean stationary Gaussian random sig-
nal {Xt}, t = 1, . . . ,N , let ω∗ be the lowest frequency in the
spectrum. Then the followings hold.

(i) The sequence {π(ZC#(SjX))/(N − 1)}, j = 1, 2, . . . , is
simple consistent with the lowest frequency ω∗.

(ii) The sequence {π(ZC#(SjX))/(N − 1)}, j = 1, 2, . . . , is
asymptotically unbiased for the lowest frequency ω∗.

Proof. The proof of the corollary follows from Theorem 2
and the convergence theorems in probability [17].

4.2. Connection of the wavelet vanishing moments
with frequency components

From (14), we see that an mth-order differential wavelet
transform is obtained by taking the difference of its (m−1)th
order wavelet transform. Thus we have the following rela-
tion:

W (m)
j+1X(k) =W (m−1)

j+1 X(k)−W (m−1)
j+1 X(k − 1), (39)

that is, the wavelet transform with vanishing moments m is
a difference operation on the one with vanishing moments
m−1. In such a case, it can be proven that the autocorrelation
function of a difference sequence Zt = Xt−Xt−1 has the form

ρ̂(1) = E
(
Xt − Xt−1

)(
Xt+1 − Xt

)
E
(
Xt − Xt−1

)2 = 2ρ1 − ρ2 − 1
2
(
1− ρ1

) . (40)

Therefore,

ρ(1)− ρ̂(1) = 1− 2ρ2
1 + ρ2

2
(
1− ρ1

) = E
(
Xt − 2ρ1Xt−1 + Xt−2

)2

4γ0
(
1− ρ1

) ≥ 0.

(41)

Following the same process, we can obtain similar re-
sults regarding the effect on the estimation of spectrum using
derivative filters of different orders.

Theorem 3. For a zero-mean stationary Gaussian random sig-
nal {Xt}, t = 1, . . . ,N , let ω∗ be the highest frequency in the
spectrum. Then the number of zero crossings of the wavelet fil-
tering in (14) increases with the order of derivative or vanishing
moments

E
(
ZC#

(
W

( j)
s
)) ≤ E

(
ZC#

(
W

( j+1)
s

)) ≤ · · · ≤ N − 1 (42)

and in the limit case as j → ∞, it converges to the highest fre-
quency

πE
(
ZC#

(
W

( j)
s
))

N − 1
−→ ω∗. (43)

This theorem indicates that when one increases the
derivative order of a spline wavelet filtering or vanishing mo-
ments of a spline wavelet transform, the corresponding zero-
crossing number approximates a certain high frequency.

Similar to Corollary 1, we can prove the following prop-
erties of this estimator.

Corollary 2. For a zero-mean stationary Gaussian random sig-
nal {Xt}, t = 1, . . . ,N , let ω∗ be the highest frequency in the
spectrum. Then the followings hold.

(i) The sequence {π(ZC#(W ( j)X))/(N − 1)}, j = 1, 2, . . . ,
is simple consistent with the highest frequency ω∗.

(ii) The sequence {π(ZC#(W ( j)X))/(N − 1)}, j = 1, 2, . . . ,
is asymptotically unbiased for the highest frequency ω∗.
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Because of formula (41), we can infer that if the num-
ber of zero crossings remains unchanged, the signal is a si-
nusoidal. In this case ρ(1) = ρ̂(1) , which implies that the
following difference equation holds according to (41):

Xt − 2ρ1Xt−1 + Xt−2 = 0. (44)

The solution of this equation is a sinusoidal.

Corollary 3. For a Gaussian zero-mean stationary process
{Xt}, if ZC#(W (1)X) = ZC#(W (2)X), then {Xt} is sinusoidal.

In this extreme case, we can see that a sinusoidal signal
can be completely reconstructed by its zero-crossing counts.

The estimation of frequency components of a harmonic
signal has been encountered in many applications [18].
Theorem 2 provides a way to estimate the lowest frequency
components of a signal by increasing the order of splines and
the scales, while Theorem 3 can be used to estimate the high-
est frequency components by increasing the order of deriva-
tives or vanishing moments. The combination of these two
theorems suggests an algorithm to estimate the frequency
components of a harmonic signal.

An algorithm for frequency estimation of a harmonic signal

(a) Estimate the highest frequency components by using the
sufficient high order of the vanishing moments of differential
wavelets; (b) estimate the lowest frequency components by
using high-scale smoothing; (c) perform the filtering opera-
tion in the frequency domain to filter these two lowest and
highest components; (d) repeat the above procedures (a–c)
to estimate the next lowest and highest frequency compo-
nents, until all the in-between components are obtained.

5. NUMERICAL EXAMPLES

We give the following numerical examples to illustrate the
above theorems. In practice, because the signal is usually
contaminated by noise, it is reasonable to assume that the
signal is random. However, for the illustration purpose, we
use the deterministic harmonic signals in the following ex-
amples. It can be seen that although the above theorems are
established for random signals, we can show that they also
hold for deterministic signals.

5.1. Example 1

To illustrate the above theorem, suppose that we have a sinu-
soidal signal composed of three different frequency compo-
nents as shown in Figure 1:

Xt = sin(0.45t)+2∗ sin(1.5t)+cos(2.8t), t = 1, 2, . . . , 300.
(45)

If we perform the cubic spline filtering at scale 0 (without
smoothing) and then take the difference up to order 9 or the
wavelets with vanishing moments from 1 to 9 in (2). Table 1
shows the zero-crossing counts and the frequency estimates
by using πE(ZC#(W ( j)))/(N − 1) as in (43).

0 50 100 150 200 250 300
−4

−3

−2

−1

0

1

2

3

4

t

A
m

pl
it

u
de

Figure 1: Supposition of three sinusoids with angular frequencies
0.45, 1.5, and 2.8.

We see that with the increase of differential order, the
highest frequency component can be estimated, as proven in
Theorem 3. The middle frequency 1.5 can be estimated by
the first- and second-order derivatives.

If we want to estimate the lowest frequency component,
according to Theorem 2, we should perform smoothing or
take the wavelet transform at higher scales. Table 2 provides
the results for the wavelet transform at scale 1–9.

The theorems in Section 4 also suggest that a combina-
tion of smoothing and derivatives can be used to estimate
certain frequencies between the lowest and highest frequency
components. As an example, we look at the frequency esti-
mates at smoothing scales 5 and 10, and the derivatives from
1 to 9 in Table 3. It can be seen that at lower derivatives,
we obtain the estimates of lower frequencies. With the in-
crease of the order of derivatives, the frequency 1.5 can be
estimated.

5.2. Example 2

We look at another example. In this example, the previous
signal is added with white noise with variance 2,

Xt = sin(0.45t) + 2∗ sin(1.5t) + cos(2.8t)

+wn(t), t = 1, 2, . . . , 300.
(46)

This signal is plotted in Figure 2.
Table 4 shows the frequency estimates for the cases when

the vanishing moments of wavelets go from 1 to 9.
Table 5 shows the frequency estimates for the cases when

the smoothing scales vary from 1 to 9. With the smoothing,
the noise is weakened, and so the lowest frequency can be
computed.

If we perform the smoothing at scale 5 and then take the
wavelets up to the order of 9 , we are able to estimate the
frequency components between the lowest and highest ones.
Table 6 demonstrates such an example.
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Table 1: Zero-crossing counts and frequency estimates.

Derivative order j 1 2 3 4 5 6 7 8 9

ZC#
(
W

( j)
1 X

)
138 140 190 229 247 255 259 259 259

ω 1.4950 1.5166 2.0583 2.4808 2.6758 2.7624 2.8058 2.8058 2.8058

Table 2: Zero-crossing counts and frequency estimates.

Smoothing scale 1 2 3 4 5 6 7 8 9

ZC#(SjX) 138 130 55 47 42 42 42 41 41

ω 1.4946 1.4083 0.5958 0.5092 0.4550 0.4550 0.4550 0.4442 0.4442

Table 3: Frequency estimation at smoothing scales 5 and 10 when the wavelets have vanishing moments from 1 to 9.

Derivative order 1 2 3 4 5 6 7 8 9

ZC#
(
W

( j)
5 X

)
42 41 120 138 138 139 139 138 138

ω 0.4550 0.4442 1.3000 1.4950 1.4950 1.5058 1.5058 1.4950 1.4950

ZC#(W
( j)
10 X) 41 41 42 41 58 138 138 138 138

ω 0.4442 0.4442 0.4550 0.4442 0.6283 1.4950 1.4950 1.4950 1.4950
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Figure 2: The sinusoidal signal mixed with white noise.

If we take the vanishing moments of the wavelet to be
infinite, according to Theorem 3, it will approximate to the
highest frequency of the signal. In such an example, it will be
π because the spectrum of white noise is from 0 to π. Table 7
verifies that the highest frequency is π when the vanishing
moments of wavelets go up to 118.

5.3. Example 3

We test Corollary 3 by a simple example. Suppose that we
have a sinusoidal signal

Xt = sin(0.45t) (47)

with frequency 0.45, as plotted in Figure 3.
We consider the cubic-spline wavelet transform with up

to 10 vanishing moments or with the 1st–10th-order differ-
ence of cubic-spline filtering. For each wavelet transform,

we present the zero-crossing number counts and the corre-
sponding frequency estimates using formula (43). As shown
in Table 8, the zero-crossing number remains unchanged ex-
cept for numerical errors and the frequency is approximately
estimated.

If we perform the spline wavelet filtering at different
scales and followed by the same operations described above,
the results are shown in Table 9. Due to smoothing, the low
frequency components are smoothed out and the estimation
becomes inaccurate for higher derivatives.

6. DISCUSSIONS

In this paper, we have investigated how the number count-
ing of zero crossings of a wavelet transform can be used to
estimate the frequency components of signals in a fast and
simplistic fashion. It is well known that the FFT is the most
commonly used tool to estimate a signal’s spectrum, with
a computational complexity of O(N logN), where N is the
length of the signal. Under the approach proposed in this pa-
per, the computation of differential wavelet transforms and
((19), (20), and (21)) can in fact all be implemented with
additions only. The complexity associated with such an ap-
proach is simply linear, and therefore much lower than that
of the FFT approach. The estimation of signal frequency has
also been investigated in [19], where a continuous Gabor-
based wavelet transform was used. However this latter ap-
proach appears to be computationally much more demand-
ing because of the need to compute the continuous wavelet
transform.

The study of the properties of zero crossings roots from
the pioneering work of Rice [13] and Logan [20]. Its appli-
cation to signal processing was pioneered by Kedem [1]. The
use of the zero crossings of a wavelet transform or scale-space
filtering has been reported in many papers but the connec-
tion with the signal’s frequency have been seldom addressed.
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Table 4: Frequency estimation for the signal mixed with white noise using wavelets with vanishing moments up to 9.

Derivative order 1 2 3 4 5 6 7 8 9

ZC#
(
W

( j)
1 X

)
183 195 213 235 236 243 245 255 258

ω 1.9825 2.1125 2.3074 2.5458 2.5566 2.6324 2.6541 2.7624 2.7949

Table 5: Frequency estimation for the signal mixed with white noise using a smoothing scale from 1 to 9.

Smoothing scale 1 2 3 4 5 6 7 8 9

ZC#
(
W1

s X
)

92 64 54 48 46 44 42 38 37

ω 0.9699 0.6747 0.5692 0.5060 0.4849 0.4639 0.4428 0.4006 0.3901

Table 6: The smoothing and derivative operations can be combined to estimate certain frequencies in between the lowest and highest
frequency.

Derivative order 1 2 3 4 5 6 7 8 9

ZC#
(
W

( j)
5 X

)
39 62 85 121 138 140 142 141 144

ω 0.4084 0.6493 0.8901 1.2671 1.4451 1.4661 1.4870 1.4765 1.5080

Table 7: Frequency estimation for the signal mixed with white noise using wavelets when the vanishing moments are larger than 115.

Derivative order 115 116 117 118 119 120 121 122 123

ZC#
(
W

( j)
1 X

)
37 37 37 39 39 39 39 39 39

ω 2.9805 2.9805 2.9805 3.1416 3.1416 3.1416 3.1416 3.1416 3.1416
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Figure 3: A sinusoidal signal.

In this work, we show that the zero crossings in the differ-
ential spline wavelet domain can be used to effectively ap-
proximate the frequencies of a signal. Higher frequency can
be estimated by wavelets with higher order of vanishing mo-
ments, while lower frequency can be estimated by increasing
the smoothing scale. Proper use of the smoothing scale and
differential order can facilitate the estimation of certain fre-
quency components. The relationship between the wavelet
transform signatures of a signal and its frequency estimation
based on Fourier transform is thus established. Formula (27)
also offers a way to compute the autocorrelation, which is of-
ten used in signal spectrum analysis [2, 3, 21].

In the scale-space theory for computer vision, the zero
crossings in multiscale or scale-space filtering are usually re-
ferred to as the fingerprints in the scale-space theory [22, 23].
The famous scaling theorem states that the Gaussian kernel
is the only filter with which the number of zero crossings of
a signal does not increase with the increase of the smoothing
scale [24]. This property is also known as the monotone or
the embedding property that has been proven for the con-
tinuous signal case. In practice, however, the kernels used for
scale-space filtering are not Gaussian. For example, some of
the most commonly used kernels are spline approximations
[8, 25], or more general scaling filters in the wavelet theory
[26]. It has been shown that for discrete signals, the above
embedding property still holds for certain discrete smooth-
ing kernels [27]. Whether the embedding property still holds
for more general discrete smoothing filters, in particular the
spline filters, has not been proven previously. The results pre-
sented in this paper attempt to provide a rigorous proof of
this property for a random signal in the discrete setting.
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Table 8: Frequency estimation for the sinusoidal signal.

Derivative order 1 2 3 4 5 6 7 8 9

ZC#
(
W

( j)
1 X

)
41 42 41 42 41 42 41 41 42

ω 0.4442 0.4550 0.4442 0.4550 0.4442 0.4550 0.4442 0.4442 0.4550

Table 9: The effect of smoothing on the estimation of the pure sinusoidal signal.

Derivative order 1 2 3 4 5 6 7 8 9

ZC#
(
W

( j)
5 X

)
43 42 43 44 44 44 44 44 48

ω 0.4503 0.4398 0.4503 0.4608 0.4608 0.4608 0.4608 0.4608 0.5027
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