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STATISTICAL MODEL-BASED METHODS FOR OBSERVATION SELECTION IN

WIRELESS SENSOR NETWORKS AND FOR FEATURE SELECTION IN

CLASSIFICATION
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Dr. Yi Shang, Dissertation Supervisor

ABSTRACT

Wireless sensor networks have been deployed in real world applications ranging from

environmental monitoring to ambient intelligence. This technology allow us to have a bet-

ter understanding of the natural environment, human activities and even their interactions.

Nowadays most wireless sensors are powered by batteries. However changing batteries for

thousands of sensors with human intervention is infeasible for a large scale of deployment. It

has been challenging to make wireless embedded sensor networks scalable and sustainable

due to its restricted power source. The optimization problem is to make fewer number of

xi



observations for reducing relevant power consumption, in the meantime obtaining sufficient

information out of the observations. When or where to make the observations directly affect

on predictive accuracy for unobserved points of interest.

In the dissertation, we apply statistical model-based approaches to address the temporal

and spatial sensor observation selection challenges. For sensor observation selection in time

domain, we first present an improved version of VoIDP algorithm that is the first optimal al-

gorithms for efficiently selecting the subset of observations on chain graphical models. Then

we apply the time series model-based approach to a wireless sensor scheduling problem. For

location-based sensor observation selection, we introduce two greedy heuristic methods by

optimizing entropy and mutual information criteria based on Gaussian process models. The

mutual information-based heuristic is powered by submodularity optimization that provides

both efficiency and theoretical guarantee to its solution. We also demonstrate those heuristic

methods in an application of placing road traffic monitoring sensors. Experimental results

in a simulated environment showed that the entropy-based heuristic tends to place sensors

around intersections, whereas the mutual information-based heuristic places sensors more

widely and avoids repeatedly placing sensors at correlated locations on same road segments.

We also compare the graphical model-based approach with the Gaussian process model-

based approach for sensor observation selection, and our experimental results show that the

graphical model-based approach is more robust and error-tolerant than the Gaussian process

model-based approach.
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Finally We also apply the mutual information-based selection method based on submod-

ularity optimization to feature selection for classification problems. One type of the feature

selection methods is to select important features only based on the characteristics of a data

set, which is essentially similar to the observation selection problems. We compare the pro-

posed method with existing state-of-the-art attribute selection methods through extensive

experiments, and show that the proposed mutual information-based feature selection method

perform comparably with, or even better than, other feature selection methods.
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CHAPTER 1

INTRODUCTION

Wireless sensor networks have been deployed in real world applications ranging from

environmental monitoring to ambient intelligence [7, 51, 52, 59]. This technology allow us

to have a better understanding of the natural environment, human activities and even their

interactions.

Nowadays most wireless sensors are powered by batteries. However changing batteries

for thousands of sensors with human intervention is infeasible for large scale deployment

of this technology. It has been challenging to make wireless embedded sensor networks

scalable and sustainable. Even for tomorrow’s sensors that can harvest energy from their

surrounding environment, the small energy they collect and store will never be taken for

granted [9]. Conversely, every sensor observation paid by precious harvested energy should

be as rewarding as possible.

It is challenging to make wireless sensor networks in real world applications scalable

and sustainable due to the constraint power source. The optimization problem is to make

fewer number of observations for saving energy, while obtaining sufficient information out
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of the observations. When or where to make the observations directly impacts the predictive

accuracy for unobserved points of interest.

In Chapter 2, we introduce an observation selection method based on time series models

and its application to wireless sensor scheduling. The VoIDP algorithm is the first optimal

algorithm for efficiently selecting the subset of observations in chain graphical models [30].

The original VoIDP algorithm has a mistake in the process of recovering the optimal selec-

tions, and fails to produce correct outputs. In this paper, we present an improved version of

the algorithm; which fixes the mistakes and verifies the solutions in experiments. Further

more, we discuss some recent works in the area of subset selection problems, and present a

simplified solution for computing the maximum expected total reward for a sub chain under

certain circumstances.

In Chapter 3, we introduce two greedy heuristic methods based on entropy and mu-

tual information criteria under multivariate Gaussian models for optimizing location-based

observation selection. Submodularity optimization plays an important role in developing

an efficient and near-optimal approximate algorithm for maximizing the mutual information

criterion. Mutual information functions can be considered as submodular functions [32], and

its relevant greedy algorithm guarantees that its solution is as good as at least (1−1/e)OPT ,

where OPT is an optimal solution value. We apply these methods to place road traffic moni-

toring sensors in a simulated road map and compare their performance. Experimental results

2



show that the entropy criterion- based heuristic tends to place sensors around intersections,

whereas the mutual information criterion-based heuristic places sensors more widely, and it

avoids repeatedly placing sensors at the correlated locations on the same road segments.

In Chapter 4, we pull the two model based approaches introduced in previous chapters

into one scenario, the sensor scheduling problem, and compare their performance. The first

approach is to apply the corrected VoIDP algorithm on a chain graphical model for selecting

a subset of observations that minimizes the overall uncertainty. The second approach is to

find a selection of observations based on Gaussian Process model that maximizes the entropy

and the mutual information criteria, respectively. We compare their performances in terms of

predictive accuracy for the unobserved time points based on their selections of observations.

Experimental results show that the Gaussian Process model based method achieves higher

predictive accuracy if sensor data are accurate. However when observations have errors,

its performance degrades quickly. In contrast, the graphical model based approach is more

robust and error-tolerant.

In Chapter 5, we propose to apply the observation selection methods to select features on

classification problems. Selecting features for classification is similar to selecting observa-

tions in wireless sensor networks. They share purpose in common that removing redundant

and noise information and selecting out the valuable information that most contribute to

classification or prediction models. Observation selection based on mutual information with

3



submodularity optimization is efficient and effective as shown in chapter 3. Its computational

efficiency and near-optimal theoretical guarantee make it promising for feature selection on

classifications. We conducted extensive experiments to compare its performance with other

popular feature selection methods on multiple data sets with a variety of different classifiers.

The results show that the submodularity optimization inspired mutual information-based se-

lection method is a strong competitor among other feature selection methods.

4



CHAPTER 2

TIME-SERIES OBSERVATION SELECTION WITH ITS

APPLICATION TO WIRELESS SENSOR SCHEDULING

2.1 INTRODUCTION

A typical problem in real world applications is the optimization of information gathering.

Wireless sensor networks, for example, is a powerful tool for monitoring spatio-temporal

phenomena. However, its limited power source makes sensing expensive. It is a trade off

between obtaining more and useful information, versus making less observations. Schedul-

ing a sensor to turn on to observe, then to turn off to save energy is a very big optimization

problem.

A graphical model-based method for selecting sensor observations in the time domain

is introduced in this chapter. It selects time points with the most rewarding observational

5



information for scheduling a sensor’s on/off state. When time series data from a sensor is

modeled by a chain graphical model, e.g. a Hidden Markov Model (HMM), the method can

use observations at some time to infer sensing values at another time. The optimal selection

of observations is to minimize the predictive uncertainty.

Chain graphical models such as Hidden Markov Models (HMM) can be trained using

data time series from sensors. The observation variables of 24 time points roll over onto

the chain, if each hour in a day is treated as a time point for observation. When a selection

is made at a time point for observation, the distributions of observation variables after this

point will become certain to some extent. The sensor scheduling problem then turns into op-

timizing a subset of observations. The selection in the chain graphical model is to minimize

the uncertainty overall. The VoIDP algorithm is the first optimal algorithm for efficiently

selecting a subset of observations in chain graphical models [30]. It is a dynamic program-

ming approach to optimize the value of information. However, during our evaluation of this

algorithm for the subset selection problem in chain graphical models, we discovered that

following the exact algorithm could not give desirable solutions. We were hence motivated

to improve on it.

We identified a critical overlook in the original VoIDP algorithm; which causes the fail-

ure. We will present the improved version of VoIDP algorithm in Section 2.3. In Section 2.4,

we evaluated and verified the improved VoIDP algorithm and its solutions empirically. In

6



Section 2.5, we discuss a situation where the computation in the algorithm can be simpli-

fied. We will give a brief review in Section 2.6 regarding some interesting works recently

published in the area of optimizing the information gathering. We will start in the follow-

ing Section to give a brief description of the optimization problem. For convenience, same

notation will be used as does in [30].

2.2 PROBLEM STATEMENT

Battery-equipped wireless sensors are power constrained. The challenge of changing

batteries for thousands of sensors hinders wireless sensor networks to become scalable and

sustainable. Hence, wireless sensors need to selectively observe in order to save their ener-

gies.

The observations from a sensor can be scheduled at some time moments and it goes to

sleep mode at all other time. One criterion of observation selection is to maximize its infor-

mative values. Hidden Markov Models (HMM) have been used to model sensor observations

along the time dimension. Each observation variable at a time point has a distribution over

some hidden states. When an observation is made at one time, its value can contribute to in-

fer observational values at another time. But the inference accuracy depends on the selection

of observations. Formally the problem of optimizing the selection of observations across the

time chain can be cast in the following subset selection problem...

7



Given a collection of random variables XV = (X1, . . . ,Xn). A subset of the variables,

XA = (Xi1, . . . ,Xik) are observed as xA . The posterior distribution P(XV | XA = xA) can be

computed and used in a total reward R(P(XV | XA = xA)). Since observational values of XA

are unknown, an expected total reward is used to measure the quality of the subset selection.

Hence, the observation selection problem is to select a subset A∗⊆V that maximizes [30],

A∗ = argmaxA⊂V ∑
xA

P(XA = xA)R(P(XV | XA = xA))

The expected total reward to maximize above is the sum of all the expected local rewards

R j(X j | XA), because of the conditional independency held on chain graphical models. An

expected local reward equals to ∑
xA

P(XA = xA)R j(X j | xA) . A local reward R j(X j | xA)

depends on P(X j | XA = xA), which is the marginal distribution of variable X j conditioned

on the observations XA = xA . It can be further deduced based on the conditional entropy as

R j(X j | xA) =−H(X j | xA) =
∫

P(x j,xA) log2 P(x j | xA)dx j.

Probabilistic inference techniques on chain graphical models simplify the evaluation of

local rewards. For example, a HMM based on a sensor’s temperature time series data has n

time points. The observation at each time point is determined by a certain number of hidden

states that are used to construct underlying inference chains. Evaluation of P(X j | XA) only

depends on P(X | X jclose
), where jclose ∈A is the closest observation time point before j. The

conditional independence property of graphical models implies that an expected total reward

8



along the entire time chain can be divided into expected rewards on small sub-chains [30].

It inspired the application of a divide-and-conquer strategy, essentially a dynamic program-

ming approach, in the original VoIDP algorithm.

2.3 IMPROVED EFFICIENT ALGORITHM FOR OPTIMAL SUBSET SE-

LECTION IN CHAIN GRAPHICAL MODELS

In this section, we will first give a brief description of the original VoIDP algorithm as

appearing in papers [30, 29], then, discuss the reason for and present the improved version

of this algorithm.

2.3.1 ORIGINAL VOIDP ALGORITHM

In the subset selection problem, the target is to decide a subset of the variables to observe

before any observation is made in order to predict the overall observation most accurately

based on the observed values of the selected variables. In the running example, before a

sensor is deployed, we want to find a number of time points out of 24 to pre-schedule its

sensing for a day.

The original VoIDP algorithm in [30] was claimed to be the first optimal algorithm for

efficient subset selection in chain graphical models. For convenience, we have attached its

pseudo code shown in algorithm 1. The algorithm implements a dynamic programming ap-

9



proach that is inspired by the reward decomposition property briefly discussed in Section 2.2.

It also considers some other factors in the subset selection process, such as operating within a

limit budget B, the cost β j of making observations, and associated penalties C j applied to the

expected total reward. It was proved that the time complexity of this algorithm given budget

B in terms of evaluations of expected local rewards is (1
6n3 +O(n2))B, where n = |V |.

Algorithm 1: VoIDP algorithm for optimal subset selection (Krause and

Guestrin, [30])

Input: Budget B, rewards R j, costs β j and penalties C j

Output: Optimal selection A of observation times

1 begin

2 for 0≤ a < b≤ n+1 do compute La:b(0) ;

3 for k = 1 to B do

4 for 0≤ a < b≤ n+1 do

5 sel(−1) := La:b(0) ;

6 for j = a+1 to b−1 do

7 sel( j) := R j(X j|X j)−C j +La: j(0)+L j:b(k−β j) ;

8 end

9 La:b(k) = max j∈{a+1,...,b−1,−1}sel( j) ;

10 Λa:b(k) = argmax j∈{a+1,...,b−1,−1}sel( j) ;

11 end

12 end

13 a := 0;b := n+1;k := B;A := /0 ;

14 while j 6=−1 do

15 j := Λa:b(k) ;

16 if j ≥ 0 then

17 A := A ∪{ j};k := k−β j ;

18 end

19 end

20 end

10



The original VoIDP algorithm as shown in 1 implements a dynamical programming ap-

proach to efficiently select an optimal subset of the variables to observe in chain graphical

models. The algorithm is named as “VoIDP” because of its use of Dynamic Programming to

optimize the information value.

The main body of the algorithm is to compute a number of tables of La:b(k) which is

denoted as the optimal expected total reward that can be achieved for the sub-chain a : b

with the budget k. And L0:n+1(B), therefore, denotes the optimal expected total reward for

the entire chain with full budget B, while La:b(0) is the total reward without any additional

observations. The Λa:b(k) stores the choice that realizes La:b(k). The choices could be either

the index of next variable to select or −1, which means no variable should be selected. In

the innermost loop, sel( j) is the expected total reward for the sub chain a : b obtained by

observing at j, and sel(−1) is the reward if no observation is made. The optimal solution of

subset selection is obtained by tracing out the quantities in Λa:b(k).

When we evaluated the algorithm, however, it failed to give desirable outputs (see ta-

ble 2.1) in the experiment. And we were thus motivated to improve on it. Following is an

improved version of the VoIDP algorithm.
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2.3.2 IMPROVED VOIDP ALGORITHM

The core part of VoIDP algorithm is to recursively compute the optimal expected total

reward La:b(k) for the sub chain a : b using the budget k. The base case is simply La:b(0),

and the recursion for La:b(k) is either La:b(0) or max
a< j<b,β j≤k

{sel( j)}. It means that we can

choose not to spend any more of the budget to reach the base case, or we can select the

optimal observation at j, which depends on the obtained expected total rewards. In our

experiments, we let reward penalty C j be zero, and let selection cost β j be one. In this

situation, the computation of La:b(k) can actually be further simplified. We will discuss this

in more details in Section 2.5.

According to the reward decomposing property (see in [30]), selecting an observation

will divide the computation of expected total reward of the chain into expected total reward

computations along the two sub chains separated by the observation. This is reflected in the

equation (2.1) of computing sel( j) which is the expected total reward for chain a : b when

making an observation at j.

sel( j) := R j(X j | X j)−C j +La: j(0)+L j:b(k−β j) (2.1)

The total reward of observing at j for the chain a : b is the sum of the reward of observing

j at itself, the optimal total reward achieved for the sub-chain a : j without any spending and
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the optimal total reward achieved for the sub-chain j : b with the budget k−β j and minus the

reward penalty C j. In this way, all the selected observations will fall into one side j : b, and

on the other side a : j there is no selection yet. The variable selection candidate j separates

these into two sides. After all the tables La:b(k) and Λa:b(k) are computed, we can trace back

to find all the optimal selections in Λa:b(k). One key point here is that after we find an optimal

selection at j, the entry for locating the next optimal selection should be at Λ j:b(k−β j). The

pseudo code of the improved VoIDP algorithm is illustrated in algorithm 2. For convenience,

we use the same notations as in algorithm 1.

Algorithm 2 shows the corrected VoIDP. The first part of the algorithm from line 2 to 12

dynamically computes a three-dimension (a,b and k) table, where a and b are denoting the

two ends of a chain, and k is the budget. Each cell in the table is a tuple of two elements:

La:b(k) and Φa:b(k). La:b(k) denotes the optimal expected total reward that can be achieved

for the sub-chain a : b with the budget k. sel( j) is the expected total reward for the sub

chain a : b obtained after observing at the time point j, and sel(0) is the reward when no

observation is made. Φa:b(k) stores the j that maximizes the sel( j) value. In the first part,

it recursively computes optimal expected total rewards La:b(k) for the sub chain a : b given

a budget k. The base case is simply La:b(0), and the recursion for La:b(k) is either La:b(0)

or max
a< j<b,β j≤k

{sel( j)}, which means that we can choose not to spend any more of the budget

to reach the base case, or select the optimal observation at j with the cost β j. C j denotes

13



Algorithm 2: Improved VoIDP algorithm for optimizing observation selection on chain

graphical models

Input: Budget B, rewards R j, costs β j and penalties C j ( j ∈ V , |V |= n)

Output: Optimal selection of observations at A

1 begin

2 for 0≤ a < b≤ n+1 do compute La:b(0)
3 for k = 1 to B do

4 for 0≤ a < b≤ n+1 do

5 sel(0)← La:b(0)
6 for j = a+1 to b−1 do

7 sel( j)← R j(X j|X j)−C j +La: j(0)+L j:b(k−β j)
8 end

9 La:b(k)←max j∈{0,a+1,...,b−1}sel( j)

10 Φa:b(k)← argmax j∈{0,a+1,...,b−1}sel( j)

11 end

12 end

13 a← 0;b← n+1

14 k← B

15 A ← /0
16 repeat

17 y←Φa:b(k)
18 if y > 0 then

19 A ← A ∪{y}
20 a← y

21 k← k−βy

22 else

23 break

24 end

25 until k ≤ 0

26 end

14



penalty on the reward by selecting at j. In our experiments, we let C j be zero, and β j be one.

The second part of the Algorithm 2 from line 13 to 25, computes optimal selections by

tracking through the values of Φa:b(k). Initially a and b are set to represent the entire chain.

The algorithm starts with the full budget B and the empty selection set A . In the following

loop, the optimal selection y from Φa:b(k) is returned and added into the selection set A .

Whenever a selection is made, a budget of βy is spent, and the chain is cut into two parts,

a : y and y : b. The searching of optimal observation is continued on the second sub-chain.

This process stops when the budget is used up. Line 20 in Algorithm 2 is important because

it makes the tracking to fall into a correct domain in the whole table. But it was missed out

in the original VoIDP algorithm.

The main change in the improved version is reflected in the second part. After La:b(k)

and Λa:b(k) are all computed, we need to find out the optimal selection from the series of

Λa:b(k) tables. Initially, it will start from the entire chain with the full budget B and an

empty selection set A . The first selection will thus be Λ0:n+1(B). If it is set to j, then the

next selection should be from Λ j:b(k−β j) instead of Λ0:b(k−β j) as in the original VoIDP

(see figure 1). This slight change, however, leads to a dramatically improved outputs (see

table 2.1). As discussed in the last paragraph, the way of tracing back the optimal selections

is actually determined by how they were calculated. With this crucial change in the process

of recovering optimal selections, the improved version of VoIDP produces desirable outputs.

15



We have verified the effectiveness of those optimal selections through experiments. The

results will be presented in the next section.

2.4 EXPERIMENTS

In this section, we first compare the selection outputs of the original VoIDP algorithm

with those of our improved version. Then, we evaluate the optimal selections by the im-

proved VoIDP against the ones generated by a greedy heuristic method and an uniform spac-

ing method. We will describe the two simple methods shortly. We use the temperature time

series data set, which was also used in paper [30]. The data set was collected from a network

of wireless sensors deployed in the Intel Berkeley Research Lab [8].

2.4.1 OPTIMAL OBSERVATION SELECTION IN WIRELESS SENSOR SCHEDULING

One of the research problems in wireless sensor networks is that how a sensor should be

scheduled for sensing in order to both save its power and, in the meantime, obtain the most

informative observation possible. In the example, wireless sensors were deployed to monitor

indoor temperature and the sensing frequency was only once an hour. The goal was to select

k out of 24 time points for scheduling a sensor to turn on so that its expected observations

would be the most informative.

The temperature time series data were pre-processed to compensate for missing data, and
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each temperature value was discretized into 10 bins of 2 Kelvins. We got 45 sample time

series combined from the data collected by three adjacent sensors (#3, #4, and #6) lasting 19

days. We used them to train a HMM that also had four latent states representing from 12 am

- 7 am, 7 am - 12 pm, 12 pm - 7 pm and 7 pm - 12 am. All the input rewards used both in the

original VoIDP and the improved version were computed from this trained chain graphical

model under the filtering case, with assumed unit cost and zero reward penalty for making

any observations.

Table 2.1: Optimal observation selections by the original VoIDP [30] and the improved

VoIDP 2 (in this example we let unit cost and zero penalty when selecting any observations).

Budget
Optimal Observation Outputs (time point ranges from 1 to 24)

Original VoIDP Improved VoIDP

outputs reward reward outputs

1 6 −32.2979 −32.2979 6

2 5,6 −31.2704 −29.1210 5,14

3 4,5,6 −30.3201 −26.8453 4,10,17

4 3,4,5,6 −29.4919 −25.1229 3,7,12,18

5 1,3,4,5,6 −28.5762 −23.7130 1,5,9,14,19

6 1,1,3,4,5,6 −28.5762 −22.5522 1,5,8,12,16,20

7 1,1,1,3,4,5,6 −28.5762 −21.6115 1,5,8,11,14,17,21

8 1,1,1,1,3,4,5,6 −28.5762 −20.8333 1,4,6,9,12,15,18,21

Table 2.1 shows the comparison of the outputs supposed to be the optimal selections of
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observational time points from both algorithms and their relevant rewards. The higher reward

and the better quality of selection of the improved algorithms are quite evident. As can be

seen from the table, the original VoIDP algorithm repeatedly selects the first time point after

budget 5, which is apparently a waste of the budget. In contrast, the improved version (see

Algorithm 2) shows optimal selection results. We will further evaluate the solutions given

by the improved VoIDP algorithm.

2.4.2 PERFORMANCE COMPARISON

Since the original VoIDP algorithm does not produce satisfying outputs, we will not

evaluate it in the following experiments. To examine the performance of the improved VoIDP

algorithm, we also use a greedy heuristic and an uniform spacing method for comparison in

our experiments.

The selection of observations in the greedy method is accumulated recursively. Assuming

unit selection cost, when k = 1, the only best observational time point is selected from the

entire chain. When k = 2, the selection in k = 1 case is adopted as the first selection. It

divides the whole chain into two sub-chains, and two optimal observations can be computed

out of each of them. Then the second selection is the best one among the two observations

that has a bigger expected total reward. This process can be deduced into k = m case. When

k =m, first m−1 observations are generated from k =m−1 step. The mth selection is picked
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among the m optimal observations for the m sub-chains formed by dividing the whole chain

using the first m−1 selections of observations. The uniform spacing selection is to simply

distribute k selections of observations evenly across the entire chain with equal distance.

1 4 8 12 16 20 24
0

10

20

30

40

50

60

P
e
rc

e
n
t 
im

p
ro

v
e
m

e
n
t 
o
v
e
r 

b
a
s
e
lin

e

Number of observations

 

 

Uniform spacing

Greedy heuristic

Improved VoIDP

Figure 2.1: Baseline performance comparison: The relative improvement of the uniform

spacing method, the greedy heuristic, and the improved VoIDP algorithm over the baseline

reward which is the expected total reward for the entire chain without any observations.

In figure 2.1, all the performance results are compared against the baseline, which is

the expected total reward for the entire chain without any observation. The performance
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is measured as an increase of the expected total reward, which is equivalent to decrease of

expected entropy for the entire chain. It shows that the optimal selections given by the im-

proved VoIDP algorithm outperform those by both the heuristics. To give a better picture of

how much the improved VoIDP algorithm outperforms the greedy heuristic, we then com-

pare their relative improvements against the uniform spacing. The result is illustrated by

figure 2.2. Here, performance is measured as an increase of expected total reward, with the

uniform spacing as the baseline.

As shown in figure 2.2, the difference of performance improvement between the optimal

selections given by the improved VoIDP algorithm and those by greedy heuristic is obvious,

when fewer number of observations are selected. It can be seen that if k is less than one third

of all possible observations, the optimal gain by the improved VoIDP algorithm is more than

one percent over that by the greedy heuristic. And the gain remains even when k reaches

about two thirds of all possible observations. After that, the optimal subset and the subset

selected by the greedy heuristic are almost identical. These results empirically verify the

effectiveness of the optimal selections produced by the improved VoIDP algorithm presented

in Algorithm 2.
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Figure 2.2: Relative performance comparison between the greedy heuristic and the Algo-

rithm 2 over the performance of the uniform spacing method.
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2.5 DISCUSSION

The VoIDP algorithm was claimed in [30] as the first optimal algorithm for nonmy-

opically computing and optimizing value of information in chain graphical models. This

algorithm appears at least in [29, 30, 25] and remains in the same form. We evaluated the

algorithm for subset selection problem as appearing in [30] and found the issue illustrated by

table 2.1. We think it necessary to improve on the algorithm by giving its corrected version.

The computation of La:b(k) (see notations in 2.3.1) in the improved VoIDP algorithm

can be further simplified. If there was no penalty towards the total reward of making any

observations, which means C j = 0, then sel( j) := R j(X j | X j)+La: j(0)+L j:b(k−β j). The

computation of La:b(k) would become the following, because in this case any sel( j) would

be bigger than La:b(0).

La:b(k) = max
j:a< j<b,β j≤k

{R j(X j | X j)+La: j(0)+L j:b(k−β j)} (2.2)

In other words, if there were no reward penalties, then the expected total reward for sub

chain a : b after making any additional observations would always be larger than that of

making no additional observations. In this situation, the algorithm (see figure 2) does not

need to compute sel(0) in the inner loop, and hence La:b(k) does not need to compare with

La:b(0).
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2.6 RELATED WORK

The original VoIDP algorithm as an efficient tool for selecting observation to maximize

the value of information in chain graphical models was first introduced in [29], and was fur-

ther presented in [30]. Although the optimization problem can be effectively solved for chain

graphical models, it is much harder for more general graphical models. The authors proved

that the problem of subset selection for even discrete polytree is computational intractable.

There are some other approaches suggested for selecting observations in graphical models,

but the authors of [30] argued that either some of them, such as the greedy methods, do

not have theoretical performance guarantees, or others are running in exponential worst-case

time, although they could be applied to more general graphical models. Besides developing

algorithms to schedule a single sensor, the authors in [29, 30] also studied scheduling multi-

ple sensors whose measurements are correlated, in which case the graphical model becomes

more general, consisting of multiple chains.

The optimization problem of selectively gathering information with a variety of objec-

tives exists in many tasks of real world applications. When, for example, deploying a wire-

less sensor network to monitor a spatio-temporal phenomenon, we want to choose locations

and time points to deploy and schedule the sensors in order to maximize the information

gains, and in the meantime minimize its communication costs. A doctor may want to have

a most effective diagnostic plan designed at a minimal cost for a patient. Nowadays, the In-

23



ternet provides a vast amount of information, but people would like to spend a small amount

of time to read the most important news or useful information. Several efficient algorithms

have been developed to address such problems.

In spatial monitoring such as in [33, 46], the sensor placement problem can be mod-

eled using Gaussian Processes with a mutual information criterion, which is a submodular

function. Submodularity, an intuitive diminishing returns property, can be exploited to de-

velop faster, strongly polynomial time combinatorial algorithms with provable theoretical

performance guarantees ([53, 22, 26, 35]). It turns out that many observation selection prob-

lems ([38, 27, 31, 43, 14]) can utilize this important structural property to develop efficient

and near optimal algorithms incorporating greedy heuristic. However, in a more complex

setting where another criterion besides the informativeness needs to be considered such as

communication cost, greedy algorithms perform arbitrarily badly [34]. The authors of [34]

presented a non-myopic algorithm pSPIEL which can near-optimally trade off between infor-

mation and communication cost. Another non-myopic algorithm Saturate [36] was designed

to minimize the uncertainty that could be exploited by adversaries. In [54, 42], it is shown

that submodular functions are applicable to optimization of informative paths for multiple

robots. Submodular functions have inspired researchers not only to develop efficient algo-

rithms but also to study theoretical foundation of solving complex combinatorial problems.

The authors in [12] introduced an algorithmic framework for studying combinatorial prob-
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lems with multi-agent submodular cost functions and presented an approximate algorithm

with theoretic lower bound.

There is another alternative approach to selection problems. Other than choosing ac-

cording to a model (open-loop) before any observations are obtained, sequential planning

(closed-loop) decides on the next selection based on previously observed values. In pa-

per [28], the authors compared a sequential algorithm sequentially optimizing mutual infor-

mation in Gaussian Processes with the model based selection approach, and quantified the

advantage of the sequential strategy. A conditional planning based algorithm for selecting

observations in chain graphical models was also presented in [29, 30].

2.7 CONCLUSIONS

We present an improved version of VoIDP algorithm for optimally selecting sensor ob-

servations on a chain graphical model for time series observations. A mistake in the original

VoIDP algorithm is corrected and verified by experimental results. It is a slight-change but

significant improvement to the original VoIDP algorithm, because it is critical for producing

the desired optimal selection. We also discuss a case when there are no reward penalties,

the expected total reward of making any observations will always be larger than that of mak-

ing no observations. This is used to simplify the computation of the optimal expected total

reward for a sub chain.
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CHAPTER 3

SPATIAL OBSERVATION SELECTION WITH ITS

APPLICATION TO PLACE ROAD TRAFFIC MONITORING

SENSORS

3.1 INTRODUCTION

Wireless sensor networks have been deployed in real world applications ranging from

environmental monitoring to ambient intelligence [7, 51, 52, 59]. This technology allow us

to have a better understanding of the natural environment, human activities and even their

interactions. Nowadays most wireless sensors are powered by batteries. However chang-

ing batteries for thousands of sensors with human intervention is infeasible for large scale

deployment of this technology. It has been challenging to make wireless embedded sensor
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networks scalable and sustainable. Even for tomorrow’s sensors that can harvest energy from

their surrounding environment, the small energy they collect and store will never be taken for

granted [9]. Conversely, every sensor observation paid by precious harvested energy should

be as rewarding as possible.

Making optimal selection of sensor observations with a limited power budget to maxi-

mize its information gains has become an important problem. On the one hand the number

of observations needs to be minimized in order to save energy. On the other hand the values

of information obtained from the observations need to be maximized. In this chapter, we

present a model based approach to solve the optimization problem, specifically to determine

at what locations the sensor observations should be made.

In section 3.3, a multivariate Gaussian model-based approach for selecting sensor ob-

servations in the spatial domain is presented for the problem of placing traffic monitoring

sensors in a simulated road network. Wireless sensors have been deployed in the real world

for road traffic surveillance [18] and improved the traffic light controllers [46, 57, 65]. The

observations of traffic flow volumes at different locations in a road network of a city can be

modeled as a joint multivariate Gaussian distribution. The observations collected from traf-

fic sensors can be used to predict traffic volume information at locations where no sensors

are deployed. The multivariate Gaussian model-based approach is also known as Gaussian

Process (GP). The optimal selection of observations at different places can be approximately
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solved by greedy heuristics based on entropy and mutual information [3] criteria. In partic-

ular, the performance of mutual information heuristic is guaranteed by a theoretical lower

bound. The authors in [33] found out that entropy heuristic placed temperature and rain sen-

sors near the border of their sensing field, whereas the mutual information heuristic placed

more sensors in the central area. During our study of placing traffic monitoring sensors on

a road map, we discover that the entropy heuristic places more sensors around intersections,

whereas the mutual information heuristic spreads out traffic sensors across the road map,

not only taking care of the intersections but also having more sensors deployed at locations

near the sources or destinations of traffic flows. Mutual information is also better than en-

tropy in avoiding repeatedly placing sensors at directly correlated locations on the same road

segments.

3.2 RELATED WORK

The problem of making optimal selection exists in other fields too. For example, variable

or model selection is a typical problem in statistics. The goal is to select a subset of variables

and to eliminate the rest from usually a linear regression model to maximize the predictive

accuracy, or to get the “big picture” with the strongest effects of predictors [13, 19]. The

selected subset of variables however predict a single variable of interest. In wireless sensor

networks, selected observations will be used to predict all unobserved points of interest.
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The Gaussian Process (GP) model is a generalization of linear regression based on mul-

tivariate Gaussian distributions [50]. It has been applied to select optimal locations for spa-

tial monitoring using wireless sensor networks, e.g. prediction of road traffic volumes and

controlling traffic signal lights [46, 57, 65]. The [46] shows that a Gaussian Process model

has better predictive accuracy of road traffic volumes than a correlation-coefficient based

method.

Mutual information functions were proved to be submodular functions [33]. Submod-

ularity reflecting the intuitive property of diminishing returns can be exploited to develop

strongly polynomial time combinatorial algorithms with provable theoretical performance

guarantees ([22, 26, 35, 53]). Even though many observation selection problems ([14, 27, 31,

38, 43, 54]) utilized the important structural property to develop efficient and near optimal

algorithms with greedy heuristics, when other criteria besides the informativeness needed

to optimize such as communication costs, etc., the greedy heuristics then performed arbi-

trarily badly as shown in [34, 42]. Non-myopic algorithms have been developed in [34, 36,

28] that can leverage near-optimally among multiple criteria besides the value of informa-

tion obtained from observations. Submodular functions have not only inspired researchers

to develop efficient algorithms but also to study the theoretical foundation of solving com-

plex combinatorial problems. The authors in [12] introduced an algorithmic framework of

studying the combinatorial problems with multi-agent based submodular cost functions and
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presented an approximate algorithm with a theoretic lower bound.

3.3 PROBLEM STATEMENT

The observational values of sensors are not only affected by its sensing time but also by

its locations. One of the problems is to determine where to place those sensors, because a

limited budget usually not allows deployment at everywhere especially for a large sensing

area. For example, when wireless sensors are deployed to monitor vehicular traffic flows

in a metropolitan area, it would not be feasible to deploy a wireless sensor on every road

segment. Selecting optimal locations for placing sensors thus becomes such an important

problem that these sensors can be best utilized to predict road traffic volumes and to guide

traffic signal controllers to adapt in order to reduce traffic jams.

A road network is illustrated in Fig. 3.1. It is comprised of nine junctions indicated

by the squares having four green dots inside. A sensor can be deployed on each end of a

road segment. There are totally 72 potential locations for sensor placement. The problem

is to select sensor locations that maximize the informative values of their observations for

building an accurate traffic model as possible.

Conditional probability P(XV \A | XA) is helpful to analyze traffic flow volumes at loca-

tions where no sensors are placed given the observations from deployed sensors at locations

A . If we use entropy to measure uncertainty then the problem becomes to select a subset of
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Figure 3.1: A traffic road map with potential sensor deploying locations
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locations A out of the full set V that minimizes the conditional entropy:

H(XV \A | XA) =−

∫∫
p(xV \A ,xA) log2 p(xV \A | xA)dxV \A dxA (3.1)

where XV \A denotes the random variable of observational values at locations V excluding A ,

and H(XV \A | XA) is the entropy of conditional joint probability distribution of the random

variables at unobserved locations V \A given the observations at locations A .

Because of the chain rule, H(XV \A | XA) = H(XV )−H(XA), minimizing H(XV \A | XA)

is equivalent to maximizing H(XA). Hence, the problem can also be formulated as selecting

the observations at location set A such that:

A∗ = argmaxA⊂V H(XA) (3.2)

which means finding a subset of locations where its sensing observations are the most uncer-

tain.

3.4 MULTIVARIATE GAUSSIAN MODEL FOR SENSOR PLACEMENT

The task is to deploy wireless sensors on the road map in Fig. 3.1 to monitor traffic

volumes. Each sensor will record the number of cars passing it within a time interval. Con-
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sidering observations of each sensor as a random variable, if we assume that observations

collected from all of the locations have a joint multivariate Gaussian distribution, then any

finite number of the collection of these random variables also have a joint Gaussian distri-

bution. This modeling is also known as a Gaussian Process (GP) [50]. The joint Gaussian

probability distribution is:

P(XV = xV ) =
1

(2π)n/2|ΣV V |
1/2

e−
1
2 (xV−µV )T Σ−1

V V
(xV−µV ) (3.3)

where V denotes the whole set of sensor locations with |V | = n, µV is the mean vector,

and ΣV V is the covariance matrix. If we take a subset A from V , then it also satisfies

XA ∼ N (µA ,ΣAA) where µA is a sub vector of µV , and ΣAA is a corresponding submatrix

of ΣV V . This consistency property is also known as the marginalization property. The

nice property also applies to the conditional probability P(XU | XA = xA) that is a joint

probability distribution of observations at location subset U conditional on the observations

xA at location subset A , assuming U,A ⊂ V . Its conditional mean µU|A and variance σ2
U|A

are given by:

µU|A = µU +ΣUA Σ−1
AA(xA −µA) (3.4)

σ2
U|A = ΣUU−ΣUA Σ−1

AA ΣAU (3.5)
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where µA is the mean vector of random variable set XA ; ΣUU , ΣAA , ΣUA and ΣAU are the

corresponding sub-matrices of ΣV V . For example, ΣUA is formed by the U rows and the A

columns in ΣV V .

3.5 GREEDY HEURISTICS

3.5.1 MAXIMIZING ENTROPY CRITERION

For solving the problem formulated in (3.2), a greedy method is to start with the selection

set as A0 = /0, then iteratively adding the next location y∗i+1 into Ai that includes all the indices

of selected locations in the ith iteration. y∗i+1 ∈ V \Ai has the highest conditional entropy:

y∗i+1 = argmaxyi+1
H(Xyi+1

| XAi
), (3.6)

Based on the multivariate Gaussian model and the entropy definition in (3.1), we can

calculate the entropy of a conditional probability distribution P(Xy | XA) as:

H(Xy | XA) = logσXy|XA
+

logπ

2
+

log2

2
+

1

2

=
1

2
logσ2

Xy|XA
+

1

2
(logπ+ log2+1) (3.7)
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where σ2
Xy|XA

can be computed using (4.4). Because the log function is monotonic, the value

of σ2
Xy|XA

is proportional to that of H(Xy | XA).

Algorithm 3: Greedy algorithm of maximizing entropy H(A)

Input: covariance matrix ΣV V , k

Output: selection set A(A ⊆ V ,and |A |= k)
1 begin

2 A ← /0
3 for i = 1 to k do

4 foreach y ∈ V \A do δy← σ2
Xy|XA

5 y∗← argmaxy∈V\A δy

6 A ← A ∪{y∗}

7 end

8 end

The algorithm of maximizing the entropy criterion is given in Algorithm 3. Notice that

the value of H(Xy |XAi
) decreases as the size of Ai increases. In other words, if there are more

observations collected at different locations, then it will make more certain of the predictive

value for a unobserved location. Considering the sequence of decreasing H(Xy | XAi
) values

(when fixed y) as Ai gets bigger, we actually do not have to calculate δy for all y∈V \A every

time at the line 4 in Algorithm 3. Because that values of δy computed in current selection

iteration will be no bigger than theirs in the previous iteration when A is in a smaller size.

Based on this observation and the idea of lazy evaluation in [33], an improved version

of greedy algorithm for maximizing the entropy criterion is presented in Algorithm 4. δy∗ is

supposed to store the value of H(Xy∗ | XA), but we actuallly only need to compute σ2
Xy∗ |XA
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Algorithm 4: Greedy algorithm of maximizing entropy H(A) using lazy evaluation

Input: covariance matrix ΣV V , k

Output: selection set A(A ⊆ V )
1 begin

2 A ← /0
3 foreach y ∈ V do δy←+∞ ; Φy← 0

4 for i = 1 to k do

5 repeat

6 y∗← argmaxy∈V \A δy

7 if Φy∗ == i then

8 break

9 else

10 δy∗ ← σ2
Xy∗ |XA

11 Φy∗ ← i

12 end

13 until 0

14 A ← A ∪{y∗}

15 end

16 end

36



because σ2
Xy∗ |XA

∝ H(Xy∗ | XA). Φy∗ records in which iteration of the for loop that δy∗ was

updated. If δy∗ is the maximal and is updated in the current iteration, then y∗ will be selected

into the observation set A . This saves computation of other δy’s, for the rest of y ∈ V \A .

We will show how much computation can be saved in the experimental section.

3.5.2 MAXIMIZING MUTUAL INFORMATION CRITERION

Besides the entropy based greedy heuristic, another heuristic is to find the observation

locations A∗ that maximizes the entropy reduction:

A∗ = argmaxA⊂V (H(XV \A)−H(XV \A | XA)) (3.8)

This entropy reduction is also known as the Mutual Information (MI). The mutual infor-

mation of selection set A is denoted as MI(A), and is given by the following formula:

MI(A) = I(XV \A ;XA)

= H(XV \A)−H(XV \A | XA)

= H(XA)−H(XA | XV \A) (3.9)

The mutual information criterion was originally proposed by Caselton and Zidek in [3].

Krause et al.in [33] used this criterion to place temperature and rain fall sensors. They found
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out that the mutual information led to a more intuitively central placement in a sensing space

than the entropy criterion did. The latter instead placed sensors mostly at boundaries.

Solving the problem in (4.8) turns out to be NP-hard. However, Krause et al. [33] proved

that the set function of the mutual information MI(A) is a submodular function. This discov-

ery eventually led to a development of an efficient approximate algorithm. The concept of

submodularity was originally introduced by Nemhauser et al. [44]. A set function F is sub-

modular, if for all A ⊆B ⊆V and i∈V \B it holds that F(A∪ i)−F(A)≥F(B∪ i)−F(B).

This demonstrates an inherent property of a submodular function, diminishing returns. That

is, adding another observation to a smaller set of observations helps more than adding it to a

larger set.

The problem in (4.8) is to find the observation set A that maximizes the submodular

function, MI(A). For a monotone submodular set function F such that F(A ∪ i)≥ F(A) for

all i ∈ V , a greedy algorithm selecting k elements that maximizes F(AG) (where |AG| = k)

is guarantee to have an optimal lower bound. This fundamental result was discovered by

Nemhauser et al. [44], and it was stated as below:

Theorem 1 (Nemhauser et al. [44]) Let F be a monotone submodular set function over a

finite ground set V with F( /0) = 0. Let AG be the set of the first k elements chosen by the

greedy algorithm, and let OPT = maxA⊂V ,|A|=kF(A). Then, F(AG)≥ (1− ( k−1
k
)k)OPT ≥

(1−1/e)OPT.
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The greedy algorithm schema is to select the element i∗ that maximizes F(A∪ i)−F(A).

If the F(A) is monotonic, it guarantees that the greedy algorithm will produce a solution at

least (1−1/e)OPT , where OPT is the optimal solution value.

The mutual information in (3.9), however, is not always monotonically increasing since

MI( /0) = 0 and MI(V ) = 0. It will actually keep increasing, and after the selection set

reaches to a certain size it will then become decreasing. However it holds the monotonicity

for a partial selection although not for all the sensor locations. Krause et al. [33] proves

that the mutual information is ε-approximately monotonic for selection sets of size up to 2k,

and shows that the quality of a selection given by the greedy algorithm has a optimal lower

bound:

Theorem 2 (Krause et al. [33]) The greedy algorithm, y∗= argmaxyMI(A∪y)−MI(A), is

guaranteed to select a set A of k sensors for which MI(A)≥ (1−1/e)(OPTMI− kε), where

OPTMI is the optimal solution value given by the mutual information set function.

This theorem not only provides a lower bound for the performance of the greedy algo-

rithm compared with the optimal solution, but also implies an upper bound for the optimal

solution of maximizing the mutual information.

An efficient version of the greedy algorithm using lazy evaluation was presented by

Krause et al. in [33]. It benefits from the fact that the sequence of mutual information gains
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denoted as ∆y, where ∆y = MI(A ∪ y)−MI(A), is monotonically decreasing during the

course of the greedy algorithm.

The mutual information gain can be deduced further as:

∆y = MI(A ∪ y)−MI(A)

= H(y | A)−H(y | A) (3.10)

=
1

2
log2(

σ2
Xy|XA

σ2
Xy|XA

) (3.11)

where,A denotes V \(A ∪ y) . The deduction of H(y | A)−H(y | A) is obtained after plug-

ging (3.9), and can be further extended by using (3.7) if we assume a multivariate Gaussian

model.

The efficient greedy algorithm of maximizing the mutual information is shown in Algo-

rithm 5. We rewrite it as in the context of the multivariate Gaussian model given in sec-

tion 3.4. This approximate algorithm is to select a sensor location that maximizes the mutual

information gain.

The Φy∗ is used to record in which iteration ∆y∗ is being updated. The lazy evaluation

saves a lot of computation of ∆y based on the insight that a sequence of mutual information

gains given a fixed y will decreased as set A gets more observations being added. It will

select the y∗ if the maximal ∆y∗ is updated in the current iteration. Otherwise it will update
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Algorithm 5: Greedy algorithm of maximizing mutual information gain MI(A ∪ y)−
MI(A) using lazy evaluation

Input: covariance matrix ΣV V , k

Output: selection set A(A ⊆ V ), mutual information gains ∆
1 begin

2 A ← /0
3 foreach y ∈ V do ∆y←+∞ ; Φy← 0

4 for i = 1 to k do

5 repeat

6 y∗← argmaxy∈V \A ∆y

7 if Φy∗ == i then

8 break

9 else

10 A ← V − (A ∪ y∗)

11 ∆y∗ ←
1
2 log2(

σ2
Xy∗ |XA

σ2
Xy∗ |XA

)

12 Φy∗ ← i

13 end

14 until 0

15 A ← A ∪{y∗}

16 end

17 end
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∆y∗ and Φy∗ , and repeat the selection process.

The algorithm’s complexity is O(kn3). It doesn’t include the complexity of computing

the covariance matrix, which is assumed as an input. When a data set is large in terms of its

number of both instances and columns, the complexity of computing the covariance matrix

will become very expensive.

3.6 EXPERIMENTS OF SENSOR PLACEMENT IN A SIMULATED ROAD

TRAFFIC MAP

In this section, we run the two greedy heuristics that optimize entropy and mutual in-

formation criteria, respectively, for sensor placement on the traffic road map as shown in

Fig. 3.1. We compare the resulted placement maps that shed lights on further understanding

of these two optimization criteria in selecting sensor spatial observations.

The traffic road map was created in the Green Light District simulator. The GLD [61] is

an open source software for simulating road traffic flows and traffic light controlling strate-

gies. We implemented an sensor class in the GLD system for studying wireless sensor net-

works aided traffic light controls [46, 57]. The road map in Fig. 3.1 consists of 9 intersections

with traffic light controllers, and 8 edge nodes that generate vehicles and serve as sources

and destinations of corresponding traffic flows. There are totally 72 locations indicated as the

unfilled round spots for potential traffic sensor deployment. Each location counts the number
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of vehicles passing by within every 50 timestamps. We continually sensed a thousand rows

of samples, for each row it’s comprised of vehicle counts from all the 72 locations. We took

first 700 rows of samples as the training data set for building a multivariate Gaussian model,

and the rest 300 rows of samples as the test data set for testing performances of the selection

algorithms.

0 10 20 30 40 50 60 70
0

2

4

6

8

10

12

14

16

18

Number of Placements

P
e
rc

e
n
ta

g
e
 o

f 
F

u
n
c
ti
o
n
 E

v
a
lu

a
ti
o
n
s
 

 

 

Mutual information

Entropy

Figure 3.2: Efficiency comparison by the two greedy heuristics both using lazy evaluation

First we will look at how efficient the lazy evaluation strategy is. Algorithm 3 for maxi-

mizing entropy H(A) computes σ2
Xy|XA

for all y ∈ V \A in every iteration of selecting a sen-

sor location. However the lazy evaluation strategy makes Algorithm 4 to avoid computing all

σ2
Xy|XA

in every iteration. Fig. 3.2 shows how much percentage of the function evaluations
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of σ2
Xy|XA

have been accounted for during each selection iteration in Algorithm 4. It also

shows the efficiency of function evaluations given by the mutual information-based heuristic

algorithm 5. The so called lazy evaluation is essentially an upper-bound-based pruning that

works really effective, keeping both of heuristics under 12% of total functional evaluations

for all kinds of placements. It also shows that the mutual information-based heuristic has a

little higher cost than the entropy-based heuristic.
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Figure 3.5: Mutual information on traffic sensor selections
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We applied the greedy algorithms of optimizing the entropy and the mutual information

criteria and a random selection method for placing sensors on the traffic road map. Fig. 3.3

compares the results in predicting for traffic volumes of all unobserved locations on the map

using a test data set. Prediction errors are measured in terms of the Root Mean Square Error.

Every plotting point by the random selection method was an average of 100 random trials.

The traffic prediction model based on the selected sensor observations given by the mutual

information optimization criterion performs slightly better than that by the entropy criterion

before approximately 30 observation selections (a range-adjusted version is also drawn in

Fig. 3.4 to clearly show the improvement). After that, the mutual information criterion-

based heuristic is outperformed by the entropy criterion-based heuristic. This is caused by

the non-monotonicity of a mutual information function after a certain number of selections,

which is demonstrated in Fig. 3.5. It makes sense to disregard the selection results given

by the mutual information heuristic after the 30 sensor selections. Fig. 3.4 also shows that

random selections perform much worse than both of the greedy heuristics.

Fig. 3.5 shows values of the mutual information (MI(Ai)) and the mutual information

gains (MI(Ai∪ y∗i+1)−MI(Ai)) during the course of sensor selection. The selection process

is based on the multivariate Gaussian model that was built using a training data set. We

can see in Fig. 3.5a that the gains on mutual information are positive though keeping de-

creased until the selection size reaches 34. It becomes negative afterwords that means the
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selection model based on the mutual information criterion obtains no gains after selecting 34

sensors. This change point also reflects in Fig. 3.5b, which shows that mutual information

values monotonically increase and then decrease after passing the maximum value at select-

ing 34 sensors. Fig. 3.5 shows the qualities of observation selections based on the mutual

information heuristic, which in turn explains why the selection method based on the mutual

information criterion starts getting worse in predicting for traffic volumes compared to the

entropy criterion-based method after deploying around 30 sensors as shown in Fig. 3.3.

Fig. 3.6 shows two maps of sensor deployment. The sensor locations were determined

by the two greedy heuristics based on the mutual information and the entropy, respectively.

Because the mutual information criterion works only within the 34 sensor selections in this

example (see Fig. 3.5), we therefore set the selection size as 34. The filled round spots

are denoted as the locations where sensors are placed. The number of common locations

selected by both the greedy heuristics is 19, and the number of different placement locations

is accounted for 15, a 44.12% of the whole set of sensor locations.

Fig. 3.6a shows that the sensor locations selected by optimizing the entropy criterion

are mostly concentrated around the intersections and very few sensors are deployed near

the edges. In contrast, the map in Fig. 3.6b shows that the sensor locations selected by

optimizing the mutual information criterion are more dispersed, and there are more sensors

deployed near the edge nodes.
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(a) Sensor placement by optimizing entropy criterion

(b) Sensor placement by optimizing mutual information criterion

Figure 3.6: Sensor deployment maps
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Every road segment can have two sensors respectively placed at each end of it. Intuitively,

the sensor readings of the two sensors placed on the same road would be highly correlated. It

can be seen from Fig. 3.6b that mutual information criterion-based heuristic never places two

sensors on the same road segment in one direction. On the contrary, as shown in Fig. 3.6a,

there are three road segments with two sensors placed by the entropy criterion-based heuristic

method.

By comparing the two maps, the mutual information criterion-based heuristic picks loca-

tions more evenly than the entropy criterion-based heuristic does, and it also avoids repeat-

edly selecting the observational locations that have strong correlations.

3.7 CONCLUSIONS

In this chapter, for selection of sensor observations in the spatial domain, we apply two

greedy heuristics based on the multivariate Gaussian model to select the optimal locations for

deploying traffic monitoring sensors. Experimental results show that the entropy criterion-

based heuristic places sensors mainly around intersections whereas the mutual information

criterion-based heuristic disperses sensors more widely across the road network. Moreover,

we discover that the mutual information criterion is better than the entropy criterion in avoid-

ing repeatedly selecting strong correlated locations on the same road segments. However the

mutual information criterion-based heuristic performs poorly in placing large number of sen-
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sors.
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CHAPTER 4

COMPARISON OF MODEL-BASED OPTIMAL

OBSERVATION SELECTIONS

4.1 INTRODUCTION

The technology of wireless sensor networks has been popular for more than a decade in

both academia and industry. Through the observations obtained by tiny embedded wireless

sensors, we can have a better understanding of the natural environment, human activities

and their interactions. Researchers have been trying to turn the current relatively small-

scale wireless sensor networks to a future generation of large-scale, energy sustainable, and

extensively long-standing deployments. One of the biggest hurdles is the constrained power

source. Today’s wireless sensors are mostly battery powered. It is not a viable way for

human intervention to replace the batteries for thousands of wireless sensor nodes. The high
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maintenance overhead prevents the wireless sensing technology from prevailing in real world

large-scale applications.

A common technique for extending the life time of a wireless sensor network is to reduce

its duty cycles, i.e. a sensor wakes up for a small amount of time in a fixed period of interval

to sense and go to sleep the rest of the time. Besides reducing sensing times for saving

energy, it would be desirable to have the informative values obtained from the sensing data

as high as possible. The observations should be worth of their energy costs. This is even

more important for the next generation of scalable wireless networked sensors.

Tomorrow’s sensors will be much smaller and energy sustainable. They can harvest en-

ergy from the environment [9]. The ambient power sources in their surrounding such as heats,

mechanical movements, electromagnetic induction, electrochemical reactions and etc., make

sensing more sustainable and hassle-free. However, energy-harvesting on wireless sensors

also brings a lot of challenges. First of all, the ambient power supply is often intermittent,

and the smaller size sensor nodes are, the less power they can store. Moreover, the har-

vested energy usually needs to be accumulated to reach a certain level before being capable

of performing some operations like taking a sensor reading or transmitting a packet. In such

situations, the energy harvested sedulously should never be taken for granted. Instead, every

sensing observation paid by the harvested energy should be as rewarding as possible.

Making optimal scheduling of observations with a limited power budget to maximize
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their information gains has become an important problem in real world applications. It is a

trade off between obtaining more and useful information, versus making less observations.

The optimization of selecting observations can be considered as a subset selection problem.

For example in a task of monitoring indoor temperature, if a wireless sensor is deployed to

observe for only once per hour, and we want to turn on the sensor k times for a day, then it

becomes such a subset selection problem that k out of the total 24 time points are chosen so

that the k observations will be the best selection among the other options for having the most

accurate predictions of temperature readings at the unobserved time points.

In the context of statistics, the problem of subset selection or variable selection deter-

mines a subset of variables and eliminates the rest from usually a linear regression model,

in order to increase predictive accuracy or to get the “big picture” with the strongest effects

of predictors [13, 19]. But the selection of variables are usually for predicting only a single

variable of interest. However, in the sensor scheduling case, the subset selection needs to

predict the temperature distribution that covers all the unobserved time points.

Probabilistic inference in graphical models [23] provides an effective tool to deal with

the quantification of uncertainty existed in the subset selection problem. The optimal sub-

set of observations is the one that minimizes the uncertainty of the posterior conditional

probability distribution of the unobserved variables. Hidden Markov Models (HMMs), the

chain graphical models, are often used for modelling time series data. The posterior con-
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ditional probability of unobserved variables given observations can be efficiently computed

on a HMM. The VoIDP algorithm [30] was claimed to be the first optimal algorithm for

efficiently making the subset selection on the chain graphical models. The name “VoIDP”

was after its usage of dynamic programming approach to optimize the information value.

We corrected the original VoIDP algorithm by fixing a mistake in it [49]. In this chapter,

we apply the corrected version of VoIDP algorithm on a HMM to solve the subset selection

problem for sensor scheduling.

Gaussian Process (GP) is a generalization of linear regression based on multivariate nor-

mal distributions [50]. It is often applied to spatial monitoring problems [32, 46]. Greedy

methods based on heuristics, such as entropy and mutual information, can efficiently make

a selection of time points. The mutual information [3] criterion, which measures entropy

reduction, was shown to have better solutions than the entropy criterion in a couple of sen-

sor placement problems [32]. In this chapter, we use the GP based approach with both the

entropy and mutual information heuristics to solve the sensor scheduling problem.

In summary, the objective of the sensor scheduling problem is to select a subset of time

points to turn on a sensor and keep it off at the other time to minimize prediction errors at

unobserved time points. Our contribution is employing the GP model based selection ap-

proach and our corrected version of VoIDP algorithm based on graphical models to solve

the scheduling problem and comparing their performances. The GP based approach is more
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data driven than the graphical model based approach. But the latter, such as a HMM, can

capture the underlying structures of the latent variables that determines the observational

values in time series. Through comparison experiments, we find out that the GP based se-

lection approach achieves lower prediction error than the HMM based approach given with

accurate observations. However the HMM based selection approach performs more stably

and robustly than the GP based approach with erroneous observations.

We will briefly describe the graphical model based, particularly HMM based, selection

approach in Section 4.2, and the GP based selection approach in Section 4.3. The experimen-

tal results will be presented and discussed in Section 4.4. Following that is the Conclusions.

4.2 PROBABILISTIC GRAPHICAL MODEL BASED OBSERVATION SE-

LECTION

A sensor’s time series of observations can be modeled using a probabilistic graphical

model, such as a HMM. Each observation variable at a time point has a distribution over

some hidden states such as different time periods or some events etc. Any observations made

on the chain graphical model will contribute to the predictions of values for other unobserved

variables. But the degree of the contributions depends on the selection of observations.

The quality of a selection of observations is measured based on how the observation

subset changes the shape of the probability distribution of an unobserved variable. The prob-
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ability distribution of any unobserved variable conditioned on a subset of observed variables

can be efficiently computed using a trained HMM. A utility reward can thus be defined by

the entropy on the posterior conditional probability distribution. When a subset of observa-

tion variables is selected, an expected total reward across the entire time chain is computed.

Hence, the sensor scheduling problem can be formulated as a subset selection problem on a

chain graphical model as follows...

Given random variables XV = (X1, . . . ,Xn), a subset of the variables, XA = (Xi1, . . . ,Xik)

is observed as xA . P(XV | XA = xA) is the conditional observation distribution over all

variables given the observation xA . A total reward R(P(XV | XA = xA)) is also given. The

subset selection problem is:

A∗ = argmaxA ∑
xA

P(XA = xA)R(P(XV | XA = xA)), (4.1)

where the expected total reward is used because the future observations of XA are unknown.

The selections are made based on the model before knowing any observational values. Be-

cause of conditional independency on chain graphical models, the expected total reward to

maximize in (4.1) is also the summation of all the expected local rewards, where an expected

local reward R j(X j | XA) equals to ∑
xA

P(XA = xA)R j(X j | xA). A local reward R j(X j | xA)

depends on P(X j | XA = xA), which is the marginal distribution of variable X j conditioned

on observations XA = xA . We can define the reward by using conditional entropy, that is,
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R j(X j | xA) =−H(X j | xA) =
∫

P(x j,xA) log2 P(x j | xA)dx j .

The conditional independence property of chain graphical models simplifies the evalua-

tion of P(X j | XA). If only the observations made before a time point are used, then the eval-

uation of P(X j | XA) only depends on P(X j | Xi), where Xi is the closest observation made

before j. Moreover, the conditional independence property also decomposes the expected

total reward for the entire chain into the local rewards for sub-chains that are separated by

the observations. This important property inspired an efficient approximate algorithm based

on the divide-and-conquer strategy [30].

The subset selection problem in (4.1) is a combinatorial optimization problem like the

Knapsack problem although its utility function is more computationally complicated. It is a

NP-hard problem. The Knapsack problem admits a pseudo-polynomial time algorithm, and

all known such algorithms for NP-hard problems are based on dynamic programming [58].

The authors in [29, 30] developed an algorithm called VoIDP to solve the subset selection

problem, and it was claimed to be the first optimal algorithm for selecting the optimal ob-

servations on chain graphical models. It implements a dynamic programming approach that

exploits the chain structured models to efficiently evaluate the expected total reward. The

time complexity of the algorithm was proved to be (1
6n3 +O(n2))B given budget B in terms

of the number of evaluations of the rewards, where n = |V |. Although it works efficently

and optimally with a chain graphical model, it is still much harder to be applied on more
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general forms of graphical models. It was proved that the problem of selecting a subset of

observations for even discrete poly-tree is computational intractable.

We found out a mistake in the originally published VoIDP algorithm that fails to give

correct solution. We corrected the mistake and presented an improved version of the algo-

rithm in [49]. In the experiments, we will use the corrected VoIDP algorithm that will be

briefly presented in the following. Once the optimal observations are selected, the predictive

value will be calculated by taking the expected mean of a posterior conditional observation

distribution.

Algorithm 6 shows the corrected version of VoIDP. The first part of the algorithm dy-

namically computes a three-dimension (a,b and k) table, where a and b are the two ends of

a chain, and k is the budget. Each cell in the table is a tuple of two elements: La:b(k) and

Φa:b(k). La:b(k) represents the optimal expected total reward of the sub-chain a : b with the

budget k. sel( j) is the expected total reward of the sub chain a : b obtained by observing

at time point j, and sel(0) is the reward when no observation is made. Φa:b(k) stores the j

that maximizes the value of sel( j). La:b(0) is the base case, and the recursion for La:b(k) is

either La:b(0) or max
a< j<b,β j≤k

{sel( j)}. It means that we can choose not to spend any more of

the budget to reach the base case, or select the optimal observation at j with the cost β j. C j

denotes penalty on the reward by selecting at j. In our experiments, we let C j be zero and β j

be one.
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Algorithm 6: Improved VoIDP algorithm for optimizing observation selection on chain

graphical models (restated in Chapter 4)

Input: Budget B, rewards R j, costs β j and penalties C j ( j ∈ V , |V |= n)

Output: Optimal selection of observations at A

1 begin

2 for 0≤ a < b≤ n+1 do compute La:b(0)
3 for k = 1 to B do

4 for 0≤ a < b≤ n+1 do

5 sel(0)← La:b(0)
6 for j = a+1 to b−1 do

7 sel( j)← R j(X j|X j)−C j +La: j(0)+L j:b(k−β j)
8 end

9 La:b(k)←max j∈{0,a+1,...,b−1}sel( j)

10 Φa:b(k)← argmax j∈{0,a+1,...,b−1}sel( j)

11 end

12 end

13 a← 0;b← n+1

14 k← B

15 A ← /0
16 repeat

17 y←Φa:b(k)
18 if y > 0 then

19 A ← A ∪{y}
20 a← y

21 k← k−βy

22 else

23 break

24 end

25 until k ≤ 0

26 end
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The second part of Algorithm 6 computes the optimal selections by tracking through the

values of Φa:b(k). Initially a and b are set to represent the entire chain. It starts with the full

budget B and the empty selection set A . In the following loop, it finds the optimal selection

y from Φa:b(k), and adds it into the selection set A . Whenever a selection is made, it spent

a budget of βy and cuts the chain into two parts, a : y and y : b. The searching of optimal

observation will be continued on the second sub-chain y : b. This process will stop when the

budget is used up. The bold faced a← y is important because it makes the tracking to fall

into the correct domain in the whole table, but it was not in the original VoIDP algorithm.

4.3 GAUSSIAN PROCESS BASED OBSERVATION SELECTION

A Gaussian process (GP), by definition [50], is a collection of random variables, and

any finite number of variables in the collection also have a joint Gaussian distribution. For

scheduling a sensor, we assume that the joint probability of its observations at all the time

points is a multivariate Gaussian distribution:

P(XV = xV ) =
1

(2π)n/2|ΣV V |
1/2

e−
1
2 (xV−µV )T Σ−1

V V
(xV−µV ) (4.2)

where V denotes the whole set of the variable indices with |V | = n. µV is the mean vector

and ΣV V is the covariance matrix. A subset A from V also satisfies that XA ∼N (µA ,ΣAA),
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where µA is a sub vector of µV and ΣAA is the relevant sub-matrix of ΣV V . This consistency

property is also known as the marginalization property.

The nice property also holds in P(Xi | XA = xA), the probability distribution of Xi condi-

tioned on the observational values xA of a selected variable set XA . This posterior conditional

probability is also a Gaussian distribution with conditional mean µi|A and variance σ2
i|A given

by:

µi|A = µi +ΣiA Σ−1
AA(xA −µA), (4.3)

σ2
i|A = Σii−ΣiA Σ−1

AA ΣAi, (4.4)

where µA is the mean vector of variable set XA , ΣiA and ΣAi are the corresponding sub-

matrices of ΣV V . For instance, the ΣiA is calculated by taking the ith row and the A columns

of ΣV V . µi and Σii can be considered as the prior mean and the prior variance of the obser-

vations at i.
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4.3.1 THE ENTROPY HEURISTIC

The conditional probability P(Xi | XA) carries very important information for evaluating

the quality of the selection set A , which can be measured by the conditional entropy:

H(Xi | XA) = −
∫∫

P(xi,xA) logP(xi | xA)dxidxA

=
1

2
logσ2

i|A +
1

2
(logπ+ log2+1), (4.5)

where P(Xi | XA) is assumed as a Gaussian probability distribution. Note that the entropy

is a monotonic function of its variance σ2
i|A , which can be evaluated ahead of making any

observations (4.4).

The sensor scheduling problem becomes to select a subset of time points at A (out of

the variable index set V ) to turn on the sensor and to keep it off at all the other time (as of

indices in V \A). The subset selection can be optimized by minimizing the entropy H(XV \A |

XA). This is also equivalent to find a subset A that maximizes H(XA), as the chain rule for

conditional entropy holds that H(XV \A | XA) = H(XV )−H(XA). The optimization problem

turns out to be a NP-hard problem. To solve it, a greedy heuristic is to iteratively find the next

selection y∗i+1 ∈ V \Ai that has the highest conditional entropy given the current selection

set Ai :

y∗i+1 = argmaxyi+1
H(Xyi+1

| XAi
), (4.6)
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Algorithm 7: Greedy algorithm for maximizing entropy H(A) (restated in Chapter 4)

Input: covariance matrix ΣV V , selection size k

Output: selection set A(A ⊆ V ,and |A |= k)
1 begin

2 A ← /0
3 for i = 1 to k do

4 foreach y ∈ V \A do δy← σ2
y|A

5 y∗← argmaxy∈V \A δy

6 A ← A ∪{y∗}

7 end

8 end

Algorithm 7 shows the greedy algorithm based on the entropy heuristic. k is the size

of the selection and the σ2
y|A can be computed using (4.4). Because the log function is

monotonic, σ2
y|A is proportional to H(Xy | XA). That means finding a selection at y that

maximizes H(Xy | XA) is equivalent to finding such a y that maximizes σ2
y|A .

The computation of σ2
y|A is expensive. Let |V | = n, there are n times of these computa-

tions when i = 1, and (n−k+1) times when i = k. Hence, Algorithm 7 has totally
(2n−k+1)k

2

times of evaluations of σ2
y|A .

4.3.2 THE MUTUAL INFORMATION HEURISTIC

Another criterion for optimizing the subset selection is the mutual information, which

was originally proposed by Caselton and Zidek in [3]. The mutual information of a subset A
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denoted as MI(A) is defined as the following, and it is actually the entropy reduction.

MI(A) = I(XV \A ;XA)

= H(XV \A)−H(XV \A | XA)

= H(XA)−H(XA | XV \A) (4.7)

The authors in [32] demonstrated the advantage of the mutual information criterion over

the entropy criterion in sensor placement for a couple of spatial monitoring applications.

They found out that the mutual information criterion leaded to a more intuitive sensor place-

ment than the entropy criterion did. The mutual information criterion placed sensors in the

central areas of a sensing space, whereas the entropy placed sensors mostly at the boundaries.

In contrast to the entropy based selection maximizing only the uncertainty of the selection

set A , the mutual information criterion maximizes the reduction of the entropy over the rest

of the variable space V \A before and after observing at A . That is, to schedule a sensor,

we will find a subset of time points at A∗ such that:

A∗ = argmaxA⊂V MI(A) (4.8)

Optimization of the mutual information is also a NP-complete problem. A greedy algo-

rithm was developed in [32] that selects the next variable y maximizing the mutual informa-
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tion gain:

∆y = MI(A ∪ y)−MI(A), (4.9)

The greedy heuristic chooses the next selection that provides the maximal increase in the

values of mutual information.

In the context of Gaussian Process and based on the entropy equation in (4.5), Equa-

tion (4.9) can be further deduced as:

∆y = MI(A ∪ y)−MI(A)

= H(y | A)−H(y | A) (4.10)

=
1

2
log2(

σ2
y|A

σ2
y|A

) (4.11)

where A means all the variable indices in V excluding A and y, which can also be denoted

as V \ (A ∪ y).

An interesting notice about the mutual information gain ∆y is that it is monotonically

decreasing as the selection set A gets larger. It inspired the enhanced greedy algorithm with

lazy evaluation [32].

The greedy algorithm with lazy evaluation for maximizing the mutual information is

presented in Algorithm 8. We rewrite it as in the context of the Gaussian Process model.

Φy∗ records in which iteration ∆y∗ is updated. The lazy evaluation saves a lot of compu-

65



Algorithm 8: Greedy algorithm for maximizing mutual information gain MI(A ∪y)−
MI(A) using lazy evaluation (restated in Chapter 4)

Input: covariance matrix ΣV V , selection size k

Output: selection set A(A ⊆ V ), mutual information gains ∆
1 begin

2 A ← /0
3 foreach y ∈ V do ∆y←+∞ ; Φy← 0

4 for i = 1 to k do

5 repeat

6 y∗← argmaxy∈V \A ∆y

7 if Φy∗ == i then

8 break

9 else

10 A ← V − (A ∪ y∗)

11 ∆y∗ ←
1
2 log2(

σ2
y∗|A

σ2
y∗|A

)

12 Φy∗ ← i

13 end

14 until 0

15 A ← A ∪{y∗}

16 end

17 end
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tation of ∆y based on the insight that the sequence of the mutual information gains on a fixed

y decreases as set A gets bigger. It will select the y∗ if the maximal ∆y∗ is updated in the

current iteration, otherwise it will update ∆y∗ and Φy∗ and repeat the selection process.

When |V |= n, Algorithm 8 has 2(n+k−1) times of evaluations of either σ2
y∗|A or σ2

y∗|A

in the best case. This is more efficient and scalable than Algorithm 7 when n becomes very

large.

Algorithm 8 is not only efficient, but also provides its solution with a theoretic bound to

the optimal solution. Although the mutual information function in (4.7) is not always increas-

ing, the authors in [32] proved that it is still a partially monotonic submodular function. Ac-

cording to [44], a greedy algorithm, such as the Algorithm 8, which optimizes a monotonic

submodular function guarantees a theoretical performance lower bound of (1− 1/e)OPT,

where OPT is the optimal solution value.

After a subset of observations at A is selected, the conditional probability distribution of

an unobserved variable i given the observations of XA can be computed as P(Xi | XA). We

will use its mean computed by (4.3) as the predictive value of the observation variable Xi.
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4.4 COMPARISON EXPERIMENTS IN WIRELESS SENSOR SCHEDUL-

ING

In this section, we will compare the probabilistic graphical model based approach and the

Gaussian Process model based approach in solving the subset selection problem for schedul-

ing a sensor. Specifically we want to select a subset of time points in size k out of totally

24 time points for turning on a sensor to sense and keeping it off at the other time. For

convenience, in the following experiments, we will refer to the probabilistic graphical model

based approach simply as the HMM based method, and the Gaussian Process based approach

simply as the GP based method. The performance is measured using predictive accuracy for

the unobserved time points in terms of the Root Mean Squares (RMS) error. The methods

are compared for accurate observations, as well as erroneous observations.

4.4.1 EXPERIMENTAL SETUP

A hidden Markov model and a multivariate Gaussian model were trained using the tem-

perature time series data collected in the Intel Berkeley Research Lab [8]. All the data were

pre-processed for missing samples and discretized into 10 bins of 2 degrees Kelvin. The

full data set consists of temperature samples combined from three neighbored sensors for

19 days. When training the chain graphical model, we set four latent states representing

the different time periods from 12am−7am, 7am−12pm, 12pm−7pm, and 7pm−12am.
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The whole data set was also randomly split into the test set and the training set with the

ratio 1 : 9. An small error-injected test data set was also generated. The errors were taken

randomly from a normal distribution with mean zero and variance 0.25.

We use these notations in the figures: “hmm_voidp” represents the HMM based selection

approach by our improved VoIDP algorithm; “gp_entropy” represents the GP based selection

approach by employing the entropy heuristic, and “gp_mutual” for the GP based mutual

information heuristic.

4.4.2 RESULTS AND DISCUSSION

Fig. 4.1(a) and 4.1(b) show the results on the full data set. Generally speaking, the more

observations are selected the less RMS prediction errors are achieved for both the HMM

based and the GP based approaches. In Fig. 4.1(b), the mutual information heuristic holds

the competition with the entropy heuristic until about 10 observations are selected. We have

mentioned that the mutual information function is not always monotonically increasing as

the selection set gets bigger. The mutual information gains and its values are shown in

Fig. 4.2 and Fig. 4.3, respectively. It can be seen that the mutual information heuristic lost

its advantage after 12 observations are selected. It explains why the mutual information

heuristic only has an advantage over the entropy heuristic between the 2 and 5 observations,

but loses afterwards on the test data set, as shown in Fig. 4.1(c).
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Figure 4.1: Prediction error vs. number of selected observations on full data set (a,b), and

on test data set (c,d), given by the HMM based and GP based selection approaches.
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Figure 4.2: Mutual information gains on observations
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Figure 4.3: Mutual information values on observations
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The GP entropy-based selection is compared with the HMM based selection on the test

data in Fig. 4.1(d). The GP based approach beats the HMM based approach in terms of

predictive accuracy on the test data.

0 5 10 15 20 25
0.2

0.4

0.6

0.8

1

1.2

Number of Observations

R
M

S
 e

rr
o
r

(a) hmm_voidp

0 5 10 15 20 25
0.2

0.4

0.6

0.8

1

Number of Observations
R

M
S

 e
rr

o
r

(b) gp_entropy

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Number of Observations

R
M

S
 e

rr
o
r

(c) gp_mutual

0 5 10 15 20 25
0.2

0.4

0.6

0.8

1

1.2

Number of Observations

R
M

S
 e

rr
o
r

(d) hmm_voidp vs. gp_entropy
 on error injected test data
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Figure 4.4: (a-c) Comparison of prediction errors on the original and error-injected test data

by HMM based selection, GP based entropy heuristic, and GP based mutual information

heuristic selections, respectively; (d) Comparing HMM based selection against GP based

entropy heuristic selection on the test data with erroneous observations.

Fig. 4.4(a-c) examine how the erroneous observations affect these model based selection

approaches. In the figures, the circles and crosses denote the results, the dash and solid lines
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present the trends by doing regression based on the results. It shows that both GP based

heuristic methods suffer big losses in predictive accuracy given the error-injected observa-

tions. However, the HMM based approach shows a very robust performance with a little

increased of the prediction errors.

Despite both the GP based heuristics perform poorly with erroneous observations, the

mutual information heuristic is slightly more stable. In Fig. 4.4(c), the two trend lines are

parallel to each other. Whereas Fig. 4.4(b) shows a big difference in performances by the

entropy heuristic before and after the errors are injected into the observations.

The GP based entropy heuristic is compared with the HMM based selection under the

erroneous observations because of its relatively lower prediction error over the mutual infor-

mation heuristic. Fig. 4.4(d) illustrates the result. It shows that the GP based entropy method

tends to maintain a constant error as the number of observations increases, meaning more

observations do not help the predictive accuracy. Conversely, the HMM based approach has

a decreasing trend on predictive accuracy as more observations are added. After 16 obser-

vations the HMM based selection method outperforms the GP based method in terms of the

RMS prediction errors.

The robustness against observation errors exhibited by the HMM based selection ap-

proach is partly attributed to the conditional independence property provided inherently by

the corresponding probabilistic chain graphical model. The observations on the chain graph-

73



ical model cut the entire chain into smaller sub chains, and the observations on one sub chain

will not directly affect the predictions on the other sub chains. This property minimizes the

effect caused by the erroneous observations. But for the GP based approach, the predictions

take all the observations directly into account, which therefore increases the chance of being

affected by the errors in observations.

4.5 CONCLUSIONS

In this chapter, we tackle the sensor scheduling problem by selecting a subset of time

points to observe in order to make the most accurate predictions for the unobserved time

points. We compare two model based selection approaches, the probabilistic graphical model

based, particularly with HMM, and the Gaussian Process model based employing both en-

tropy and mutual information greedy heuristics.

The results show that the GP based approach performs better than the graphical model

based approach in terms of the predictive accuracy with accurate observations. But when

small errors are injected into the observations, the GP based selection method performs very

poorly. In contrast, the graphical model based approach demonstrates more robust and stable

performance given the erroneous observations, and outperforms the GP based approach when

more observations are selected.
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CHAPTER 5

APPLICATION OF THE OBSERVATION SELECTION

METHODS TO FEATURE SELECTION FOR

CLASSIFICATIONS

5.1 INTRODUCTION

We propose to apply the observation selection methods introduced in Chapter 3 to se-

lect features for classification problems. Selecting features for classification is similar to

selecting sensor observations in wireless sensor networks. They share the similar purpose

of removing redundant or noisy attributes and selecting out the valuable information that

most independent to each other or beneficial to classification or prediction models. Observa-

tion selection based on optimizing submodular mutual information is efficient and effective
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as shown in Chapter 3. Its computational efficiency and near-optimal theoretical guaran-

tee motivate us to applying it in feature selection for classification problems. We explore

feature selection based on submodular mutual information and entropy driven methods by

comparing its performances with other feature selection methods based on attribute ranking

and matrix decomposition, in varieties of classification methods and multiple classification

problems.

5.2 FEATURE SELECTION AND ITS BACKGROUND

Feature selection is the process of selecting a subset of input variables or attributes and

using only the subset as features fed into classification [5] methods. It servers two main

purposes. First, it makes training and applying a classifier more efficient by reducing the

high dimensionality of feature sets. Second, feature selection often improves classification

accuracy by eliminating irrelevant or noisy features. Moreover, as high dimensional and

large data sets become increasingly common in computational fields, feature selection plays

an key role for machine learning or data mining algorithms to make its become efficient and

scalable. The excellent surveys of and introduction to feature selection are given in [16, 64,

40, 39].

Feature selections have been utilized and proved effective to varieties of applications

ranging from text mining, image retrieval, intrusion detection, genome analysis, and etc. [21,
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10, 55, 37, 45]. Algorithms of feature selections can be generally divided into two categories,

the filter approach or the wrapper approach [6, 24]. The filter approach depends on character-

istics of training data to select features without any learning process. The wrapper approach

applies a learning algorithm to evaluate feature selections. The wrapper approach usually

gives better feature selection for classification accuracy than the filter approach does, but the

latter is usually more computational efficient than the former.

Another way of categorization for feature selection algorithms is based on its returned

results that may either be weights of all features or a subset of selected features. Accord-

ingly, feature selection algorithms can be sorted into two types, feature weighting and subset

selection. The entropy and submodular mutual information based approximate algorithms

for selecting optimal information introduced in Chapter 3 will fall into the subset selection

category if they are used to select features.

5.3 MOTIVATION

Mutual information [5, 2] has been used for feature selection in pattern recognition and

classification. It measures how much information the presence/absence of an input variable

or a subset of variables contributes to make the correct classification decision. It is essen-

tially equivalent to an entropy reduction, and it has been seen that the mutual information

criterion-based selection works better than the entropy criterion-based selection [47, 32].
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However, the problem of maximizing the mutual information itself is a NP-hard problem.

Due to the problem’s complexity, it’s not expected to find optimal solutions in polynomial

time. Current methods of solving the problem are either inefficient such as by simulated

annealing and hill climbing, or lack of theoretical guarantees on the performances of its so-

lutions. Submodularity of mutual information ensures its greedy method to have properties

of both efficiency and near optimality. That’s our motivation of applying submodular mutual

information-based method for feature selection.

5.4 SUBMODULAR MUTUAL INFORMATION-BASED FEATURE SELEC-

TION AND OTHER SELECTION METHODS

Submodularity optimization plays a vital role in developing an efficient and near-optimal

approximate algorithm for maximizing submodular mutual information. The concept of sub-

modularity was originally introduced by Nemhauser et al. [44]. A set function F is submod-

ular, if for all A ⊆ B ⊆ V and i ∈ V \B it holds that F(A ∪ i)−F(A) ≥ F(B ∪ i)−F(B).

It demonstrates an inherent property of a submodular function, diminishing returns. That

is, adding another observation to a smaller subset of observations helps more than adding

it to a larger subset. A greedy algorithm schema, selecting the element i∗ that maximizes

F(A ∪ i)−F(A), guarantees that its solution is as good as at least (1−1/e)OPT , where the

OPT is the function value for the optimal selection. Mutual information functions can be
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considered as submodular functions [32], and thus the greedy algorithm can be applied to

solve feature selection problem based on mutual information criterion. The benefit of the

submodularity-based greedy algorithm is efficient and guarantees its solutions sitting within

a theoretical bound to the optimal solution.

We have applied an computationally efficient version of the algorithm for observation

selection in wireless sensor networks with an application to place road traffic monitoring

sensors as in [48] and in Chapter 3. Its efficiency and near-optimality properties motivate us

to employ it in feature selection for classification problems.

Besides the submodular mutual information-based and entropy-based selection methods,

we also compare them with two other popular selection methods. One is for matrix column

subset selection method, the rank-revealing QR (RRQR), and the other is the ranker attribute

search method in the data mining software Weka [17].

In Column Subset Selection problem, given a matrix A and an integer k, to determine

a permutation matrix P so that AP = (A1 A2), and A1 has k columns. A1’s columns are

important because they should be very linearly independent. On the contrary, A2’s columns

are redundant because they can be well represented by those in A1. The resulting permutation

P can be seen as a ranking of the column attributes for the matrix A. A well known method

to solve the problem is called Rank-Revealing QR, a matrix factorization-based method [20,

41, 56, 15]. Essentially, whatever it is observation selection in wireless sensor networks or
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feature selection for classification, the problems can all be represented by data matrices with

variables or attributes as matrix columns. That’s why they can be seen as a mathematical

problem that can be solved by the RRQR method.

Weka is a very popular data mining software and is being widely used. It is an open-

sourced java-based software that implements a lots of machine learning and data mining

algorithms for classifications. It also has attribute selection methods. For example, the ranker

search method that can be used with an evaluation method module to rank all the attributes

in a data set by their information gains. Our experiments of comparing attribute selection

methods on classification problems are heavily rely on the Weka’s existing implementation

of those algorithms.

Among these feature selections methods as also shown in table 5.1, the submodular mu-

tual information-based, entropy-based, and the RRQR methods can be categorized into filter-

based methods. Their evaluations are not involved with the class labels of a data set. Their

directly purposes are to remove redundant attributes and find out the most independent and

the best representing attributes out of the data set. Classification methods will take attribute-

filtered data sets to calculate its classification accuracy. The Weka’s ranker method is a

wrapper-based feature selection method, because its attribute-ranking evaluation is involved

with class labels. Its advantage is that the attribute selection process is directly related to

classification rates, however its disadvantage is that it can not detect redundant attributes,
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which means it will allow to select correlated attributes. It’s interesting to compare these two

types of selection methods under the same experimental setting.

In the following section, we will describe our experimental settings, and briefly introduce

the classification methods in Weka that have been incorporated into the experiments.

5.5 EXPERIMENTAL SETTING

In the experiments, we employed totally 4 different attribute selection methods (as shown

in table 5.1), 11 different classifiers (as shown in table 5.3), and 13 different data sets (as

shown in table 5.2).

In the selection methods, the mutual information-based and entropy-based methods were

introduced in the Chapter 3 where they were used to select optimal spatial observations for

applications in wireless sensor networks. The RRQR method is based on matrix factoriza-

tion, and it has been briefly described in the section 5.3. We used a public matlab implemen-

tation of the RRQR provided in [1]. The Weka’s ranker selection method is to rank attributes

based on their individual evaluation values. In running experiments, we used the “ranker”

method combined with the default attribute evaluation function “ReliefF” in Weka software.

It’s an instance-based evaluation method. It checks neighboring instances of the same and

different classes, and adjusts attribute weights accordingly. The reason we chose the ranker

method is that it can return a ranked list including all the attributes, whereas other attribute
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selection methods such as best-first only select a subset of the attributes. Our running exper-

iments systematically swept attribute selection size from 1 to N−1, in which N is the size

of whole attribute set.

Id Selection method name

1 Mutual information-based (MI)

2 RRQR

3 Weka’s ranker

4 Entropy-based

Table 5.1: Selection methods

The data sets in the table 5.2 covers a variety of situations in terms of number of classes

and attributes. For those data sets not providing test sets, we divided the original data sets

into two parts, two-third of which for train sets and one-third for test sets. Most of the data

sets are from UCI’s machine learning repository [11], some data sets are also from Chih-Jen

Lin’s Libsvm data web page [4]. For every data set, all its attributes including class labels

were already converted into numeric values when we used them.

The classification methods used in our experiments are shown in table 5.3. Basically,

we pick up one or two representatives in each of the categories of Weka’s classifiers, we

believe that this collection covers a wide spectrum of classification methods available in

Weka. Their brief descriptions are also listed in the section 5.5.1. Since all attributes of

every data set were converted into numeric values beforehand, the classification methods

work here as in regression process. They take a filtered data set with selected attributes
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ID Dataset name class num attribute num train instance num test instance num

1 australian credit 2 14 460 230

2 diabetes 2 8 507 261

3 glass 6 9 142 72

4 liver disorders 2 6 230 115

5 satimage 6 36 2217 1000

6 vehicle 4 18 564 282

7 breast cancer 2 9 455 227

8 german credit 2 24 667 333

9 heart 2 13 180 90

10 pen digits 10 16 2623 1225

11 sonar 2 60 138 70

12 wine 3 13 118 60

13 dna 3 180 2000 1186

Table 5.2: Data sets

as input, and predict class variable of each test instance as a numeric value. The numeric

class prediction is first converted into a relevant class label number that is closest to it by

numerical distance. Then an individual classification rate or accuracy within every class of

test instances can be calculated based on the number of correctly predicted instances divided

by total instance number in the class. The final classification rate or accuracy for the data set

is an average of all of its individual classification rates.

A batch of experiments was run on each of the data sets by applying all the listed attribute

selection methods and classification methods. For each of the data sets, it applied by all

the listed classification methods. Within every classifier, it tried all of the listed selection

methods respectively. Also for each selection method, it tried out the selection size from 1
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Id Classifier name in Weka

1 RBFNetwork

2 GaussianProcesses

3 SimpleLinearRegression

4 PaceRegression

5 SMOreg

6 KStar

7 AdditiveRegression

8 Bagging

9 RandomSubSpace

10 DecisionTable

11 M5P

Table 5.3: Classification methods

to N−1 where N was the total number of attributes. All the classifiers were used with their

default options provided by Weka during experiments. A resulted classification rate was an

average of individual classification rates for each of the classes.

The following sub-section describes briefly the classification methods in Weka that we

used in our experiments.

5.5.1 CLASSIFICATION METHODS IN WEKA

Weka’s classifiers are divided into several categories: Bayesian, functions, lazy classi-

fiers, meta learner, multiple-instance classifiers, miscellaneous classifiers, rules, and trees.

Within each of the categories, it includes numerous individual classifier implementations. In

our experiments, we chose to use a collection of classifiers that covers the spectrum of the
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categories. We give brief descriptions below for the classifiers.

1. RBF network

It builds a Gaussian radial basis function network. It uses the k-means clustering

algorithm to provide the basis functions that serves as hidden units on the hidden layer.

In every cluster, the data are fit into multivariate Gaussian distributions. For numeric

class problem, its prediction is given by a linear regression that combines outputs from

the hidden layer.

2. Gaussian Processes

It builds a nonlinear regression classifier using the Bayesian Gaussian process tech-

nique.

3. Simple Linear Regression

It builds a linear regression model based on a single attribute. The attribute is chosen

in terms of the smallest squared predictive error.

4. Pace Regression

It builds pace regression linear models. It can determine the attributes to be used for

the models. Under certain regularity conditions then it is provably optimal when the

number of attributes tends to infinity.
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5. SMOreg

It implements a sequential minimal optimization algorithm for learning a support vec-

tor regression classifier using kernel functions.

6. KStar

It is an instance-based classifier. It determines the class of a test instance based on

the class of those training instances similar to it, as determined by some similarity

function. It differs from other instance-based learners in that it uses an entropy-based

distance function.

7. Additive Regression

A meta classifier that enhances the performance of a regression base classifier. Each

iteration fits a model to the residuals (The predictive errors) left by the classifier on

the previous iteration. Prediction is accomplished by adding the predictions of each

classifier.

8. Bagging

An ensemble approach. It builds multiple variants of a classifier using bags of train-

ing samples, and classify a test instance using a weighted vote among the variants of

classifiers. The default base classifier is a decision tree.
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9. Random SubSpaces

It builds an ensemble of base classifiers, each trained using a randomly selected subset

of the input attributes. The default base classifier is a decision tree.

10. Decision Table

It builds a decision table majority classifier. It evaluates feature subsets using best-first

search.

11. M5P

A learner to build a model tree. For a test instance, its attributes will route itself

through the nodes of the tree, and make it down to a leaf. The leaf contains a linear

model based on some of the attribute values, which can yield a predicted value for the

test instance.

The classifiers above were those that we used in the following experiments. For more

detailed information about these or other classifiers in Weka, please refers to [60, 62, 63].

The experimental results are shown in the following section. For convenience, the se-

lection methods, classifiers and data sets are represented by their ID numbers as used in the

tables above.
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5.6 EXPERIMENTAL RESULTS AND DISCUSSION

For each of the data sets (see table 5.2), we ran all of the listed classifiers (see table 5.3).

For each of the classifiers, we ran all of the listed attribute selection methods (see table 5.1).

For each of the selection method, all possible selection size was swept through, that is, the

selection size went from 1 to N−1 if N is the full attribute size. For comparison, using full

attribute was also examined for each of the classifiers.

Given a data set and a classifier, we picked the best performed selection method in terms

that it should have the highest classification accuracy rate and its attribute selection size

should be as small as possible. Then we counted it as a winning for the selection method.

To accommodate the very close performances, we allowed selection methods as in the same

winning situation if their classification rates’ difference was within 0.5% and also they shared

the same selection size for scoring the classification rates.

The winning counts after all the runs are summarized in the table 5.4, and are also visu-

alized in Fig. 5.1. It can be seen that all of the selection methods take up a variety of portions

on the winning bars for each of the classifiers. It’s hard to tell which classifier is favored by

a particular selection method, and vice versa. But there is a strong evidence showing that the

winning odds of using full attributes for classification is much lower than using an selected

attribute subset. The full-attribute selection method only shows up on three of the bars.

In the summarized winning cases, we want to see how they are distributed among the
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Figure 5.1: Stacked bar chart of the winning counts

89



classifier method MI rrqr ranker entropy fullAttrs

RBFNetwork 3 5 5 5 1

GaussianProcesses 4 4 3 5 2

SimpleLinearRegression 3 3 7 6 0

PaceRegression 3 3 3 4 2

SMOreg 4 3 6 7 0

KStar 2 2 7 4 0

AdditiveRegression 2 5 4 5 0

Bagging 4 5 2 4 0

RandomSubSpace 2 4 5 4 0

DecisionTable 2 3 5 7 0

M5P 4 3 3 5 0

total 33 40 50 56 5

percentage % 17.9 21.7 27.2 30.4 2.7

Table 5.4: Summary of winning counts

data sets. Fig. 5.2 shows the distributions for each of the selection methods including using

full attributes. It shows that data sets do affect the performance of the attribute selection

methods. Based on the histogram charts, there are missing cases for some selection methods

such as mutual information-based, RRQR and Weka’s ranker methods. It also shows that

different data sets could cause a lot of variations about performance of selection methods

such as for the RRQR and the entropy-based methods.

Fig. 5.3 shows accumulated counts of winning classification methods associated for each

of the selection methods. It demonstrates cooperating versatility with classifiers for every

selection method, and it reveals limitation for using full attributes.
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(a) (b)

(c) (d)

(e)

Figure 5.2: Histogram of datasets appearance in winning counts
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(a) (b)

(c) (d)

(e)

Figure 5.3: Histogram of classification method appearances in the winning counts
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Selection size is a key parameter for the experimental attribute selection methods, it is

interesting to learn how these attribute selection methods perform according to different

selection sizes. Since we enumerated all selection size numbers for every selection method

given a classifier and a data set, we summed up the selection size numbers recorded in each

selection method’s winning cases. Fig. 5.4 shows the distributions. For all the selection

methods, it looks that their winning frequencies are varied from changing selection sizes.

It’s hard to guess about the reason that causes the variations. But one thing we notice is that

the peak time for the mutual information-based selection method takes place on when the

selection size accounts for about half of a whole attribute set. From the Fig. 5.4a, it indicates

that the winning peak time corresponds to the selection size falling in between 50% and 60%.

The spike of winning counts in half-sized attribute selection given by the mutual information-

based method looks phenomenal to us. It reminds us of the special property about mu-

tual information. We have seen in Chapter 3 that when we used the submodular mutual

information-based method to select traffic monitoring sensors, the mutual information gains

went up until its selection size exceeded some middle point of total number of available sen-

sors, then the gains dropped afterwards. We therefore wondered whether this is somehow

related to the phenomenon displayed here in Fig. 5.4a.

We drew the mutual information values for each of the data sets, and display them on

Fig. 5.5, 5.6,and 5.7. It is not surprised to see bell shapes for all of them. It says that mu-
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(a) (b)

(c) (d)

Figure 5.4: Histogram of selection size percentage in winning counts
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(a) (b)

(c) (d)

(e) (f)

Figure 5.5: Mutual information values for datasets, part-1
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(a) (b)

(c) (d)

(e) (f)

Figure 5.6: Mutual information values for datasets, part-2
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Figure 5.7: Mutual information values for datasets, part-3

tual information values keep increasing but when the selection size gets bigger and exceeds

about the half in whole size, then it becomes decreasing. The selection sizes achieve the

maximal mutual information values for each of the data sets are displayed in Fig. 5.8a. The

selection size quantities were converted into percentages out of whole sizes for comparison

convenience. They are all around 50% which is about in half size. For those data sets that

contain small numbers of attributes, the percentage numbers may look lower compared to

others. That’s because adding or removing even a single attribute will reflect on varying

differences in the percentage representation. For example, to the liver data set that has to-

tally 6 attributes, selecting 2 attributes accounts for about 33%, whereas selecting 3 makes
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it to jump up to 50%. Fig. 5.8b shows a histogram that is a summary of accumulated counts

for the data in Fig. 5.8a. The spike falls into the interval of between 50% to 60%. Does

this interval have anything to do with the same interval appeared in Fig. 5.4a? We will look

into detailed experimental results in the breast-cancer and heart data sets. We chose these

two data sets to look further because their percentage values of selection size as shown in

Fig. 5.8a fall into the 50%−60% interval.

Fig. 5.9 and 5.10 shows all the classifier rates combined with all the selection methods

on the breast cancer and the heart data sets. The selection sizes were set to 55.6% for breast

cancer data set, and to 53.8% for heart data set, where the mutual information-based selection

method reached its maximal mutual information values. The performances given by using

full attributes were also drawn for comparison purpose.

The mutual information-based attribute selection method (It is abbreviated as MI-based

in the drawings) performed very competitive on these two data sets. It can be seen from

Fig. 5.9 that the MI-based method is applied on all the classifiers, and more than half of the

resulted classification rates poise to reach the best compared to other selection methods given

same classifiers. The best performances across all the classifiers are projected on the first two

classifiers. One is with RRQR selection method on RBFNetwork classifier, and the other is

with MI-based method on GaussianProcesses. Their scores are too close to tell. Using the

full-attribute on GaussianProcesses also gives almost indiscernible improvement on the MI-
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(a)

(b)

Figure 5.8: Summary of selection size in percentages for maximal mutual information gains
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Figure 5.9: Classification accuracy rates on breast cancer data set with selection size in

55.6%
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Figure 5.10: Classification accuracy rates on heart data set with selection size in 53.8%
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based method. For the heart data set, Fig. 5.10 observes similar trend, more than half of the

classification rates given by MI-based selection method for all the classifiers are among the

best rates. The best performances are given by the MI-based method with PaceRegression

and SMOreg classifiers. Their leading roles are very clear in the drawing.

Selection method Size (%) Attribute index Classifier ID Classification rate

MI 55.6 3 4 5 1 7 2 0.99

RRQR 55.6 1 6 8 4 5 1 0.99

MI 55.6 3 4 5 1 7 11 0.98

MI 66.7 3 4 5 1 7 9 9 0.98

Weka-ranker 77.8 6 1 8 4 3 2 5 6 0.98

MI 44.4 3 4 5 1 8 0.97

Weka-ranker 55.6 6 1 8 4 3 7 0.97

MI 44.4 3 4 5 1 4 0.96

Entropy-based 55.6 6 8 1 4 2 10 0.94

Weka-ranker 66.7 6 1 8 4 3 2 5 0.94

Weka-ranker 11.1 6 3 0.88

Entropy-based 11.1 6 3 0.88

Table 5.5: Best accuracy rates by classifiers on breast cancer dataset

After examining the situation with the certain selection sizes that achieves the maximal

mutual information gains, we wanted to investigate throughly with varied selection sizes

and different classification methods for the breast cancer and the heart data sets, and to see

how performances of MI-based method with the particular selection size are being ranked.

Tables 5.5 and 5.6 contain the results. It shows that the best classification scores for each of

the classifiers, and the corresponding selection method with its selection size in percentage.
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Selection method Size (%) Attribute index Classifier ID Classification rate

MI 53.8 10 8 2 12 4 7 3 4 0.89

MI 76.9 10 8 2 12 4 7 3 6 5 9 11 0.89

MI 53.8 10 8 2 12 4 7 3 5 0.88

Weka-ranker 61.5 3 9 12 10 13 4 6 1 9 0.87

Full-Attribute 100 1 2 3 4 5 6 7 8 9 10 11 12 13 1 0.87

Weka-ranker 38.5 3 9 12 10 13 7 0.86

MI 53.8 10 8 2 12 4 7 3 2 0.85

MI 53.8 10 8 2 12 4 7 3 8 0.83

RRQR 69.2 5 8 4 1 13 10 7 3 12 10 0.83

Entropy-based 69.2 5 8 4 1 13 10 7 3 12 10 0.83

Weka-ranker 30.8 3 9 12 10 6 0.82

Weka-ranker 7.7 3 3 0.77

Table 5.6: Best accuracy rates by classifiers on heart dataset

The results were sorted based on the classification accuracy rates, and within a same rate

category it was then sorted by the selection size. The rule is that the one with the highest

classification accuracy rate and the lowest selection size will be ranked on top. From both of

the tables 5.6 and 5.5, the MI-based methods with about half-sized selections are ranked on

the top.

Based on the results shown in Fig. 5.9 and 5.10, and in tables 5.5 and 5.6, it tells that

the highest frequency in Fig. 5.8b does have something to do with the highest frequency

appeared in Fig. 5.4a. For both the breast cancer and the heart data sets, their MI-based

selection sizes achieving the maximal mutual information values fall into the 50%− 60%

interval, and the MI-based method with these selection sizes performed not only best across
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the horizon based on the same selection size, but also the best overall for all situations with

various classifiers and different selection sizes.

Although these evidences have answered the question that we raised in early, using MI-

based method with the chosen selection size achieving the maximal mutual information value

may not provide the best classification rate for all the data sets. We will show a summary

table in the following that lists the best classification accuracy rates achieved for each of the

data sets we used in the experiments. However, the successful evidence demonstrated with

the breast cancer data and the heart data shows this approach with the mutual information-

based selection method is worthwhile, and it may grab a trophy for you on some classification

problems.

Table 5.7 summarizes out of all the experiments the best classification performances for

each of the data sets. It includes the corresponding attribute selection method, the selection

size in percentage, and the classifier. It shows that there is no magical selection method can

win out for all of the data sets. It’s also interesting to see different methods could select the

subsets of attributes that result in the same classification performance. For example, both the

RRQR and the entropy-based methods match each other in the data set #4. The only winning

case for using full attributes in the experiments happens on the data set #10, which is the pen-

digits data set (refers to the table 5.2), with the KStar classifier (refers to the table 5.3). All

the other winning cases are achieved by the feature selection methods along with specified
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DatasetID Best rate Selection method Selection size (%) ClassifierID

1 0.90 Entropy-based 35.7 4

2 0.74 Weka-ranker 37.5 9

3 0.72 Weka-ranker 55.6 6

4
0.71 RRQR 83.3 2

0.71 Entropy-based 83.3 2

5 0.85 Entropy-based 72.2 6

6 0.76 Weka-ranker 88.9 11

7
0.99 MI-based 55.6 2

0.99 RRQR 55.6 1

8 0.69 Entropy-based 54.2 8

9
0.89 MI-based 53.8 4

0.88 MI-based 53.8 5

10 0.94 Full-attribute 100.0 6

11 0.93 MI-based 56.7 2

12 0.99 RRQR 76.9 6

13 0.94 Weka-ranker 25.6 11

Table 5.7: Summary of the best classification accuracy rates for each of the data sets

Selection method Count Percentage

MI-based 4 25%

RRQR 3 18.75%

Weka-ranker 4 25%

Entropy-based 4 25%

Full-Attribute 1 6.25%

Table 5.8: Summary of the selection methods’ winning counts in data level
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classifiers.

Table 5.8 shows the accumulated appearance counts of respective selection methods from

the table 5.7. Every selection method takes a fair portion except that using full attributes only

accounts for once, a very small number comparably. This is again a good evidence about

that feature selection can help classifiers to outperform of using full features. Based on the

percentage numbers shown in table 5.8, the MI-based selection method apparently poises

itself as a strong competitor compared to other selection methods. Another observation is

that both filter-based selection methods such as the MI-based, and wrapper-based such as the

Weka-ranker take chances to win out. It indicates that finding out independent attributes can

really help to boost up classification accuracy.

Feature selection is to not only make learning process more efficient and scalable, espe-

cially for high dimensional large data sets, but also can improve classification accuracy as

shown in the results reported above. Another benefit of feature selection is that it can save

costs in reality. For example, table 5.9 shows descriptions for attributes in the diabetes data

set. There are 8 testing items for diagnosing diabetes. Their respective costs are listed in

table 5.10. It looks like testing levels of the glucose and the insulin cost a lot more than the

others.

Table 5.11 compares selection methods with using full attributes for diabetes diagnosis.

It shows that both the Weka’s ranker and the mutual information-based selection methods
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ID Attribute detail

1 Number of times pregnant

2 Plasma glucose concentration a 2 hours in an oral glucose tolerance test

3 Diastolic blood pressure (mm Hg)

4 Triceps skin fold thickness (mm)

5 2-Hour serum insulin (mu U/ml)

6 Body mass index (weight in kg/(height in m)^2)

7 Diabetes pedigree function

8 Age (years)

Table 5.9: Diabetes data attributes

Attribute ID Test Cost ($)

1 times_pregnant 1.00

2 glucose_tol 17.61

3 diastolic_pb 1.00

4 triceps 1.00

5 insulin 22.78

6 mass_index 1.00

7 pedigree 1.00

8 age 1.00

Table 5.10: Diabetes testing costs

Method Size Attributes Classify rate ClassifierID Cost ($) Saving

Full-attribute 100% 1 2 3 4 5 6 7 8 0.72 8 46.39 0%

Weka-ranker 37.5% 2 8 1 0.74 9 19.61 58%

MI-based 50% 4 8 2 7 0.72 8 20.61 56%

Entropy-based 62.5% 5 2 3 4 8 0.71 2 43.39 6%

RRQR 62.5% 5 2 3 4 8 0.71 2 43.39 6%

Table 5.11: Selection methods for cost saving in diabetes diagnosis

107



can not only achieve a same or better classification accuracy rate but also can save more than

50% of the total cost than using full attributes for diagnosis. It is remarkable because that

the selection methods can promisingly improve current healthcare system. It can not only

reduce patients’ costs, such as for detecting diabetes, but also can help doctors to improve the

diagnosis accuracy. This is just one of those examples to illustrate the advantage of feature

selection in reality.

5.7 SUMMARY

In this chapter, we applied the mutual information-based selection method inspired by

submodularity optimization, and the entropy-based selection method for feature selection

in classification. We compared them with two other popular methods, RRQR and Weka’s

ranker, on multiple data sets with a variety of classifiers.

Through a batch of systematic experiments, we find out that selecting a subset of features

work much better than using full attribute set on many classification problems. The selection

method based on maximizing submodular mutual information poises itself to be a strong

competitor among other selection methods, in terms of its comparable performance. Its

selection achieving the maximal mutual information value leads to the best classification

performance than by using other selections for the mutual information-based method, and

also it could outperform other selection methods. Moreover, the performances of different
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classifiers combined with different attribute selection methods largely depended on data sets.

We also show an example based on the diabetes classification problem that how the selection

methods could save medical costs, and in the meantime achieve a better accuracy rate of

diabetes diagnosis in reality.
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CHAPTER 6

CONTRIBUTIONS

This dissertation focuses on observation selection in wireless sensor networks, and its

extended applications in feature selection for classification problems.

We presented our improved version of VoIDP algorithm for selecting optimal sensor

observation on chain graphical models in chapter 2, and demonstrated its applications of

wireless sensor scheduling. We also discussed a situation when assuming no reward penalties

the computation of the optimal expected total reward for a sub chain can be further simplified.

In chapter 3, we solved the placement problem for traffic monitoring sensors by applying

Gaussian process model-based observation selection methods in our simulated road traffic

network map. We employed two greedy heuristics based on submodular mutual information

and entropy under multivariate Gaussian. Our experimental results demonstrate the charac-

teristics of these two different heuristics. It shows that the entropy-based heuristic places
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sensors mainly around road intersections whereas the submodular mutual information-based

heuristic disperses sensors widely across the road network. We also discover that the mutual

information-based heuristic is better than the entropy-based in avoiding repeatedly selecting

strong correlated locations on same road segments. However the mutual information-based

heuristic only work well given the selection size is within about half of the total size, because

the mutual information gains will decrease after that.

We also compared graphical model-based, particularly with Hidden Markov Models, and

Gaussian process (GP) model-based selection approaches under the same scenario of wire-

less sensor scheduling in chapter 4. It gains us insight about these two model-based obser-

vation selection approaches. Our experimental results show that the Gaussian process-based

approach performs better than the graphical model-based approach in terms of the predictive

accuracy given correct observations. But when small errors were injected into the observa-

tions, the GP based selection method performs very poorly. In contrast, the graphical model

based approach demonstrates more robust and stable performance given the erroneous ob-

servations, and outperforms the GP-based approach when more observations are selected.

Finally we employ sensor observation selection methods into another field of subset se-

lection problems, feature selection for classification. In chapter 5, we apply the mutual

information-based selection method exploiting submodularity optimization to filter out re-

dundant features for classification problems. We compare the proposed method with existing
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state-of-the-art attribute selection methods through extensive experiments with multiple clas-

sifiers and data sets, and show that the proposed mutual information-based feature selection

method perform comparably with, or even better than, other feature selection methods.
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CHAPTER 7

FUTURE RESEARCH AND APPLICATIONS

From observation selection in wireless sensor networks to feature selection for classifi-

cation, the selection of the most important or valuable information plays a vital role. With

restricted resources people always want to use less to do more. For example, when we de-

sign and deploy a remote sensing system to monitor an outdoor environment or an indoor

manufacture factory, we’d like to maximize its capability and efficiency while still running

at a low cost of monetary budge and energy consumption. Selection also means ranking or

sorting things by its importance, which is the key for making decision. People have to make

choices in their lives. An artificial intelligent machine needs to decide next action that max-

imizes its goal. A search algorithm needs to send back to users a selected and ranked list of

information. For many things, selection plays an important and necessary component.

Selection of important information even becomes crucial to a new era of computing.
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Today’s computers need to handle large data sets and huge amount of information ranging

from remote sensing, the Internet, bioinformatics, electronic health records, and to all kinds

of digitized data. while traditional algorithms of machine learning and data mining scramble

for sorting out and making sense of the large data sets, selection methods can be key com-

ponents to build efficient models with high predictive accuracy. However, selection methods

also have many challenges to deal with. We have seen that the performance of the selec-

tion methods largely depend on characteristics of data sets or specific problems. A selection

method may work well on some data sets but not on others. The challenge brought by big

data sets also applied to selection methods. To address these challenges, I look forward to

two promising directions, one is to build customized selection methods, and the other is for

parallel and distributed computing implementation of the customized algorithms.

We have learned that performance of attribute selection methods vary depending on data

sets. The problem caused by the variation is amplified by large data sets in high dimen-

sionality, which have both a large number of attributes and instances. It even becomes more

challenging for selection methods to find out the most important attributes or instances. A

promising approach is to customize the algorithms based on the nature of problems or char-

acteristics of a data set. This involves a deeper understanding of a data set or a problem, and

developing a suitable algorithm for it. Technically it may need dividing a large data set into

a group of small data sets by either instances or attributes, and then find out a customized
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learning algorithm that fits to each of the group set. The final solution will be computed by

combining the sub solutions of each part. This divide-and-conquer approach is also algo-

rithmic desirable and implementing scalable for processing large and high dimensional data

sets.

Scalability and efficiency become more and more important requirements in the era of

big data sets, and the parallelism and concurrency will be another key besides selection meth-

ods. Parallel and concurrent computing remains challenging nowadays. How to efficiently

implement such a customized selection algorithm that we mentioned above, for a big data

set with high dimensionality, in a distributed computing environment is still a challenging

but also very interesting research and engineering topic.

In future, for computer science and engineering to large data sets, What I look forward to

is an efficient and customized selection approach, and its parallel and distributed implemen-

tation.

Since I entered college for studying computer science in 1997, until now, based on my

past 15 years of experience and observation in this field, It turns out that the Algorithms

holds its position steadily compared with many other fast-paced changing technologies such

as computer programming languages. The Algorithms is the hard core of Computer Sci-

ence, and my passion for it has been built up over the time. Many science fields have been

inspiring the advance of design and development of Computer Science Algorithms such as
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mathematics and statistics. The trend has also been carried on by new technology in com-

puter architecture and hardware such as multiple-cores and quantum computers. The design,

development and analysis of Computer Science Algorithms in state of the Art is always my

biggest interest in the field.
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