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ABSTRACT 

This case study examined how three high school geometry teachers used their 

geometry textbooks (Prentice Hall Geometry and McDougal Littell Geometry) to teach 

proof. More specifically, this study examined the following: How subject-specific 

curriculum materials present proofs related to parallel and perpendicular lines, angles, 

and congruent triangles? How do geometry teachers use curriculum materials to facilitate 

students learning to prove? What factors influences teachers’ decision to deviate or not 

from curriculum materials? Data were collected via a classroom observation protocol, 

teacher artifacts, audio and video classroom recording, and teacher interviews. A 

conceptual analytical framework, which consisted of three dimensions, comprised of the 

Mathematical Tasks Framework (Henningsen & Stein, 1997) and proof schemes 

framework (Harel & Sowder, 1998) was used to analyzed the data. The first dimension 

focused on task features, the second on levels of cognitive demands and the third 

considered the proof schemes utilized.  

 To inform the classroom observations and the data analysis, a textbook analysis 

was conducted of proof and proof-related tasks. This analysis considered the frequency of 

proof and proof-related tasks, types of proof representations used, real world or abstract 

context of proofs, use of figures, occurrences of fill in the blank and multiple choice 

tasks, and the extent to which tasks were composed of multiple parts. Additionally, the 

levels of cognitive demand of tasks were evaluated. During classroom observations, 

attention was given to what constitutes convincing proof arguments, and how curriculum 

materials were utilized.  
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The data analysis showed that the geometry curriculum materials used by the 

teachers in this study provided few opportunities to prove, and that there were differences 

between textbook series in the tasks’ features and the levels of cognitive demand of the 

proof tasks included. Additionally, the teachers in this study enacted proof tasks generally 

by promoting memorization or procedures without connections. Moreover, whenever 

lower levels cognitive demand tasks were posed external conviction proof schemes were 

more evident; while analytical proof schemes appeared more frequently when higher-

level cognitive demand tasks were posed. Furthermore, teachers’ beliefs, experience, 

desire to make mathematics “easy”, professional community, and assessment were 

factors that contributed to how proof was taught.  
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CHAPTER I:  INTRODUCTION AND RATIONALE FOR THE STUDY 

“No way of thinking or doing, however ancient, can be trusted without proof”. 

 Henry David Thoreau  ~ 

 

Proof in Mathematics and School Mathematics 

Throughout the history of mathematics, the methods of proof, and even the idea 

of what proof is, have evolved. Regardless of the nature of the evolution, mathematicians 

have mostly used proofs to share knowledge and convince others of the merit of their 

assumptions and their results, as well as to reflect on the possibilities of conceived 

notions. Western mathematics, and therefore our current way of understanding proof, is 

strongly influenced by the conception of proof developed by the Greeks, who used logic 

and a deductive presentation of arguments to substantiate claims made rather than just the 

results of empirical findings (Reid & Knipping, 2010).  

Proof can be understood as one way to communicate mathematical understanding. 

This communication can take different forms and reach different levels of formality, but 

it can generally be assumed that among mathematicians, proof is a deductive argument 

that follows certain accepted rules. In school mathematics, a broader notion of proof as a 

convincing argument is frequently needed. For example, utilizing multiple examples to 

justify claims may be a sufficient argument at the elementary level; at the high school 

level, however, the generalizability of the argument may be a decisive factor on the 

validity of the proof. Nevertheless, there is no doubt that proof is important in school 

mathematics, at all grade levels, because it represents the essence of “doing 

mathematics”.  
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Proof is a vital element in mathematics teaching and learning (Ball, Hoyles, 

Jahnke, & Movshovitz-Hadar, 2002; Yackel & Hanna, 2003). Proofs can verify, explain, 

systematize, communicate, explore, discover and incorporate mathematical ideas, as well 

as provide an intellectual challenge (De Villiers, 1999). Recent reform initiatives suggest 

that proof be taught in K-12 mathematics, and not restricted to the discipline of geometry 

(NCTM, 2000). There is an expectation that all teachers of mathematics should 

incorporate proof in their instructional practices and make argumentation part of the 

classroom sociomathematical norms. This is the result of a changing perspective, 

considering that historically proof was taught primarily in high school geometry, and it 

seldom appeared in other K-12 mathematics courses (Harel & Sowder, 2007; Herbst, 

2002b; Stylianou, Blanton, & Knuth, 2009; Yackel & Hanna, 2003).  

 In mathematics courses, but particularly in geometry, “doing proofs” embodies 

various actions by teachers and students which are influenced by stated or implicit norms 

of what work is valued, the structure in which proof ought to be presented, the time 

allocation for proving, and the responsibility of students and teachers while “doing 

proofs” (Herbst et al., 2009). Sociomathematical norms in a classroom can influence how 

proof is taught. There is a reflexive relationship between students’ perceptions of their 

role, the teacher’s role, classroom social norms and what is deemed mathematical activity 

(Yackel & Cobb, 1996). According to Yackel and Cobb (1996), “…normative 

understanding of what counts as mathematically different, mathematically efficient, and 

mathematically elegant in a classroom are sociomathematical norms. Similarly, what 

counts as an acceptable mathematical explanation and justification is a sociomathematical 

norm” (p.461). Simon and Blume (1996) acknowledged that the class conceptualization 
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of mathematics can affect their acceptance of correct justification. Since there exist 

variation in instructional practices for teaching proof (Harel & Sowder, 2007) which may 

impact students learning of proof (G.J. Stylianides, Stylianides, & Philippou, 2007), 

careful consideration must be given to the context and factors that influence how proof is 

taught and learned.  

Teachers’ conceptions and knowledge of proof may be factors that hinder their 

ability to effectively teach proof (Knuth, (2002a). Numerous studies have documented 

students’ difficulties to construct proofs and provide appropriate reasoning for 

geometrical conjectures (Chazan, 1993; Clements & Battista, 1992; Healy & Hoyles, 

2000; Mullis et al., 1998; Senk, 1985). It is important to note, as Harel and Sowder 

(2007) found, that students weak proof schemes may be due to limited opportunities to 

engage in proving activities in mathematics courses. NAEP results revealed that 8th 

grade students, whose teachers allocated a larger portion of instructional time for 

reasoning and analytical ability, performed considerably better than their counterparts 

(Silver & Kenney, 2000). Clement and Battista (1992) suggested that students’ poor 

performance on geometrical proof tasks may be due to the fact that elementary and 

middle school geometry curriculum merely expose students to geometrical shapes, 

constructions and measurement, without placing an emphasis on higher-level thinking 

activities. Thus, when students enter high school geometry they may not be adequately 

prepared to succeed. 

Proof in Curriculum Materials 

There exist variations in how proof is treated in curriculum materials (Harel & 

Sowder, 2007; Hoyles, 1997). The attention given to proof varies in textbooks around the 
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world. In lower secondary schools in Japan, geometry textbooks “set out to develop 

students’ deductive reasoning skills through the explicit teaching of proof” (Fujita & 

Jones, 2003, p. 220), while in the United Kingdom geometry textbooks accentuate 

constructing diagrams, and finding measurements and angles, while presenting very 

minuscule opportunities to prove (Fujita & Jones, 2003). Furthermore, Sweden’s upper 

secondary schools geometry textbooks place little if any attention to proof (about 2%), 

when compared to other routine tasks and applications (Nordström & Löfwall, 2005). 

However, Hanna and de Bruyn (1999) examination of 12th grade advance level 

mathematics textbooks in Ontario found that primarily, only geometry textbooks provide 

opportunities for students to prove and visualize various types of proofs. Herbst (2002b) 

historical study documented that over time, proof in US geometry textbooks evolved 

from requiring students to repeat given geometrical proofs to encouraging students to 

construct original proofs and to providing exercises for students to engage with proofs. 

Hence, curriculum materials vary in how proof is represented; nevertheless teachers are 

challenged to facilitate students learning to prove.  

Few studies focus on teachers’ relative to proof in mathematics curriculum 

(Mariotti, 2006). Bieda  (2010) conducted one of the few studies that have examined 

curriculum materials during the enactment of proof-related tasks during instruction. 

Bieda (2010) studied how proof-related tasks are enacted in middle school mathematics 

classrooms. She found that 71% of the textbook tasks that were categorized as proof tasks 

during the curriculum analysis were implemented as such and that time constraints 

hindered the implementation of some of these tasks. Furthermore, Bieda’s results 

highlighted that when an opportunity to prove arose, students did not provide adequate 
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justification approximately half of the time; and that 42% of the time teachers did not 

provide a response, 34% of the time teachers sanctioned students conjectures, and 24% of 

the time teachers requested the input of the class. She acknowledged that teachers were 

likely to provide positive feedback for non-proof arguments as if it were general 

arguments. Bieda concluded that “teachers in the classrooms observed did not provide 

sufficient feedback to sustain discussions about students’ conjectures and/or 

justifications…[and] when a teacher provided feedback to students’ justifications, it was 

not sufficient to establish standards for proof in a mathematics classroom” (Bieda, 2010, 

p. 377).  

Cirillo (2009) documented that a challenge in teaching authentic proof is that 

textbooks emphasize applications of theorems rather than their proofs. She recommended 

that greater emphasis be placed on the curriculum materials and objectives that teachers 

are given to facilitate the teaching of proof. Therefore, not only the treatment of proof 

differs across geometry curriculum materials, but also how teachers’ use their curriculum 

materials can impact how proof is presented and what aspects of mathematical proof are 

emphasized. Hence it is important to consider not only the curriculum materials used, but 

also how they are used during instruction.  

Statement of the Problem 

 There are numerous studies in the mathematics education literature about how 

proof is conceptualized by students (Battista, 2009; Harel & Sowder, 1998, 2007; Senk, 

1989), about students’ poor performance on proof (Battista, 2007; Clements & Battista, 

1992; Healy & Hoyles, 2000; Reiss, Hellmich, & Reiss, 2002; Reiss, Klieme, & Heinze, 

2001; Senk, 1985), and intervention strategies used to enhance the learning of proof 
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(Herbst, 2002a; Herbst & Brach, 2006; Herbst & Chazan, 2003; Jones, 2000b; Mariotti, 

2000; Reiss, Heinze, Renkl, & Gross, 2008). However, little is known about how proof is 

taught in the classroom in relation to curriculum materials (Mariotti, 2006). Considering 

that curriculum materials are a major investment for school districts (Reys & Reys, 2006; 

Reys, Reys, & Chavez, 2004) and that proof has been identified as a core process of 

mathematics, it would be indeed beneficial to document how proof is bridged from the 

geometry textbook to the teacher, and from the teacher to the class. I addressed this gap 

in the literature by studying how high school geometry teachers use curriculum materials 

to teach proof.  

Research Questions 

 The need to gain a better perspective of how proof is taught and how teachers use 

curriculum materials to support the teaching of proof requires an examination of the 

differences between the written curriculum and the enacted curriculum with regard to 

proof. In particular, I considered the case of proof in geometry, which led me to pose the 

following research question: How do teachers use curriculum materials to facilitate the 

teaching of proof in geometry? More specifically, what is the nature of the differences 

between how proof is presented in the written curriculum and how it is reflected in the 

enacted curriculum in a high school geometry course? To narrow the focus of my study, I 

looked at specific topics in specific geometry curriculum materials (namely, McDougal 

Littell which in recent time is known as Holt McDougal, and Prentice Hall) that have 

been identified by previous literature as topics that more readily presented students the 

opportunity to prove (Donoghue, 2003; Herbst, 2002b). Hence, I focused my attention on 

geometric content within the realms of Euclidean geometry pertinent to congruency, 
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perpendicular and parallel lines, and segments and angles. These topics are also core 

content the authors of the textbooks expect students to learn. For instance, according to 

the authors of McDougal Littell Geometry, “In Geometry, students will develop reasoning 

and problem solving skills as they study topics such as congruence and similarity, and 

apply properties of lines, triangles, quadrilaterals, and circles”(Larson, Boswell, Kanold, 

& Stiff, 2007, p. T2).  

   Therefore, under the overarching question, which examined the nature of the 

differences between how proof is presented in the written curriculum and how it is 

reflected in the enacted curriculum in a high school geometry course, I addressed the 

following sub-questions:  

1.  How do McDougal Littell Geometry  and Prentice Hall Geometry Teacher’s 

Editions present proof for segments and angles, parallel and perpendicular lines, 

and congruent triangles to facilitate students learning to prove?   

2.  To what extent do geometry teachers use McDougal Littell Geometry and 

Prentice Hall Geometry Teacher’s Editions to teach proof for segments and 

angles, parallel and perpendicular lines, and congruent triangles to facilitate 

students learning to prove?  

3.  What influences teachers’ decisions to deviate or not from the McDougal Littell 

Geometry and Prentice Hall Geometry Teacher’s Editions implied or explicit 

instructions and lesson plans?  

Definitions 

To promote a common understanding of the meaning of key terms, the following 

operational definitions are used.  
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Proof — The meaning given to proof varies among researchers (Reid & Knipping, 

2010). Some researchers perceive proof as proof-text: what students write (Duval, 1990; 

Fischbein, 1982; Fischbein & Kedem, 1982). Others may perceive the meaning for proof 

in terms of discourse (Balacheff, 1991a, 1991b; Fawcett, 1938; Mariotti, 1997, 2000), 

while others consider the meaning as reasoning (Harel & Sowder, 1998; Reid, 1995). 

“For Harel and Sowder a proof must be convincing but not necessarily deductive or semi-

formal. For Reid a proof must be deductive, but not necessarily convincing or semi-

formal” (Reid & Knipping, 2010, p. 52). Hence, there is no clear consensus of what proof 

is in mathematics education. Therefore, for the purposes of this study, I used the 

definition of proof in school mathematics developed by Stylianides (2007). According to 

Stylianides, “Proof is a mathematical argument, a connected sequence of assertions for or 

against a mathematical claim, with the following characteristics: 1. It uses statements 

accepted by the classroom community (set of accepted statements) that are true and 

available without further justification; 2. It employs form of reasoning (modes of 

argumentation) that are valid and known to, or within the conceptual reach of, the 

classroom community; and 3. It is communicated with forms of expression (modes of 

argument representation) that are appropriate and known to, or within the conceptual 

reach of the classroom community” (p.291).  

Curriculum Materials – Curriculum materials are printed resources (such as textbooks), 

which are published with the intent of being used before, during, and after classroom 

instruction by students and teachers (Remillard, 2005; Remillard, Herbel-Eisenmann, & 

Lloyd, 2009; Stein, Remillard, & Smith, 2007).  
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Enacted Curriculum - is the implementation of the curriculum, via the usage of tasks 

from the curriculum materials, during classroom instruction (Stein et al., 2007), which is 

“jointly constructed by teachers, students, and materials in particular contexts…” (Ball & 

Cohen, 1996, p. 6).  

Proof Tasks – are tasks designed to have students write proof arguments, and complete 

skeletal proofs (such as fill in the blank type proof, or matching statements to appropriate 

reasons) in which the finish product illustrates complete proofs.  

Proof-related Tasks are tasks that are related to a proof in the sense that are meant to 

provide students with an opportunity to perform a step that may be used in later proofs 

and are not necessarily proof tasks by themselves. For example, identifying 

corresponding sides in a triangle, identifying the congruence criterion that must be used 

in a given proof, etc. 

Significance of the Study 

More is known about how students learn proof than about how proof is taught 

(Stylianou et al., 2009). Ball et al. (2002) identified three research areas that need 

attention pertinent to the teaching of proof. The first research area identified refinement 

of the functions, perceptions and role of proof. The second research area highlights the 

need for empirical research documenting the challenges of learning to prove. Finally, the 

last research area promotes “the development, implementation, and evaluation of 

effective teaching strategies along with carefully designed learning environments that can 

foster the development of the ability to prove in a variety of levels…” (p. 908). This 

study addresses the third primary need for research on the teaching of proof, because it 

seeks to examine how geometry teachers use curriculum materials in teaching proof. 
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Thus my study assists with unraveling the complexity of teaching proof in high school 

geometry courses.  

 Furthermore, the literature on teachers’ use of curriculum material focuses 

primarily on primary and middle grades and seldom focuses on a particular content 

strand. Thus, focusing my attention on how teachers’ use curriculum materials in the 

teaching of proof in geometry at the high school level would indeed address gaps in the 

current literature on how teachers interact with curriculum materials. 

 Finally, my study is worthwhile because it sheds light on the nature of proof tasks 

posed, and what constitutes a convincing argument in high school geometry classrooms. 

Although tasks vary in the level of cognitive demands and the possibility of engaging 

students in doing proofs, teachers’ actions can stifle or influence the extent tasks are 

enacted. Furthermore, geometry teachers facilitate discussions of what constitute a proof 

while teaching the concept of proof. Thus, my study captures the nature of convincing 

proof arguments deemed acceptable in the geometry classroom; such information can 

inform researchers of classroom sociomathematical norms pertinent to proof. 
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CHAPTER II:  REVIEW OF RELATED LITERATURE 

In this chapter I review the literature pertinent to proof, the teaching of proof, and 

how mathematics curriculum materials are used. More specifically, I discuss what 

constitute a proof in school mathematics, teachers’ conceptions of proof, how proof is 

taught, representations of proof in written materials, teachers usage of curriculum 

materials, and the possible roles proof can play during instruction. Furthermore, I 

highlight research on how geometry is learned and understood, since it may potentially 

influence how geometry teachers teach proof. 

Proof 

Defining proof is not a simple task, and most researchers agree that the definition 

of proof is subjective (Harel & Fulller, 2009; Harel & Sowder, 2007). Depending on the 

researchers’ perspective, it may be useful to define proof in different ways, so that the 

definition fits the researcher’s focus. For instance, NCTM (2000) suggests  that a proof 

reflects specific forms of justification and reasoning; while Fischbein and Kedem (1982) 

emphasized the universal validity of statements and logical rules.  

Within classroom environments, the norms, argumentation, and didactical 

contracts can influence what constitutes a proof. Harel and Sowder (2007) suggest that a 

proof establishes truth for a community or an individual. Whether proof is socially 

constructed or a statement that validates a universal truth, researchers have tried to 

characterize proof in a way that is consistent with the historical development of 

mathematics and that is flexible enough to be of use in mathematics education. 

Stylianides (2007) identified as the essential elements of proof in school mathematics a 
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set of accepted statement, modes of argumentation and modes of argument 

representation. The full definition is as follows:  

Proof is a mathematical argument, a connected sequence of 

assertions for or against a mathematical claim, with the following 

characteristics: 

1. It uses statements accepted by the classroom community (set 

of accepted statements) that are true and available without 

further justification;   

2. It employs forms of reasoning (modes of argumentation) that 

are valid and known to, or within the conceptual reach of, the 

classroom community; and 

3. It is communicated with forms of expression (modes of 

argument representation) that are appropriate and known to, 

or within the conceptual reach of, the classroom community  

(p.291).  

Thus, in school mathematics, proof is not restricted to written text, but is 

reflective of acceptable classroom justification, appropriate reasoning, and supportive 

representation.  

Herbst and Balacheff (2009) discussed three notions of proof that may be visible 

in mathematics classrooms. The first notion refers to classroom discourse used for 

verification purposes, the second notion (C-proof) occurs when students fit solutions to 

proof tasks based on their conception, and the third notion  (K-proof) considers the role 

proof plays as students acquire new knowledge. Conception refers to unwavering ways 



	   13	  

students relate to the arrangement and structure of their mathematical milieu during 

precise moments (Balacheff, 1994). According to Herbst and Balacheff (2009), “for a 

conception to have a regulatory structure that deserves the name of C-proof, the system 

of representation must be capable of representing not just the referents in the problem but 

also the means of operating on the objects” (p. 53). For example, if an elementary student 

was asked to add 18 + 59, and the child produces the correct solution of 77 by adding 20 

and 57, the child would be demonstrating a C-proof. Furthermore, “K-proof, addresses 

the possible role of proof in coming to know new things: it describes how the 

metaphorical mapping of a conception already known by the class onto a new conception 

can shape and warrant plausible knowledge” (Herbst & Balacheff, 2009, p. 41). A K-

proof maps an established C-proof to a new conception of a C-proof (Herbst & Balacheff, 

2009). 

 Kilpatrick, Swafford, & Findell (2001) included proof in the mathematical 

proficiency strand: adaptive reasoning. “Adaptive reasoning [is the] capacity for logical 

thought, reflection, explanation, and justification” (Kilpatrick, Swafford, & Findell, 2001, 

p. 5). The researchers noted that justification is the skill of providing adequate reasoning; 

and that although all justification may not necessarily be a proof, a proof is indeed a form 

of justification. This viewpoint aligns with A. J Stylianides (2007) framework of 

practices that cultivate proof during instruction. Stylianides framework begins with the 

classroom engaging in a proof activity, which branches out to either the base argument 

qualifying as a proof or not a proof, which influences whether the ensuing argument 

qualifies as a proof or not a proof. The base argument is the dominant argument students 

present at the beginning of the proof activity (A. J. Stylianides, 2007). Stylianides 
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acknowledged that, although proofs are result of base arguments, not all base arguments 

may result in an arguments that are deemed proofs in school mathematics.  

Argumentation  

Argumentation within a classroom can evolve into a proof, but in some instances 

it remains just an argument (McClain, 2009). McClain refined Toulmin’s (1958) scheme 

for argumentation by considering sociomathematical norms in a 7th grade mathematics 

classroom. McClain found that “there were continual shifts in the norm of what counts as 

an acceptable mathematical argument” (p. 233). She concluded that arguments could be 

characterized as argument for defending, argument for disagreement, argument for 

justification, and argument for refinement. Mathematical argumentation, if used 

purposefully, can potentially enhance students understanding of the subject matter.  

Heinze and Reiss (2009) studied the development of proof and argumentation of 

secondary students (more specifically 7th, 8th, 12th and 13th grade students), using a 

pretest-posttest design. They propose using hierarchical levels to represent the 

development of students’ argumentation abilities: Level 1, knowledge of basic rules; 

Level 2,simple argumentation; and Level 3, complex argumentation. Students at Level 2 

provided one step reasoning, while student at Level 3 provide multiple reasoning steps. 

The results found that there exist statistically significant differences between the 

performance of students in high-achieving and low achieving classrooms. The results 

found that mathematics classrooms in which students were enrolled influenced their 

individual performance. Heinze and Reiss (2009) found that the 7th and 8th grade 

students performance on the pretest and posttest was correlated more strongly at the 

classroom level (r=0.604, p<0.001) than to the individual (r =0.435, p<0.001). 
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Furthermore, although the 12th and 13th grade students had declarative knowledge 

(content knowledge needed to solve the posed problem), they were deficient in 

procedural knowledge (a chain which links idea to form a correct proof) that was needed 

for completing proof, and exhibited heuristic strategies similar to that of 7th and 8th 

grade students. Additionally, although 12th and 13th grade students were able to 

construct two-step argumentations, only high achieving students were able to construct 

argument with more than two steps. The researchers concluded that students’ proof and 

argumentation skills are weak across secondary grade levels.  

Proof Schemes 

Harel and Sowder (1998) conducted teaching experiments with college students 

and a case study of one high school student enrolled in geometry and calculus in order to 

explore students’ appreciation, production, and understanding of proof. Harel and Sowder 

(1998) considered students’ proofs relative to vector spaces, systems of equations, 

matrices, properties of complex numbers, algebra, circle theorem, and Euclidean 

geometry. They found that there are three major proof schemes (external conviction, 

analytical, and empirical) that encompass sub-groups of schemes (ritual, authoritarian, 

symbolic, transformation, axiomatic, inductive, and perceptual).  

The external conviction proof schemes are schemes where outside sources 

influence students’ conceptions of proof; and embody ritual, authoritarian and symbolic 

schemes. According to Harel and Sowder (1998),  “When formality is introduced 

prematurely students come to believe that ritual and form constitute mathematical 

justification” (p. 243). Students utilizing ritual proof scheme may accept a mathematical 

argument based on its initial appearance, and assert that mathematical symbols and 
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traditional mathematical representation (such as two-column proof) are needed to validate 

a proof argument. For the authoritarian proof scheme, students rely on teachers and 

textbooks to establish truth claims, and do not consider intrinsic arguments on the merit 

of the proof. “The…most common expression of this proof scheme is students insistence 

on being told the procedure to solve their homework problems, and when homework are 

emphasized they expect to be told the proof rather than take part in its construction” 

(Harel and Sowder, 1998, p. 247).  Conversely, the symbolic proof scheme utilizes 

symbolical representation to prove a theorem. The richness of a symbolic proof can vary 

significantly in mathematical depth.  

The second major proof scheme is the empirical proof schemes, in which 

conjectures are disproven or proven utilizing facts and visual perceptions; it includes the 

inductive and perceptual proof schemes. Students exhibit inductive proof scheme by 

quantitatively evaluating the truth of an argument in effort to convince themselves or 

persuade others of the validity of their proof via counterexamples and examples. There 

are potential issues with “proof by examples”, hence the researchers documented that 

students were provided with examples that may be true in some instances and false in 

others. This method sought “to convince the students that inductive verifications are 

insufficient to validate a conjecture. Although… students seemed to understand the 

limitations inherent in the inductive method, their subsequent behavior was not consistent 

with this impression” (Harel and Sowder, 1998, p. 253).  The authors acknowledged 

using inductive evidence is a natural inclination. Conversely, students demonstrate 

perceptual proof scheme by visualizing images in the mind as to how a proof ought to be 
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constructed, but are unable to transform the proof or consider the possibility of the result 

if the proof was transformed.  

The third major proof scheme is analytical proof schemes. Analytical proof 

schemes are evident when students use logical deduction to evaluate the merit of 

proposed conjectures. Analytical proof schemes comprise transformational and axiomatic 

proof schemes (intuitive- axiomatic, structural or axiomatizing).  

Students demonstrate a transformational proof scheme when they can change an 

argument and can consider the result that the transformation will have on the proof 

argument. “The transformational proof scheme is characterized by (a) consideration of 

the generality aspect of the conjecture, (b) application of mental operations that are goal 

oriented and anticipatory, and (c) transformations of images as part of a deductive 

process” (Harel and Sowder, 1998, p.261). Transformational proof scheme can be 

internalized, interiorized, and restrictive (that encompasses contextual, spatial, generic, 

and constructive proof schemes). Internalized proof scheme utilize heuristic arguments; 

an interiorized proof scheme is evident when students can reflect on an internalized proof 

scheme, such that they become aware as to why their proposed argument is truth. 

However, restrictive proof scheme occur when students place limits on conjectures and 

justifications. Students demonstrate contextual proof scheme when they emphasize that 

the context of the proof is vital for constructing a proof argument. A spatial proof scheme 

(which is a subclass of the contextual proof scheme) may be used in considering location 

on a geometrical plane, and generic proof scheme is evident when students utilize basic 

argument for a particular context. Students that use construction proof scheme construct 

objects to eliminate doubt of a proof argument.  
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Axiomatic proof scheme is also a sub-category of the analytical proof schemes. 

An axiomatic proof scheme exists when students know that a proof must be underpinned 

by mathematical axioms and subsequent theorems.  A person possessing axiomatic proof 

scheme is “aware of the distinction between the undefined terms, such as “point” and 

“line” and defined terms such as “square” and “circle”, and between statements accepted 

without proof and ones that are deducible from other statements” (Harel and Sowder, 

1998, p.273).  Conversely, intuitive- axiomatic proof scheme occurs when a student can 

see the merit of a proof based on intuition such as the commutative property of addition. 

Alternatively, students possessing structural proof scheme understand that an axiom can 

be applied in different context because the structures share certain properties and 

subsequently certain axioms. Finally, the last proof scheme described by Harel and 

Sowder (1998), is axiomatizing. Axiomatizing occurs when students can examine a set of 

axiom across various field of mathematics. Harel and Sowder proof schemes are 

represented in Figure 1.  
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Figure 1. Proof Schemes (Harel & Sowder, 1998, p. 245). 
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Explanation sheds light as to why a statement is true. Systematization presents results in 

an organized format, such that the connections between known results and previous 

results are made apparent. Communication is the social sharing of meaning and 

knowledge of mathematics; and intellectual challenge is the self satisfaction and 

realization one obtains from the construction of a proof (De Villiers, 1999). Furthermore, 

proof can be used to explore mathematical conjectures and statements, discover new 

mathematical results, and incorporate known facts into novel frameworks in an effort to 

consider alternative perspectives (Hanna, 2000).  

Representations of Proof in Geometry 

Curriculum materials often use various representations of geometrical proofs to 

facilitate students’ development of proof skills. Among these representations we can 

enumerate two-column proof, a flow proof, a proof tree, and a paragraph poof (Cirillo & 

Herbst, 2010).	  

 For many years, two-column proofs have been a standard means for teaching 

proof. Herbst (2002b) historical study, which describes the evolution of proof during the 

period 1850-1910, documented that two-column proofs was instrumental in changing 

how proof was taught in geometry. This teaching strategy changed the students’ role from 

being solely learners of mathematical proof to doers of mathematical proof in high school 

geometry (Herbst, 2002b). Considering the popularity of two-column proofs, students are 

often perplexed about the validity of a proof when written in alternative form, such as 

paragraph proof (McCrone & Martin, 2009). Two-column proofs have received criticism 

in recent times because they appear rather austere, and can potentially bias students to 

believe that the deductive process is a linear process, thus concealing the excitement of 
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doing proof (Cirillo & Herbst, 2010; Lakatos, 1976; Schoenfeld, 1986). Herbst (2002a)  

presented theoretical arguments of the challenges teachers experience in efforts to 

facilitate students doing proofs using the two-column proof (such as the careful set up of 

the proof task, and didactical contracts established during the implementation of the task), 

and suggest that challenges are necessary considering the responsibilities of students and 

teacher while doing proofs. The didactical contracts for doing proofs may include: the 

declared purpose of the task is to produce a proof, what is to be proved is a proposition 

that is explicitly given at the outset, the proposition is stated in premises and conclusions 

identified and separated as given and prove, and a diagram is given with the task and 

lettered in an alphabetical sequence supporting a circular reading. Herbst pointed out 

that two-column proofs put conflicting demands on geometry teachers as to how to 

develop students proof skills (such as the promotion of rich encounters with doing proofs 

and the reduction of the difficulty level of the proof tasks); he suggested it may be 

advantageous to teachers to consider alternative forms of doing proofs.  

A flow proof is similar to the two-column proof because it makes explicit the 

connection between each statement and its justification and it uses arrows to connect 

logical statements, although students are not expected to provide reasons to support every 

statement (as is the case in the two-column proof) (Cirillo & Herbst, 2010). Flow proof 

provides a mean for students to understand and analyze information that is given, and to 

consider information that is needed, so that they can construct logical arguments to prove 

what needs to be proved (Brandell, 1994). 

 A proof tree is an outline of a proof (Anderson, 1983; Cirillo & Herbst, 2010). 

Anderson (1983) noted that a proof tree provides students an opportunity to search 
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forward or backward through logical statements that link the given statement to 

supporting statements and what needs to be proven. Considering a proof tree links 

various ideas, Anderson (1983) characterizes the proof tree as “an abstract specification 

of a proof” (p.193). Cirillo and Herbst (2010) suggest that a proof tree can be used for 

scaffolding to assist students to construct a geometrical proof.  

A paragraph proof uses sentences to state logical statements (Cirillo & Herbst, 

2010). Paragraph proof use everyday writing for an explanation and is not as structured 

as other proof representations (Education Development Center, 2009). Cirillo (2008) 

documented that  the teacher in her case study was concerned about the appropriateness 

of paragraph proof at the school level, since students who use paragraph proof often 

deduce incorrect conclusions and frequently neglected to include supportive reasoning. 

Nevertheless, paragraph proof provide a mean for students to develop proficiency in 

writing proof (Cirillo & Herbst, 2010). 

The various representations of proof may be visible in textbooks, and can be used 

to facilitate students’ development of proof skills. In fact, in the McDougal Littell 

Geometry  (2007) Teacher’s Edition requires students to write two-column proofs, 

paragraph proofs, and flow proofs as a means to foster students doing proofs. Hence, it is 

important to be mindful of the types of representations textbooks use to write proofs, 

because it may significantly influence the type of representations of proofs encouraged 

during the teaching of proof. Figure 2 depicts various representations that be can used to 

write a proof for a given task.  
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Figure 2. Various representations of proof  (Cirillo & Herbst, 2010, pp. 17-18). 
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Teaching of Proof in Geometry 
 

According to Battista and Clements (1995), efforts to improve students 

performance of proof by teaching it in creative ways have been ineffective based on the 

multiple research findings that suggests students continues to perform poorly on proof 

tasks. Numerous studies have documented how high school and beginning college 

students fail to perform well when doing proofs (Healy & Hoyles, 2000; Recio & 

Godino, 2001; Senk, 1985). For example, Senk (1985) found that only 30% of students 

enrolled in geometry for a full year were able to construct proofs at a mastery level of 

75%.  
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The instructional responsibilities of geometry teachers are vast, and teaching 

proof is just one of them. According to Jones (2002), “Teaching geometry well involves 

knowing how to recognize interesting geometrical problems and theorems, appreciating 

the history and cultural context of geometry, and understanding the many and varied uses 

to which geometry is put” (p. 122). Jones (2000a) acknowledged that there are many 

things in the geometry curriculum that have to be taught so teachers have to consider: 

aspects of proofs that need to be accentuated, potential pedagogical strategies that can 

bridge deductive thinking and geometric insight, and tools that can facilitate students’ 

learning to prove. Fussell (2005) discussed the role of teachers and curricula for teaching 

proof. She noted teachers need to assist students in writing logical statements; teachers 

should be flexible in their instructional practices such that students can share their ideas 

about a proof before attempting to construct a proof independently, and teachers should 

provide students opportunities to prove during instructional time. Unfortunately, due to 

time constraints, teachers often choose to provide students with examples, and neglect to 

prove theorems (Fussell, 2005).  

Herbst et al. (2009) discussed 25 classroom norms  that occurs while “doing 

proofs”, which included specific responsibilities for teachers and students. Teachers’ 

responsibilities may include providing students with the tasks, ensuring that sufficient 

details are provided  (for example, the given and what needs to be proven) such that the 

students can attempt to construct proofs, activating students thinking by making 

suggestions about how to construct proofs, and ensuring reasons are provided for 

statements made. Conversely, the students’ responsibilities may include constructing 

proofs and marking the diagrams without altering them.  
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Similarly, Martin, McCrone, Bower, and Dindyal (2005) conducted an 

interpretivist classroom study about how geometry is taught and learned. The researchers’ 

captured data (video and field notes) of the interaction between students and their teacher 

over a 4-month period in an honors geometry course. The researchers classified teachers’ 

actions into the following primary categories:  select task, revoice or rebound, request 

explanation/reasoning, model proof-related skills, evaluate student responses, and value 

students’ ideas (coaching) (Martin et al., 2005, pp. 103-104).  

Martin and McCrone (2001) reported year 1 results of  a 3 year study of students 

ability to construct proof arguments and beliefs about proof, in which two geometry 

teachers of a midwestern high school participated. Martin and McCrone (2001) 

documented teachers pedagogical practices and sociomathematical norms and concluded 

that teachers were the authority of mathematics within the classroom setting, little time 

was allocated for students to provide answers to questions posed, scarce opportunities 

were provided for students to engage in sense-making activities, and teachers’ 

mathematics content knowledge limited their pedagogical practices when teaching proof. 

Furthermore, it was not apparent that the problems posed required to be proved. 

McCrone, Martin, Dindyal, and Wallace (2002) conducted a study with four 

teachers and found that their  pedagogical practices when teaching proof were rather 

similar. Two of the teachers used geometrical proofs as application of theorems that 

resulted in students’ learning proof via rote learning. The other two teachers used 

geometrical proofs to introduce new concepts. The students of teachers who taught via 

rote learning were explicitly encouraged to memorize geometrical facts (definition, 

theorems, postulates, etc.) and to readily identify the given and what needed to be proved; 
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although the students of the other classes were not explicitly required to memorize 

geometrical facts it was expected that they learn the geometrical facts due to regular use. 

Furthermore, it appeared that the teachers who did not explicitly emphasize memorization 

of geometrical facts emphasized the creative form or “elegance” of the proof, while the 

teachers who emphasized memorization of geometrical facts emphasized the amount of 

detail needed for a proof. The four classroom teachers encouraged students to make 

marks on the diagrams. Three of the teachers reinforced the perception that tasks can be 

solved quickly, in a relatively short time span. The researchers concluded that the 

teachers’ pedagogical actions significantly influenced students’ perception of what 

constitutes a proof.  

Teaching Proof with Curriculum Materials 

 Proof-related tasks in curriculum materials are often implemented as such during 

the enacted curriculum (Bieda, 2010). Bieda conducted a multiple case study of six 

middle school teachers who used Connected Mathematics Project (CMP) curriculum and 

their enactment of proof-related tasks. Bieda found that 71% of the tasks identified as 

proof-related tasks during the curriculum analysis were implemented as such by the 

teachers, 21% of the proof-related tasks were not implemented as proof-related tasks due 

to time constraints, and 8% of the proof-related tasks were not implemented because of 

teachers’ discretion. Bieda’s results indicate that students’ opportunities to prove 

decreased as the grade levels increased. Overall, the enacted proof tasks did not fully 

develop students’ understanding of what is considered a complete mathematical 

justification, due in part to the fact that “when a teacher provided feedback to students’ 
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justifications, it was not sufficient to establish standards for proof in a mathematics 

classroom” (Bieda, 2010, p. 377). 

McCrone, Martin, Dindyal, and Wallace (2002) acknowledged that the four 

teachers in their study followed the textbook rather closely to structure the enacted lesson 

on proof, as well as for allocating homework assignments pertaining to proof, and used 

technology or hands on investigation activities sparingly. Admittedly, it may not always 

be ideal for teachers to follow the curriculum rather closely. For example, Schoenfeld 

(1988) conducted a year long study of teaching and learning in a 10th grade geometry 

course. He found that, although the teacher exhibited “good teaching”, the teacher’s 

actions might have had a negative impact on students’ perceptions of proofs. He 

suggested that the teacher’s strict adherence to the curriculum might have caused students 

to differentiate between constructive and deductive geometry, consider the form of the 

mathematical argument to be paramount, and view doing proofs as a quick activity.  

Considering that teachers rely on curriculum materials to teach proof, thoughtful 

considerations must be given to the guidance that curriculum materials provide for 

teachers. Knuth, Choppin, and Bieda (2009) recommended that curriculum materials 

ought to facilitate both teachers’ and students’ development of proof skills. The 

researchers noted, “Given the inextricable link between teachers’ instructional practices 

and the curricula they implement…Curricular materials not only must provide 

opportunities for students to engage in proving activities, but must also support teachers’ 

efforts to facilitate such engagement” (Knuth et al., 2009, p. 169). 
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Teachers’ Conceptions about Proof 

Teachers’ beliefs and subject matter knowledge can significantly influence their 

classroom practices (Borko & Putnam, 1996). Hence, teachers’ conceptions of proof may 

influence the way they teach it. Knuth (2002a) conducted semi-structured interviews with 

16 in-service high school mathematics teachers about their conceptions of proof in 

mathematics. He found that 75% of teachers considered that the role of proof was to 

communicate mathematics, 50% of teachers considered that it was to systematize 

mathematical ideas and construct new knowledge, 18.75% considered proof as a means 

of explaining (answering why), and no teacher considered proof a means of explanation 

that can promote understanding. Additionally, Knuth (2002a) found that 37.5% of 

teachers believed a proof became “invalid” if there was a contradictory statement, 

31.25%  of teachers were hesitant to accept a counterexample as a proof, and that 31.25% 

of teachers believed that unusual cases of counterexamples ought to be tested. 

Furthermore, Knuth (2002) showed that teachers identified characteristics of a 

convincing proof primarily in terms of concrete features (81.25% of teachers), familiarity 

(62.5%), generality (56.25%) and amount of details (50%). Knuth’s results emphasized 

that teachers consider proof as a means to communicate mathematics, and that concrete 

features of proof are of utmost importance. We can assume that these different 

conceptions of proof will affect how teachers teach it.  

 Furthermore, knowledge of proof can have implications on how proof is taught. 

According to Stylianides, Stylianides and Phillippou (2007), “If teachers’ knowledge of 

proof is fragile, that is, it is shaky and yields to attempts to inject contradictions into it … 

it is likely that teachers will teach proof poorly or will not teach proof at all” (p.146). 
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Knuth (2002a) found that although 93% of teachers in his study were successful in 

identifying proof statements, one third of the teachers identified non-proofs as proofs. As 

a matter of fact, all teachers in his study identified at least one non-proof as a proof. 

Similarly, Stylianides et al. (2007) found that preservice teachers had difficulties 

identifying and conceptualizing correct inductive proof methods. Arguably, teachers who 

have difficulties to identify proofs will not be able to teach proof successfully. 

Geometrical Cognitive Development 

In examining how geometry teachers use curriculum materials for the teaching of 

proof, it is important to take into account research on students’ development of geometric 

cognitive development. Thus, I discuss literature related to how students develop a 

conceptual understanding of geometrical constructs (Battista, 2007, 2009; van Hiele, 

1959/1985).  

Van Hiele Model of Geometrical Thinking  

The van Hiele model of geometrical thinking is a hierarchical model of students’ 

geometrical development (van Hiele, 1959/1985). The van Hiele model consists of five 

ascending levels: Level 0-visualization, Level 1-analysis, Level 2- abstraction, Level 3- 

deduction, and Level 4-rigor. According to the van Hiele model at the visualization level 

students make claims based on their perception rather than on mathematical reasoning. 

Students who are on the analysis level recognize objects as a collection of mathematical 

properties, but are unable to differentiate which properties are useful in conducting a 

proof and experience difficulty in recognizing relationship between properties (van Hiele, 

1959/1985). At the abstraction level, students are able to observe relationship between 

geometrical figures, but are unable to deduce mathematical principles. Students at the 
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deduction level should be able to construct proof for Euclidean geometry using 

mathematical theorems and postulates appropriately. At the rigor level, students can 

perform multiple forms of proofs using deductive and inductive reasoning and conduct 

proofs for geometries that are not Euclidean (van Hiele, 1959/1985). According to the 

van Hiele model, students’ cannot regress or be between levels (Senk, 1989).  

Battista  (2007, 2009) refined the van Hiele model to reflect students conceptual 

development of 2D-geometrical shapes, to a formal understanding of shapes and 

geometrical constructs. The refined model still consists of five ascending levels however 

the labeling of the levels has changed. The refined van Hiele classification is as follows: 

Level 1- Visual-Holistic Reasoning; Level 2- Descriptive-Analytic Reasoning, Level 3- 

Relational-Inferential Reasoning, Level 4- Formal Deductive Proof and Level 5-Rigor. At 

the Visual-Holistic Reasoning level, students can identify and reason about shapes based 

on the appearance of the shape as a whole. At the Descriptive-Analytic Reasoning level, 

students are able to observe how the structural parts of a shape are related, and can 

appropriately apply geometrical constructs in examining relationships that may exist 

between various parts of a shape. Students at the Relational-Inferential level can speak 

with certainty of the relationships that exists among the shape geometrical properties. 

Students may use empirical evidence or logical inference rather than re-presenting the 

structure being discussed. At the Formal-Deductive level students are able to interpret 

and construct complete geometrical proofs. Battista (2009) concluded that at the Rigor 

level students can analyze and use  multiple axiomatic systems (such as Euclidean and 

non-Euclidean geometries), which is more visible in tertiary level mathematics courses.  
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Abstraction 

  The abstractionist model suggests that learners repeatedly reflect and abstract to 

develop more advance mental models of phenomena (Battista, 2007). Battista (2009) 

explained, “Abstraction is the process by which the mind registers objects, actions and 

ideas in consciousness and memory. Once objects, actions, and ideas have been 

abstracted at a sufficiently deep level, they themselves can be mentally operated on (e.g., 

compared, decomposed, analyzed)” (p.94). Spatial structuring and mental model are 

special forms of abstraction pertinent to the learning of geometry. Spatial structuring is 

the mental process of arranging sets of objects or an object, based on the identification of 

relationships that exist among the object(s) components (Battista, 2009). Mental models 

entail nonverbal mental accounts of situations, which embody the form of the situations 

they signify. Hence, how an individual abstracts a geometrical proposition can 

significantly influence how he or she conceptualizes it. 

Concept Learning and the Objects of Geometric Analysis  

Finally, concept learning involves two primary concepts:  natural concepts, and 

formal concepts (Battista, 2009; Pinker, 1997). Natural concepts occur in everyday life 

and seldom, if ever, require concept definitions; however formal concepts always require 

the usage of definitions. Furthermore, in an effort to learn geometric concepts, students 

reason about three forms of geometrical objects: physical objects  (things), concepts 

(mental representations that an individual abstracted for groups of similar objects) and 

concept definitions (verbal or symbolic formal mathematical requirement for an object) 

(Battista, 2009).  
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Diagrams and Representations  

 The theory of Diagrams and Representation (Battista, 2009) considers whether a 

diagram is representing an object or a concept. “ On the one hand, physical objects can be 

thought of as the input for geometric conceptualization... On the other hand, physical 

objects, including diagrams are often used to represent formal geometric concepts” 

(Battista, 2009, pp. 96-97). In many instances, students have difficulties differentiating 

between what is being represented and the representing object, such as a diagram 

(Battista, 2009; Clements & Battista, 1992).  

Proofs in Curriculum Materials 

In a review of geometry textbooks during the 20th century, Donoghue (2003) 

noted that congruent polygons and Pythagoras’ Theorem were prime topics for the 

teaching of proof across textbooks. Nevertheless, the pedagogical recommendations, 

content, and context for the teaching of proof included in these textbooks varied. More 

recent textbooks also differ in their approach to proof. For example, the University of 

Chicago School Mathematics Project (UCSMP) geometry textbook (Coxford, Usiskin, & 

Hirschhorn, 1993), which is aligned with the NCTM Standards, embedded proof into the 

“properties” dimension of geometrical understanding. According to Senk (2003)  “in each 

UCSMP course a multidimensional view of understanding mathematics is emphasized. 

Secondary school mathematics has at least four dimensions: Skills, Properties, Uses and 

Representation…designed to illustrate the breath of mathematics…” (p. 431).  

Furthermore, although NCTM (2000)  recommended that proof be taught across 

grade bands and various mathematical strands, the visibility of proof in mathematics 

textbooks outside the realms of geometry is not quite apparent (G.  J. Stylianides, 2008). 
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Stylianides examined the recommendations for teaching proof in the Teacher’s Edition of 

the Connected Mathematics Project for geometry, algebra and number theory units. He 

found that 5% of the 4, 578 tasks could be considered proof tasks. Of the task that were 

considered proof tasks, 10% of them provided teachers with the solutions and guidance, 

and the remaining 90% provided the solutions only.  

Curriculum Materials 

 Curriculum materials vary by embedded pedagogies, mathematical depth and 

emphases, contexts, and style. Curriculum materials are printed resources (such as 

textbooks), which are published with the intent of being used before, during, and after 

classroom instruction by students and teachers (Remillard, 2005; Remillard et al., 2009; 

Stein et al., 2007). In some instances, researchers refer to textbooks and curriculum 

materials in an interchangeable manner, however practitioners often differentiate between 

them (Stein et al., 2007).  

  During instruction teachers rely primarily on textbooks as a resource for the 

teaching of mathematics (Grouws & Smith, 2000; Grouws, Smith, & Sztajn, 2004). 

Chávez (2003) found that most teachers use textbooks as a resource of mathematical 

tasks, and as a “lesson plan”.  In a study in middle school classrooms, Tarr, Chávez, 

Reys, and Reys (2006) found that teachers used 60-70% of the lesson guides for 

instructional purposes. Furthermore, most teachers using commercially published 

textbooks were less likely to vary in their textbook usage when compared to teachers that 

used NSF-funded textbooks (Chval, Chávez, Reys, & Tarr, 2009). Additionally, 

approximately three fourths of eight graders reported that they used textbooks daily in 

mathematics (Grouws & Smith, 2000), and 89% of students reported using their 
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mathematics textbooks as a resource for mathematics problems (Lindquist, 1997). As a 

result, there is a great likelihood that content not presented in the curriculum materials, 

may ultimately not be covered (Stein et al., 2007).  

Curriculum Use 

Although, teachers may use similar textbooks for teaching proof, there is no 

guarantee that teachers will use the textbooks in the same way. Researchers have 

documented how teachers use curriculum materials in different ways. These may be 

influenced by their conceptions about the curriculum, teaching, and teacher-curriculum 

relationships (Lloyd, Remillard, & Herbel-Eisenmann, 2009; Remillard, 2005, 2009). For 

example, Cirillo (2008) found that the novice teacher in her case study supplemented 

curriculum materials with more proof tasks as a consequence of attending professional 

development training.  

Teachers’ use of curriculum materials embodies various pedagogical actions; 

teachers’ can exhibit a reliance on curriculum materials for lesson planning, and the 

enacted lesson, or interact with curriculum materials as a form of resources (Lloyd et al., 

2009). Manouchehri and Goodman (1998) study of 66 middle school teachers found that 

teachers varied in the extent curriculum materials were used during instruction time, 

expectations of students, and effort to build a classroom culture that promoted the use of 

reform materials. Porter (2002) discussed factors that could potentially influence content 

being taught in elementary mathematics curriculum. He found that teachers’ receive 

messages about what to be taught from different sources: curriculum materials, 

professional development, assessments, school hierarchy, parents, other teachers, 

administrators, district supervisors, and from their own experiences. Hence teachers’ 
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draw on curriculum materials for insight as to what to teach, but curriculum materials are 

not the only variable that contributes to what is taught. Considering that teachers use 

curriculum materials in various ways for the planning and implementation of lessons, 

thought must be given as to how teachers use curriculum materials for teaching specific 

topics and mathematical processes, such as proof. 

 In McDougal Littell Geometry (2007), the authors provided a “Pacing the Course 

Guide” that illustrates the number of instructional days which ought to be allotted for 

each chapter. For example, Chapter 2 which is entitled “Reasoning and Proof” is 

allocated 14 instructional days, however there is no guarantee that teachers will exhibit 

complete fidelity to textbook recommendations (McNaught, Tarr, & Sears, 2010). 

Descriptions of teachers’ use of curriculum materials are based frequently on the 

degree of closeness to which teachers follow them (e.g., fidelity of implementation), but 

also on the more complex relationship between teacher and textbook. For example, 

Remillard (2005) and Stein et al. (2007) have described teachers’ use of curriculum 

materials as following or subverting, drawing on, interpretation, and participating with. 

Researchers that study curriculum as following or subverting argue that fidelity between 

what is written and subsequently enacted is possible, a rather positivist perspective (Stein 

et al., 2007). Researchers that consider curriculum use as drawing on the text, focus on 

teacher agency, and consider the text as a possible resource that can be used during the 

enacted curriculum (Remillard, 2005). Individuals with this perspective vary in their 

viewpoints about the feasibility of fidelity. Researchers adhering to an interpretive 

perspective believe it is impossible to have fidelity between a teacher’s actions during the 

enacted curriculum and the content written in the text, because teachers’ experience and 
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beliefs facilitate the meanings teachers derive from what is written, and influences how 

teachers interpret the written text in the curriculum materials (Remillard, 2005). 

Moreover, curriculum use can also be described as participating with. This perspective 

emphasizes that there is a dynamic interrelationship between curriculum materials and 

teachers. Although similar to the interpretive perspective, the difference between the 

viewpoints exist in the analysis of data (Stein et al., 2007). “In other words, the 

distinguishing characteristics of this perspective is its focus on the activity of using or 

participating with the curriculum resource and on the dynamic relationship between the 

teacher and curriculum” (Stein et al., 2007, p. 345). 

Brown (2009) suggested that curriculum can be used for offloading, adapting and 

improvising. When teachers offload a curriculum, they rely heavily on, and strongly 

adhere to curriculum materials for pedagogical guidance, resources such as worksheets, 

and tasks. Teachers that adapt the curriculum make adjustments to the curriculum 

materials to fit the context of the learning environment, thus the adapted usage of 

curriculum materials reflects contributions from teachers and from suggestions in the 

curriculum materials. Finally, when teachers improvise the curriculum, the agency shifts 

from the curriculum materials to the teachers. Teachers who improvise may utilize 

alternative strategies (rather than what is recommended in the curriculum materials) to 

facilitate classroom-learning episodes.  

 For the purposes of curriculum comparison studies, Chval et al. (2009) suggest a 

way of measuring textbook integrity, the degree to which teachers use textbooks as a 

main resource for teaching mathematics. They propose to document three main variables: 

how much of the textbook teachers use for teaching mathematics, how often they use it, 
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and the extent to which mathematics teachers’ instructional practices align with the 

embedded pedagogy of the textbook.  

  Stein and Kim (2009) studied how curriculum materials supported teacher learning. 

The authors’ data analysis considered teachers interaction with curriculum materials, and 

the influence of different organizational conditions. They found that textbooks varied in 

their cognitive demand of instructional tasks, and the likelihood of teachers’ change 

varies depending on social and human capital of their schools and subsequent districts.  

Theoretical Framework- Conceptual Model of Teacher-Curriculum Interactions 

and Relationships  

Remillard (2009) conceptualization of the teacher-text interaction and 

instructional outcomes is used as the overarching theoretical framework for my study. 

Remillard’s framework considers the potential interplay among curricular resources, 

teachers and instructional outcomes.  

Remillard’s (2009) “conceptual model of teacher-curriculum interaction and 

relationships” (Figure 3) incorporates Brown’s (2009) Design Capacity Enactment  

(DCE) framework, McClain, Zhao, Visnovska, and Bowen’s (2009) curriculum use in 

regards to professional status and agency, Stein and Kim’s (2009) analysis in respect to 

human and social capital, and Chval et al. (2009) consideration of embedded pedagogies.  

 Brown’s (2009) DCE framework considers the bi-directional relationship of types 

of use (offload, adapt, improvise) between curriculum resources (such as representations 

of physical objects, procedures, and concepts), and teacher resources (subject matter 

knowledge, goals, beliefs and pedagogical content knowledge) that can influence 

instructional outcomes. Physical objects are materials that are recommended but not 
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included in the curriculum materials, which may include blueprints to assemble objects. 

The tasks representation includes directions, written materials, and explicit procedures for 

teachers and students about the intent of the lesson and how it ought to be enacted. The 

domain representation of concepts can be illustrated via diagrams, analogies, 

explanations, models, sequence, or descriptions. The teacher resources comprise the 

teachers’ subject matter knowledge, teachers’ pedagogical content knowledge, and 

teacher’s beliefs and goals.  

 McClain et al. (2009), discussing the role of curriculum materials in facilitating or 

hindering teacher change, consider teaching as a social practice, and the instructional 

practices teachers’ use is situated within schools and subsequently within districts. They 

suggest that the relationship between teachers and text consist of three constructs, namely 

teacher’s instructional reality, locus of agency, and teachers’ professional status. 

McClain et al. (2009) defined “agency as having authority over both the mathematics that 

is taught and the sequencing and presentation of that content” (p.63).  

Figure 3. Conceptual model of teacher-curriculum interactions and relationships 

(Remillard, 2009, p. 89). 
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The model suggests that teacher-text interaction with curriculum resources and 

teacher resources can influence instructional outcomes. Although my study focused on 

how geometry teachers use curriculum materials for the teaching of proof, I could not 

ignore the environment in which teachers’ work, since it can potentially influence 

teachers’ decision making as to how to use curriculum materials. Hence, all construct of 

Remillard’s (2009) framework is considered to be of equal importance for this study.  

Summary  

 There exist a need to improve the teaching of proof. Studies document that students 

perform poorly on proof tasks. To date researchers have documented how proof is 

learned, outlined how proof is taught, and acknowledged that teachers use curriculum 

materials for teaching proof. The literature is scarce, however, in explicitly describing 

how teachers use curriculum materials to teach proof and in promoting a particular proof 

scheme. Table 1 depicts highlights of major themes in the review of the literature relative 

to how proof is taught and how curriculum materials are used.  
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Table 1. Highlights of major themes in the review of the literature pertinent to how proof 

is taught and how curriculum materials are used 

Theme Critical point(s) 
Teaching of Proof 
in Geometry 
 

•Efforts to improve students’ performance on proof tasks by teaching proof 
in creative ways have been proven to be ineffective (Battista & Clements, 
1995).  

 
Teaching Proof 
with curriculum 
materials 
 

•Proof-related tasks in curriculum materials are often implemented as such 
during the enacted curriculum (Bieda, 2010).  

•Teachers follow the textbook rather closely to structure the enacted lesson 
on proof, as well as for allocating homework assignment pertaining to 
proof, and sparingly used technology or hands on investigation activities 
(McCrone, Martin, Dindyal, & Wallace, 2002).  

 
Teachers’ 
conception 
(knowledge and 
belief) about 
proof 
 

•Teachers believed the roles of proof are to communicate mathematics, 
systematize mathematical ideas, and construct new knowledge (Knuth, 
2002).  

•Characteristics of a convincing proof includes concrete features, 
familiarity, generality and amount of details (Knuth, 2002). 

•Teachers are sometimes challenged to differentiate between proof and 
nonproof tasks (Knuth, 2002). 

Proofs in 
curriculum 
materials 
 

•Proofs were represented predominantly in geometry textbooks for grades 
K-12 mathematics (Donoghue, 2003).  

Representation of 
Proof in 
Geometry 
 

•Common representation of proof includes: Two-column proof, flow proof, 
proof tree, and paragraph proof (Cirillo & Herbst, 2010). 

 

Curriculum 
Materials 
 

•Curriculum materials vary by embedded pedagogies, mathematical depth 
and emphases, contexts and style (Stein, Remillard, & Smith, 2007). 

 
Curriculum Use 
 

•Teachers may use curriculum materials as following or subverting, 
drawing on, interpretation, and participating with (Stein, Remillard, & 
Smith, 2007). 

•Curriculum can be used for offloading, adapting and improvising  (Brown, 
2009). 

 
Geometrical 
cognitive 
development 
 

Perspectives on how students develop an understanding of geometry 
includes:  

•van Hiele Model of geometrical thinking (Van Hiele, 1959/1985)  
•Abstraction  
•Concept Learning and the Objects of Geometric Analysis  
•Diagrams and Representations   (Battista, 2009 ) 
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Table 1 highlights that teachers enact proof tasks as such, and teachers have various 

conceptions about proof in mathematics. Furthermore, it suggests that teachers may use 

the curriculum to provide a structure for the enacted lesson pertinent to proof, and that 

proofs are more prevalent in geometry textbooks for grades K-12 . Admittedly, although 

many studies were done pertaining to proof, the field has not reached saturation in 

describing how proof is taught. My study adds to the literature by describing how 

geometry teachers use curriculum materials to teach proof, by taking into consideration 

the levels of cognitive demands of the written and enacted tasks and identifying the 

dominant proof scheme encouraged.  
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CHAPTER III: METHODS 

This study employs qualitative methods to investigate how geometry teachers use 

curriculum materials for teaching proof. According to Stein, Remillard and Smith (2007) 

researchers who examine curriculum use from an interpretive view hold that “teachers 

bring their own beliefs and experiences to their encounters with curriculum to create their 

own meanings, and that by using curriculum materials teachers interpret the intentions of 

the authors” (Stein et al., 2007, p. 344). From this perspective, I utilized a multiple case 

study research design (Creswell, 2008; Stake, 1995, 2006; Yin, 2009) to examine how 

teachers use curriculum materials for teaching proof. A curriculum use theoretical 

framework, and a mathematical tasks and proof schemes analytical framework was used 

to address the broader issue of how teachers use curriculum materials to facilitate the 

teaching of proof in geometry and, more specifically, answer the following research 

questions:  

1. How do McDougal Littell Geometry and Prentice Hall Geometry Teacher’s 

Editions present proof for segments and angles, parallel and perpendicular lines, 

and congruent triangles to facilitate students learning to prove?   

2.  To what extent do geometry teachers use McDougal Littell Geometry and 

Prentice Hall Geometry Teacher’s Editions to teach proof for segments and 

angles, parallel and perpendicular lines, and congruent triangles to facilitate 

students learning to prove?  

3.  What influences teachers’ decisions to deviate or not from the McDougal Littell 

Geometry and Prentice Hall Geometry Teacher’s Editions implied or explicit 

instructions and lesson plans?  
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In this chapter, the conceptual analytical framework used, and the data collection and 

data analysis procedures employed is described. In addition, justification is provided for 

the use of a case study research design. In the previous chapter, an overarching 

theoretical framework for curriculum use that situates my study was presented; however, 

a conceptual analytical framework is needed for my data analysis in order to address the 

specific attributes of proof in mathematics textbooks and as enacted in the classroom. 

Hence, in this chapter, the conceptual analytical framework is discussed.  

Conceptual Analytical Framework 

   The Mathematical Tasks Framework [MTF] (Henningsen & Stein, (1997), and a 

proof schemes framework  (Harel & Sowder, (1998) were used as the composites of my 

conceptual analytical framework. The MTF provided a means to analyze the level of 

cognitive demands of mathematical tasks written in curriculum materials, teachers 

enactment of mathematical tasks, and students’ implementation of mathematical tasks. It 

was used it to examine proof-related tasks, in particular. Harel and Sowder (1998)  

framework considers the nature of the convincing arguments provided for proof tasks as 

enacted in the classroom. Considering that my operational definition of proof in school 

mathematics (A. J. Stylianides, 2007) emphasized that “Proof is a mathematical 

argument, a connected sequence of assertions for or against a mathematical claim” (A. J. 

Stylianides, 2007, p. 291), it was also important to consider the nature of the arguments 

deemed convincing. Therefore, it was vital that to draw on two frameworks such that I 

considered the nature of the mathematical tasks as well as the nature of the proof 

arguments. Hence, my conceptual analytical framework is conceptualized as consisting of 

three dimensions: the first two dimensions are drawn from MTF, and the last dimension 
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utilizes Harel and Sowder’s (1998)  proof schemes. The first dimension represents the 

task features; the second dimension, the cognitive demands of the tasks; and the third 

dimension, the proof schemes emphasized to complete the tasks. 

Mathematical Tasks Framework 

The MTF suggests that mathematical tasks go through three phases: mathematical 

task as represented in curriculum materials, mathematical task as set up by the teacher in 

the classroom, and mathematical task as implemented by students in the classroom. The 

framework identifies mathematical task variables that results in students learning 

mathematics, and factors that can influence the relationship between the mathematical 

task variables (Stein, Grover, & Henningsen, 1996). Figure 4 shows Henningsen and 

Stein Mathematical Tasks (1997)  Framework.  

Figure 4. Mathematical Tasks framework  - “Relationship among various task-related 

variables and students’ learning outcomes” (Henningsen & Stein, 1997, p. p.528). 

 

The two dimensions of mathematical tasks are: task features  (first dimension) and 

cognitive demands (second dimension). “Task features refer to aspects of tasks that 
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mathematics educators have identified as important considerations for the development of 

mathematical understanding, reasoning and sense making. These features include 

multiple solution strategies, multiple representations, and mathematical communication” 

(Henningsen & Stein, 1997, pp. 528-529). Task features for the set up phase refers to the 

amount of encouragement teachers provide to students for using multiple representations 

and strategies to justify and explain their responses. For the implementation phase, task 

features refer to the degree students uses multiple representations, and strategies. The 

second dimension considers the cognitive demand needed to complete the task.  

  Cognitive demands, refers to the kind of thinking processes 

entailed in solving the task as announced by the teacher (during the 

set-up phase) and the thinking processes in which students engage 

(during the implementation phase). These thinking processes can 

range from memorization to the use of procedures and algorithms 

(with or without attention to concepts, understanding, or meaning) 

to complex thinking and reasoning strategies that would be typical 

of “doing mathematics” (e.g., conjecturing, justifying or 

interpreting). (Henningsen & Stein, 1997, p. 529) 

The task features and cognitive demands of mathematical tasks can be changed 

between phases. For example, written proof tasks may require high cognitive demand, 

however, when it is implemented by teachers it may require low cognitive demand of 

students due to teachers explicitly telling the students what needs to be done to construct 

a complete proof, or illustrating how to prove it.  



	   47	  

The framework also identifies factors that can contribute to the set up and 

implementation of mathematical tasks. Factors that can influence the set up of task 

include teachers’ pedagogical content knowledge and goals. Classroom norms are the 

conventional practices and expectations of the academic accountability, and quality 

(Henningsen & Stein, 1997). Task conditions consider the appropriateness of a task based 

on students’ prior knowledge, and sufficient time allotted for completing the task. 

Teacher and student dispositions refer to the disposition of learning and pedagogy that 

influence how students and teachers approach events within a classroom. 

Although Henningsen and Stein (1997) did not discuss in detail factors that 

influence the set up, other researchers  (Stein & Baxter, 1989; Stein, Smith, & Silver, 

1999) have confirmed that teacher beliefs and knowledge of subject matter can influence 

how tasks are set up by teachers.  

Proof Schemes 

Harel and Sowder’s (1998) theoretical framework (as described in the literature 

review) was used as a lens to describe the nature of the convincing arguments used by 

teachers and students during the enactment of proof-related tasks in the classroom. This 

proof scheme classification includes three categories, which are not necessarily 

independent to each other: external conviction proof schemes, empirical proof schemes 

and analytical proof schemes.  

According to Harel and Sowder (1998, 2007), these proof schemes are 

psychologically grounded and subjective. “In short, people in different times, cultures, 

and circumstances apply different methods to remove doubts in the processes of 

ascertaining and persuading. Accordingly:   A person’s proof scheme consist of what 
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constitutes ascertaining and persuading for that person” (Harel & Sowder, 1998, pp. 243-

244). Hence, Harel and Sowder (1998) proof schemes provided a useful perspective to 

examine how teachers’ facilitate students’ construction of proofs.  

Case Study 

Examining multiple cases present opportunities to characterize and compare, thus 

illuminating the issue being studied (Creswell, 2008). Case study design is an empirical 

inquiry that studies real-world phenomena (Merriam, 1998; Yin, 2009). It is suitable to 

use a case study research design when addressing research questions that emphasize 

“how” and “why”, in instances in which the researcher cannot control the events being 

observed, and when the phenomenon being observed occurs in a real world context (Yin, 

2009). Since using a case study design is suitable for descriptive or explanatory research 

question (Yin, 2003, 2006), it was an appropriate means to answer my research question 

that sought to describe how geometry teachers use curriculum materials for teaching 

proof. Admittedly, teaching is a complex system, and proof is a mathematical process 

that is not always fully conceptualized (Healy & Hoyles, 2000; Knuth et al., 2009), hence  

multiple case studies can be used to describe how teachers use curriculum materials for 

teaching proof because it takes into account the uniqueness of each teacher’s instructional 

practices and the variation that may exist among them (such as differences in districts, 

school, and class structure). Furthermore, according to Patton (2002), “Well-constructed 

case studies are holistic and context sensitive” (p. 447). Holistic in the sense that it is 

mindful of the complex system in which the phenomenon exist; it is context sensitive to 

the phenomenon being observed such that data is not over interpreted (Patton, 2002). 

Acknowledging that teaching of geometry goes beyond proofs and embodies the 



	   49	  

development of geometrical concepts, using a case study provided a holistic and context 

sensitive means to examine how geometry teachers use curriculum materials to teach 

proof. I observed the geometry lesson as a whole as well as focused my attention to the 

proof tasks used during instruction.  

Because geometry teachers’ use of curriculum materials for teaching proof was 

described individually and collectively, an intrinsic multiple-descriptive case study was 

conducted. An intrinsic case occurs when seeking to gain insight into a unique case, that 

may have no bearing on other cases (Stake, 1995); multiple cases consist of two or more 

cases, and descriptive cases utilizes multiple data sources to shed light on significant 

attributes of a phenomenon (Yin, 2003, 2009). Hence, utilizing an intrinsic case study, I 

identified how each teacher used proof tasks for my analytical framework which 

consisted of three dimensions. Furthermore utilizing multiple-descriptive cases, I 

compared and contrasted how tasks were used, as well as adequately described the extent 

as to how the tasks were used.  

Additionally, case study research design must have boundaries or carefully 

identified unit of analysis (Hatch, 2002; Stake, 1995). For my study, the unit of analysis 

is the classroom lessons taught by the case study teachers. I focused my attention on how 

proof tasks are used during the enacted lessons. The unit of analysis “is typically a system 

of action rather than an individual or group of individuals” (Tellis, 1997, p. 5), and is of 

utmost importance, because it embodies the phenomenon that would be described in the 

results of the study (Tellis, 1997). 

To build a coherent justification of my results, data was triangulated by utilizing 

multiple data sources: interviews, physical artifacts, and observations (Yin, 1994, 2009). 
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Furthermore I engaged in pattern matching, which is a useful strategy that could be used 

to analyze case study data (Yin, 1994). Yin recommends that when using pattern 

matching for descriptive studies, the predicted patterns be identified prior to data 

collection. Hence, I matched teachers’ use of proof tasks to mathematical task features, 

cognitive demands, and proof schemes, the dimensions of my conceptualized analytical 

framework.  

Although case studies can provide insight into the cases being studied, there are 

limitations regarding generalizable claims of occurrence in other environments 

(Shavelson & Towne, 2002). Therefore, the findings of this study would be limited to 

similar contexts to those in which it were conducted. 

Textbooks Selection  

 This study was conducted within the midwest region of the United States, with 3 

high school geometry teachers who teach in rural and urban school districts that have 

adopted McDougal Littell Geometry or Prentice Hall Geometry. In February 2011, I 

contacted geometry teachers from various districts in the Midwest to inquire about the 

textbooks that they currently use for teaching proof. In most schools, teachers use 

primarily subject-specific textbooks to teach geometry (Prentice Hall Geometry, 

McDougal Littell Geometry, and Glencoe Geometry). Since these subject-specific 

textbook series have similar organizational structures (Tarr et al., 2010), the McDougal 

Littell and Prentice Hall series were selected, based on proximity of the school districts. 

In recent times, McDougal Littell publishing merged with Holt publishing, hence modern 

version of the McDougal Littell Geometry curriculum is referred to as Holt McDougal 

Geometry.  
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More particularly, my observation focused on chapters 2, 3, and 4 of Larson et al. 

(2007) “McDougal Littell Geometry” 1 and  Bass et al. (2004) “Prentice Hall Geometry” 

Teacher’s Edition. In both books Chapter 2 (which is entitled “Reasoning and Proof”) 

was selected because it is devoted to fostering the development of proof skills. Chapter 3 

and 4 (which is entitled “Perpendicular and Parallel Lines” and “Congruent Triangles” 

respectively) were selected because a review of the literature emphasizes that these topic 

readily present opportunities for students to prove in geometry (Donoghue, 2003; Herbst, 

2002b). The content of Bass et al. (2004) Chapters 2 through 4 are rather similar to  

Larson et al. (2007). Hence, although the two districts used different subject specific 

geometry curriculum, the mathematical content and organization are relatively the same.  

Both Larson et al. (2007) and Bass et al. (2004) textbooks are structured such that 

every chapter in the textbook has big ideas, postulate and theorems, key concepts, 

vocabulary, and mixed review. Additional resources (such as skill review handbook, 

postulates and theorems, additional proofs, worked out solution, and selected answers) 

are available in the back of the book. 

To ensure that teachers are familiar with the organizational structure of the 

curriculum materials of the McDougal Littell Geometry and Prentice Hall Geometry, 

only teachers who have used the curriculum for at least 3 years were invited to participate 

in the study.  

 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  For this study, references to McDougal Littell Geometry Teacher’s Edition (Larson et 
al, 2007) will be simply stated as McDougal Littell Geometry. Likewise Prentice Hall 
Geometry (Bass et al., 2004) Teacher’s Edition will be stated as Prentice Hall Geometry .	  
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Participants 

Purposeful (yet convenient) sampling, was used to identify participants (Creswell, 

2008). It was purposeful since participants had to use the textbook for at least three years 

to ensure that they were familiar with the organizational structure of the textbook. It was 

also convenient since they had to be willing to participate. Three teachers were asked to 

participate in the study. The three participants provided opportunities to document 

variation and kept the sample size manageable, such that I conducted observations of 

similar lessons in all three classrooms. The high schools geometry teachers selected were 

representative of regular geometry classes from a rural and urban school district. 

Teachers’ that agreed to participate received a $50.00 VISA gift card.  

Initially, permission was requested from the school districts to conduct research 

within their respective district. Once the school districts granted permission, teachers 

were identified to participate in the study. Once teachers in the two sites consented to 

participate, I scheduled a minimum of six lesson observations with each of them.  

Data Collection  

 To answer my research questions I utilized multiple data collection instruments: 

teacher artifacts, classroom observations, and interviews.  

Teacher Artifacts    

To document the nature of planned proof tasks for the enacted lesson, teachers’ 

reflection of proof tasks after enacted, and teachers’ perceptions of what constitutes 

students learning of proof, I collected teacher artifacts. I used a modified version of the 

artifact packet for reasoning and proof developed by Horizon Research, Inc. for the Cases 
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of Reasoning and Proving in Secondary Mathematics Project2. The artifact packet 

requires teachers to provide pertinent information based on their planned and enacted 

lessons on proof-related tasks. Teachers were asked to provide copies of: task cover 

sheet-before implementation, task reflection sheet- after implementation, copy of the 

original task, copy of the modified task  (if applicable), samples of student work (that 

meet/exceeded expectation, demonstrated progress, and struggles), and copies of 

additional material (e.g., class notes, homework assignments, etc). The task cover sheet-

before implementation asked teachers to describe the nature of tasks, source of tasks, goal 

of tasks and decide whether student engaged in proofs, mathematical arguments, 

identifying patterns, and making conjectures, etc. For the task cover sheet- after 

implementation teachers were asked to describe segments of the lesson in which students 

work on the tasks, rationale for altering the tasks (if applicable), directions given to 

students and communications they had with students about the tasks. I modified the task 

cover sheet-before implementation, and task reflection sheet- after implementation 

(Appendix B and Appendix C), by only using a portion of the instrument that aligned 

with my research questions. Furthermore, teachers reflected on the nature of students’ 

mathematical arguments, conjectures and what they believed students learned. Teachers’ 

were also asked to provide copies of additional materials that were used to supplement 

the lesson (if applicable).  

 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2  Horizon Research, Inc. developed artifact packet for the Cases of Reasoning and 
Proving in Secondary Mathematics Project, with funding from the National Science 
Foundation (Award No. DRL-0732798) 



	   54	  

Interviews 

Teachers were interviewed about their conceptions of proof, the importance of 

proof in school mathematics, and the frequency of proof-related tasks in their 

instructional practices. The interview protocol included the following questions:  

• What does the notion of proof mean to you? (Knuth, 2002b, p. 67) 

• What does it mean to prove something? (Knuth, 2002a, p. 383) 

• What constitutes proof in secondary school mathematics? (Knuth, 2002b, p. 67) 

• What purpose does proof serve in mathematics? (Knuth, 2002a, p. 383) 

• Why teach proof in secondary school mathematics? (Knuth, 2002b, p. 67) 

• When should students encounter proof?  (Knuth, 2002b, p. 67) 

• How does an argument become a proof? (Knuth, 2002a, p. 383) 

• Do proofs ever become invalid? (Knuth, 2002a, p. 383) 

• What are some of the things you look for when you're reading a student's proof?  

(Pettey, 2011, email correspondence) 

• How frequently is proof integrated into the teaching of geometry?  

• What are the strengths and limitation of using the textbook for teaching proof in 

geometry lessons?  

Utilizing a protocol provided a means to compare and contrast responses across 

participants (Creswell, 2008), but I also asked follow-up questions either to clarify 

responses to the questions above or to gain a better understanding of the teachers’ views 

on proof.  

Teachers were also shown various sets of mathematical arguments and were 

asked to determine if the argument is a convincing proof, if it was not then the teacher 
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was asked to provide feedback on how they would help students identify their errors and 

improve their arguments. The tasks used were drawn from COSMIC Test E Question 7 

(which requires students to construct a geometrical proof) (Chávez, Papick, & Ross, 

2009), Healy and Hoyles (2000) and Knuth (2002a) studies of conceptions about proof.  

 Furthermore, at the end of observed lessons, I asked teachers about specific 

actions observed during the class. For instance, I might have asked a teacher to explain 

why a particular feedback comment was provided for a student’s written/ oral response. 

The interviews were generally audio recorded and were used to triangulate teachers 

written responses submitted via the artifact packets. The instances in which the teachers’ 

comments were not audio recorded included some conversations during breaks, when 

they spoke freely about events that have transpired in their teaching.   

Classroom Observations 

Finally, I observed a minimum of 6 lessons per teacher as a non-participant 

observer (Creswell, 2008). I used a classroom observation protocol, adapted from an 

instrument developed by Horizon Research, Inc. for the Cases of Reasoning and Proving 

(CORP) in Secondary Mathematics Project) that focused on proof-related activities and 

helped me to document how teachers use the proof tasks during the lesson. I 

acknowledge that I excluded portions of the protocol that did not readily align with my 

research questions, considering that the instrument was designed for a much broader 

study. The  portion of the protocol used include the following sections: background 

information, context and nature of the lesson, students, outline of the lesson, classroom 

culture, use of instructional tools, student tools, facilitation of the tasks, and cognitive 

demand of the tasks. Additionally, I added a section to document proof schemes observed 



	   56	  

during the lesson. The background information requires the observer to report their name, 

date of the observation, the teacher being observed and the school name for which the 

teacher is employed. For the context and nature of the lesson section the observer is 

required to report the instructional material used and the mathematical strand emphasized 

during the lesson (which is geometry). The section devoted to students asks for the grade 

level of students and the total number of students within the classroom. The outline of the 

lesson requires a description of: the goals, structure and flow, and how reasoning and 

proof was integrated. For the classroom culture the observer measures the extent the 

classroom learning environment and mathematical norms provides students an 

opportunity to learn the mathematical objective of the lesson. The scale used ranged from 

1-greatly inhibited to 4-greatly facilitated. Similarly, the use of instructional tools and 

facilitation of the tasks gauged the extent the tools teachers used facilitate students’ 

opportunity to learn. In the cognitive demand section of the protocol, the observer 

measured the intellectual potential and engagement of the tasks. The scale ranges from 0 

to 4:  “0-No academic thinking required, 1-Memorization, 2- Use of procedures without 

connection to meaning, concept or understanding, 3-Use of procedures with connection 

to meaning, concepts or understanding, [and] 4-Engaging in the thinking practices of the 

discipline” (Horizon Research Inc., 2011). The proof schemes section of the protocol 

required the identification of proof schemes observed during the enacted lesson with 

supportive rationale for claims made. The lessons were video-recorded / audio-recorded 

for triangulation of written entries on the observation protocol. The video recording 

sought to capture teachers’ actions and students’ board work.  
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Data Analysis 

The data were analyzed primarily qualitatively. I utilized a six-stage analytical 

process. During the first stage descriptive statistics was used to summarize the number of 

tasks that could be considered proof-related tasks in the observed lessons. Additionally, I 

conducted a curriculum analysis using Henningsen and Stein’s (1997) Mathematical 

Tasks Framework of tasks in chapters 2, 3, and 4, while focusing on the proof tasks. This 

analysis provided the basis for a comparison between the written curriculum and the 

enacted curriculum.  

During the second stage, I summarized the extent to which teachers used their 

textbooks to teach proof, based on the data collected in the teacher artifacts. For the third 

stage I coded proof-related tasks enacted in the classroom using the MTF. For the fourth 

stage, I coded and classified factors influencing the set-up phase and students’ 

implementation during the enacted lesson; I drew on information obtained from teacher 

artifacts, classroom observation protocol, and interviews. For the fifth stage, I 

characterized significant proof schemes used during the lesson. At the sixth stage a 

profile of each case was constructed to represent the 3-dimensional conceptual analytical 

framework, in an effort to conduct a within case analysis, as well as a cross case analysis 

(Creswell, 2008; Patton, 2002; Stake, 1995). Additional researchers assisted with the 

analysis for reliability purposes, and an additional independent observer visited 

classrooms to validate consistency in the data entries of the observation protocols. Coders 

were asked to code textbook tasks independently, and subsequently compare responses. If 

there was a disagreement, coders discussed discrepancy, and if they were unable to come 



	   58	  

to an agreement, another coder was asked to provide additional feedback. Figure 5 

illustrates how I progressed during the data analysis.  

Figure 5. Six-stage data analysis outline.

 

 Coding of Written Tasks  

It is difficult to find examples of classification of high school geometry tasks 

according to the MTF, so a careful process of coding the tasks in the textbooks and those 

used during the observed lessons was fundamental to establish valid 

conclusions. Although the inter-rater reliability was an average of 89%, higher than the 

reliability average reported by Henningstein and Stein (1997) of 79%, upon further 

examination of these codes by other researchers, they suggested that a more conservative 

approach to the proof tasks would be more appropriate. As a result, I coded the tasks one 

more time, aided by a colleague with experience teaching college level mathematics. We 

first sorted tasks into low-level and high-level and subsequently coded them using the 

four levels of the MTF. During this process we agreed to code a proof task as "doing 

Stage	  1	  
• Textbook	  analysis	  

Stage	  2	  
•  Summary	  of	  teacher	  textbook	  usage	  

Stage	  3	  
• Coding	  of	  enacted	  proof	  tasks	  

Stage	  4	  
•  IdentiLication	  of	  	  factors	  that	  contribute	  to	  teaching	  and	  learning	  of	  proof	  

Stage	  5	  
• Characterization	  of	  proof	  schemes	  used	  during	  the	  enacted	  lessons	  

Stage	  6	  
• Creation	  of	  teacher	  proLiles	  and	  cross	  case	  analysis	  
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mathematics" if it required writing a complete proof, that was not similar to previous 

tasks and examples, and could change the context, utilized a different representation, and 

was not algorithmic. We further agreed to use the more conservative coding for the proof 

tasks in cases of disagreement, and if there were objections an alternative coder would be 

asked to contribute to the discussion. Consequently, I recoded the lessons observed. Most 

of the tasks were classified at the same level as the original coding. The primary changes 

were in proof tasks originally coded as doing mathematics that were generally recoded as 

procedures with connections.  

It is imperative that I state that the coding of task features and cognitive demand 

is based on the content of the Teacher’s Editions (answers, instructional suggestions, 

tasks, etc), which may not necessarily be visible in students’ version of the textbooks. 

Considering that teachers uses textbook as an instructional resource, and can read the 

guidance provided by textbook authors, it is highly likely that they would encourage 

students to follow the paths recommended by textbook authors. Hence, the coding of 

tasks were based on the written tasks, as well as the answers provided for the tasks. Task 

features were coded for the following: whether or not the tasks were proof or proof-

related tasks; what proof representations were used; whether answers were provided in 

isolation or with reasoning; were the tasks “challenge”, were group collaboration required 

to complete the tasks, were tasks in realistic context or abstract context; were figures / 

diagrams presented; are the tasks fill in the blanks, or multiple choice; and whether or not 

the tasks were composed of multiple parts. The cognitive demand of the tasks were coded 

as memorization, procedures without connections, use of procedures with connections, 

and doing mathematics (Henningsen & Stein, 1997). Examples 1 and 2 illustrate how 
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questions were coded using dimensions 1 (task features) and 2 (cognitive demand) of the 

conceptual framework. Neither examples required group collaboration. Since dimension 

3 (proof schemes) considers the nature of persuasion for a person within a community, 

proof schemes (Harel & Sowder, 1998) were coded based on the didactics of the enacted 

lesson in relation to tasks. Although the examples represents coding of the written tasks, I 

was mindful that when enacted the levels of cognitive demands of the tasks may change. 

Example 1 is from Prentice Hall Geometry Section 4.7 Question 28  (Figure 6) 

(Bass et al., 2004, p. 229); it is an example of how a task was coded. A question of this 

nature requires limited cognitive demand and mirrors the examples within the lesson 

notes. Hence, the cognitive demand of the task was coded as memorization. As it relates 

to the task features, the task is deemed a proof task, utilizing a two-column proof 

representation, with only the answer provided, it comprises of a figure, is abstract in 

nature requires students to fill in the blank and is composed of multiple parts.  

Figure 6.  Example 1 – Illustrating coding of a proof task (Bass et al., 2004, p. 229).3 

  

  

Example 2 is Section 4.7 Question 33 in Bass et al. (2004) (Figure 7). The task is a proof 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3	  From Prentice Hall Mathematics Geometry Teacher’s Edition by Bass, et al. Copyright 
2004  © Pearson Education, Inc. or its affiliates. Used by permission. All Rights 
Reserved.	  
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task, which uses a paragraph proof representation, it is labeled  “challenge” by the 

textbook, only one solution strategy is used, it is abstract in nature, and has a figure 

represented. The task provides no explicit guidance of how to proceed, and presents an 

opportunity for students to reflect and construct an original proof. Due to the rich nature 

of the task, and its feasibility to facilitate students engaging in doing proofs, the cognitive 

demand of the task was coded as doing mathematics. 

 Figure 7. Example 2 – Illustrating coding of a proof task (Bass et al., 2004, p. 229).4 

 

 

 

 

 

 

 

 

 

                         

 Figure 8 and 9 illustrates flow proofs as represented in McDougal Littell 

Geometry. Section 4.5 Question 25 required students to fill in missing responses to 

complete the proof tasks, while Section 4.5 Question 35 request students to write a flow 

proof.  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4	  From Prentice Hall Mathematics Geometry Teacher’s Edition by Bass, et al. Copyright 
2004  © Pearson Education, Inc. or its affiliates. Used by permission. All Rights 
Reserved	  
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Figure 8. Section 4.5 Question 25 in McDougal Littell Geometry (Larson et al., 2007 p. 

254)–Illustrating flow proof.5

 

Figure 9. Section 4.5 Question 32 in McDougal Littell Geometry  (Larson et al., 2007 p. 

255)–Illustrating flow proof. 6 

 

 

 

 

 

                  

Considering that a conservative approach was used to classify proof tasks 

relatives to levels of cognitive demands, Figures 10 -18 illustrate proof tasks classified as 

memorization, procedures without connections, procedures with connections, and doing 

mathematics. 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
5	  6	  From McDougal Littell Geometry, Teacher’s Edition, by Larson, et al. Copyright © 
2007 by McDougal Littell. All rights reserved. Reprinted by permission of Houghton 
Mifflin Harcourt Publishing Company. 
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Figure 10. Lower-level demand task (memorization) from Section 3.6 Question 31 in 

McDougal Littell Geometry (Larson et al., 2007 p. 196). 7 

 

Figure 11. Lower-level demand task (procedures without connections) from Section 2.6 

Question 22 in McDougal Littell Geometry (Larson et al., 2007 p. 118). 8 

 

 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
7	  8	  From McDougal Littell Geometry, Teacher’s Edition, by Larson, et al. Copyright © 
2007 by McDougal Littell. All rights reserved. Reprinted by permission of Houghton 
Mifflin Harcourt Publishing Company 
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Figure 12. Lower-level demand task (procedures without connections) from Section 4.4 

Question 24 in Prentice Hall Geometry (Bass et al., 2004 p. 207).9 

 

 

 

 

 

 

 

 

 

 

 

 

 

           

 

 

 

 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
9	  From Prentice Hall Mathematics Geometry Teacher’s Edition by Bass, et al. Copyright 
2004  © Pearson Education, Inc. or its affiliates. Used by permission. All Rights 
Reserved.	  
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Figure 13. Higher-level demand task (procedures with connections) from Section 4.8 

Question 42 in McDougal Littell Geometry  (Larson et al., 2007 p. 278). 10 

 
 

 

 

 

 

                          

Figure 14. Higher -level demand task (procedures with connections) from Section 4.2 

Question 41 in Prentice Hall Geometry (Bass et al., 2004, p.191), which is also labeled as 

“challenge”.11 

 

 

 

 

 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
10	  From McDougal Littell Geometry, Teacher’s Edition, by Larson, et al. Copyright © 
2007 by McDougal Littell. All rights reserved. Reprinted by permission of Houghton 
Mifflin Harcourt Publishing Company. 
	  
11	  From Prentice Hall Mathematics Geometry Teacher’s Edition by Bass, et al. Copyright 
2004  © Pearson Education, Inc. or its affiliates. Used by permission. All Rights 
Reserved.	  
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Figure 15. Higher-level demand task (procedures with connections) from Section 2.5 

Question 29 in McDougal Littell Geometry (Larson et al., 2007 p.109).12 

 

 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
12	  From McDougal Littell Geometry, Teacher’s Edition, by Larson, et al. Copyright © 
2007 by McDougal Littell. All rights reserved. Reprinted by permission of Houghton 
Mifflin Harcourt Publishing Company. 
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Figure 16. Higher-level demand task (doing mathematics) from Section 4.6 Question 26 

in McDougal Littell Geometry (Larson et al., 2007 p. 260). 13 

                       

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
13	  From McDougal Littell Geometry, Teacher’s Edition, by Larson, et al. Copyright © 
2007 by McDougal Littell. All rights reserved. Reprinted by permission of Houghton 
Mifflin Harcourt Publishing Company. 
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Figure 17. Higher-level demand task (doing mathematics) from Section 4.7 Question 49 

in McDougal Littell Geometry (Larson et al., 2007 p. 270).14 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
14	  From McDougal Littell Geometry, Teacher’s Edition, by Larson, et al. Copyright © 
2007 by McDougal Littell. All rights reserved. Reprinted by permission of Houghton 
Mifflin Harcourt Publishing Company. 
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Figure 18.  Higher-level demand task (doing mathematics) from Section 4.6 Question 40 

in McDougal Littell Geometry (Larson et al., 2007 p. 263). 15 
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Coding of Enacted Lesson  

 All audio recording of the lessons were transcribed, and subsequently imported 

into NVivo 9 (a qualitative software program) for analysis. Considering that teachers 

transported the audio recorder with them as they visited various groups, the audio 

recording might have captured conversations that might not be heard on the video 

recording of the lessons. Scanned copies of the observation protocols and other artifacts 

were also imported into the qualitative software. The MTF (Henningsen & Stein, 1997) 

and proof schemes framework (Harel & Sowder, 1998) were used to provide the primary 

codes of the enacted lessons. Hence, the enacted lessons were coded for tasks features, 

cognitive demand of enacted tasks, factors influencing the teaching of proof and visible 

proof schemes. For the task features the general codes were: mathematical 

communication, multiple representations, and multiple solution strategies. The cognitive 

demands of the tasks were coded as memorization, procedures without connections, 

procedures with connections, or doing mathematics. For the factors influencing teaching 

of proof the initial codes considered factors that influence set up and factors that 

influence students implementation of the task (Henningsen & Stein, 1997); however new 

categories emerged based on the frequency of words  and phrases used during the 

lessons. Hence the codes used for the factors influencing the teaching of proof were:  

assessment, classroom norm, community (professional environment), making 

mathematics easy, proof and mathematical tasks should be short, task conditions, students 

disposition, teachers’ beliefs, teachers decision to adapt or improvise the curriculum, 

teachers’ knowledge of students and or students learning, and teachers use of textbook 
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and tools. Harel and Sowder’s (1998)  proof schemes classification were used to code 

proof schemes.  

Credibility of Qualitative Inquiry 

The criteria for a credible qualitative inquiry involves three unique, yet related 

elements:  “ (1) rigorous techniques and methods for gathering high-quality data that is 

carefully analyzed, with attention to issues of validity, reliability, and triangulation;  (2) 

the credibility of the researcher…; and (3) philosophical belief in the phenomenological 

paradigm...” (Patton, 1990, p. 461).  

To promote rigorous research practices, I utilized multiple coders to verify 

validity in the coding, and funded-research instruments that focuses on proof and 

reasoning tasks (Horizon Research Inc., 2011) to increase the reliability of the data 

collected. Initially two coders piloted the coding of tasks. During this time, it was decided 

only the exercises would be coded rather than the examples in the textbooks. Considering 

there was a consistency in the initial coding, three additional coders were asked to code 

exercise tasks in Chapters 2-4 using the description of levels of cognitive demand (Smith 

& Stein, 1998). After refining the doing mathematics proof tasks, another researcher 

coded the tasks as well, the consistency was relatively the same. Furthermore, 

triangulation was built into my data collection. Data triangulation involves the usage of 

multiple data source to substantiate claims made (Creswell, 2008; Patton, 2002). For my 

study, I utilized multiple data sources—Teacher’s Editions of textbooks, teacher 

interviews, classroom observations, and teacher artifacts—such that I can adequately 

support emergent themes. An additional researcher accompanied me for approximately a 

quarter of the classroom lessons observed.  A comparison of our observation protocols 
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revealed consistency in the rating of the lessons. Considering the nature of my research 

questions, I believe that case study research design is appropriate for capturing the 

uniqueness of each case and for comparison among cases. 
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CHAPTER IV: RESULTS 

This chapter summarizes how subject-specific materials introduce students to proofs 

in geometry, describes how teachers use curriculum materials to develop students’ 

learning to prove, and identifies factors that influences how proof is taught. Initially, a 

textbook analysis of Chapter 2-4 of McDougal Littell Geometry and Prentice Hall 

Geometry Teacher’s Editions was conducted, in which frequency of task features and 

levels of cognitive demands of tasks were coded. Subsequently, data collected from 

teacher interviews, observation protocols, transcriptions of enacted lessons and teacher 

artifacts were analyzed, using the conceptual framework, which embodies Mathematical 

Task Framework (Henningsen & Stein, 1997) and proof schemes framework (Harel & 

Sowder, 1998), to describe how teachers use curriculum materials to teach proof and 

identify factors that influences how proof is taught. Therefore, the organization of this 

chapter is as follow: summarized descriptive statistics of textbook analysis of McDougal 

Littell Geometry and Prentice Hall Geometry, a description of how teachers used 

curriculum materials to teach proof, and identification of factors that contributes to how 

proof is taught.  

How Textbooks Present Segments and Angles, Parallel and Perpendicular Lines 

to Facilitate Students Learning to Prove 

To answer the first research question, how do McDougal Littell Geometry and 

Prentice Hall Geometry Teacher’s Editions present proof for segments and angles, 

parallel and perpendicular lines and congruent triangles to facilitate students learning to 

prove, a textbook analysis was conducted on the task features, and levels of cognitive 

demand for mathematical tasks in the exercises of Chapters 2-4 in both textbooks. 
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Afterwards, an analysis was conducted on proof tasks. Multiple researchers coded the 

tasks for levels of cognitive demands. In most instances (89% inter-rater reliability), the 

coders agreed. The results suggest that although the textbooks have similar organizational 

structure, there exist difference in the frequency of proof tasks, levels of cognitive 

demands of proof tasks, and proof representation used. To present the results as to how 

McDougal Littell Geometry and Prentice Hall Geometry facilitate students learning to 

prove, I discus each textbook tasks features and levels of cognitive demand individually, 

afterwards I conclude by comparing the proof tasks within the textbooks to highlight 

possible similarities and differences between them.  

Analysis of McDougal Littell Chapters 2-4 

 The McDougal Littell Geometry seeks to foster students’ engagement with adaptive 

reasoning (Larson et al., 2007, see page T2). Of the 21 sub-sections in Chapters 2-4, 33% 

of the titles have the word “prove” in their titles, which suggest the authors intend 

students to have the opportunity to engage in proofs. An analysis of Chapters 2-4, which 

contains content relevant to reasoning and proof, parallel and perpendicular lines and 

congruent triangles, revealed that the textbook illustrates various representations of 

proofs (such as two-column proof, paragraph proof, flow proof, and other), and had tasks 

that reflected all levels of cognitive demands (Henningsen & Stein, 1997).  

 Tasks within McDougal Littell Geometry were coded for task features and levels of 

cognitive demand. The classifications for task features and proof representations were 

based on the tasks and the answers in the Teacher’s Edition. Since teachers see the 

answers, it is highly likely that they will steer students towards that particular path. 

Hence, the classifications were based on the very explicit and visible features of the 
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problem that both the teachers and students can see, or in the solution provided for 

teachers, even if the students cannot see it. Solutions in the textbook often used particular 

proof representations, and stated if the solutions may vary (multiple solution strategy). 

Thus, the decision to analyze the task in addition to the solution is because of the 

possibility that teachers may use the textbook as a structural resource for their enacted 

lessons. In many instances, the two-column proof representation was presented with the 

statement adjacent to the reason in parenthesis; therefore, although this form was not a 

standard two-column proof (with a clear line dividing statement and reason), these tasks 

were still coded as two-column proof. Excluding the mixed review practice exercises, 

977 tasks (with solutions) were analyzed using descriptive statistics for task features, and 

cognitive demand of the tasks. Generally, the tasks posed were abstract in nature and 

required low-level command demand (memorization or the use of a procedures without 

connections). Table 2-4 summarizes the frequency of task features and cognitive demand 

for each chapter and across chapters using percentages. 

In coding tasks, a distinction was made between proof tasks and proof-related 

tasks. Proof tasks are tasks designed to have students write a proof argument, or complete 

skeletal proof  (such as fill in the blank type proof, or matching statements to appropriate 

reasons) in which the finished product illustrates a complete proof. Proof- related tasks 

are tasks that are related to a proof in the sense they are meant to provide students with an 

opportunity to perform a step that may be used in later proofs and are not necessarily 

proof tasks by themselves. For example, identifying corresponding sides in a triangle, 

identifying the congruence criterion that must be used in a given proof, etc. An example 

of a task coded a proof-related task, and not a proof task is evident in Section 2.1 
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Question 12 (Figure 19) (Larson et al., 2007, p. 75). This task presents an opportunity for 

students to pose a conjecture that may result in a proof; however, it does not explicitly 

require students to construct a proof. 

Figure 19. Section 2.1 Question 12 in McDougal Littell Geometry (Larson et al., 2007 p. 

75).16 

 

 Chapter 2, entitled “Reasoning and proof”, is comprised of seven sections: Use 

inductive reasoning, Analyze conditional statements, Apply deductive reasoning, Use 

postulate and diagrams, Reason using properties from algebra, Prove statements about 

segments and angles, and Prove angle pair relationships. I analyzed 320 tasks. 

Considering the nature of the title it was not surprising that this Chapter provided a 

greater opportunity for students to engage in proofs or proof-related activities when 

compared to the other two chapters. In fact, 77.2% of the tasks were proof or proof-

related tasks, 17.2% of which were deemed proof tasks. The proof tasks included 

paragraph proofs, two-column proofs, and other representation formats. Despite the 

opportunity to prove, most of the tasks require lower-levels of cognitive demand  (86.9% 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
16	  From McDougal Littell Geometry, Teacher’s Edition, by Larson, et al. Copyright © 
2007 by McDougal Littell. All rights reserved. Reprinted by permission of Houghton 
Mifflin Harcourt Publishing Company.	  
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as displayed in Table 4). 

 Chapter 3 focuses on “Parallel and perpendicular lines”, and encompasses six 

sections: Identify pairs of lines and angles, Use parallel lines and transversal, Prove lines 

and parallel, Find and use slopes of lines, Write and graph equation of lines, and Prove 

theorems about perpendicular lines. This chapter presented the least opportunity for 

students to engage in proofs of the three chapters analyzed. Most of the 306 tasks 

analyzed were not explicitly proof tasks (since only 5.9% of tasks were proofs as 

displayed in Table 2). When the opportunity to prove was provided, two-column proof 

representation, and paragraph proof representation were used in the solutions for the 

proof tasks.  

 Congruent Triangles was the primary focus of Chapter 4. This chapter was divided 

into eight sections:  Apply triangle sum properties, Apply congruence and triangles, 

Prove triangles congruent by SSS, Prove triangles congruent by SAS and HL, Prove 

triangles congruent by ASA and AAS, Use congruent triangles, Use isosceles and 

equilateral triangles, and Perform congruence transformations. Within this chapter, two-

column proof representations were more readily utilized for proof tasks. Furthermore, 

this chapter introduced students to flow proof. Despite opportunities for students to 

prove, memorized facts can be used to solve 31.6% of the tasks, and 40.2% of tasks can 

be solved using procedures without connections as shown in Table 4.  

Task Features of Chapters 2-4  

 Most of the tasks in the textbook, 96.1%, had only one solution strategy. None of 

the tasks required group collaboration. Graphical illustrations of some kind (e.g. pictures, 

tables, or figures) accompanied 57.5% of tasks, and 17.2% of the tasks were composed of 
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multiple parts. Thus, students were provided opportunity to visualize mathematical ideas 

within a particular context, and observe how a mathematical idea can be composed of 

various components. Most of the tasks were situated in an abstract context (81%), rather 

than a realistic context (19%). In some instances, the difficulty of tasks was reduced 

when broken into multiple parts. Although the textbook includes solutions for teachers, 

the reasoning behind the solutions was not always present. For 34.1% of the tasks, the 

textbook included answers and the corresponding reasoning; for the rest, only the exact 

answer appeared. Although 7.6% of the tasks explicitly required students to fill in the 

blank, and 3.2% of the task required students to select a correct response from multiple-

choice items, the tasks posed generally required worked solutions and very few tasks  

(7.3%) were labeled as “challenge”. 

 Proof and proof-related tasks were common in the geometry textbook. Of the 977 

tasks analyzed, 57.2% of the tasks were deemed as proof or proof-related. More 

specifically, 13.1% of the tasks were classified as proof tasks. Within this group of tasks, 

the various representations observed in either the tasks themselves or the solutions 

provided for the tasks included: flow proof, paragraph proof, two-column proof, and 

other  (which did not reflect any of the stated proof representation). Two-column proof 

representation was most common (see Table 3). Table 2 depicts tasks features in 

McDougal Littell Geometry Chapters 2-4.  
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Table 2. McDougal Littell Geometry  Chapters 2-4 (excluding mixed review exercises) 

tasks features. 

Task Features 

McDougal 
Littell 

Geometry 
Chapters 2-4 

N =977 

Chapter 2- 
Reasoning 
and Proof 
N= 320 

Chapter 3- 
Parallel and 

Perpendicular 
Lines 

N= 306 

Chapter 4- 
Congruent 
Triangles 
N=351 

 
Proof tasks or proof-related tasks 
 

 
57.2% 

 
77.2% 

 
39.5% 

 
54.4% 

Answers 
 

    

   Answer with reasoning  
 

34.1% 36.9% 19.9% 43.9% 

   Answer only 
 

65.9% 63.1% 80.1% 56.1% 

Proof tasks  
 

13.1% 17.2% 5.9% 15.7% 

Labeled as “challenge”  
 

7.3% 8.4% 7.8% 5.7% 

Solution strategies  
 

    

   One solution strategy 96.1% 90.3% 99% 98.9% 
 

   Multiple solution strategies 
 

3.9% 9.7% 1.0% 1.1% 

Explicitly encourage group 
collaboration  
 

0.0% 0.0% 0.0% 0.0% 

Context 
 

    

    Real world context  
 

19.0% 23.8% 16% 17.4% 

     Abstract context 
 

81.0% 76.3% 84% 82.6% 

Pictures/tables/ or figures 
provided 
 

57.5% 38.8% 59.5% 72.9% 

Fill in the blank 
 

7.6% 10.6% 5.2% 6.8% 

Multiple choice  
 

3.2% 3.1% 2.9% 3.4% 

Composed of multiple parts  
 

17.2% 25% 15.4% 11.7% 
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Proof Representations  

 Most tasks were not explicitly proof tasks as Table 3 illustrates. Of the proof tasks, 

two-column proof representation was more readily used. Additionally, Chapter 3, Parallel 

and perpendicular lines, had the least amount of proof tasks when compared to the other 

two chapters. Paragraph proofs were more common in later chapters, and flow proof was 

only used in Chapter 4.  

Table 3. Types of proof representations used in Chapter 2-4 of McDougal Littell 

Geometry. 

Types of Proof 
Representation 

McDougal 
Littell 

Geometry  
Chapters 

2-4 
N =977 

Chapter 2- 
Reasoning 
and Proof 
N =320 

Chapter 3- 
Parallel and 

Perpendicular 
Lines 

N=30617 

Chapter 4- 
Congruent 
Triangles 
N=351 

 
Flow 
 

 
0.5% 

 
0.0% 

 
0.0% 

 
1.4% 

Paragraph 
 

2.9% 1.9% 1.6% 4.8% 

Two-column 
 

9.5% 15% 4.2% 9.1% 

Other 
 

0.2% 0.3% 0.0% 0.3% 

Not applicable   
(non-proof tasks)  
 

86.9% 82.8% 94.1% 84.3% 

 

An example of a task deemed “other” is Section 2.5 question 34b (Larson et al., 

2007, p. 110). Students are expected to use the segment addition postulate to calculate the 

distance between multiple points. Since the solution cannot be classified as flow proof, 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
17 Percent may not sum to 100% due to rounding. 
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paragraph proof, or two-column proof, I classified it as “other”. This task and its solution 

appear in Figure 20.  

Figure 20. Section 2.5 Question 34b in McDougal Littell Geometry  (Larson et al., 2007 

p. 110) - Task reflecting “other” proof representation.18  

  

 

 

 

 

 

  

Cognitive Demand of Tasks  

 Most of the tasks in the textbook require lower-levels of cognitive demand. The 

tasks generally promote memorization of mathematical facts and the use of procedures. 

Three other coders and I coded tasks, with respect to levels of cognitive demands. We 

had an inter-rater reliability agreement of 89%. The coders discussed their disagreements 

and a consensus was always reached. A secondary analysis of the tasks were conducted 

by myself and a new coder due to the refinement of the doing mathematics proof tasks. 

Due to the conservative approach as to what constitute doing mathematics proofs, some 

of the proof tasks, although still viewed as requiring higher cognitive demand, were 

reduced from doing mathematics to procedures with connections. Nevertheless, the 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
18	  From McDougal Littell Geometry, Teacher’s Edition, by Larson, et al. Copyright © 
2007 by McDougal Littell. All rights reserved. Reprinted by permission of Houghton 
Mifflin Harcourt Publishing Company. 
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secondary analysis were rather consistent overall with the level of cognitive demands of 

mathematics tasks posed. Of the 977 tasks, 34.2% of tasks required memorization, 47.3% 

required the use of procedures without connections, 15.8% required the use of procedures 

with connections, and the remaining 2.8% of the tasks was classified as doing 

mathematics (Table 4).  

Table 4. Levels of cognitive demands of mathematical tasks in Chapter 2-4 of McDougal 

Littell Geometry. 

Levels of Cognitive 
Demands 

McDougal 
Littell 

Geometry 
Chapters 2-

4 
N =97719 

Chapter 2- 
Reasoning 
and Proof 
N =320 

Chapter 3- 
Parallel and 

Perpendicular 
Lines 

N=306 

Chapter 4- 
Congruent 
Triangles 
N=351 

 
Lower-level demands 
(Memorization) 
 

 
34.2% 

 
38.8% 

 
32.4% 

 
31.6% 

Lower-level demands 
(Procedures without 
connections) 
 

47.3% 48.1% 54.6% 40.2% 

Higher-level demands 
(Procedures with 
connections) 
 

15.8% 10.3% 12.4% 23.6% 

Higher-level demands 
(doing mathematics) 
 

2.8% 2.8% 0.7% 4.6% 

 
Proof Tasks  

 In Chapters 2-4 of McDougal Littell Geometry, 128 tasks were classified as 

explicitly proof tasks. Reasoning was provided for 88.3% of the proof tasks. Providing an 

explanation, justification or supportive reasoning was readily encouraged when doing 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
19	  Percent may not sum to 100% due to rounding.  
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proofs. In many instances, the tasks required students to prove theorems known to be true 

to them, rather than present novel and innovative situations in which original proofs were 

required.  

 Most of the proof tasks (95.3%) were situated in an abstract context rather than a 

realistic context (Table 5). All proof tasks admitted only one solution strategy. While 

almost two-thirds (64.1%) of the proof tasks included a picture, table or graphic of some 

sort. Table 5 summarizes the task features of proof tasks in these chapters. 
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Table 5. Task features of proof tasks in Chapters 2-4 of McDougal Littell Geometry.  

Task Features 

McDougal 
Littell 

Geometry   
Chapters 2-4 
Proof Tasks 

N = 128 

Chapter 2- 
Reasoning 
and Proof 

N= 55 

Chapter 3- 
Parallel and 

Perpendicular 
Lines 
N= 18 

Chapter 4- 
Congruent 
Triangles 

N=55 
 
Answers 

    

 
   Answer with reasoning  

 
88.3% 

 
81.8% 

 
88.9% 

 
94.5% 

 
   Answer only 11.7% 18.2% 11.1% 5.5% 

 
Labeled as “challenge”  11.7% 10.9% 11.1% 12.7% 

 
Solution strategies  
 

    

   One solution strategy 100.0% 100.0% 100.0% 100.0% 
 

   Multiple solution strategies 
 

0.0% 0.0% 0.0% 0.0% 

Explicitly encourage group 
collaboration  
 

0.0% 0.0% 0.0% 0.0% 

Context 
 

    

    Real world context  4.7% 5.5% 0.0% 5.5% 
 

   Abstract context 95.3% 94.5% 100% 94.5% 
 

Pictures/tables/ or figures 
provided 
 

64.1% 43.6% 66.7% 83.6% 

Fill in the blank 10.2% 14.5% 11.1% 5.5% 
 

Multiple Choice  0.8% 1.8% 0.0% 0.0% 
 

Composed of multiple parts  
 

18.8% 25.5% 33.0% 7.3% 

 

 The 128 proof tasks, proof representations, were classified as: flow, paragraph, 

two-column, or other. Most of the tasks used two-column proof representation. Table 6 
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summarizes the type of proof representation presented in the tasks, or implied by the 

solutions to the tasks, as presented in the Teacher’s Edition of the textbook.  

Table 6. Proof representations used for proof tasks in Chapter 2-4 of McDougal Littell 

Geometry.  

Types of Proof 
Representation 

McDougal 
Littell Geometry   

Chapters 2-4 
Proof Tasks 
N = 12820 

Chapter 2- 
Reasoning 
and Proof 

N =55 

Chapter 3- 
Parallel and 

Perpendicular 
lines 
N=18 

Chapter 4- 
Congruent 
Triangles 

N=55 
 
Flow 

 
3.9% 

 
0.0% 

 
0.0% 

 
9.1% 

 
Paragraph 21.9% 10.9% 27.8% 30.9% 

 
Two-column 72.7% 87.3% 72.2% 58.2% 

 
Other 1.6% 1.8% 0.0% 1.8% 

 
  
 Almost two-thirds (64.8%) of the proof tasks were classified as high cognitive 

demand (procedures with connections or doing mathematics), as indicated in Table 7. In 

fact, half of the proof tasks (50%) were deemed procedures with connections, whereas 

14.8% required students to engage in the thinking practice of the discipline. Proof tasks 

classified as procedures without connections occurred 25%, while the remaining 10.2% 

of proof tasks were memorization tasks. The introduction to proof tasks was primarily 

low-level in Chapter 2, but the difficulty increased in Chapters 3 and 4. Table 7 

summarizes the level of cognitive demand of proof tasks for individual chapters as well 

as for the total of three chapters. 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
20	  Percent may not sum to 100% due to rounding.	  
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Table 7. Levels of cognitive demands of proof tasks in McDougal Littell Geometry.  

Levels of Cognitive 
Demands 

McDougal 
Littell 

Geometry 
Chapters 2-4 
Proof Tasks 

N = 128 
 

Chapter 2- 
Reasoning 
and Proof 

N= 55 

Chapter 3- 
Parallel and 

Perpendicular 
Lines 
N= 18 

Chapter 4- 
Congruent 
Triangles21 

N=55 
 
Lower-level demands 
(Memorization) 
 

 
10.2% 

 
14.5% 

 
11.1% 

 
5.5% 

Lower-level demands 
(Procedures without 
connections) 
 

25.0% 45.5% 16.7% 7.3% 

Higher-level demands 
(Procedures with 
connections) 
 

50.0% 34.5% 61.1% 61.8% 

Higher-level demands 
(doing mathematics) 
 

14.8% 5.5% 11.1% 25.5% 

 

Analysis of Prentice Hall Geometry Chapters 2-4  

 The developers of Prentice Hall Geometry (Bass et al., 2004, p. ii) sought to meet 

content standards of national and state curriculum. With the exclusion of mixed review 

exercises, 1066 tasks in Chapters 2-4 were analyzed. As in other textbooks, the 

classification considered both the tasks and solutions. Since teachers can view the 

solutions, it is likely that they will encourage students to present their responses in a 

similar way. Of the 19 units within the identified chapters only 10.5% of the titles had the 

word “proving”. Most of the tasks posed were abstract in nature, had one solution 

strategy, and required lower-level cognitive demand. Paragraph proof and two-column 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
21	  Percentages may not sum to 100% due to rounding.	  	  
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proof representation were used more frequently to represent proof tasks. Almost half of 

the proof tasks required students to fill in the blank.  

  Chapter 2, entitled “Reasoning and proof ”, consists of five sections:  

Conditional statements, Biconditionals and Definitions, Deductive Reasoning, Reasoning 

in Algebra, and Proving angles congruent. Of the 283 tasks analyzed in this chapter, 

many (71%) were considered proof tasks or proof-related tasks; 5.3% of the tasks were 

explicitly proof tasks (as indicated in Table 8). Two-column proof and paragraph proof 

representation were used within this chapter to depict proof tasks (Table 9). Realistic 

tasks were posed more frequently in Chapter 2 when compared to the other two chapters. 

Almost two-thirds (64.3%) of the task required procedures without connections  (Table 

10).  

 Chapter 3, “ Parallel and perpendicular lines”, is comprised of seven sections:  

Properties of parallel lines, Proving lines parallel, Parallel lines and the triangle angle-

sum theorem, The polygon angle-sum theorems, Lines in the coordinate plane, Slope of 

parallel and perpendicular lines, and Constructing parallel and perpendicular lines. Proofs 

was not a primary focus of this chapter. Of 449 tasks analyzed, approximately one quarter 

(25.6%) of tasks were proof tasks or proof-related tasks (Table 8). In fact, only 3.6% of 

tasks were proof tasks. Paragraph proof representation was used more frequently in this 

chapter. Most of the tasks required lower levels of cognitive demands (Table 10).  

 Chapter 4, “Congruent triangles”, has seven sections:  Congruent Figures, Triangles 

congruence by SSS and SAS, Triangle congruence by ASA and AAS, Using congruent 

triangles: CPCTC, Isosceles and equilateral triangles, Congruence in right triangles, 

Using corresponding parts of congruence triangle. Of the 334 tasks analyzed for this 
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chapter, most of the tasks were proof tasks or proof-related tasks (72.8% as displayed in 

Table 8). Most of the tasks were accompanied by a picture, figure, or table, and were 

abstract in nature. Approximately two-thirds (65.9%) of the tasks required lower-levels of 

cognitive demands (memorization, or procedures without connections) (Table 10). 

Chapter 4 had more fill in the blank tasks than Chapters 2 and 3.  

Task Features of Chapters 2-4 

 Prentice Hall Geometry often included tasks in an abstract context that required 

one solution strategy. Slightly more than a tenth (11.3%) of the tasks were labeled as 

“challenge”, and only 7.4% of tasks require students to construct or complete proofs 

(Table 8). None of the tasks required students to collaborate with peers. Few of the task 

formats were multiple-choice (3.9%) and fill in the blank (6.2%). A picture, table, or 

figure accompanied more than one- half  (51.3%) of the tasks. Table 8 summarizes the 

tasks features of Prentice Hall Geometry. 
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Table 8. Prentice Hall Geometry Chapters 2-4  (excluding mixed review exercises) tasks 

features. 

Task Features 

Prentice Hall 
Geometry 

Chapters 2-4 
N = 1066 

Chapter 2- 
Reasoning 
and Proof 
N = 283 

Chapter 3- 
Parallel and 

Perpendicular 
lines 

N = 449 

Chapter 4- 
Congruent 
Triangles 
N = 334 

 
Proof tasks or proof-related tasks  
 

 
52.4% 

 
71.0% 

 
25.6% 

 
72.8% 

Answers 
 

    

   Answer with reasoning 
 

23.0% 21.9% 22.3% 24.9% 

   Answer only 
 

77.0% 78.1% 77.7% 75.1% 

Labeled as “challenge”  
 

11.3% 8.5% 13.6% 10.5% 

Task explicitly require students to 
prove or complete a proof 
 

7.4% 5.3% 3.6% 14.4% 

Solution strategies  
 

    

   One solution strategy  
 

94.9% 90.5% 96.0% 97.3% 

   Multiple solution strategies 
 

5.1% 9.5% 4.0% 2.7% 

Explicitly encourage group 
collaboration  
 

0.0% 0.0% 0.0% 0.0% 

Context 
 

    

   Real world context 
 

16.7% 33.6% 9.4% 12.3% 

   Abstract context 
 

83.3% 66.4% 90.6% 87.7% 

Picture/tables and or figures provided 
 

51.3% 32.5% 42.5% 79% 

Fill in the blank  
 

6.2% 6.7% 2.4% 10.8% 

Multiple choice 
 

3.9% 3.2% 4.0% 4.5% 

Composed of multiple parts 
 

18.6% 12.7% 20.5% 21.0% 
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Proof Representations 

 Paragraph proof representation occurred just as often as two-column proof 

representation. While in Chapter 2 two-column proof was more prevalent, in later 

chapters paragraph proof was a more common representation for proof tasks (Table 9). 

The textbook also used flow proof and other proof representation formats. Table 9 depicts 

types of proof representation used in Prentice Hall Geometry.  

Table 9. Types of proof representations used in Chapter 2-4 of Prentice Hall Geometry. 

Types of Proof 
Representation 

Prentice Hall 
Geometry 

Chapters 2-4 
N = 1066 

Chapter 2- 
Reasoning 
and Proof 
N = 283 

Chapter 3- 
Parallel and 

Perpendicular 
lines 

N = 44922 

Chapter 4- 
Congruent 
Triangles 
N = 334 

 
Flow 

 
1.3% 

 
0.0% 

 
1.1% 

 
2.7% 

 
Paragraph 3.0% 1.8% 1.3% 6.3% 

 
Two-column 3.0% 3.5% 0.9% 5.4% 

 
Other 
 

0.1% 0.0% 0.2% 0.0% 

Not applicable (non proof 
tasks) 

92.6% 94.7% 96.4% 85.6% 

     
  

The only proof task to be classified as other in Prentice Hall Geometry Chapters 2-4, was 

Section 3.3 Question 49 (Figure 21) (Bass et al., 2004, p. 137) reflecting “other” proof 

representation. Students have to complete the proof by filling in the blanks.  

 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
22	  Percentages may not sum to 100% due to rounding.	  
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Figure 21. Section 3.3 Question 49 in Prentice Hall Geometry (Bass et al., 2004, p. 137)  

- Tasks reflecting “other” proof representation.23 

 

Cognitive Demand of Tasks 

 Most of the tasks in Prentice Hall Geometry Chapters 2-4 required lower level 

cognitive demands (procedures without connections, and memorization). Only 2.1% were 

classified doing mathematics. Nevertheless, Chapter 4 included more high-level tasks 

than the previous two chapters. Table 10 indicates the level of cognitive demand of tasks 

in Chapter 2-4 in Prentice Hall Geometry. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
23	  	  	  	  From Prentice Hall Mathematics Geometry Teacher’s Edition by Bass, et al. 
Copyright 2004  © Pearson Education, Inc. or its affiliates. Used by permission. All 
Rights Reserved.	  
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Table 10. Levels of cognitive demands of mathematical tasks in Chapter 2-4 of Prentice 

Hall Geometry. 

Levels of Cognitive 
Demands 

Prentice Hall 
Geometry 

Chapters 2-4 
N =1066 

Chapter 2- 
Reasoning 
and Proof 
N = 283 

Chapter 3- 
Parallel and 

Perpendicular 
lines 

N = 449 

Chapter 4- 
Congruent 
Triangles 
N = 334 

 
Lower-level demands 
(memorization) 
 

 
17.6% 

 
17.0% 

 
15.8% 

 
20.7% 

Lower-level demands 
(procedures without 
connections)  
 

59.8% 64.3% 67.7% 45.2% 

Higher-level demands 
(procedures with 
connections)  
 

20.5% 18.7% 15.8% 28.4% 

Higher-level demands 
(doing mathematics)  
 

2.1% 0.0% 0.7% 5.7% 

 
Proof Tasks  

 Prentice Hall Geometry had very few proof tasks (N =79). For slightly over a 

half of the proof tasks (51.9%), the textbook included reasoning for the solutions. Less 

than half of the proof tasks required students to fill in the blanks (46.8%). In these 

skeletal proofs students had to complete some steps for the proof. The number of 

complete proofs that students are asked to write (from start to finish) is very small 

(N=38). All proof tasks admitted one solution strategy, most (98.7%) of which were 

abstract in nature. A picture, figure, or table accompanied the majority (87.3%) of the 

proof tasks. More than half of the proof tasks were composed of multiple parts (55.7%), 

whereas slightly larger than a quarter (27.8%) were labeled as “challenge”. Table 11 

indicates the task features of Prentice Hall Geometry proof tasks.  
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 Table 11. Task features of proof tasks in Chapters 2-4 of Prentice Hall Geometry. 

 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
24	  Percentages may not sum to 100% due to rounding.	  

Task Features 

Prentice Hall 
Geometry 

Proof tasks 
Chapters 2-4 

N = 79 

Chapter 2- 
Reasoning 
and Proof 

N = 15 

Chapter 3- 
Parallel and 

Perpendicular 
Lines 

N = 16 

Chapter 4- 
Congruent 
Triangles 
N = 48 

 
Answers 

    

 
  Answer with reasoning 
 

 
51.9% 

 
40.0% 

 
56.324% 

 
54.2% 

  Answer only 48.1% 60.0% 43.8% 45.8% 
 

Labeled as “challenge”  
 

27.8% 20.0% 50.0% 22.9% 

Solution strategies  
 

    

   One solution strategy  
 

100.0% 100.0% 100.0% 100.0% 

   Multiple solution strategies 
 

0.0% 0.0% 0.0% 0.0% 

Explicitly encourage group 
collaboration  
 

0.0% 0.0% 0.0% 0.0% 

Context 
 

    

   Real world context 
 

1.3% 0.0% 0.0% 2.1% 

   Abstract context 
 

98.7% 100.0% 100.0% 97.9% 

Picture/tables and or figures 
provided 
 

87.3% 80.0% 93.8% 87.5% 

Fill in the blank  46.8% 60.0% 
 

43.8% 43.8% 

Multiple choice 
 

0.0% 0.0% 0.0% 0.0% 

Composed of multiple parts 
 

55.7% 73.3% 62.5% 47.9% 
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The textbook included various proof representations:  flow, other, paragraph, and 

two-column. Over the three chapters, two-column proof representation and paragraph 

proof representation appeared just as frequently. Nevertheless, paragraph proof became 

more common than two-column proof in Chapters 3 and 4. Table 12 summarizes the type 

of proof representations in Prentice Hall Geometry proof tasks.  

Table 12. Proof representations used for proof tasks in Chapter 2-4 of Prentice Hall 

Geometry. 

Types of Proof 
Representation 

Prentice Hall 
Geometry 

Chapters 2- 4 
Proof tasks 

N = 79 

Chapter 2- 
Reasoning 
and Proof 

N = 15 

Chapter 3- 
Parallel and 

Perpendicular 
Lines 

N = 1625 

Chapter 4- 
Congruent 
Triangles 
N = 48 

 
Flow 

 
17.7% 

 
0.0% 

 
31.3% 

 
18.8% 

 
Paragraph 40.5% 33.3% 37.5% 43.8% 

 
Two-column 40.5% 66.7% 25.0% 37.5% 

 
Other 1.3% 0.0% 6.3% 0.0% 
     
 

A little more than half (58.2%) of the tasks were characterized as lower-level 

cognitive demands. Chapter 4 had more proof tasks that presented opportunities for doing 

mathematics than any of the two previous chapters. Table 13 summarizes how the proof 

tasks in this textbook were classified according to their level of cognitive demand. 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
25	  Percentages may not sum to 100% due to rounding.	  
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Table 13. Levels of cognitive demands of proof tasks in Prentice Hall Geometry. 

Levels of Cognitive 
Demands 

Prentice Hall 
Geometry 

Chapters 2-4 
Proof tasks 

N =79 

Chapter 2- 
Reasoning 
and Proof 

N = 15 

Chapter 3- 
Parallel and 

Perpendicular 
Lines 

N = 1626 

Chapter 4- 
Congruent 
Triangles 
N = 48 

 
Lower-level demands 
(memorization) 
 

 
46.8% 

 
60.0% 

 
43.8% 

 
43.8% 

Lower-level demands 
(procedures without 
connections)  
 

11.4% 20.0% 25.0% 4.2% 

Higher-level demands 
(procedures with 
connections)  
 

29.1% 20.0% 31.3% 31.3% 

Higher-level demands 
(doing mathematics)  
 

12.7% 0.0% 0.0% 20.8% 

 
Comparison of McDougal Littell Geometry and Prentice Hall Geometry 

Proof Tasks 

A comparison of McDougal Littell Geometry and Prentice Hall Geometry facilitation 

of students learning to prove revealed that despite similarities in organizational structures 

of the textbooks, there exist variation between them relative to task features and levels of 

cognitive demands of proof tasks. Tables were used previously to describe the textbooks 

task features and levels of cognitive demands individually for proofs, while taking into 

account the three chapters studied. However, Table 14 reports the proof tasks features, 

Table 15 illustrates proof representations and Table 16 displays levels of cognitive 

demands of both textbooks together, to emphasize noticeable differences between them 

relative to proof tasks.  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
26	  Percentages may not sum to 100% due to rounding.	  
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Table 14. Comparison of tasks features in McDougal Littell Geometry and Prentice Hall 

Geometry. 

Task Features 

McDougal 
Littell 

Geometry   
Chapters 2-4 
Proof Tasks 

N = 128 

Prentice Hall 
Geometry 

Proof tasks 
Chapters 2-4 

N = 79 
 
Answers 

 
 

 
 

 
   Answer with reasoning  

 
88.3% 

 
51.9% 

 
   Answer only 11.7% 48.1% 

 
Labeled as “challenge”  11.7% 27.8% 

 
Solution strategies  
 

  

   One solution strategy 100.0% 100% 
 

   Multiple solution strategies 
 

0.0% 0% 

Explicitly encourage group 
collaboration  
 

0.0% 0% 

Context 
 

  

    Real world context  4.7% 1.3% 
 

   Abstract context 95.3% 98.7% 
 

Pictures/tables/ or figures provided 
 

64.1% 87.3% 

Fill in the blank 10.2% 46.8% 
 

Multiple Choice  0.8% 0% 
 

Composed of multiple parts  
 

18.8% 55.7% 
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Table 14 highlights that McDougal Littell Geometry posed more proof tasks, provided 

more reasoning for proofs, situated proofs in realistic setting more frequently, and used 

less pictorial illustration than Prentice Hall Geometry for the chapters analyzed. On the 

other hand, almost half (46.8%) of Prentice Hall Geometry proof tasks required students 

to fill in the blanks, whereas only 10.2% of the proof tasks required students to fill in the 

blanks. Additionally, more proof tasks were labeled “challenge” in Prentice Hall 

Geometry (27.8%) when compared to McDougal Littell Geometry (11.7%). Despite 

differences, there existed similarities as well. For example, most proof tasks in both 

textbooks could have been solved using one solution strategy, and did not explicitly 

require students to work in groups. Nevertheless, proof tasks in geometry textbooks 

varied in task features. 

 As it relates to proof representations, Table 15 reports that McDougal Littell 

Geometry was more likely to include proof tasks that required students to use two-

column proof representation than Prentice Hall Geometry. Conversely, Prentice Hall 

Geometry utilized two-column proof representation just as frequently as paragraph proof 

representation. Furthermore, flow proof representation was more visible in Prentice Hall 

Geometry than McDougal Littell Geometry for the chapters studied.  
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Table 15.  Comparison of proof representations in McDougal Littell Geometry and 

Prentice Hall Geometry for proof tasks. 

Types of Proof Representation 

McDougal Littell 
Geometry   Chapters 2-4 

Proof Tasks 
N = 12827 

Prentice Hall Geometry 
Chapters 2- 4 Proof 

tasks 
N = 79 

 
Flow 

 
3.9% 

 
17.7% 

 
Paragraph 21.9% 40.5% 

 
Two-column 72.7% 40.5% 

 
Other 1.6% 1.3% 

 
 

 Table 16 suggests that Prentice Hall Geometry was more likely to pose proof 

tasks that required lower-levels of cognitive demands, whereas McDougal Littell 

Geometry posed more proofs that required higher-levels of cognitive demands. 

Admittedly, McDougal Littell Geometry required students to write complete proofs for 

more than half of the proofs. On the other hand, almost half of the Prentice Hall 

Geometry proof tasks required students to complete a proof by providing missing 

information to skeletal proof arguments.  

 

 

 

 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
27	  Percent may not sum to 100% due to rounding.	  
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Table 16. Comparison of levels of cognitive demands of proof tasks in McDougal Littell 

Geometry and Prentice Hall Geometry. 

Levels of Cognitive Demands 

McDougal Littell 
Geometry 

Chapters 2-4 Proof 
Tasks 

N = 128 

Prentice Hall 
Geometry 

Chapters 2-4 
Proof tasks 

N =79 
 
Lower-level demands (Memorization) 
 

 
10.2% 

 
46.8% 

Lower-level demands (Procedures 
without connections) 
 

25% 11.4% 

Higher-level demands (Procedures with 
connections) 
 

50% 29.1% 

Higher-level demands (Doing 
mathematics) 
 

14.8% 12.7% 

 

Hence, the comparison of proof tasks suggest that geometry textbooks can vary in 

the attention given to facilitating students learning to prove. The results indicates that 

McDougal Littell Geometry was more likely to provide more tasks that required higher-

levels of cognitive demands than Prentice Hall Geometry.   

Geometry Teachers’ Use of Curriculum Materials to Teach Proof 

 To answer my second research question, to what extent do geometry teachers use 

McDougal Littell Geometry and Prentice Hall Geometry Teacher’s Editions to teach 

proof for segment and angles, parallel and perpendicular lines and congruent triangles to 

facilitate students learning to prove, I conducted a qualitative analysis of the data 

collected from the three participants in the study. Data were coded according to the 

Mathematical Task Framework (MTF) (Henningsen & Stein, 1997) and the proof 

schemes framework (Harel & Sowder, 1998). Due to the refinement of a more 
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conservative definition of doing mathematics proof tasks, after the data were collected, a 

secondary coding of the enacted lesson was conducted. To present those results, each 

teacher’s teaching practices related to proofs, the level of cognitive demand of tasks used, 

and the proof schemes observed were summarize. At the end, the results of all the 

teachers were taken collectively, to examine a possible relationship between the levels of 

cognitive demand and the subsequent proof schemes utilized.  

 The three teachers studied, taught mathematics for at least three years, with a 

specialized concentration in geometry. Mrs. Davis and Mrs. Bethel (which are 

pseudonyms) taught at an urban school that used Prentice Hall Geometry, and were on an 

8 weeks schedule to teach Chapters 1- 4, while Mr. Walker taught from McDougal Littell 

Geometry at a rural school, in which he took 12 weeks to complete the same chapters. 

The number of observed lessons varied among teachers due to scheduling limitations. All 

of the teachers taught at the same time and I was only able to observe lessons twice a 

week. Mrs. Davis and Mrs. Bethel’s lessons were allocated 88 minutes, and Mr. Walker’s 

lessons were allocated 75 minutes. Since, I observed Mrs. Davis’s lessons 6 times, Mrs. 

Bethel’s lessons 8 times, and Mr. Walker’s lesson 13 times, in total, I observed high 

school geometry teachers, teach proof or proof-related content for 2,207 minutes, which 

is approximately 37 hours.  

 The teachers in this study used their geometry textbooks to facilitate students’ 

learning to prove. Students were encouraged to memorize a list of reasons to fill in the 

missing part of skeletal proofs. Students were also encouraged to remember procedures to 

complete proofs. For instance, students knew the given should be on the first line of the 

proof, and what needs to be proven should be on the last line, while key words and 
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phrases suggested what should be in the middle. Using instructional practices for 

teaching proof that required low cognitive demand was not due to randomness, but rather 

due to teachers’ decisions to provide students an opportunity to achieve success while 

doing proofs. The teachers in this study were mindful that most students had limited, if 

any, experience with proofs before their geometry class. Hence, memorizing a list of 

reasons and procedures provided a means to introduce students to mathematical proofs, 

while ensuring students would not be frustrated. In many instances, tasks that were 

originally classified as requiring higher-level cognitive demand (namely, procedures with 

connections) were enacted as procedures without connections. None of the teachers 

posed tasks that reflected doing mathematics. In most of the observed lessons, teachers 

used the textbook to pose low-level cognitive demand tasks, which facilitated students to 

develop external conviction proof schemes. Although teachers had good intentions 

(which was to facilitate learning), the guidance they offered during whole class 

discussion often reduced the level of cognitive demand of potentially richer tasks. 

Admittedly, teachers talked less and allowed students to work independently, when 

enacted tasks reflected higher-levels of cognitive demand. Whenever higher cognitive 

demand tasks were posed, there was a greater likelihood that analytical proof schemes 

were evident. Generally, the classroom norms facilitated that students had the opportunity 

to learn the mathematical content. Supportive reasoning was often emphasized for each 

step of the proof, and the classroom community often created norms about how to 

communicate definitions, postulates, and theorems.  

Mr. Walker 

 Mr. Walker taught mathematics, more particularly, geometry for five years. He 
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pursued an undergraduate degree in statistics, and subsequently earned a Master’s degree 

in Mathematics Education. This is the only school he has worked at, and he expressed 

satisfaction in teaching geometrical concepts to students.  

 Due to my observations, Mr. Walker is a teacher who desires to improve his 

practice as an educator. At the end of most lessons, he shared with me his reflections on 

his instructional practice, and the means to improve students’ disposition toward proofs 

and geometry as a whole. He expressed a keen interest in understanding the proof 

schemes framework. He acknowledged that he looks for additional resources in the 

Internet, or creates his own tasks. His drive to improve his practice is encouraged by the 

principal, who Mr. Walker claims often challenge teachers to facilitate critical thinking 

within their respective discipline. Mr. Walker is the chair of the mathematics department 

and often collaborates with his fellow math educator on writing worksheets and 

assessment goals. He acknowledged on multiple occasions that he and his colleague 

writes and share proof tasks to supplement the proof tasks in their textbook.  

 Mr. Walker desired for his students to learn to reason effectively, and emphasized 

that the order matters in how a proof argument is presented. He gave students a list of 28 

reasons and regularly quizzed students about the content on the list. The list included 

definitions, properties of basic operations, properties of equality (such as reflexive and 

symmetric), theorems about congruent, and segment and angles postulates. He stated, “ I 

think the biggest thing is just kind of staying on them and pressing them to explain their 

reasoning. You got to do that over and over again”  (November 3, 2011- Follow up 

interview at the end of the lesson). Furthermore, he wanted students to recognize patterns 

while doing proofs. According to Mr. Walker, 
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So I want them to see patterns. Seeing patterns is not a bad thing, because 

you’re still thinking. They still have to think on their own and it’s not 

completely mindless … I want to know how they look at things like, okay, 

when I see that line, they share. It reflex…I can always use that when I see 

vertical angles. I can always prove those congruent so a lot of the steps 

repeat themselves throughout the proofs and I want them to pick up those 

patterns. (November 10, 2011- Follow up interview at the end of the 

lesson)   

 The classroom routine began with a warm-up activity, homework review, 

introduction to the lesson, and subsequently have students work in groups on a practice 

activity. In many instances, the supplementary tasks Mr. Walker posed increased 

opportunities for students to engage in higher cognitive thinking. Students were first 

required to prove a theorem, before they could use it as supportive reasoning in a future 

proof. Mr. Walker stated, “ I explained that once we prove a theorem is true we can then 

use it whenever we see fit” (September 29, 2011- Task reflection sheet-after 

implementation-sent via email). He asked students to work in groups to construct proof 

arguments for proof on cards, or organize shuffle proof arguments to create logical 

arguments to exchange with other groups. For example, on October 6, 2011 (at the 

beginning of the lesson), he told students “so we’re going to have seven problems… 

because if you’ve got no card, if somebody else is done, they’re waiting. So make sure 

you are working”.  Mr. Walker assigned a class project in which students had to design a 

city with buildings that had to preserve stated relationships between perpendicular and 

parallel lines. Some students drew the town; others created physical models of a town, 
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while one student created the town using gaming software. Although Mr. Walker’s whole 

class instruction often reduced the level of cognitive demand of tasks to memorization or 

procedures without connections, I observed that when students worked in groups higher 

cognitive thinking was evident as well as analytical proof schemes. Mr. Walker sought to 

engage students in doing proofs, by assigning higher cognitive demand proof tasks that 

he made with his colleague.  

 Mr. Walker often supplemented the textbook with additional proof tasks, and had 

students provide justification for given statements. He was mindful that some students 

had a negative disposition towards proofs, but he would often encourage them to learn 

the list of reasoning as a means to become proficient at proof propositions. Based on 

conversations with Mr. Walker, his deviation from the textbook was due to his desire to 

pose more higher-level cognitive demand tasks. He acknowledged that the textbook had 

limitations, and he tried to overcome them. Mr. Walker remarked, “I guess, there’s just 

not enough like, if I look in this section in the book there’s one, there’s two proof of how 

we want them to be thinking about like” (November 3, 2011- Follow up interview at the 

end of the lesson). He also noted that sometimes the order in which content is presented 

in the book might not be logical, so his goal was to ensure the content progressed 

logically. Mr. Walker commented, “…the book…gives you a bunch of information, but 

they don’t really try to connect it to what you’re going to be doing in the future…so when 

I make my notes I want to connect this …” (November 3, 2011- Follow up interview at 

the end of the lesson). Mr. Walker used the textbook to assign homework, and structure 

the lesson. If he deviated from the textbook, the tasks he used aligned with the lesson 

objective of the textbook, and were meant to emphasize proofs.  
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Cognitive Demand of Tasks during Mr. Walker’s Enacted Lessons 

 Many of the tasks enacted in Mr. Walkers’ lesson were higher cognitive demand 

tasks. Of the 13 lessons observed of Mr. Walker’s teaching of geometry, Table 17 

indicates the level of cognitive demand of tasks for the original, planned, and engagement 

with the task during the enacted lesson as documented on the observation protocol. The 

original task depicts task as written in the curriculum materials, the planned task is the 

teachers stated intention of how they intend to use the task during the lesson, and the 

engagement with the task is how teacher actually use the task during the enacted lesson. 

In three lessons there existed multiple levels of cognitive demands for the various tasks 

posed.  The shift from the original tasks to engagement with tasks suggest that when 

enacted the level of cognitive demand was reduced. It further suggests that half of the 

tasks Mr. Walker posed reflected procedures with connections. It is interesting to note 

that Mr. Walker utilized McDougal Littell geometry, and based on the results for 

question, 50% of the proof tasks were procedures with connections.  
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Table 17. Levels of cognitive demands observed during 13 of Mr. Walker’s geometry 

lessons.  

Mathematical Tasks in 
Relations to the Levels 
of Cognitive Demands 

Lower-Level 
Demands 

(Memorization) 

Lower-Level 
Demands 

(Procedures 
Without 

Connections) 

Higher-Level 
Demands 

(Procedures 
with 

Connections) 

Higher-Level 
Demands 
(Doing 

Mathematics) 
 
Original Tasks  
 

 
2 

 
6 

 
8 

 
0 

Planned Tasks 2 6 8 0 
 

Engagement with the 
Tasks during the 
Enacted Lesson 
 

2 8 6 0 

 

An example of a proof-related task that reflects memorization reads, “Which postulate 

allows you to conclude that there is exactly one plane B that contains X, Y, and Z?  

Explain your reasoning” 28 (excerpt from Section 2.4 McDougal Littell resource 

material). Mr. Walker’s told the students,  

 So the way I would think through this is that we’ve got three non collinear 

points, S, Y, and Z, and we’re told that three non-collinear points contain 

exactly one plane. So which postulate says three non-collinear points 

contain exactly one plane?  That should be postulate 8. Right. (September 

22, 2011- Enacted lesson)  

 His memorization tasks often required students to restate postulate, theorems, and 

rules. He believed that, in order for students to prove, they must know a list of reasons. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
28	  From McDougal Littell Geometry, Teacher’s Edition, by Larson, et al. Copyright © 
2007 by McDougal Littell. All rights reserved. Reprinted by permission of Houghton 
Mifflin Harcourt Publishing Company.	  
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For example, he reminded students that the definition of angle bisector could be used to 

prove that, if an angle is bisected, the two angles formed are congruent. Mr. Walker said, 

“Good, definition of angle bisector. So this is on your list of 28 items. Basically what the 

definition of an angle bisector just says; it’s a ray, or a line, or a segment that divides and 

angle into two congruent triangles”  (October 18, 2011- Enacted lesson). He readily 

referenced the list as a tool to identify appropriate reasoning to support claims made.  

  Writing statements about congruent triangles often were procedures without 

connections. The order in which the second triangle was labeled had to correspond with 

the congruent sides and angles of the first triangle. For instance, on November 3, 2011, 

he posed the following task he created (Figure 22), which is similar to practice exercises 

in Section 4.2. 

Figure 22. Mr. Walker’s procedures without connections task. 

 

 

 

 

 

 

During his whole class discussion, he stated,  

Number 7 says write a statement that indicates the two triangles and each 

pair are congruent. What we are looking for is just to make that congruent 

statement. First triangle, you can write the letter in any order doesn’t matter. 

I wrote I, J, K. But the order that the next letters come in is important they 

Write a statement that indicates that the triangles in each pair are congruent 
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have to correspond. Which vertex corresponds to I?   S, what about J?  T? 

And then for K, as they are. So just match up the corresponding parts that’s 

all I am asking you to do on that section. (Mr. Walker, November 3, 2011- 

Enacted lesson)  

Other tasks posed that I classified as procedures without connections required 

students to place marking on the diagrams to identify corresponding sides and 

angles, solving equations, and drawing diagrams. For example, Mr. Walker said,   

We’ve got a lot of problems with segments and whenever we do a proof 

with segments, and we’re going to have to set an equation, there are usually 

two things that are going to help us set up an equation. With segments, it’s 

either that constant to midpoint or the segmented addition postulate. With 

angles, it’s the exact same thing except instead of, you usually have a 

midpoint of an angle but we’ve got angle bisectors so we could use an angle 

bisector to set up an equation or the angle addition postulate. So you’re 

going to have to look at the given information and kind of decide which of 

these can I use to set up an equation. Let’s keep that in mind. (September 8, 

2011- Enacted lesson)  

Figure 23 shows an example of a proof he used to illustrate the procedure of using 

the segment addition postulate on September 8, 2011. This was categorized as a 

task of procedures without connections.  
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Figure 23. Mr. Walker’s proof tasks used to illustrate segment addition postulate.  

 

 

 

 

 

 

 

 

      
  

 Among the tasks that Mr. Walker posed involving procedures with connections, he 

asked students to organize shuffled proof statements and reasons to make logical proof 

arguments, and he assigned projects in which students had to construct a town that 

preserved the placement of buildings in relations to parallel and perpendicular lines, or 

write a story that logically links 10 conditional statements. He was mindful that thought 

must be given to sentence structure to ensure the accuracy of  proofs is preserved.  

 Additionally, he posed tasks in which students had to write complete proof 

arguments. Based on conversations with him at the end of the lessons, he constructed 

most of these tasks to supplement the textbook. Mr. Walker admitted that he strongly 

believed, that the textbook did not provide sufficient amount of tasks in which students 

were required to write complete proofs. It was interesting to observe that most of the 

proof tasks he used required six or fewer steps and used the two-column proof 

	  
Given:  AC = BD 

Prove:  AB = CD  

Proof   
Statements Reasons 

1. AC  = BD 1. Given 
2. AB  + BC = AC 2. Segment addition postulate 
3. BC  +CD= BD 3. Segment addition postulate  
4. AB + BC = BC +CD 4. Substitution  
5. AB = CD  5. Subtraction property  
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representation. Figure 24, is an example of a proof task Mr. Walker wrote  (November 

15, 2011- Teacher artifact) to complement Section 4.6- Use congruent triangles.  

Figure 24. Proof tasks Mr. Walker wrote that reflected procedures with connections.  

   

Proof Schemes in Mr. Walker’s Classroom  

 In Mr. Walker’s classroom, external conviction proof schemes and axiomatic proof 

schemes were frequently observed, while empirical proof schemes were observed less 

frequently. External conviction proof schemes were observed in nine lessons, analytical 

proof schemes in eight of the lessons, and one lesson of empirical proof schemes. Based 

on my observation, students often viewed the textbook and teacher as the source of truth, 
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and understood the difference between postulates, and theorems. Furthermore, Mr. 

Walker required students to first prove theorems in order to use them, which appears to 

have strengthened students’ axiomatic proof schemes.  

External Conviction Proof Schemes 

 During whole class instruction, the teacher and the textbook were the mathematical 

authority of the mathematics. According to Harel and Sowder (1998), “when students 

merely follow formulas to solve problems they learn… prescriptions …and when  the 

teacher is the sole source of knowledge students are unlikely to gain confidence…These 

learning habits are believed to lead to…external conviction proof schemes” (p. 245).  The 

teacher prescribed specific strategies for proof propositions. Mr. Walker led most of the 

whole class discussions and was the bearer of knowledge. He often gave students rules to 

use in their homework assignments. Students often preferred that he give them the proofs 

rather than do them themselves. Hence, authoritarian, ritual and symbolic proof schemes 

were observed. 

 Authoritarian Proof Scheme. 

 The Authoritarian proof scheme was evident in many lessons. Harel and Sowder 

(1998) wrote, “students…are not concerned with the burden of proof; their main source 

for conviction is a statement appearing in a textbook or uttered by a teacher. Such a 

conception of proof we call authoritarian” (p. 247). In 9 of 13 lessons authoritarian proof 

schemes were evident. For instance on November 10, 2011, Mr. Walker posed a proof 

task that required students to write a proof. He said, “all right, I’ll get you started” and 

proceeded to complete the proof in its entirety. Similarly, for a McDougal Littell 

Resource proof-related activity for Section 2.4, he simply told students the answer to the 
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problem, rather than requiring students to provide some insight about the task. The task 

asked, “Which postulate guarantees that point Y is not on line n? Explain your 

reasoning”29. To answer the task, Mr. Walker responded,  

 …There’s really in my opinion, two answers that work. Either postulate 7 

or postulate 5. I'll go through the reasoning for postulate 7 first. ….The 

other way will be to use postulate 5. And that one says, “There is exactly 

one line between two points”, ….. So that’s how you could use postulate 5 

to reason through proving that fault. Is there any questions on that?  All 

right. Speak up if you do have a question or concern. (Mr. Walker, 

November 10, 2011- Enacted lesson)  

 Hence, his solution to the task was the primary source of truth, and the 

students never challenged it. Students simply recorded his remarks without 

considering other possibilities, and erased their answer if it did not align with the 

teacher’s answer. Furthermore, it was more common during whole class 

discussion for students to be told a proof than do the proof themselves. For 

instance on November 15, 2011 Mr. Walker posed the following task (Figure 25).  

 

 

 

 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
29	  From McDougal Littell Geometry, Teacher’s Edition, by Larson, et al. Copyright © 
2007 by McDougal Littell. All rights reserved. Reprinted by permission of Houghton 
Mifflin Harcourt Publishing Company.	  
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Figure 25. Proof task posed by Mr. Walker.  

 

 

 

 

 

 

              ___     ___     __    ___ 
 

 The original task that was considered a procedures with connections proof task, 

however, when enacted the level of cognitive demand was reduced because the teacher 

did the proof for the students. While recording his solution in a two-column proof 

representation, he stated,  

All right. So here’s what I’m looking at when I look at our problem. We’re 

trying to prove A is congruent to C, okay?  Notice our end result is not 

trying to get two triangles congruent. It’s trying to get a pair of individual 

parts congruent, A congruent to C. So what I’m going to be thinking about 

is, is there a quick way to get angle A congruent to C. If not, then I know 

if I can get the two triangles congruent to each other, then I can prove 

these two angles congruent to each other by CPCTC. So I’m going to go 

through that process, trying to get the triangles congruent to each other. So 

write down our given. So we’re just getting down what we already know. 

And then I was hoping people last time, I realized that people that are 

having the most trouble identifying the way to prove a triangle congruent 

	  
Given:   AB   BC,  AD  DC,  
Prove: A   C 
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are the ones who are not doing anything to their pictures. You have got to 

mark what you know is congruent. AB and BC, AD and CD, make sure 

you are giving yourself a visual reference; mark them congruent in your 

picture. All right. What else could we do to try and get these triangles 

congruent?…  So if we knew of an angle bisector that would help us get 

some angles congruent... BD is congruent to BD by the reflective property 

of congruence. So now we’ve got three sides of one in terms of three sides 

of the other. And if we look at our list of ways that I left on the board, 

that’s one of our six ways to prove a triangle is congruent. So triangle 

ABD is congruent to triangle CBD by side, side, side congruence. So what 

I know is if these triangles as a whole are congruent to each other, all of 

their individual parts, we got the three sides, so we’ve got enough 

information to prove those two angles are congruent, those two angles are 

congruent, and those two angles are congruent. And obviously the ones we 

are interested in are just angle A and angle C. So angle A is congruent to 

angle C by CPCTC. (Mr. Walker, November 15, 2011- Enacted lesson) 

Students observed the finalized proof and often sought to mirror the teacher’s 

steps when constructing proofs working in their groups. Although some students 

could construct the proof independently, they would always call the teacher to 

confirm that their proof was correct, as desired by the teacher.  

Ritual Proof Scheme.  

 Harel and Sowder (1998) stated, “Accepting false proof verifications on 

the basis of their appearance is a deficiency in one’s mathematical education, 
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which is possibly attributable to the over-emphasis in school on proof writing…” 

(p.246). Mr. Walker’s class used ritual proof scheme in constructing proofs, 

especially for congruent triangles. For instance on the right side of the board, Mr. 

Walker listed the following to prove congruent triangles: Definition of congruent 

triangles, SSS congruent postulate, SAS congruent postulate, ASA congruent 

postulate, AAS congruent theorem, and Hypotenuse Leg congruent theorem. 

Students were expected to use those terms in their proofs. Mr. Walker enforced 

this ritualistic behavior by drawing reference to this list while writing proofs. For 

example, the following dialogue between Mr. Walker and his student illustrates 

how students simply provided short responses, and stated reasons for congruent 

without considering the validity of the congruence statement.  

Mr. Walker: …Now, do we have enough information to prove the triangle 

is congruent?  Yes or no.  

Student:  Yes.  

Mr. Walker:  We sure do. So, triangle A, C, S is congruent to triangle A, 

R, S, which of these five methods we've learned?  Okay?  There are two 

angles and there's one side. Is this side the included side between the two 

angles?   

Student:  No.  

Mr. Walker:  No. So, which method?   

Student:  That's A, S, A.  

Mr. Walker:  A, A, S, angle, angle, side. But we have one side and two 

angles. But it's not in the included side, so it can't be in between them. If 
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they were going to be angle side angle, we would have to know these sides 

were congruent, but we don't know that…. (November 10, 2011- Enacted 

lesson)  

Although Mr. Walker corrected the students it appeared that the student felt the 

appearance of one of the rules on the board would have been sufficient to make the proof 

correct, without considering which reason of congruence fits the context of what needs to 

prove. Mr. Walker was aware that students learning how to write proofs were ritualistic at 

that times, and that he may have facilitated it. He said,  

…You can learn like one rule that sums up everything. That’s more 

complex than that. It’s deeper than that. So I think that they- I think from 

the little, little kids rely on that ritualistic behavior… Do you remember 

when I gave you that initial sheet; there are all the proof reasons?  If you 

look on the back, it has little two-step proofs just like I did up here for the 

warm up. That would be something that would promote them to use a 

ritualistic approach because it’s like when I see this, then I see this. But for 

some of them, it works do you know what I mean?  Like for some of them 

the only time I’m going to use alternate interior converse is when I’ve got 

alternate interior congruent and I’m proving the line is parallel. That is the 

only time that idea would be used. For some things it works, but I can see 

how that would hurt them as well. (November 8, 2011- Follow up 

interview at the end of the lesson)  

Mr. Walker’s remark suggested that he was aware that students might construct proofs 

based on appearance and use reasons from the list provided, rather than the accuracy of 
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the proof argument.  

 Symbolic Proof Scheme. 

 Harel and Sowder (1998) wrote, “Thinking of symbols as though they possess a 

life of their own without reference to their possible functional or quantitative reference 

we call symbolic reasoning… symbolic proof scheme is a scheme by which mathematical 

observations are proven by… symbolic reasoning” (Harel & Sowder, 1998, p. 250). I 

observed the symbolic proof scheme in Mr. Walker’s classroom, in few instances. 

Symbolic proof scheme was used to guide students in constructing proof or writing 

equations. For instance, Mr. Walker told students “So whenever we’re given information, 

we’re going to use that information somehow, okay”  (October 6, 2011- Enacted lesson). 

This remark suggests that the use of symbols and provided information will always be 

used without regard for the reasoning behind it, the practicality of the usage, and the 

placement of the information in relation to the logical flow of the argument. He justified 

such action by saying, “I honestly don’t know if that’s going to help you get to the end, 

but you’re writing down something that you guys know is true. So, that exactly what we 

need to do” (Mr. Walker, October 6, 2011- Enacted lesson). Students were attempting to 

move toward a solution using known facts, without understanding the extent the ideas 

contributed to the problem; nevertheless, they used it anyway.  

Empirical Proof Schemes 

 Students in Mr. Walker’s class used empirical proof schemes scarcely. According 

to Harel and Sowder (1998), “In an empirical proof scheme conjectures are validated 

impugned or subverted by appeal to physical fact or sensory experiences” (p.252). There 

was a single incidence of perceptual proof schemes and no observation of inductive proof 
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schemes.  

 Perceptual Proof Scheme. 

  “Perceptual observations are made by means of rudimentary mental images – 

images that consist of perceptions and a coordination of perceptions, but lack the ability 

to transform or to anticipate the results of a transformation” (Harel & Sowder, 1998, p. 

255). Evidence of a perceptual scheme was observed in a male student during his 

presentation of his project, in which he placed building within a community, using 

guidelines of angle relationship between buildings in relation to perpendicular and 

parallel lines. He chose to work by himself, rather than in a group. The young man 

displayed his presentation using SIMS software. The SIMS Software allows students to 

simulate real world situations using 3D graphics. Users of the software can design 

neighborhoods, and create storyline, thereby creating life simulation models. The student 

noted, “it’s a life simulation though; it is some what good for building things like that” 

(October 18, 2011- Enacted lesson). Although his usage of the technological tool was 

very creative and innovative, it appeared that he had elementary mental images of the 

underlying mathematical relationships of angles formed by parallel lines and transversals, 

and intersecting lines. He was unable to explain the implications of what would happen to 

the relationships between buildings if he moved one building. For example if two 

buildings originally formed corresponding angles on parallel streets, what will happen if 

one building is moved on the other side of the street. When asked how did he 

conceptualize the program, and his presentation, he responded, “ I drew that first. I guess 

that was my plan”. The student was unable to describe changes to the angle relationship 

of buildings if changes were made to his original design of the town. Therefore, although 
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he envisioned a 3-D presentation that can rotate 360 degrees, he was unable to visualize 

completely the geometrical relationships between the buildings, or draw adequate 

conclusions about the relationships of the angles.  

Analytical Proof Schemes 

 According to Harel and Sowder (1998), “Simply stated an analytical proof scheme 

is one that validates conjectures by means of logical deductions” (1998, p. 259). Some 

students in Mr. Walker’s classroom exhibited analytical proof schemes, which reflected 

axiomatic and transformational proof schemes. Other sub-schemes were not evident in 

the coded data of the enacted lessons. Analytical proof schemes were observed when 

students worked in groups or independently to write proof arguments, or construct proof 

arguments by arranging statements and reasons in a logical manner. On multiple 

occasions students commented that the number of steps could be reduced if you use a 

theorem that embodied several steps. A few students acknowledge in their group that 

although Mr. Walker did the proof in a particular order, changing some of the order of the 

steps would not affect the correctness of the proof argument. Analytical proof schemes 

were observed in 8 out of the 13 observed lessons. The analytical proof schemes were 

more prevalent whenever higher-level cognitive demand tasks were posed.  

 Axiomatic Proof Scheme. 

 “When a person understands that at least in principal a mathematical justification 

must have started originally from undefined terms and axioms (facts or statements 

accepted without proof) we say that person possesses an axiomatic proof scheme” (Harel 

& Sowder, 1998, p. 273) Axiomatic proof scheme was the most common of the analytical 

proof schemes. All of the students assumed that a proof must begin with a given 
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statement and axioms. The students accepted that some statements are accepted in a proof 

without further justification, and can be used to validate a claim made, and some students 

incorporated known theorems and axioms in an effort to reduce the length of their proofs. 

When a student was questioned if the theorem would change the meaning of the proof, he 

responded “No, because you’re linking the axioms” (November 10, 2011- Enacted 

lesson). His remark suggested that he was aware of the relationship between axioms, and 

theorems, and understood that the merit of the proof is based on a set of axioms. This 

may be due to textbook authors distinction of the terms at the beginning of the book. 

Section 1.2 of McDougal Little Geometry states, “ In Geometry, a rule that is accepted 

without proof is called a postulate or axiom. A rule that can be proved is called a 

theorem” (Larson et al., 2007, p. 9). The definition of theorem was restated in Section 2.6 

and the textbook authors added that “Once you have proven a theorem, you can use the 

theorem as a reason in other proofs” (Larson et al., 2007, p. 113). Mr. Walker was 

enthused that some students recognized that using theorems rather than multiple axioms 

could reduce the length of a proof. He said,   

…I am happy that some of them are getting that they can be done shorter. A 

lot of times, they don’t realize that they’re cutting corners. But sometimes 

they really do come up with ways to do things shorter, which is to me is 

really doing math…. In this chapter where I have them prove something that 

takes a bunch of steps, but there’s actually like a theorem we learned that 

can do it in like two steps. (November 15, 2011- Follow up interview at the 

end of the lesson) 

Therefore, Mr. Walker was mindful that students were aware that proofs are 
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underpinned with axioms, and that theorems can be used to minimize the amount 

of axioms needed to complete a proof argument. Furthermore, Mr. Walker 

facilitated the development of axiomatic scheme because he reinforced the notion 

that statements must be supported with appropriate reasoning, and often modeled 

this behavior during his whole class discussion of teaching proof. For example, 

Mr. Walker stated,  

That’s what we’re doing every time we do these proofs. We’re basically 

gathering new information based on an all the information, right?  We need 

to know this phrase right here, CPCTC. It stands for…Corresponding parts 

of congruent triangle are congruent…so what that’s saying is exactly what 

our definition of congruent triangle says, is that every pair of congruent 

parts between congruent figures are congruent. (November 15, 2011- 

Enacted lesson) 

His remarks highlights that known information accepted as truth can be used to create 

new arguments, and support claims made in constructing a proof. Furthermore, his 

explanation of corresponding parts of congruent triangles are congruent (CPCTC) 

connects the theorem to a definition; hence he was building on the mathematical 

language that was previously communicated. Furthermore, the list of reasons that he 

provided to students fostered students development of axiomatic schemes because it 

reinforced that proof arguments must begin with axioms, and possibly some undefined 

terms.  

 Transformational Proof Scheme. 

 According to Harel and Sowder (1998) “Transformational observations involve 
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operation on objects and anticipations of the operation results”(1998, p. 259). During the 

lessons I observed, there was only one instance of a transformational proof scheme. A 

student commented on how the teacher wrote congruent triangles on the board, such that 

the naming of the second triangle aligned with the corresponding sides of the first 

triangle. She asked, “Can’t you write it backward?” (November 3, 2011- Enacted lesson). 

She realized that although it was customary that the naming of the second triangle 

corresponds with the congruent sides of the first triangle, in actuality the naming of the 

triangle did not matter because it was the same triangle. She acknowledged that as long as 

the angles and sides of both triangles are congruent it could be deduced the triangles were 

congruent, and the naming of the triangle did not change that. Her remarks were 

transformative because she operated on naming the object, and anticipated the 

implication of how naming the triangles had on the fact that the two triangles were indeed 

congruent. The student’s remarks were indeed a surprise, considering that Mr. Walker 

emphasized that the order in which congruent triangles are named matters. On November 

15, 2011 (during the enacted lesson), Mr. Walker said  

Mr. Walker:  …So does the order of these letter matter? 

Student:     No 

Mr. Walker:  No, it does not, because if I name that KL or LK, I’m still on 

the same object. But now if we talk about the triangles being congruent, 

triangles JKL this order does matter because I have to match up the 

corresponding parts. J should go with M. K should go with N, and L goes 

with L. So in this statement the order does matter.  

Hence, the female student’s observations of the customary practice impact on the 
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overall triangle, was indeed transformative in respect to the established 

classroom norm.  

Relationship between Cognitive Demand and Proof Schemes 

 Table 18 summarizes the relationship between the codes for the level of cognitive 

demand, and proof schemes observed. Codes were drawn from the enacted lessons of 

tasks. In some instances, multiple codes came from a single lesson. For example, the 10 

perceptual code came from a conversation with a student who used technology to display 

his project. The sole transformational code came from a single student’s remarks. 

Nevertheless, the table suggests that there exists a possible relationship between the level 

of cognitive demands and the proof schemes observed. These data suggest that when 

lower-level demand tasks were posed external conviction proof schemes were more likely 

to be observed, while when higher cognitive demand tasks were posed, analytical proof 

schemes were more evident. More particularly, the table highlights that the greatest 

frequency of codes (18) occurred for the relationship between authoritarian and 

procedures without connections. Whereas, the second largest frequency of codes (13) 

occurred for the relationship between axiomatic and procedures with connections.  

Although empirical proof schemes did not occur often, it was more evident for 

procedures with connections task. Mr. Walker posed tasks that required various levels of 

cognitive and reflected multiple proof schemes. The frequency of axiomatic and 

authoritarian proof schemes suggests that they were the dominant proof schemes in his 

teaching of geometry.    
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Table 18. Relationship between cognitive demand of engagement with tasks, and 

proof schemes observed in Mr. Walker’s classroom.  

 

Mrs. Lillie Davis 

 Mrs. Davis’s tertiary training focused primarily on mathematical pedagogies. She 

obtained her Bachelor’s Degree in Mathematics Education with an emphasis in 

Mathematics, and subsequently a Master’s Degree in Curriculum and Instruction. Mrs. 

Davis is passionate about teaching mathematics and often said that she wanted her 

students to have fun while learning mathematics. She proudly proclaims, “Yes, I love 

math. Hell, I love math” (September 23, 2011- Enacted lesson). She has taught geometry 

Proof Schemes 

Lower-Level 
Demands 

(Memorization) 

Lower-Level 
Demands 

(Procedures 
Without 

Connections) 

Higher-Level 
Demands 

(Procedures 
with 

Connections) 

Higher-Level 
Demands 
(Doing 

Mathematics) 
 
External conviction 
 

    

    Authoritarian 
 

5 18 10 0 

    Ritual  
 

2 12 1 0 

    Symbolic 
 

1 3 0 0 

Empirical 
 

    

    Perceptual  
 

0 0 10 0 

    Inductive  
 

0 0 0 0 

Analytical 
 

    

    Axiomatic 
 

4 5 13 0 

Transformational 
 

0 1 0 0 
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for 6 years and since Prentice Hall Geometry  is the sole curriculum that she ever used to 

teach geometry, she had nothing to compare the curriculum to. She explained that the 

curriculum team plans the lessons, but there is flexibility to alter lessons if needed. At the 

beginning of each chapter, students are provided with a chapter outline for the number of 

days for a particular objective and the assignments from the textbook they will be 

required to complete. The planned chapter outlines that were distributed by Mrs. Davis 

skipped one lesson per chapter. The lessons skipped were: Section 2.3 -Deductive 

reasoning, Section 3.7- Constructing parallel and perpendicular lines, and Section 4.4 –

Using congruent triangles: CPCTC. She never explained the reasons for skipping those 

lessons, and I did not follow up as to why. Furthermore, although the pacing for each 

lesson generally aligned with the textbook recommendation, in Chapter 3 an extra day 

was allocated for Section 3.2- Proving lines parallel and Section 3.4- the polygon angle-

sum theorems. The handout informed students whether a worksheet would be provided 

for figures, and whether they will receive a test review packet. Since the class was taught 

on a block schedule (88minutes per lesson), Chapter 2 was allocated 5 instructional days; 

Chapter 3 was allocated 10 instructional days, and Chapter 4 was allocated 9 instructional 

days.  

 Mrs. Davis admitted that initially she was not great at teaching proof. However, due 

to advice and guidance from her colleagues, her confidence in teaching proof had 

significantly improved. Mrs. Davis said, “…when I first starting teaching [proof] I wasn’t 

very good at it. But I would say that I have improved. Just having seen other people and 

observed other teachers and teaching of proofs and their examples of how they teach…” 

(September 23, 2011- Follow up interview during lunch break). During the initial 
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interview, Mrs. Davis noted that the proof tasks taught would be low-level, because 

students were not familiar with proofs. She said,  

… We teach two-column proof, paragraph proof and flow proof. And we 

would like them to be able to construct it ideally, construct proof on their 

own from beginning to end and sometimes they can do that with the two-

column proof with say segment addition postulate. In the real world a lot of 

students can’t construct a proof from beginning to end on their own, so we 

will have fill in the blank, two-column where maybe a step is provided on 

the left and they have to provide the reason on the right, or the reasons on 

the right with the matching step on the left. (Mrs. Davis, September 2, 

2011- Initial interview)  

 The homework proof tasks assigned were generally fill in the blanks of skeletal 

proofs, or required students to use the word bank to complete proofs. However, when she 

provided instructions on proofs, she would often provide proof tasks that required writing 

proofs. Such tasks were used to model how to fill in the blanks for similar proof tasks. 

Additionally, the skeletal flow proof she used in the September 23, 2011 for a Do I 

Remember This (D.I.R.T) activity (a task that requires students to prove the transitive 

property of parallel lines) had only blank lines and boxes, and required students to 

consider how to progress logically from the given to the conclusion. It hinted at the 

amount of steps needed and the relationship between the steps. For such tasks, she 

reminded students the given goes first, what needs to be prove goes last, and gave hints 

about how to complete the middle part of the proof. Most of the lessons observed focused 

on proof-related activities, rather than the writing of proofs, which mirrors the little 
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opportunity for doing proofs provided in the textbook. Thus, most of the tasks observed 

simply required procedures without connections.  

  Furthermore, she was aware of students’ negative disposition to proofs. She noted 

that students were challenged to support claims. Mrs. Davis said, “Well they have a hard 

time explaining why they did something. A lot of times students don’t like to show their 

work how did you get to that answer” (September 2, 2011- Initial interview). She also 

acknowledged that in many instances students do not complete the proof tasks on 

homework assignments, which suggests that students were generally not intrinsically 

motivated to engage in doing proofs.  

  The structure of most lessons observed began with students working on D.I.R.T. 

assignments. Subsequently, students graded their homework assignment, the teacher 

taught the lesson, and students practiced the activity for that lesson. If time permitted, 

students got a head start on their homework. The textbook was used as a source for the 

homework assignment and to structure the lesson. According to Mrs. Davis, “…the way 

that the book lays out proofs is how model proof on the test and on our homework” 

(September 23, 2011-Follow up interview during lunch break). Additionally the geometry 

team created packets that readily aligned and reflected the content in the textbook such 

that students can write their responses on rather than writing in the textbook. Overall, 

Mrs. Davis offloaded the curriculum most of the time (Remillard, 2005), and adapted it 

based on decisions of the geometry team, or to accommodate students learning. Mrs. 

Davis willingness to follow the textbook as is, without any objections, may be due in part 

to the fact that this is the only textbook that she have used to teach geometry. According 

to Mrs. Davis, “...this is the only geometry textbook that I have seen because it’s the only 
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one that we’ve had while I’ve been here. We haven’t change textbook since I’ve been 

here” (September 23, 2011- Follow up interview during lunch break); hence,  “I don’t 

know how other textbook teaches it” (September 23, 2011- Follow up interview during 

lunch break). Therefore, considering this was the sole textbook curriculum she ever used, 

she had nothing to compare it to. Hence, she chose to follow the textbook during her 

instructional practices, without any objections or concerns.  

 In Mrs. Davis class, students often abbreviated definitions and postulates to reduce 

the amount of writing required. For instance, she said, “I told students that they could 

abbreviate their classification for polygons even though that was not included on the 

tasks itself. EL for equilateral, EA for equiangular, CC for concave, etc” (Mrs. Davis, 

September 24, 2011- Task reflection sheet after implementation-sent via email).  

Cognitive Demand of Tasks during Mrs. Davis’s Enacted Lessons 

 Data were collected via classroom observation protocol, audio, and video of six 

classroom observations. I used audio-recorded data from a lesson I did not observe and 

supplementary materials and teacher’s reflections about lessons. Based on the data 

sources, the cognitive demands of the tasks were examined, engagement with the tasks, 

and proof schemes used by the classroom community.  

 Table 19 summarizes data collected from the observation protocol of the six 

observed lessons. It suggests that in most lessons, students’ engagement with the tasks 

were primarily low-level as suggested by the teacher; and that it was highly likely that the 

tasks posed required procedures without connections. Furthermore, the table suggests that 

although original tasks may require higher-levels of cognitive demand the enacted lesson 

is reduced. It is interesting to note that Mrs. Davis used Prentice Hall Geometry which 
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had more than the proof tasks requiring lower-levels of cognitive demands. Similarly, 

more than half of Mrs. Davis’s original tasks  reflected lower levels-of cognitive 

demands.  Furthermore, it appears that Mrs. Davis shifted the level of cognitive demand 

for tasks during her planning and subsequent enactment. 

Table 19. Levels of cognitive demands observed during six of Mrs. Davis geometry 

lessons.  

Mathematical Tasks in 
Relations to the Levels of 

Cognitive Demands 

Lower-Level 
Demands 

(Memorization) 

Lower-Level 
Demands 

(Procedures 
Without 

Connections) 

Higher-Level 
Demands 

(Procedures 
with 

Connections) 

Higher-Level 
Demands 
(Doing 

Mathematics) 
 
Original Tasks  

 
1 

 
4 

 
3 

 
0 
 

Planned Tasks 1 6 1 0 
 

Engagement with the 
Tasks during the Enacted 
Lesson 
 

1 6 1 0 

 
In tasks classified as memorization, students had to recall definitions, or fill in the blank 

(as observed on the homework assignments). An example of a memorization task  (Figure 

26) was posed on September 8, 2011 in the D.I.R.T activity. The task read: 

Figure 26. Do I Remember This (D.I.R.T) task posed by Mrs. Davis. 

 

 

    
Additionally, there were instances in which the teacher reduced the level of the original 

proof-related task when enacted to reflect memorization. For example, on October 11, 

2011, a test review task (Figure 27), read: 

Name the property that justifies each statement.  

    __   ___         ___    ___           ___   ___ 
If JK MN and MN  PQ, Then JK  PQ 
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Figure 27. Memorization task posed by Mrs. Davis. 

 

  

 

 

 

 

 

Although, the coding of the task is procedures without connections because students have 

to identify (if possible) congruent sides, congruent angles, and congruent triangles, when 

assisting a student Mrs. Davis engaged with the task as merely memorization. Mrs. Davis 

said, 

Mrs. Davis: You see those 5 things up on the board 

Student:  Yeah 

Mrs. Davis:  Vertical, reflexive…those are the only things you can code. 

Student:  Oh. 

Mrs. Davis:  and then depending on your coding you’re going to choose is it 

congruent by SSS, SAS. (October 11, 2011 – Enacted lesson) 

Thus, the level of cognitive demand of procedures without connections task was reduced 

to memorization because the teacher posted a list of what the codes ought to be.  

 Sometimes the handouts for proof tasks assigned as homework, modified rich tasks 

(procedures with connections) in the book to tasks that simply required memorization. 

For example, in Section 4.6- Congruence in right triangles, students had to write a brief 

Code and name the postulate or theorem that proves the 

congruence. If not congruent, write none.  
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paragraph proof to explain the congruent relationship between triangles. However, when 

the teacher assigned the task, she required students to complete skeletal proofs by filling 

in the blank. Examples of the tasks in the textbook, and the task posed by the teacher are 

below in Figure 28 and Figure 29 respectively:  

Figure 28. Section 4.6- Questions 1-2 in Prentice Hall Geometry (Bass, 2004, p.219).30  

 

               

Figure 29. Mrs. Davis’s adaption of the Prentice Hall Geometry tasks for Section 4.6 

Questions 1-2 (Bass, 2004, p.219).  

 

 Admittedly the homework tasks were not the primary focus of the observation 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
30	  From Prentice Hall Mathematics Geometry Teacher’s Edition by Bass, et al. Copyright 
2004  © Pearson Education, Inc. or its affiliates. Used by permission. All Rights 
Reserved.	  
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protocol, but it was interesting to note that the reinforcement of low-level tasks were 

encouraged when students had more time to practice the writing of proofs. Hence, it was 

deduced that although tasks may originally require higher-level cognitive demand, when 

enacted the level of difficulty of tasks was reduced.  

 Tasks that required procedures without connections involved finding 

counterexamples, writing the converse, and conditional statements, solving equations, 

using the distance formula, coding triangles (when list is not on the board), bisecting 

angles, classifying polygons, finding the perimeter and area, or using a two-column proof 

to complete a flow proof. Students were able to attain success on such tasks if they were 

able to memorize the rules and procedures.  

 The two-column proof representation was used as the primary proof representation; 

and was often used as the root while the other representations were considered the 

branches. Mrs. Davis told students, “So if you ever have to construct a flow proof on 

your own, I suggest doing a two-column for it first and then cutting it for a flow proof” 

(September 20, 2011- Enacted lesson). For example, the task depicted in Figure 30 

(which is Example 1 in Section 3.2-Parallel lines), required students to construct a flow 

proof. 
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Figure 30. Section 3.2 Example 1 in Prentice Hall Geometry (Bass et al., 2004, p. 123) - 

Flow proof task.31 

 

  To enact the task, Mrs. Davis gave the following instruction to students,  

We’re going to take our two-column proof and we are going to make a flow proof. 

So in the same blank area where I told you to leave room for flow proof, you need 

to draw this out, we’re going to fill it in. This will be your first flow proof. (Mrs. 

Davis, September 20, 2011- Enacted lesson) 

  She subsequently discussed the proof. She said,  

…What do you think one of these boxes needs to be?  In your given let’s 

just do the top of your given. What was our given?  Angle 1 is congruent to 

angle 2 and then your reason goes below it. What was our reason, angle one 

is congruent to angle 2?  So this box is for what we saw in our picture. What 

can be concluded from our picture?  Angle 1 was congruent to angle three, 

why?  Vertical angles, why do we have two arrows to one box here?  It takes 

the information from these two and combined it into one using one property, 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
31	  From Prentice Hall Mathematics Geometry Teacher’s Edition by Bass, et al. Copyright 
2004  © Pearson Education, Inc. or its affiliates. Used by permission. All Rights 
Reserved	  
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the transitive…So we have angle 2 is congruent to angle 3 and what’s their 

relationship, corresponding angles which means are two lines are parallel, so 

converse corresponding. (September 20, 2011- Enacted lesson) 

Thus, Mrs. Davis enacted the writing of proofs using particular proof representations as a 

procedure. She answered her own questions while illustrating how to write the flow 

proof. The subsequent flow proof posed was rather similar to the examples.  

 The only lesson observed, where she enacted tasks as procedures with connections 

was the lesson entitled “Classifying polygons”. Mrs. Davis gave her students 20 figures 

and shapes and asked them to select particular characteristics that represent a number of 

shapes. Mrs. Davis informed students, “In your group, you’re going to look at this paper 

of shapes. You are going to pick one characteristic, and you are going to circle the 

number by the shape of the shapes that fit your group’s characteristic”  (September 23, 

2011- Enacted lesson). Students chose characteristics such as open figures, logos, 

symmetrical, stars, hexagon etc. The discussion had students develop their understanding 

of concave and convex polygons. Therefore, although the classification appeared 

superficial it was not done mindlessly. Students connected their knowledge of shapes to 

real world examples; however, the task did not contribute to students developing an 

understanding of doing proofs.  

 During the lessons observed, Mrs. Davis did not enact any tasks that could be 

classified as doing mathematics.  

Proof Schemes in Mrs. Davis’s Classroom 

 Most of Mrs. Davis’ classes facilitated the development of external conviction 

proof schemes. Mrs. Davis was the authority of the mathematics, and students often 
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called her to verify the accuracy of their responses. Students seems more interested in 

learning the procedures that would help them complete their homework and test. They 

seem more interested in being told proofs, rather than write proofs by themselves. Hence, 

Mrs. Davis usually assigned proofs that required students to complete a skeletal proof 

rather than write proofs in its entirety. Analytical proof schemes were observed when 

students knew that proofs must start with postulates, or theorems. I observed only 

superficial instances of analytical proof schemes. Since students were expected to follow 

the actions modeled by Mrs. Davis, they rarely engaged in analytical thinking. Inductive 

proof schemes, in which students try to ‘prove by examples,’ were not observed. It is 

likely that the teachers’ emphasis on the procedures of writing a proof, rather than on the 

role of proof as validation of a statement, discouraged students from using their intuition 

or non-standard methods of proof. As a consequence, students did not try to prove any 

proposition by examining different cases. It is also to be expected that inductive proof 

schemes would be more likely when students are facing statements about numbers or 

algebraic propositions, rather than geometric theorems, where generating different 

examples in a timely fashion can only be done through technology (such as Geometer’s 

Sketchpad, or GeoGebra), which was not used by teachers in this study. Overall, the low-

level cognitive demand tasks posed by Mrs. Davis generally promoted students 

development of external conviction proof schemes.  

External Conviction Proof Schemes  

 External conviction proof schemes were dominant in Mrs. Davis’ instructional 

practices. The tasks posed, usually drawn from the textbook, seldom encouraged creative 

thinking, or students discovering new ideas. Students were taught rituals for 
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argumentations, defer to the teacher as the authority of the mathematics, and sometimes 

treated symbols as if they were independent of a mathematical context.  

 Authoritarian Proof Scheme. 

  Mrs. Davis and the textbook were the authority of mathematics; students often 

called on her or referred to the textbook as a source of guidance. Her instructions always 

aligned with the instructions published in the textbook, and she determined the 

correctness of an answer rather than providing an argument to support the answer. For 

instance on September 6, 2011students were required to write conditional statements and 

their converse. Although some converse of statements may not necessarily be true, she 

said, “ No I don’t want true or false. I just want the statement” (Mrs. Davis, September 6, 

2011- Enacted lesson). She continued, “You don’t want to do that in this section, we are 

not there yet”. There will be a portion [of the book] where you will change the order” 

(Mrs. Davis, September 6, 2011- Enacted lesson). Her remarks suggested that the 

textbook dictates when and how students are exposed to content. Although this was an 

opportunity to extend students’ thinking by considering the validity of the converse, the 

teacher restricted critical thinking because it was outside the boundaries of the planned 

lesson, and it would be addressed in a future chapter. A similar incident occurred on 

October 6, 2011. The task posed was Exercise 1 in Section 4.2- Triangles congruence by 

SSS and SAS, and is depicted in Figure 31. 
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Figure 31. Section 4.2 Question 1 in Prentice Hall Geometry (Bass et al., 2004, p. 189).32 

 

 

                           

 

 

                

 To complete the task, a student wrote the following two-column proof.  

Statements Reasons 
    ___     ___ 
1. WS   SZ  

 
Given  

    ___       ___ 
2. WD    SD    

 
Given 

    ___     ___ 
3. SD    SD 

 
Reflexive  
 

4.  ZWD    ZSD  SSS 
 

 
 Instead of encouraging the writing of proofs, Mrs. Davis told the student, “No, 

you’re doing, like, way more than you need to do. But you did it correctly”. Based on her 

remark, the student ceased writing proof and said to his peer and to me, “I am doing too 

much” (October 6, 2011- Enacted lesson). Therefore, instead of writing proofs he simply 

stated a congruence theorem. Because she was the authority of the mathematics, her 

comment guided him on what ought to be done, rather than encouraged him on 

considering possibilities of what could be done. In describing authoritarian proof 

schemes, Harel and Sowder (1998) wrote, “instrumental understanding rather than 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
32	  From Prentice Hall Mathematics Geometry Teacher’s Edition by Bass, et al. Copyright 
2004  © Pearson Education, Inc. or its affiliates. Used by permission. All Rights 
Reserved	  

Developing Proof  Which postulate, if any, could you use to prove that the 

two triangles are congruent? 
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relational understanding is emphasized throughout the curriculum. As a consequence 

students build the view of mathematics as a subject that does not require intrinsic 

justification” (p. 247). Hence, the student did not continue his natural inclination to write 

proofs, and merely followed the directions of the prescriptive tasks.  

 The adherence to the textbook, encouraged by the teacher was evident in the lesson. 

Students placed their textbooks on the desk during each lesson, and would often refer to it 

when attempting to complete tasks. Since the tasks in the textbook were not rich enough 

to provide opportunities to engage in actual proofs, students seem to develop 

misconceptions about proofs. For example, Mrs. Davis noted, “…So, its one thing you’re 

forgetting because right now you only have an angle and the side. We’ve only written 

down two things congruent in our proof” (October 6, 2011- Enacted lesson). So in this 

example, the student could not remember theorems about congruence, and simply relied 

on the teacher for guidance in constructing the proof. Even when students worked in 

groups, the correctness of their responses was confirmed by the teacher rather than by 

their peers. Therefore, authoritarian proof scheme was promoted in Mrs. Davis class.  

 Ritual Proof Scheme.  

 In Mrs. Davis’ classroom, students proved propositions about triangles in a very 

ritualistic way. Mrs. Davis encouraged students to place marking on the congruent 

triangles, code the triangles for congruent sides and angles, and conclude with a 

congruent statement. Whenever the students and Mrs. Davis talked about the proofs, 

“tick” and “swoosh” were used to refer to marking on the diagrams. She said,  

 You can never swoosh or tick what you’re trying to prove…if you tick or 

swoosh what you’re trying to prove, this reason is going to be wrong. 
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...Prove the triangles are congruent first. So you code what you’re given, 

then you code anything else you know, vertical, reflexive, alternate interior 

with parallel lines, the word mid-point or the word bisect. (Mrs. Davis, 

October 14, 2011-Enacted lesson)  

The marking on the diagram was emphasized more than the correctness of the proof 

argument. Mrs. Davis stated, “If you see a coding like this, we can conclude those two 

triangles are congruent”  (Mrs. Davis, October 6, 2011- Enacted lesson). As a result, 

students often ensured they placed markings on the diagram, rather than focusing their 

attention on writing logical ideas. Seldom were students challenged to write a proof in its 

entirety. Mrs. Davis made clear to her students that the given and what needs to proven 

should always be included in the proof. She said,  

There are two things that you should never miss in a flow proof. One is the 

given and one is what you’re trying to prove. What you’re trying to prove 

will always go where?  At the end, so you should never miss this last box of 

the flow proof, even if you don’t know how to do the proof you should be 

able to get yourself a point of a test. (Mrs. Davis, September 20, 2011- 

Enacted lesson)  

Her comments suggested the ritual of writing the given and concluding statements 

without giving students the opportunity to think about the complete proof. The emphasis 

on the use of the markings and on simple procedures such as writing the given and 

conclusion, without focus on the development and understanding of the proof, 

characterized the approach to proof in the textbook and Mrs. Davis’s instructional 

practices when facilitating students learning to prove.  
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 Symbolic Proof Scheme. 

 In Ms. Davis’s classroom, the marking on the congruent triangles varied in 

usage from being used meaninglessly to demonstrating a deep understanding of 

why triangles are congruent. In proving triangles are congruent by SSS or 

CPCTC, Mrs. Davis said, “Make sure they correspond…you have to understand 

the symbols” (October 14, 2011). Her comment suggested that symbols might be 

used without reflecting an understanding of the content matter. Admittedly, such 

practices may have been encouraged by the importance she gave to the use of tick 

marks. For example, Mrs. Davis said,  

So whenever you see a tick mark, that’s going to represent an S for a side 

for a congruent side. So if they’re in 4.1, it says you have three sides of one 

triangle, bam, bam, bam are congruent to three sides of another triangle, 

bam, bam, bam, and then the two triangles are congruent. (Mrs. Davis, 

October 6, 2011- Enacted lesson)   

So students may perceive markings are symbolic of congruency or is simply 

required when doing proofs.  

Analytical Proof Schemes  

In Mrs. Davis’s class, the analytical proof schemes observed were generally 

axiomatic. Students were aware that some statements could be used in a proof without 

being proved (such as definitions, and theorems). Definitions, and theorems used 

included: complementary angles sum to 90o, reflexive property, definition of midpoint, 

vertical angles etc. Students knew that proofs had to be supported by definitions and 

theorems, which is represented in the column for reasoning. For example during a lesson 
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about proving congruence by SSS and SAS, Mrs. Davis said, “The only thing that you’re 

going to know is congruent are the reflexive property or vertical angles. You have either 

of those in there” (October 6, 2011-Enacted lesson). Additionally, she noted that 

information given is used and is never questioned. For instance, she said, “…Reason is 

given. So you need one of those in your given first and then you want to figure out if 

there’s anything else you know about your picture, anything else you think you can 

include in that”. She pointed out that some reasons can be accepted as truth without 

proof, while other facts can be concluded based on observable information (for example 

congruent triangles). Overall, analytical proof schemes were observed in 3 of the 6 

observed lessons, and when it was observed it was rather rudimentary in nature, since 

most task did not require students to engage in critical thinking to arrive at the correct 

solution.  

Relationship between Cognitive Demand and Proof Schemes 

 In most lessons, Mrs. Davis posed low-level cognitive demand tasks, which often 

encouraged external conviction proof schemes. Table 20 summarizes the relationship 

between the level of cognitive demand of tasks and proof schemes. The greatest 

frequency of codes (43) occurred for the relationship between ritual and procedures and 

connections, and authoritarian and procedures and connections (38) respectively.   
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Table 20. Relationship between cognitive demand of engagement with tasks, and proof 

schemes observed in Mrs. Davis’ classroom.  

 

 
The table illustrates that perceptual, inductive, and transformational proof schemes were 

never observed when the class engaged with tasks. Additionally, it suggests that external 

conviction proof schemes occurred most often when tasks posed required  procedures 

without connections. Conversely, the frequency of analytical proof schemes exceeded the 

external conviction proof schemes when the task(s) posed required a higher-level 

cognitive demand.  

 

Proof Schemes 

Lower-Level 
Demands 

(Memorization) 

Lower-Level 
Demands 

(Procedures 
Without 

Connections) 

Higher-Level 
Demands 

(Procedures 
with 

Connections) 

Higher-Level 
Demands 
(Doing 

Mathematics) 
 
External conviction 

    

     
Authoritarian 

 
5 

 
38 

 
1 

 
0 
 

    Ritual  7 43 0 0 
 

    Symbolic 1 6 0 0 
 

Empirical 
 

    

    Perceptual  0 0 0 0 
 

    Inductive  0 0 0 0 
 

Analytical 
 

    

    Axiomatic 8 10 4 0 
 

Transformational 0 0 0 0 
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Mrs. Barbara Bethel 

 Mrs. Bethel has 18 years experience teaching mathematics, 15 years of which were 

devoted to teaching geometry. She often reflected on her practice and considered what 

she could do to improve the lesson in the future. Mrs. Bethel believed that proof is vital 

to mathematics, and sought to promote students development of logical thinking. She 

acknowledged that proofs taught using two-column representation are very easy because 

these proofs involve content that students know to be true or false for the most part. In 

addition to the two-column proof representation, she also exposes students to flow proof 

and paragraph proof as presented by her geometry textbook. During my observations, 

when Mrs. Bethel deviated from this textbook, she often used  “The Boss/Secretary” 

activities courtesy of Becky Bride- Geometry- Kagan Cooperative learning series, which 

are rather similar to the pedagogical emphasis and structure of the Prentice Hall 

Geometry.  

 Like Mrs. Davis, Mrs. Bethel collaborated with her fellow geometry team members 

to plan lessons, and to choose tasks for students to complete as homework for each 

chapter. She normally modeled behaviors that she expected from her students. She 

provided students with tips that would help them in constructing proofs, and emphasized 

that the order matters in progressing from one step to another in doing proofs.  

 Mrs. Bethel class usually began with a warm –up or Do I Remember This 

(D.I.R.T.) activity, followed by homework review. After this, she taught the lesson of the 

day and gave students time to do practice problems. If students completed the class 

assignment before the end of the class, they were allowed to begin their homework 

assignment. 
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Cognitive Demand of Tasks during Mrs. Bethel’s Enacted Lessons 

 I observed Mrs. Bethel’s classroom eight times during Fall 2011. Writing proofs 

was the primary focus of only two of these lessons. Other times, most of the lesson 

focused on either proof-related tasks or non-proof tasks. Despite the small attentions 

placed explicitly on proof, which reflected the curriculum utilized, I was still able to gain 

insight into how proof or proof-related content were taught. In these lessons, Mrs. Bethel 

posed warm up tasks where students were required to complete skeletal proofs (tasks 

reflecting memorization), as a means to review proofs when observed, since most of the 

lesson focused on proof-related or non-proof tasks. Data collected during these 

observations (Table 21) suggested that most of the tasks assigned by Mrs. Bethel required 

procedures without connections, or memorization. The level of cognitive demand of 

proof tasks that were designed as requiring higher-level cognitive demand was 

diminished when these tasks were enacted, since Mrs. Bethel wrote most of the proofs 

during lessons, and emphasized procedures for completing these proofs. Flow proofs 

were generally taught as fill in the blank. Furthermore, fill in the blank proof tasks were 

assigned as homework and practice (just before the end of the lesson). When Mrs. Bethel 

wrote proofs, she would often give direct indications about what words and phrases 

should be used to fill in the blank on the practice tasks. Hence, students had little (if any) 

opportunity to write proofs by themselves during class time. Their engagement with 

proof tasks was generally limited to providing missing information for skeletal proofs 

when they worked independently. The textbook was used as the primary source of 

mathematical tasks, and was used to structure the mathematical lessons. Table 21 

summarizes the cognitive demand of the mathematical tasks observed during Mrs. 
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Bethel’s instruction.  

Table 21. Levels of cognitive demand observed during 8 of Mrs. Bethel’s geometry 

lessons. 

Mathematical Tasks 
in Relations to the 

Levels of Cognitive 
Demands 

Lower-Level 
Demands 

(Memorization) 

Lower-Level 
Demands 

(Procedures 
Without 

Connections) 

Higher-Level 
Demands 

(Procedures 
with 

Connections) 

Higher-Level 
Demands 
(Doing 

Mathematics) 
 
Original Tasks  

 
1 

 
5 

 
3 

 
0 
 

Planned Tasks 1 6 2 0 
 

Engagement with 
the Tasks during the 
Enacted Lesson 
 

1 8 0 0 

 

The table suggests that although some of the original tasks, and planned tasks might have 

demanded higher-level cognitive demand, when enacted the tasks required procedures 

without connections. The shift in numbers, illustrates that a task had the potential to be a 

procedures with connections, when enacted it reflected procedures without connections. 

A task reflecting procedures with connections but enacted as procedures without 

connections is drawn from the exercise of Section 3.4 question 66 (Figure 32). The task 

reads: 
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Figure 32. Section 3.4 Question 66 in Prentice Hall Geometry (Bass et al., 2004, p. 

150).33 

66. The car at each vertex of a Ferris wheel holds a maximum of 5 people. 

The sum of the measures of the angles of the Ferris wheel is 7740. What is 

the maximum number of people that Ferris wheel can hold?  

               

The task linked a realistic setting, to the sum of the interior angle of the polygon and 

required some degree of cognitive thinking; however, when enacted the teacher reminded 

students of the formula for finding the sum of the interior angles and solved the problem 

for the students. Mrs. Bethel enacted the task as follow,  

Mrs. Bethel:  All right so here’s our Ferris wheel. I don’t know how many 

folks are on this thing but that’s what I’ve got to figure out, right?  I’ve got 

to figure out how many angles we have on that thing before I can do 

anything else. So here’s what I know. Based on formula that we’ve been 

working with, we know that the total degrees is N minus 2 times 180. We’ve 

been told what the total is so I’m going to set this equal to 7740, okay?  So 

we start by dividing by 180 since you have the calculator out, [Student 

name], if you would be so kind to say it once more.  

Student 1:  43 

Mrs. Bethel:  43  

Student 1:  Plus 2 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
33	  From Prentice Hall Mathematics Geometry Teacher’s Edition by Bass, et al. Copyright 
2004  © Pearson Education, Inc. or its affiliates. Used by permission. All Rights 
Reserved	  
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Mrs. Bethel:  Plus 2 

Student 2:  45 

Student 1:   45 

Mrs. Bethel: That’s big huh?  That’s big. Okay sounded as how many folks 

we’re going to have out there, right?  Can you visualize that?  That’s big. 

Now 45 at the end of each one of those we’ve got 5 people. [Student name], 

would be so kind as to continue 45 times 5 is?  

Student 1:  225 

Mrs. Bethel:  It is 225 people that can ride that Ferris wheel once.... 

(September 29, 2011- Enacted lesson)  

Although the task could have been classified as a procedures with connections, the way it 

was presented by Mrs. Bethel’s made the task simply a procedures without connections.  

Similarly, proof tasks that could have been deemed procedures with connections were 

enacted as procedures without connections. For example on October 13, 2011 Mrs. 

Bethel posed a task that required students to prove triangles congruent by SSS. For the 

most part, she did the proof rather than the students. The task is shown in Figure 33.  

Figure 33. Proof tasks assigned by Mrs. Bethel’s on October 13, 2011. 
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Mrs. Bethel: Okay, so I’m going to re-write it, we’ve got segment AB is 

congruent to segment CD, and I choose to put the other one in here as 

well, so segment BC is congruent to segment DA. I don’t think there is 

any reason to put those into separate line, one line is good. I just ran out of 

space. Okay, that’s given, now before I go on, I want to code my picture. 

So, if AB is congruent to CD. I want to mark it that way, and if BC is 

congruent to DA, I want to mark that as well. 

Student 1: Do you have a reason? 

Mrs. Bethel: Yes, we do. Okay, so now Angel is telling us that we’ve got a 

reflexive property and you see it. AC is congruent to AC; it’s congruent to 

itself, right. So, we mark it 1, 2, 3, here we go, and it tells the reason 

again? 

Student 2: Reverse 

Mrs. Bethel: Absolutely. Okay, so my question is, do we have enough 

information to prove that these triangles are congruent? 

Student 1: Yes. 

Mrs. Bethel: How so? 

Student 1: Because all sides are…. 

Student 2: S-S-S. 

Mrs. Bethel: S-S-S that’s right. So, we say triangle ABC is congruent to 

triangle CDA by side-side-side. Then look at that, pretty cool, huh. 

(October 13, 2011- Enacted lesson)  

 Mrs. Bethel’s decision to guide her students throughout the writing of the proof was 
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motivated by her goal that students would recognize shortcuts when writing proofs for 

these theorems. In fact, as a precursor to proving the task she said, “Yeah, we are looking 

for some shortcuts, okay. Now, we know how to start our proofs, so we’ll go through this 

process once more, the first statement, 9 times out of 10 it’s going to be what we have for 

the given” (Mrs. Bethel, October 13, 2011- Enacted lesson). Mrs. Bethel desired that 

students recognize patterns in proving and sought to ensure the proving tasks were not 

difficult to students. This diminished the level of cognitive demand of the tasks that she 

assigned to her students.  

 Another example of a task originally deemed procedures with connections but 

enacted as a procedures without connections, was evident on October 25, 2011. For the 

task, the teacher proved triangles within an overlapping triangle were congruent. The task 

(Figure 34) was an extension of the example 1 in Section 4.7- Using corresponding parts 

of congruent triangles (Bass et al., 2004, p. 224).  

Figure 34. Proof task assigned by Mrs. Bethel’s on October 25, 2011.  

 

Mrs. Bethel:  I'm going to mark both picture so that you can understand 

sometimes how difficult it can be to look at the picture with them still 

together. Notice what we have. We had GF congruent to GH. And then we 

had GD compared to GE. And those were going to be congruent. So it's 

very hard to show those things when we're talking about that single 

picture. But if we can kind of pull those things apart, then it makes it a 
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little bit easier for us to follow. Okay, so here's what we got. We knew that 

GD was congruent to GE, and GH congruent to GF…As we are looking at 

overlapping triangles then, what we're trying to do is utilize any pieces 

that are in both the triangles at a given time. So if you notice this, of 

course, that's the one from straight above here. But we have angle G in 

this particular triangle already taken care of. So as we look at this, angle G 

is going to be congruent to angle G. And that's going to be where we use 

our reflexive. It doesn't always have to be a segment. It can be an angle. 

So angle G is used in both of those. And then if I take the time to mark 

that, and I'll do that in a different color, here's what it looks like in the 

jumbled picture if I pull it out and put it in the little picture, a little easier 

to follow. And now, take a look at what we know. Do we have congruent 

triangles?  Yeah, we do. So now, and depending on how you want to start 

this out, I'm going to do GFD, that's my choice. GFD is congruent to – and 

of course, we've got to get that other one named the same way. So notice 

what we did. We started in G; we went through the side that was marked 

with the two-strokes, so this one's going to be GHE. And how are those 

two triangles congruent?  SAS, very good, Side-Angle-Side, okay?  So my 

triangles are now congruent. And the last thing to do is to use a little 

CPCTC. If the triangles are already congruent, then isn't it true that all 

corresponding pieces are congruent?  Absolutely, so step 4, angle D is 

congruent to angle E by the soon to be favorite CPCTC. Okay?  So it 

didn't change the difficulty level too much. We just had to deal with that 



	   151	  

picture that was a little bit more complicated. Now on the second one, we 

won't have overlapping but we'll use our CPCTC again just so we can kind 

of get the practice with it. (October 25, 2011- Enacted lesson) 

While completing the task, Mrs. Bethel told students that the level of difficulty of the task 

did not change too much; rather it was simply the picture that compounded the situation. 

Color-coding, and marking on the diagram was a method that she customarily used. The 

follow up task was rather similar and simply reiterated the skill learned. In all cases, the 

teacher wrote the proofs, and students simply recorded the proof in their notes. Hence, 

the level of difficulty of proofs was generally expected to be low-level when enacted by 

the students.  

 Mrs. Bethel admitted during the initial interview that the proofs taught are 

elementary and had less than 10 steps. Mrs. Bethel said,  

 [We teach] Very basic proofs. Very obvious proofs, and I would say 

consistently less than 10 steps, never anything complicated but yet trying to 

still get the main idea across several. The proofs that we do in our geometry 

are three to six steps and we guide them an awful lot at this stage. (Mrs. 

Bethel, September 6, 2011- Initial interview)  

 Tasks deemed procedures without connections that were enacted as such included: 

identifying angle pairs, solving equations, finding measures of unknown angles, coding 

triangles, using and finding slopes of parallel and perpendicular lines.  

 A sample flow proof task that required filling in the blank and deemed a 

memorization task was posed on September 22, 2011. The task is depicted in Figure 35 

and is drawn from Section 3.2 Question 16 (Bass et al., 2004, p. 126).  
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Figure 35. Section 3.2 Question 16 in Prentice Hall Geometry (Bass et al., 2004, p. 126) 

- flow proof task reflecting memorization.34  

 

 

To enact the task, Mrs. Bethel encouraged students to look for clues in solving the task, 

and alluded to the fact that the skeletal proof provides guidance on what the missing 

information can be.  

Mrs. Bethel discussion for the task was as follow: 

Mrs. Bethel:  …When we’re looking at these kinds of things and they’re 

started for us, this is a skeleton. We want to look for clues along the way, 

so I’m going try to guide you through a couple of these things, maybe 

you’ve missed somewhere along the line. If you have a given statement 

and a proof statement these things need to be inside the proof. So, if I’ve 

got two pieces of information that are given, there better be two locations 

of it down here in my proof. So, you notice this first box right here, R is 

perpendicular to T, there it is, that was given, but there’s one more piece. 
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So, if it’s me, I might go ahead and scan all the way through until I find 

that last piece, so I can easily complete that part, okay? 

Student 1: Right. 

Mrs. Bethel: If I move on through this notes that it says, R is perpendicular 

to T, and then all of a sudden it says angle 1 is a right angle, but down here 

S is perpendicular to T, and then it says, angle 2 is a right angle, and it 

tells me the definition of perpendicular that’s probably going to give me a 

big hint …  If I have a perpendicular in the step before, and now all of a 

sudden I’m talking about a right angle that’s because I’m using the 

definition of perpendicular. If two lines are perpendicular, and we know 

they’re going to form a right angle. Now, angle 1 is a right angle, angle 2 

is a right angle all of a sudden angle 1 is congruent to angle 2, we did one 

like this yesterday. What do we know about all right angles?  Nothing, we 

know nothing. 

Student 1: On the right angle. 

Student 2: They are 90°  

Ms. Bethel: They’re all 90°, right. All right angles are congruent, you 

remember that one. 

Student 1: Yes. 

Mrs. Bethel: Because we talked about that yesterday, and there was a little 

theorem that we learned a little way back that said, all right angles are 

congruent, and we talked about how easy that would be to prove, because 

we know that right angle is 90°, and if this one is 90° and so is this one, 
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and then they’ve got to be congruent by definition of congruence. The last 

thing then, now R is parallel to S, notice what we’re looking at here, angle 

1 and angle 2 are both congruent. What kind of angles are those?  What do 

we call those? 

Student 3: Corresponding. 

Mrs. Bethel: Corresponding, very good. So, that’s giving us a hint. If R is 

parallel to S, then that’s because we’re using the corresponding angles, 

what’s the keyword I have to put here when I’m proving lines parallel? 

Student 3: Converse. 

Mrs. Bethel: The converse, very good. All right, so when you’re going 

through a proof that’s already been skeleton for you, take a look and see if 

there’re any clues in there that you can work with, and try to get with 

those things first, all right. Fill in the bits and pieces that you know, and 

maybe spend a couple of minutes thinking about those other things there, 

all right. (September 22, 2011- Enacted lesson) 

It is apparent that in this episode Mrs. Bethel spoke for the bulk of the discussion. When 

students provided responses, it was usually less than five words, which required the 

repetition of memorized facts. In all cases, the teacher led the discussions, even when the 

task posed required simply memorization to be completed.  

 Mrs. Bethel also did reviews for tests, which were generally not related to proofs. 

Nevertheless, proof-related tasks in these reviews were generally procedures without 

connections, requiring students to fill in the blanks. Tasks that could have been 

procedures without connections were thus reduced to memorization for the review 
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activity in which students had to provide missing information (as depicted in Figure 36).  

Figure 36. Mrs. Bethel’s chapter review proof task posed September 15, 2011. 

 

Overall, the level of engagement of tasks required low-level cognitive demand. Hence, 

the observed lessons readily aligned with Mrs. Bethel initial interview comments that 

proof tasks are “very basic” and require limited thinking.    

Proof Schemes in Mrs. Bethel’s Classroom 

 Mrs. Bethel primarily facilitated external conviction proof schemes, in which 

authoritarian proof scheme was dominant, although ritual and symbolic schemes were 

also observed. Mrs. Bethel was the authority of mathematics in the classroom, and 

students followed the procedures that she modeled in her instruction. When analytical 

proof schemes (particularly axiomatic proof scheme) were facilitated, it was rather 

rudimentary in the sense the teacher emphasized that to progress from given to 

concluding statements proofs must logically link theorems and definitions together. 

Empirical proof schemes were not visible in any of the observed lesson.  

External Conviction Proof Schemes 

 Mrs. Bethel generally influenced students developing external conviction proof 

schemes. Since she wrote most of the proofs, students were not required to think 
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independently and simply recorded her notes. Additionally, she provided specific 

procedures for writing proofs, which hindered students from considering a logical 

relationship between the statements, and encouraged them simply to recall facts 

previously taught to them. 

 Authoritarian Proof Scheme. 

  Students were not provided the opportunity to engage in the thinking practice of the 

discipline and write complete proofs. Tasks that had the potential to challenge students to 

think critically were reduced significantly when enacted. Hence, students seldom 

demonstrated justifications that were intrinsic, and relied on the teacher, the word bank 

and the textbook as the sources of mathematical certainty. Students did not challenge 

Mrs. Bethel’s comments and accepted her statements as true. Mrs. Bethel encouraged 

such behavior, because she acknowledged during the initial interview,  

I tell my students to pretend there is a little me standing on their shoulder, 

“what am I going to ask you next, what am I going to ask you next?…” to 

try to guide them to write something down...in our geometry classes we use 

our banks to help them choose the correct reason. We do what I like to call 

skeleton proofs where we have a step and maybe reason blank and the kid 

have to fill in one or the other”  (September 6, 2011- Initial interview).  

By encouraging students to follow the model set by her and draw on the word bank, she 

conveyed to her students that the teacher is the authority of the mathematics. The students 

got used to being given finished proofs, rather than engaging in writing a proof by 

themselves. Furthermore, it was customary for Mrs. Bethel to tell students how to solve 

problems on the homework, and if they view a homework task as difficult, she would do 
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it for them the next day in class. For instance in going over a proof task for a student, she 

said “ Okay. We have been given the following information…Let’s see what we got 

here” (October 25, 2011-Enacted lesson), and proceeded to solve the task. Similarly, on 

September 13, 2011 she proceeded to prove the task rather than have students attempt to 

write proofs themselves (which is Example 3 in Section 2.5) (Figure 37). She said, 

Figure 37. Section 2.5 Example 3 in Prentice Hall Geometry (Bass et al., 2004, p. 98). 

    

                      35 

Mrs. Bethel: So what I can do is I can take that sentence and I can put it 

together in this proof. We see two things that are going on. The measure of 

Angle 1 plus the measure of Angle 3 is going to equal a 180 degrees. And 

the same thing is happening here. The measure of Angle 2 plus the 

measure of Angle 3 is equal to 180 degrees. As my reason stated in the 

paragraph here we’re going to use the angle addition postulate. There are a 

couple of other things that we could consider some of which we haven't 

discussed yet. We have a linear pair postulate that says that if two angles 

form a straight line then they are going to be supplementary. We also 

know that by definition of supplementary angles that are going to add up 
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to be 180 degrees. So we can approach this a little bit differently pending 

on what our mood happens to be, all right. Now what you think about 

something else here, if we look at what we are supposed to prove. We are 

supposed to prove that Angle 1 and Angle 2 are congruent. Now look at 

my equation right now. I've got an Angle 1 and an Angle 2 on both sides 

of the equal sign. We also see measure of Angle 3 into it. By the 

subtraction property of equality we could say that the measure of Angle 1 

equals the measure of Angle 2, isn't it true that if I subtract the measure of 

Angle 3 from both sides I am going to get the measure of Angle 1 equals 

the measure of Angle 2 is that true by subtraction property and then finally 

when we go out to equals and is congruent we’re going to say that Angle 1 

is concurrent to Angle 2 by the definition of congruent angles. This one 

needs the steps so it's depending on which way we trap. (September 13, 

2011- Enacted lesson) 

Hence, Mrs. Bethel exercised the authority regarding the mathematics, and determined 

what constitutes a proof. She readily provided formulas and tricks that students were 

expected to follow in order to be successful in mathematics. 

 Symbolic Proof Scheme. 

 Mrs. Bethel encouraged students to mark on diagrams, and remember theorems for 

congruent triangles. Students knew that to prove that two triangles were congruent one of 

the theorems must be stated. They rarely considered the merit of the theorem in relation 

to what needed to be proven. For example, Mrs. Bethel said, “ …I heard an SAS and I 

heard an angle side angle. Look at your picture. There’s only one side mark, right?  So 



	   159	  

we’ve got to go angle side angle” (October 25, 2011- Enacted lesson). Students knew that 

they had to use symbols, but the extent to which they used them varied in meaning and 

understanding. Mrs. Bethel said, “So we’ll use some symbols, and we’ll use some 

abbreviation in there as well. Okay” (September 13, 2011- Enacted lesson). Mrs. Bethel 

remarks suggested to students that symbols are needed in doing proofs, without making 

clear that the use of symbols is only one way to state a proof argument.  

 Ritual Proof Scheme. 

 Mrs. Bethel frequently used the two-column proof representation and emphasized 

that the given goes first and what needs to be proven be written last. When students see a 

two-column proof or see that the given and the concluding statements are in the standard 

positions, they may not focus on the body of the argument and are likely to accept the 

proof as correct without examining its merits. Mrs. Bethel cautioned students,  

 Now, we’ve talked about the fact that nine times out of ten, our first 

statement are going to be given, however, we’ve also seen a couple of 

proofs where it didn’t actually start with that for your first statement, so 

you have to be paying attention to that. (September 15, 2011- Enacted 

lesson)  

Additionally the use of the reflexive property in doing proofs was rather ritual. In proving 

students would often suggest it be used in a proof. Mrs. Bethel said, “That’s my reflexive 

piece, okay. Now, we all understand that that’s automatically going to be true because SK 

is the same in both pictures”  (October 13, 2011- Enacted lesson). Mrs. Bethel’s remarks 

could potentially influence students to focus on the appearance of the proof rather than 

the logical argument.  
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Analytical Proof Schemes 

 Admittedly, Mrs. Bethel modeled proofs and emphasized that a proof utilizes 

logical deduction, and links theorems and definition to confirm concluding statements. 

Hence, the few instances in which analytical proof schemes were observed, it was 

generally axiomatic.  

 Axiomatic Proof Scheme. 

 Mrs. Bethel was aware that proofs were ultimately based on axioms. Arguments for 

proofs used postulates, theorems, and definitions. She told students, “Now if it’s a 

theorem that means that we can prove it” (September 13, 2011- Enacted lesson). In her 

reflection for the lesson in which students classify angles, she wrote, “The lesson 

continues the idea that we must be given certain information for a diagram. We cannot 

assume things like congruence without the diagram being marked or the fact stated” 

(Mrs. Bethel, September 13, 2011-Task reflection sheet- after implementation). Her 

statement suggested that every proof must have some undefined terms, and statements 

that are accepted because they have been proven before, while other information must be 

supported. Mrs. Bethel’s remarks about not trusting diagram is perceived as a common 

practice; however from a pedagogical point of view, not using the diagram may restrict 

students from using their intuitions about the proof. Nevertheless, the observation of 

axiomatic proof scheme appeared sparingly.  

Relationship between Cognitive Demand and Proof Schemes 

 Generally, Mrs. Bethel posed tasks of lower-level cognitive demand, which more 

readily facilitated external conviction proof schemes. Empirical proof schemes and 

transformational scheme were never observed. Table 22 displays the relationship 
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between codes for cognitive demand of engagement with tasks and proof schemes 

observed.  

Table 22. Relationship between cognitive demand of engagement with tasks, and proof 

schemes observed in Mrs. Bethel’s classroom.  

 

The data highlight that authoritarian proof schemes were observed most frequently 

during Mrs. Bethel’s instruction. Furthermore, authoritarian proof scheme occurred most 

often when procedures without connections tasks were posed.  

 

Summary across the Three Observed Teachers 

Proof Schemes Lower-Level 
Demands 

(Memorization) 

Lower-Level 
Demands 

(Procedures 
Without 

Connections) 

Higher-Level 
Demands 

(Procedures 
with 

Connections) 

Higher-Level 
Demands 
(Doing 

Mathematics) 

 
External conviction 
 

    

    Authoritarian 14 56 0 0 
 

    Ritual  10 20 0 0 
 

    Symbolic 1 5 0 0 
 

Empirical 
 

    

    Perceptual  0 0 0 0 
 

    Inductive  0 0 0 0 
 

Analytical 
 

    

    Axiomatic 5 4 0 0 
 

Transformational 0 0 0 0 
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 The three geometry teachers observed often enacted tasks as procedures without 

connections, which resulted in students developing an external conviction proof schemes. 

Analytical proof schemes appeared more often than external conviction proof schemes 

whenever higher-level cognitive demands were posed. Classes’ engagement with tasks 

that reflected high-level cognitive demands happened when students were given more 

autonomy in their learning. Students working in groups and teachers reducing the level of 

guidance provided, increased the opportunity for students to demonstrate critical thinking 

skills, and engage in tasks that required high-levels of cognitive demands.  

 The one instance (in Mr. Walker’s class) of a transformational proof schemes 

occurred when a single student questioned the customary practice of how congruent 

triangles are named. Empirical proof schemes appeared infrequently in all of the 

teachers’ lessons. This is not surprising since most of the proof tasks required students to 

prove things that were known to be true. Hence, the only opportunity for students to 

develop empirical proof schemes occurred during the lesson in which students had to 

design a town based on specific guidelines.  

 Textbooks were used as a tool to structure the order in which teachers presented 

mathematical content to students, and were the main source for homework assignments. 

The geometry textbooks contributed to the number of low-level tasks that students were 

given, since most of the tasks in these textbooks were of low-level cognitive demand. In 

order to pose higher-level tasks on a regular basis, one of these teachers, Mr. Walker, had 

to create tasks himself, or seek alternative sources. Although Mrs. Bethel posed 

alternative tasks in some lessons, the level of difficulty reflected the tasks posed in the 

textbook. Nevertheless, there was a greater likelihood that if these textbooks were used as 
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the primary source of teachers’ instructional practices, then the tasks posed during 

instruction and for homework will generally require procedures without connections.  

Teachers’ Decision to Deviate from Their Textbooks 

 In this section, I discuss findings related to the third research question, namely, 

what influences teachers’ decisions to deviate or not from the McDougal Littell Geometry 

and Prentice Hall Geometry Teachers’ Edition implied or explicit instructions and lesson 

plans? 

During my observations, it was evident that geometry teachers use their district-

adopted textbook as a basis for their instructional practices. The textbook provided a 

structure for teachers throughout the semester, and was used as a resource for 

instructional content, practice problems, and homework assignment. Even when teachers 

chose to deviate from the curriculum materials and supplement instruction with 

alternative materials, the tasks assigned were relatively similar to the chapter content 

within the textbook. Nevertheless, geometry teachers’ decisions to deviate or not from the 

district-adopted textbook were influenced by factors such as their beliefs, experience, 

their desire to make mathematics easy, assessment, and their professional community. 

Teachers’ believed that proof was important, that students struggled with proof and that 

two-column proof was a practical means to facilitate students learning to prove. 

Furthermore, teachers’ experience of teaching proof influenced proof representations 

used, and how proof tasks were enacted during the lesson. The professional community 

in which teachers’ work was a source of support, which provided resources and guidance 

as to how proof ought to be taught. Additionally, teachers desire for students to achieve 

success in mathematics, and on assessment, also contributed to the amount of guidance 
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they provided to students learning to prove. Initially factors were coded based on 

identified factors in MTF (Henningsen & Stein, 1997), however, additional factors 

emerged during the examination of the data. All three teachers desired that their students 

achieve success in mathematics, and their decisions to deviate or not from the textbook 

were aimed at their goal of facilitating students learning. I will describe each of these 

factors, in light of evidence provided by each of the three teachers.  

Teachers’ Belief 

 Teachers’ beliefs contributed to teachers’ decisions to follow or divert from their 

district-adopted textbook. Considering that less than half of the tasks in their geometry 

textbooks were proof tasks, teachers must first deem proof valuable so that they chose to 

assign these proof tasks. Fortunately, all of the teachers deemed proof important enough 

to expose their students to proofs, as stated during their initial interviews. Furthermore, 

teachers’ beliefs about the strengths and limitations of the textbook can influence their 

decision as to whether or not they choose to offload or divert from the assigned 

curriculum. When a teacher offload a curriculum, he or she follows it rather closely, and 

generally adheres to the instructional guidance provided (Brown, 2009). Teachers’ 

preferences for particular forms of proof representation determined they type of proofs 

they would be more likely to assign.  

Importance of Proof 

According to the teachers’ initial interview, they believed that teaching proof 

facilitates logical thinking and foster skills students can use in other disciplines. Although 

most teachers acknowledged that they preferred the two-column proofs, they agreed that 

the form of the proof was not as important as the logical structure of the argument. They 
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valued students being able to reason and communicate their thoughts effectively. Hence, 

teachers made a conscious decision to follow the written curriculum pedagogical 

emphasis related to doing proofs.  

 Mr. Walker sought for his students to appreciate mathematics and value the 

proofs that are published in textbooks. He acknowledged that mathematicians placed 

great thought into the proofs represented in the textbook hence students should appreciate 

the rationale behind accepted theorems and postulates that are used. Mr. Walker stated, 

 I think it [proof] helps you gain an appreciation for mathematics because 

you know, its not like there is everything that we know in math right 

now; its just sitting there in the textbook for people hundreds of years 

ago; you know, people had to come up with these ideas, so I think it helps 

you gain an appreciation for math and everything that it can do and I also 

think it helps, kind of, people become a little more logical in their areas 

of thought not just math. (Mr. Walker, August 23, 2011- Initial interview) 

 Like Mr. Walker, Mrs. Davis deemed proof important and desired her students to 

learn how to prove. She believed that the teaching of proof would foster students’ 

development of reasoning and logic and could be used beyond the realms of the 

classroom. Mrs. Davis believed that learning to prove definitely helps students to 

function effectively within their daily lives. She knew that students may not use the 

mathematical symbols or the proof representations in their everyday life, but the skills 

involved in doing proofs can be used. Mrs. Davis stated,  

I believe that proof helps them. Some kids will say why are we doing 

this. But it’s not just to teach proof, it’s to teach reasoning and logic 
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skills that they will need for life. They may not have to write down why 

this segment plus the segment equals a big segment in real life but they 

need to develop the skills of reasoning to help them in life. (Mrs. Davis, 

September 2, 2011- Initial interview)  

Mrs. Davis reiterated that proof was important to secondary mathematics, because 

it fosters the development of skills that can be used in real world situations. She believed 

that developing proofs facilitate students’ critical thinking skills, and strengthen their 

ability to solve problems. In response to an initial interview question, which asked, “Do 

you think that teaching of proof is important at the secondary level?” Mrs. Davis said,  

I very much do… I will kind of reiterate myself, not necessarily will 

they have to do mathematical proof in life, but I really do think that it 

helps them how to think through a problem, how to problem solve, why 

am I doing this, kind of it’s reasoning and reflection upon what they are 

doing. And I think that they can take those skills through mathematical 

proof that they are developing and apply them to life. (Mrs. Davis 

September 2, 2011- Initial interview)  

 In addition to developing logical reasoning, Mrs. Bethel believed teaching proof 

enhanced students ability to communicate their ideas. Mrs. Bethel said, “Well, I think it’s 

a growth in learning and communication” (September 6, 2011- Initial interview). During 

her initial interview, Mrs. Bethel acknowledged that she was aware that proof in 

geometry might be frightful for students.  She said that she tries to encourage students to 

prove by considering the practicality of doing proofs in business and everyday life; 

although it was not observed during my classroom visits. According to Mrs. Bethel,  
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 Proof to me is being able to justify what you doing and I said that very 

broad and basic because that’s where I introduced it to the students. 

Instead of scaring them and thinking that they have to worry about a proof 

that’s geometry related I explain to them that as you are going through like 

whatever you choose to do if you need to let’s say come up with a 

business proposal to get money for your particular organization or some 

aspect of that you have to be able to build up why you need this and I try 

to explain that it’s a way of thinking and justifying why we think in a 

certain ways, so it’s not just geometry… (Mrs. Bethel, September 6, 2011- 

Initial interview)  

 Therefore, teachers’ decision to follow their textbook’s approach to proof was 

very likely due to the importance that they thought proof had beyond the realms of 

geometry. If proof was not deemed valuable, the teachers might have chosen to ignore 

sections, or tasks that explicitly required students to prove.  

Strength of the Textbook  

 Teachers’ decisions to follow the organization structure and pedagogical 

emphasis of a geometry textbook may be due in part to inherent strengths of the textbook. 

Teachers experiences with other textbooks may have helped them develop an opinion on 

the practicality of a particular textbook, however, if teachers used only one textbook for 

their career, they were more inclined to accept their geometry textbook as is.  

 Mr. Walker valued reasoning as emphasized in the textbook, and used the 

textbook as a primary source of all homework assignments. He often encouraged his 
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students to provide justifications for their responses, and believed that the textbook also 

requires students to explain their responses. Mr. Walker commented,  

…The book probably at least half the problem will say, what’s the 

answer, explain... When I look through their homework, their 

explanations aren’t that great so the homework usually isn’t enough to 

hold them accountable for their explanations. So I got to kind of press 

them to do that in class and have them speak up because like I tell them 

all the time that the reasoning and the explanation is more important 

than that final numerical answer. (Mr. Walker, November 3, 2011- 

Follow up interview at the end of the lesson). 

Since Mr. Walker wanted students to provide rich explanations, he was appreciative that 

many tasks in the textbook require students to explain their responses, and often would 

assign tasks from the textbook that required students to provide their reasoning. He 

acknowledged that students providing reasoning is of greater importance than providing 

the solution only.  

 Mrs. Davis had no complaints about the district-adopted textbook; nevertheless, 

hers was the only geometry textbook she had ever used. She did not consider any 

changes, since this had been her primary resource since she started teaching six years 

ago.  

Mrs. Davis accepted the textbook as it was, and chose to follow it throughout the 

semester, both the content and the order in which it was presented. For instance, when a 

student exhibited a skill from a future section in the book early in the semester Mrs. 

Davis said “And you don’t want to do that in this section, we are not there yet. There will 
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be a portion where you will change the order” (September 6, 2011- Enacted lesson). 

Hence, the skills encouraged in the classroom clearly aligned with the goals of each unit 

within a particular chapter. Mrs. Davis stated, “how the book lays out proof is how we 

model proofs on our test and on our homework” (September 23, 2011- Follow up 

interview during lunch break). Mrs. Davis dutifully integrated the textbook into the class 

without adaptations, and regularly referenced mathematical ideas in terms of chapter and 

unit location, rather than as explicit mathematical topics. Hence, Mrs. Davis saw no 

limitations in the textbook, and in her lessons, she regularly taught the content as 

presented in the textbook.  

 Unlike Mrs. Davis, Mrs. Bethel had experience with other curriculum materials, 

and was aware of potential differences among them. Nevertheless, she chose to follow 

the textbook closely. If she improvised and posed alternative activities, the content 

aligned closely with the goals of the chapter or unit as outlined for that day by the 

geometry team. As indicated earlier, Mrs. Bethel used the table of contents of Prentice 

Hall Geometry as a point of reference: she used the chapter and section as reference, 

instead of the mathematical content. For example, on October 4, 2011 (during the enacted 

lesson) she noted “…quiz is going to cover 3.5 and 3.6”, rather than lines in a coordinate 

plane, and slope of perpendicular and parallel lines. Mrs. Bethel, being aware that the 

textbook was used as an organizational tool, cautioned students that the reference point 

might vary in other books. For example, she said,  

We’ve got that theorem 2.2 now remember what we talked about with 

those numbers. The numbers don’t mean anything more than telling us 

where in our book we’re going to find them. If you go to another school 
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and you take geometry and they have a different book. This particular 

theorem that we are getting ready to talk about might not be in the same 

location and it might not be the second theorem if you introduce chapter 

two, all right. So number is not always important as what they are saying. 

(Mrs. Bethel, September 13, 2011- Enacted lesson).  

While this quote shows that she wanted her students to think about the content 

and not about the chapter and section numbers, it does reveal the extent to which she and 

her students depended on the organization of the textbook. 

Although Mrs. Bethel, acknowledged that the language in the geometry textbook 

may differ from other textbooks, she would follow her textbook, the Prentice Hall 

Geometry without deviation. For example on September 27, 2011  (during the enacted 

lesson) she acknowledged that other books may refer to a seven sided figure as a 

septagon, however “we say heptagon… because this is the way that our book represent it 

and this is the way that we will enforce it”.   Mrs. Bethel never acknowledged any 

limitations of her textbook, and so she chose to follow it. The textbook provided students 

an opportunity to learn core geometry ideas and provided an organizational structure for 

her about how to proceed. Her decision to follow the textbook as is, suggests that she 

perceived strengths of the textbook within her particular environment, considering that in 

her school the teaching of geometry was a team effort. Mrs. Bethel acknowledged that 

“the geometry textbooks actually set you up with something that you know so that you 

feel more comfortable when you are actually doing those proofs” (September, 6, 2011- 

Initial interview).  
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 Therefore, it seems teachers chose to follow their curriculum materials based, 

among other things, on the perceived strengths that their textbooks have.  

Limitation of the Textbook 

Of the three participants, Mr. Walker was the only teacher who voiced any 

concerns about potential limitations of the district adopted geometry textbook. He 

acknowledged that the McDougal Littell Geometry textbook had multiple limitations, 

namely, that it does not provide sufficient problems to practice proofs, that it did not 

address the need to connect mathematical ideas, and that the order in which content was 

presented could be made more logical. Due to these concerns, Mr. Walker supplemented 

his textbook with additional proof tasks.  

 Mr. Walker strongly believed that the textbook needed to have more tasks that are 

proof. In reference to Section 4.2 (“Apply congruence and triangles”) Mr. Walker 

remarked, “ … If I look in this section in the book there’s one, there’s two proofs of how 

we want them to be thinking about [it]…. I need more than that, it’s not good enough” 

(November 3, 2011- Follow up interview at the end of the lesson). Convinced that the 

geometry textbook could be improved, Mr. Walker said,  

 Well I told you the one thing [I would change about the book] would be 

that it has more problems of each type because I feel like they have like 

one problem of every type. So if there’s something I mean there still only 

one of two of those, but there’s a lot of them [non-proof tasks]. So, I don’t 

know that’s my biggest thing. I just think there needs to be more problems 

in general, you know of like the same concept. (Mr. Walker, November 8, 

2011- Follow up interview at the end of the lesson)  
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 Considering that Mr. Walker had a greater autonomy in his practice than Mrs. Davis or 

Mrs. Bethel who planned lessons with their geometry team, Mr. Walker chose to 

supplement the textbook. Mr. Walker commented,  

 … One thing about the book is I feel like there’s never enough of each 

type of problem. And I know that it would be the longest book in the 

world but like for example there’s basically numbers three and four that 

corresponds to everything on this worksheet. Do you know what I mean?  

Everything else involves these concepts, but they don’t have the repetition 

that I think is necessary, the practice that’s necessary to get it, so … most 

of the times you have to find more practice than just problems out of the 

book because the book just doesn’t have enough of them. (Mr. Walker, 

November 3, 2011) 

 In addition to his concern that the textbook needed more proof tasks, Mr. Walker 

also thought that the order in which the textbook introduced content may not necessarily 

be ideal. He believed that there were gaps in the connections of ideas as presented in the 

textbook, and thought that the mathematical ideas be connected rather than taught as 

isolated units. According to Mr. Walker,  

… That’s one thing about the book, they think that the book will a lot of 

times just give you a bunch of information but they don’t really try to 

connect it to what you’re doing in the future. Because I think when you go 

through textbook, the textbook just kind of assume hey we’re here right 

this section 4.2 so we know everything that happened before that. I think 

the textbook makes that kind of assumption but so when I make my notes I 
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want to connect this to what we are doing, going for, which we’re looking 

for ways to get as many of these corresponding pairs congruent to each 

other to prove. (Mr. Walker, November 3, 2011) 

Mr. Walker was discontent with the departmentalized structure of the textbook. 

He preferred to teach the content as a whole, rather than as individualized units. He felt 

that, once students are provided with the relevant postulates and theorems, they could 

engage in doing proofs for the chapter. Mr. Walker admitted,  

The textbook will spend like a section on each one or maybe a section or 

two …I’ll usually just kind of give them say now these are all of our 

shortcuts and then we want to see if we can use any of these. So I kind of 

almost teach it as one big picture with relevant individual smaller pieces. 

That way because I guess I feel like I’m trying to teach the idea of that 

we’re taking a shortcut to prove this triangle congruent. So, I feel like I 

can teach that with all of them together rather as individual days. (Mr. 

Walker, November 3, 2011) 

Although Mr. Walker credited the geometry textbook as functional, he 

highlighted potential inconsistencies in it. He felt that sometimes the way in which proof 

arguments and definitions were presented might not necessarily be a logical progression. 

Mr. Walker, stated,  

Yeah the book is inconsistent based on what they’re trying to teach. So 

like for example, the way I teach it and this is how the book starts 

teaching it is, after you’re given a midpoint, you need to first state that 

like two segments are congruent and then you could go to say that their 
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measurement are equal because based on the definition that point just 

says that it divides the segments into particular segments. It doesn’t say it 

creates two segments of equal measure. So, if we’re going by the 

definition, you have to first say they’re congruent and then you could say 

the measures are equal before you can substitute it. … That’s really the 

logical step. (Mr. Walker, September 8, 2011- Follow up interview at the 

end of the lesson) 

Mr. Walker’s observation about the limitations of the textbook was a catalyst for 

him to choose to deviate from the curriculum. His decision to deviate was 

prompted by his desire to increase the number of proofs that his students would 

experience.  

Group Work is Important 

 Although neither Prentice Hall Geometry nor McDougal Littell Geometry include 

tasks that explicitly required students to work in groups, the three teachers encouraged 

group collaboration and the sharing of ideas. They expressed the belief that group work 

presented opportunities to obtain different perspectives on the matter. Additionally, one 

of the teachers, Mr. Walker, acknowledged that when students work in their group they 

would be more productive than during a whole class discussion. Nevertheless, teachers’ 

decisions to promote group work represented a pedagogical persuasion that was not 

explicitly identified in geometry textbooks.  

 Mr. Walker viewed group work as a support system for learning. Mr. Walker 

claimed, “One thing about math, is you just sit there and kind of do it by yourself and 

write it on paper. But when you talk about it and you ask questions, and you help each 
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other out that’s even better” (Mr. Walker, September 22, 2011- Enacted lesson). He felt 

that the sharing of the ideas and questioning each other thinking was a good practice 

within a mathematics classroom.  

 Furthermore, Mr. Walker suggested students were more engaged during group 

work than whole class discussion, due to students’ limited attention span. According to 

Mr. Walker,  

Well as far as bringing them together as a whole, like if I go through a 

proof as a whole, I definitely can’t do more than about one at a time 

because then they will be their attention span is probably like five minutes 

tops. (November 8, 2011- Follow up interview at the end of the lesson)  

Recognizing that students would engage more actively during group work, Mr. Walker 

often gave students cards with proof tasks in which students had to construct proofs at 

their table, or gave students a shuffled deck of statements and reason, and asked students 

to logically present a mathematical argument.  

Like Mr. Walker, Mrs. Davis encouraged group work in her lessons, although it 

was not an explicit requirement of any of the tasks included within the geometry 

textbook. Mrs. Davis told students, “Work together, four brains are better than one brain” 

(September 20, 2011-Enacted lesson), and encouraged students to “Talk with your 

groups, throw out some ideas, if you are having trouble figuring it out, talk with each 

other…” (September 6, 2011- Enacted lesson). Mrs. Davis believed that group members 

could help one another make sense of the mathematics when they were confused or 

uncertain about a particular idea. Therefore, she would often encourage her students to 

collaborate with each other.  
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 Likewise, Mrs. Bethel often encouraged her students to work with their groups or 

shoulder partner to solve problems. Students who were shoulder partners sat adjacent to 

each other. Mrs. Bethel acknowledged, “Students are developing new understanding 

which is noticeable through discussion at tables…” (Mrs. Bethel September 13, 2011 –

Task reflection sheet- after implementation). Mrs. Bethel encouraged her students to 

work collaboratively because she thought that group work was a productive mechanism 

to facilitate students learning geometrical content.  

 Therefore, despite the neutrality of textbooks towards group work, teachers 

encouraged students to work within groups because they believed students could gain a 

lot from sharing ideas with their peers. Collaboration provided opportunities for multiple 

perspectives and a source of support to help with challenging tasks.  

Teachers’ Favored Two-Column Proofs 

 Although all teachers used at one time or another other representations of proof, 

they expressed a preference towards teaching proof using two-column proof 

representation. Unlike the paragraph proof representation, in which attention must be 

paid to grammar, the two-column proof is a perceived as a precise means to logically link 

mathematical ideas.  

  Mr. Walker acknowledged that of the time he allocated to teaching proof, he 

spent more time working on two-column proofs. He believed the structure of the two-

column proof is an adequate means to progress between steps. According to Mr. Walker,   

…I spend a lot more time on two-column proof than I do the paragraph 

proofs. I – I kind of introduce it and just tell them this is something you 

can use, but I don’t prefer it, so the—I guess I feel like I don’t want my 
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mistake in grammar in English to disrupt a proof, so I like just kind of the 

traditional two-column proof and so, I – think that kind of structure helps 

see a sequence better, a sequence of thoughts. (Mr. Walker, August 23, 

2011- Initial interview)  

Mr. Walker was aware that word choices and sentence structure can potentially change 

the meaning of a proof. He felt two-column proofs provided a clear and precise structure 

to progress from the given facts to what needs to proved.  

Mrs. Davis explained that although the geometry team at her school teaches 

multiple representations of proofs (two-column, paragraph and flow), the team often 

prefers the two-column proofs to foster students’ development of proofs. They believe 

that two-column proofs are a practical way for students to learn how to prove, and were 

confident that over time students would be able to construct complete proofs. With two-

column proofs, students can be introduced to proofs by completing skeletal proof 

arguments. Mrs. Davis said,  

  Well, we in our geometry classes, we teach three different types of 

proofs. We teach two-column proof, paragraph proof and flow proof. 

And we would like them to be able to construct it ideally, construct proof 

on their own from beginning to end and sometimes they can do that with 

the two-column proof with say segment addition postulate. In the real 

world a lot of the students can’t construct a proof from beginning to end 

on their own, so we will have fill in the blank, two-column where maybe 

a step is provided on the left and they have to provide the reason on the 
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right or the reasons on the right what’s the matching step on the left. 

(Mrs. Davis, September 2, 2011- Initial interview)  

So, although Mrs. Davis exposes students to other forms of proofs, the two-column proof 

representation is used more frequently, since Mrs. Davis is convinced that it fosters 

students’ ability to provide reasons for statements. She considers that students are not 

necessarily experts on proofs, so she sees the two-column proof representation as a 

practical means to introduce students to proofs.  

 Mrs. Bethel also acknowledged her preference for proofs using a two-column 

proof, although her textbook provided students more opportunities to utilize paragraph 

and flow proof. Mrs. Bethel stated, “… we see two-column proof a little bit more often 

than the other two forms but you will find that in your homework assignment you will get 

plenty of practice with the paragraph proof or a flow proof” (Mrs. Bethel, September 13, 

2011- Enacted lesson). Mrs. Bethel considered that two-column proof was more natural 

for her. Mrs. Bethel stated, “… So what I am thinking in geometry my brain thinks in 

two-column proof because I can build the sentence on the statement and the reason…” 

(September 6, 2011- Initial interview). She believed that in other setting, like algebra 

two-column proof may not be ideal, and that professors may use paragraph proofs more, 

but in geometry, two-column proof was prime. Mrs. Bethel stated, “The paragraph 

indicates that you got sentence construction, and with sentence construction you are 

going to have statement and you’re going to have reason built into it... If you remember I 

never liked that one” (September 6, 2011- Initial interview). Her preference for a 

particular proof representation contributed to her emphasis of utilizing two-column 

proofs in teaching geometrical proof.  
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 Despite teachers exposing students to multiple representations of proof, the two-

column proof representation was seen the most in the enacted lessons. In fact, when 

teachers exposed students to paragraph proof, they would often begin with a two-column 

proof and convert the argument into a paragraph. Teachers’ decision to utilize two-

column proof more often, even in chapters that had more paragraph proofs than two-

column proofs was due in part to their belief that two-column proof was an effective 

means to teach proof.  

Low-level Proofs are Taught Due to Students’ Limited Ability to Prove  

 It is not a coincidence that when teachers lectured, and exposed students to 

proofs, most of the tasks required lower-levels of cognitive demands. All three teachers 

admitted, that most students had little, if any, experience doing proofs prior to this 

geometry class, so they normally posed low-level tasks so that students were comfortable, 

while developing an understanding of the notion of what it means to prove.  

 Mr. Walker suggested that the procedural nature of proof in geometry reduces the 

potential value of the proof. He acknowledged that students do not necessarily learn new 

things by doing proofs as much as he would like that to happen. Mr. Walker said,  

  [Proof] its just kind of, you know, building on what we know to learn 

something new, but in practical use, it doesn’t’ quite work out that way 

like it – it can become a little more procedural especially in geometry 

where there’s you know freshmen, sophomores that haven’t quite 

developed yet I don’t think, so they don’t really think about it as okay, I’m 

trying to learn something new; they just want this process to go through, 
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so I think it loses some of its value. (Mr. Walker, August 23 2011- Initial 

interview) 

Since high school geometry students are normally not adept to doing proofs, Mr. 

Walker often utilized a ritual procedure when teaching proof, rather encouraging 

creative ideas.  

 Similarly, Mrs. Davis said, “It’s not a high-level proof that we are teaching”  

(September 2, 201- Initial interview). The reason for assigning tasks of low-level 

cognitive demand, or reducing the level of cognitive demand of a rich task was because 

students had limited experience doing proofs. Mrs. Davis stated,  

 I don’t think they had enough experience with proof. So by 10 or 11th or 

12th graders they don’t have enough experience with proof prior to this. 

Mini- M-I-N-I like Mini Proof … because this is, lot of the times, this is 

the first time they’ve ever seen proofs…  When they get to my geometry 

class and it’s hard for them, if they’ve never had to show why they did 

something. You know when you are solving 2x + 4 = 5x and you are 

standing, you are solving for x, they’ve never had to show their steps of 

subtraction, dividing. They never had to list their reasons. Yes they’ve 

done it they know what they are doing but they’ve never had to tell why 

until now. (September 2, 2011- Initial interview) 

Mrs. Davis was aware that students were new to the notion of doing proofs. So she 

sought to introduce proof in an elementary fashion so that students could provide 

appropriate reasoning for each mathematical step involved in the proof.  
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 Like Mrs. Davis, Mrs. Bethel admitted, “we teach the basics of proof and do so 

with the idea that students can ‘master’ proofs if given a  ‘skeleton’ and a word bank to 

fill in the blanks” (September 22, 2011- Task reflection sheet-after implementation). She 

described the proofs taught as “Very basic proof. Very obvious proofs and I would say 

consistently less than 10 steps, never anything that’s complicated…and we guide them an 

awful lot at this stage” (September 6, 2011- Initial interview). Mrs. Bethel acknowledged 

that she wanted her students to be successful in doing proofs, but because of their lack of 

readiness, the tasks she posed usually had a low-level cognitive demand. She chose 

proofs that were short, and provided students with a word bank in order to increase 

students’ success in writing proofs or completing skeletal proofs.  

 Therefore, these three teachers opted for assigning proof tasks of low-level of 

cognitive demand with the expectation that these tasks would be more accessible for 

students. Since students were inexperienced with proofs, the low-level tasks provided 

students the opportunity to learn various proof representations, in a context that was 

simple and supported.  

Proof is Challenging for Students  

 Teachers expressed concerns that students viewed proofs as challenging. In many 

instances, students did not complete their homework assignments in its entirety, if the 

assignments included proofs. Students’ negative disposition towards doing proofs 

potentially influenced tasks teachers selected from the textbooks.  

 Mr. Walker suggested that students’ peers tell them that proofs are difficult, and 

therefore students are biased against proofs before entering the class. He also believed 
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that students’ negative disposition towards proofs were due in part to a lack of motivation 

to state their ideas with appropriate reasoning. He asserted,  

 A lot of them decide right away that they don’t like it. It’s got that stigma 

that gets passed down from grade to grade or they’re like we hate this. It’s 

kind of the laziness like they don’t want to have to write it down. They 

don’t want to write it down all their thoughts. So that’s kind of a laziness 

type of thing. (Mr. Walker, November 15, 2011- Follow up interview at 

the end of the lesson)     

Due to students’ preconceived notion about proofs, it is a challenge to have students 

engaged with proofs. Since they view proofs as overwhelming, they do not bother to 

attempt it.  

 Mrs. Davis knew that students found it difficult to explain their actions when 

doing proofs. She said,  

Well they have a hard time explaining why they did something. A lot of 

time students don’t like to show their work and how did they get to that 

answer. …They are not use to thinking and showing why they did 

something and that’s a problem that we encountered when we are doing 

proofs. They are not use to telling why they do something. They just do 

it…. (Mrs. Davis, September 2, 2011- Initial interview) 

Since students have difficulty supporting their reasons, the use of a word bank made 

proofs more manageable for students during classroom instruction. Mrs. Davis stated, “I 

was getting incomplete homework and students who refused to do the proof portion” 

[September 13, 2011- Task reflection sheet-after implementation- sent via email]. Mrs. 
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Davis was aware that students struggled in class while doing proofs and chose not to 

complete proof tasks on homework assignments. To curb this problem, she posed tasks 

that required either filling in the blanks, or tasks that could be completed if students used 

memorized theorems and postulates.  

 Likewise, Mrs. Bethel was aware that students struggled with proofs and often 

sought to ensure students were comfortable with proofs. For instance on September 15, 

2011 (during the enacted lesson), she reminded students, “We can get through a couple 

more of these properties that we don’t always feel comfortable with”. She encouraged 

students to learn particular postulates and theorems that were often used in proofs. 

Having students comfortable with proofs increased the likelihood that students proved.  

 Since teachers knew that students view proofs as difficult, many times they 

sought to make proofs more comfortable for students which reduced the tasks’ level of 

cognitive demand. Students’ negative disposition toward proofs may be a result of lack of 

effort, or because, for them, it is a novel terrain. All three teachers were nevertheless 

aware that students have difficulty doing proofs.  

Making Mathematics Easy 

Teachers wanted students to be comfortable with mathematical tasks posed. They 

ensured that their instructional practices aligned with textbook examples and that students 

were able to complete homework assignments very easily. Additionally, teachers valued 

the formulas and rules provided on the back of the textbook. The teachers in the study 

frequently assured students that the tasks posed were easy and accessible.  

 Mr. Walker wanted students to have little difficulty completing homework 

assignments. He provided examples that were similar to tasks posed on the homework. 



	   184	  

For instance, Mr. Walker said, “I didn’t get to as many examples as I would have liked. 

Their homework was probably harder because of that fact” (September 14, 2011- Follow 

up interview at the end of the lesson). His remarks suggested that tasks in the geometry 

textbook influenced his instructional practice because he sought to minimize the 

challenges students had on homework assignments. Mr. Walker frequently encouraged 

students to use their textbook as a resource in geometry. Mr. Walker told students, “If 

you get stuck, you have the back page. That page is a guide to give you tips and ways to 

find corresponding parts. So, it has a section on angles with alternate interior, with 

vertical angles…reflexive property” (Mr. Walker, November 10, 2011- Enacted lesson). 

Students used the textbook as a reference for key words and phrases.  

  Mrs. Davis informed students that the tasks were easy. In most lessons, she used 

phrases with the word “easy” or “comfortable”. For example, Mrs. Davis said, “this is so 

easy” (October 11, 2011- Enacted lesson) in reviewing tasks for the geometry tests. 

Additionally, she perused the tasks in advance and considered means to make them easier 

for students. An example of this was when Mrs. Davis provided instruction on 

overlapping triangles in Section 4.7, she said  “ okay so there is a way to make it easier. If 

you rip apart the triangle okay, it doesn’t mean you literally get to rip your paper. Okay. 

Rip apart means you’re going to separate and redraw the triangles....” (October 14, 2011- 

Enacted lesson). Mrs. Davis evidently made a conscious decision not to deviate from the 

textbook. Her instructional practice ensured that tasks posed were not only deemed easy, 

but that students were able to achieve success while completing them. 

 Similarly, Mrs. Bethel ensured that tasks were manageable when enacted. For 

instance, in her discussion on proofs of congruent triangles, she told students, “So it 
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didn’t change the difficulty level too much. We just had to deal with that picture that was 

a little bit more complicated ” (October 25, 2011-Enacted lesson). She carefully 

illustrated how tasks could be made easier and reduced their difficulty level to one that 

students were accustomed. Additionally, when she illustrated how to prove theorem 

about angles, she announced to the students, “we can prove that pretty easily” (Mrs. 

Bethel, September 13, 2011-Enacted lesson).  

 Hence, teachers’ desire to make mathematics easy for students can influence their 

decision on whether to deviate or not from the textbook. The teachers sought to facilitate 

students’ learning to prove and the likelihood that students would complete homework 

assignments successfully.  

Teachers’ Experience 

Teachers experience can contribute to their decision to deviate or not from 

geometry textbooks during their teaching of proof. Based on their experience, they may 

choose to emphasize a particular proof representation, select preferred tasks, etc. 

Conversely, teachers’ lack of experience may influence their practices as well.  

Mr. Walker suggested that a teacher’s experience could influence how proof is 

taught. Mr. Walker has taught for six years and often searched the Internet for new 

examples/ resources. Based on his experience, he believed two-column proof is a 

preferred representation to introduce students to proofs. According to Mr. Walker,  

A lot of factors influence how proof is taught… A lot of it has to do with 

teachers’ experience with proofs. For example, I feel like the two-column 

proofs are the easiest to see logical steps, so that is what I spend the most 

time teaching. Also, I may be more rigid in the steps that the students must 
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show me, than other teachers. I don’t like to find missing steps in logic 

according to our geometric postulates or theorems. (September 29, 2011- 

Follow up interview- sent via email) 

Mr. Walker’s experience suggests that two-column proof is a practical way for students 

to develop proof arguments, because the form of the two-column proof provides a mean 

to logically progress between steps. Furthermore, based on his experience, he valued 

logical statements and that the steps in the two-column proof minimized students 

skipping steps in their arguments.  

 Mrs. Davis stated that she only had experience teaching from the Prentice Hall 

Geometry textbook and her teaching of proof was initially weak. However, due to her 

interaction with colleagues and observation of their instructional practices, Mrs. Davis 

believed that her teaching of proof improved over the past six years. According to Mrs. 

Davis,  

Okay. I would say that since my six years of teaching when I first started 

teaching I wasn’t very good at it. But I would say that I have improved. 

Just having seen other people and observe other teachers and teaching of 

proofs and their examples of how they teach, I guess I should say. (Mrs. 

Davis, September 23, 2011- Follow up interview during lunch break)  

 Therefore, Mrs. Davis’s lack of experience of teaching proof could have 

contributed to her decision to follow the textbook during her instructional practice. 

Fortunately, she had supportive colleagues that allowed her to observe their practice so 

that she can improve her practice as well.  
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 Mrs. Bethel taught mathematics for 18 years, 15 of which were devoted to the 

teaching of geometry. Mrs. Bethel knew that “Proof is taught differently in different 

schools” (September 22, 2011-Task reflection sheet -after implementation). Due to her 

experience, she was able to locate resources (such as the Becky Bride Geometry- Kagan 

Cooperative Learning Series) that can supplement the goals of the lesson, while fostering 

group work.  

 The teachers’ experience contributed to their decision to deviate or not from the 

district-adopted textbooks. Based on their teaching experience, interaction with peers, 

and exposure to other curriculum, the teachers chose to offload, adapt, or improvise the 

curriculum (Remillard, 2005).  

Professional Community 

 Teachers’ decision to follow or deviate from the curriculum could also be 

influenced by the school’s professional community. If teachers have autonomy in their 

practice, there existed greater flexibility to deviate from the curriculum. If teachers 

planned lessons as a team, teachers were more likely to follow the curriculum to ensure 

quality control of content across sections. All of the teachers acknowledged that their 

instructional practices were due in part to a collaborative effort.  

 Mr. Walker had autonomy to decide the extent he would follow the textbook 

during his instructional practice. His department consisted of two teachers: himself and a 

male counterpart. They shared tasks and discussed content matter in relations to state and 

national goals. Nevertheless, Mr. Walker had freedom to decide what tasks will be posed 

within his geometry class. Mr. Walker noted that some of his tasks were not from the 

geometry textbook, and were created by either himself or his fellow colleague. For 
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instance, with respect to the tasks assigned to review proofs relevant to congruent line 

segments, Mr. Walker stated that some of the tasks might have come from the textbook, 

“but the teacher next door made them up actually. So we just kind of share a lot of 

problems. So they may have, but from my standpoint, I got them from the teacher next 

door.” (Mr. Walker, October 6, 2011- Follow up interview at the end of the lesson). 

Based on my conversations with him, I deduced that within his academic community, he 

chose how to proceed and structure the mathematical content, despite the sharing of 

ideas.  

 Mrs. Davis and Mrs. Bethel’s instructional practices aligned with the geometry 

team decisions of how to structure lessons. For each chapter, students in Mrs. Davis and 

Mrs. Bethel class were given an outline of topics, the number of days assigned for each 

topic, as well as the tasks they had to complete for homework. Mrs. Davis noted, “The 

homework assignments were problems from the book turned into a worksheet” 

(September 8, 2011- Task cover sheet- before implementation-sent via email). Although 

teachers had the flexibility to adjust the plan based on students learning, both teachers 

mostly sought to ensure that the content aligned with the planned lessons. According to 

Mrs. Bethel, “This section [Section 2.5 – Proving angles congruent] is part of the 

geometry curriculum and was in place, as agreed upon by the geometry team, before I 

came ... Teachers can adjust the assignment as they see fit for their specific students” 

(September 13, 2011- Task cover sheet- before implementation). Mrs. Bethel suggested 

that the teaching of geometry is a team effort. She said, “School level – (Geometry Team) 

has dictated how I check for understanding in the classroom.” (Mrs. Bethel September 

22, 2011-Task reflection sheet-after implementation). Therefore, the geometry team 
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significantly influenced the extent teachers chose to deviate from the curriculum 

materials during their instructional practice. 

Assessment 

 All of the teachers desired that their students achieve success in mathematics. A 

means to measure students’ success in geometry is by end of chapter exams, and state 

mandated end of course exams. Teachers were mindful that most external assessment of 

geometry seldom required students to construct complete proofs. If proofs were assessed 

externally, the questions required students to match statements with reasons, or to 

complete a proof by filling in the blanks of missing statements and reasons. Hence, 

teachers wanted to expose students to the type of tasks they would be assessed on.  

 During invigilation of state mandated End of Course exams, Mr. Walker glanced 

at tasks and noticed that there were few, if any, proof tasks. Mr. Walker stated,  

…You can’t really see the End of Course [state exam] problems but if you 

walk around you can kind of glance and see a couple [of questions] but 

you’re not suppose to sit there and like read the book but from what I can 

tell just like seeing the problem because it doesn’t look like there’s a 

whole lot of proof and reasoning that they need on the end of course 

testing. (Mr. Walker, November 3, 2011 – Follow up interview at the end 

of the lesson)  

The lack of assessment of proofs can be a challenge for teachers, because what is graded 

is what gets valued (Wilson, 1994). Fortunately, Mr. Walker valued proofs and felt that 

proofs developed logical thinking, which can enhance students’ performance on testing. 

So, he continued to teach it. Mr. Walker stated, “My problem with that is, I feel like if 
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we’re explaining our reasoning, then we’re going to build our understanding. So to me, 

doing the proofs in class will indirectly help us on testing” (Mr. Walker November 3, 

2011- Follow up interview at the end of the lesson). Therefore, because Mr. Walker 

believed proofs could be beneficial to students, he chose to assign tasks from the 

textbook pertinent to proofs, despite the fact that proofs are rarely assessed.  

 Similarly, Mrs. Davis was mindful that tests seldom assessed students on proofs. 

If proofs are assessed it often required low-level cognitive demand; be it fill in the blanks 

or matching reasons with statements. Mrs. Davis said,  

 Okay our EOCT [end of course test]...the state test, the math test and the 

EOCT test don’t have a performance event so the students wouldn’t have 

to create a proof completely on their own. It would be something, what’s 

step that missing or what step is incorrect in the proof. It will have the 

entire proof listed on the … test and then students have to come up with 

either what’s missing or what’s wrong with it. So that’s probably 

influences the fact that we don’t have them create entire proof on their 

own because we want them to be familiar with how… they would be 

assessed on a state test. (Mrs. Davis, September 23, 2011- Follow up 

interview during lunch break) 

 The structure of assessment questions influenced how teachers used the textbook 

to teach proof in geometry. The low-level proof tasks assigned by teachers during enacted 

lessons, reflected external assessment of such tasks. Mrs. Davis, affirmed, “they are to 

teach as to how the students will probably be successful… I think assessment do 

influence the way things are taught” (September 2, 2011- Initial interview).  
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 Similarly, Mrs. Bethel stated that proofs are seldom assessed on state exams, and 

if they are assessed, they generally require low-level cognitive demand. She said “… 

State assessments do not require students to write the proof from scratch, instead they 

present the proof as a set of statements and reasons, and have the students “assemble” 

them in the correct order” (Mrs. Bethel September 22, 2011 – Task reflection sheet- after 

implementation).  

 Considering that teachers want students to be successful on assessments and that 

assessments seldom require students to construct proofs, this may influence teachers 

decision to deviate or not from the textbook on tasks pertinent to proofs. The teaching of 

low-level proof tasks may therefore be a result of teachers desires to expose students to 

formats similar to those on which they will be assessed.  

Summary 

There are factors that influences teachers’ decisions to deviate or not from the 

subject specific geometry curriculum: teachers’ belief, teachers’ experience, the desire to 

make mathematics “easy”, professional community, and assessment. Teachers believed 

that students experience difficulty while doing proofs, hence teachers often chose to enact 

proof tasks, which required low levels of cognitive demands such that students can obtain 

a degree of success. Furthermore, teachers experience teaching proofs can influence the 

proof representation used, and other pedagogical strategies employed to facilitate 

students learning to prove. The professional community in which the teachers work often 

shared resources, and in some instances collectively planned lessons. The extent of 

autonomy teachers’ had in planning lessons significantly contributed to the likelihood as 

to whether or not they would deviate from the classroom. Additionally, assessment 
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contributed to the emphasis placed on proof in geometry lessons. The sad reality is that 

proofs are seldom assessed, and when proofs are assessed the cognitive demands of the 

tasks are low. Considering what is evaluated, tend to become what is valued, assessment 

plays an important role in how proof is taught. Therefore, the identified factors influences 

tasks teachers pose, and how teachers enact such tasks within the classroom. 

Nevertheless, teachers’ act with good intentions, that is, to facilitate students learning 

mathematics.  
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CHAPTER V – CONCLUSIONS AND IMPLICATION 

Summary of the Problem 

  Researchers in mathematics education need to gain a deeper understanding about 

how proof is taught. Students perform poorly on proof tasks (Healy & Hoyles, 2000; 

Senk, 1985) and researchers have examined teachers’ conceptions about proof (Knuth, 

2002a). However, there is a scarcity of studies addressing how geometry teachers use 

curriculum materials to teach proof. Therefore, the goal of this study was to address these 

gaps in the literature by examining how geometry teachers use their curriculum materials 

to teach proof. I addressed the following research questions:  

1.  How do McDougal Littell Geometry and Prentice Hall Geometry Teacher’s 

Editions present proof for segments and angles, parallel and perpendicular lines 

and congruent triangles to facilitate students learning to prove?   

2.  To what extent do geometry teachers use McDougal Littell Geometry and 

Prentice Hall Geometry Teacher’s Editions to teach proof for segments and 

angles, parallel and perpendicular lines and congruent triangles to facilitate 

students learning to prove?  

3.  What influence teachers’ decisions to deviate or not from the McDougal Littell 

Geometry and Prentice Hall Geometry Teacher’s Editions implied or explicit 

instructions and lesson plans?  

Method 

I chose a case study research design to investigate how three geometry teachers 

use curriculum materials to teach proof. To analyze the data, I used a conceptual 

analytical framework. My conceptual analytical framework consisted of three 
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dimensions: the first two dimensions are drawn from the mathematical task framework 

(MTF) (Henningsen & Stein, 1997) and the last dimension is based on Harel and 

Sowder’s (Harel & Sowder, 1998) proof schemes. The first dimension represents the task 

features; the second dimension, the cognitive demands of the tasks; and the third 

dimension, the proof schemes apparent in the completion of the tasks. I collected data via 

video and audio- recorded classroom observations, teacher interviews, teacher artifacts 

and classroom observation protocols.  

I aligned the coding of the data with the conceptual analytical framework that 

consisted of three dimensions. Among the tasks features that I coded, I considered 

whether the tasks were proof or proof-related, whether answers were provided with 

reasons or as answers only; if the tasks were labeled “challenge;” if the tasks required one 

solution strategy or multiple solution strategies; whether the setting of the tasks were 

abstract, or in a realistic context; if the tasks required students to fill in the blanks; and if 

they were multiple choice or composed of multiple parts. The cognitive demand of the 

tasks ranged from memorization to doing mathematics (Henningsen & Stein, 1997). 

Proof tasks deemed as memorization generally required students to complete skeletal 

proofs in which they had to fill in the blanks, while proof tasks deemed as procedures 

without connections included matching statements with appropriate reasoning to 

complete a proof. Proof tasks that I classified as procedures with connections included 

items that required students to prove congruence of triangles in a Cartesian plane using a 

particular theorem, or required students to write proof plans. I classified proof tasks as 

doing mathematics when tasks generally required students to write complete proofs.  

More particularly, a proof task reflecting doing mathematics required writing a complete 
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proof, that was not similar to previous tasks and examples, and may change the context, 

utilize a different representation, and is not algorithmic. Proof schemes were coded based 

on the interactions between the teachers and students during the enacted lessons. Five 

researchers participated in the analysis of the textbooks and the classroom observations to 

increase the reliability of findings.  For the mathematical tasks coded we achieve an inter-

rater reliability of 89%.  

Findings 

In examining my first research question, I observed similarities in Chapter 2-4 of 

the textbooks. In both textbooks, most of the tasks were situated in abstract context, 

required procedures without connections, and could be solved using one solution 

strategy. Few (less than 4%) tasks were multiple-choice and slightly less than one fifth of 

tasks were composed of multiple parts.  

Despite these similarities in task features and the low-level of cognitive demand 

of most tasks, a further analysis of proof tasks revealed differences in the textbooks on 

the task features and cognitive demand dimensions of proof tasks. For instance, of the 

1066 tasks analyzed in Prentice Hall Geometry only 79 of them were proof tasks. Almost 

half  (46.8%) of the 79 proof tasks in this textbook required students to fill in the blanks, 

thus requiring only memorization of facts. Slightly more than half (58.2%) of the 79 

proof tasks in Prentice Hall Geometry required low-level cognitive demand 

(memorization or procedures without connections). These results suggest that Prentice 

Hall Geometry facilitated students engaging with lower-levels of cognitive demand tasks. 

On the other hand, McDougal Littell Geometry had 977 tasks, of which 128 were proof 

tasks. Of the proof tasks posed in McDougal Littell Geometry, only 10.2% required 
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students to complete skeletal proofs; while over half  (64.8%) of McDougal Littell 

Geometry proof tasks was higher-level cognitive demand tasks which required students to 

write complete proofs, 14.8% of which were considered doing mathematics. Therefore, 

for the chapters studied, McDougal Littell Geometry provided more opportunities for 

students to write complete proofs than Prentice Hall Geometry. Furthermore, two-column 

proof representations were far more frequent than other forms of representation in 

McDougal Littell Geometry, while in Prentice Hall Geometry two-column proofs and 

paragraph proofs were used just as often.  The results suggest that although the 

organization structure of the textbooks were the same, the attention given to proofs varied 

for tasks features and levels of cognitive demands.  McDougal Littell Geometry was more 

likely to pose higher-level proof tasks, whereas Prentice Hall Geometry was more likely 

to pose lower-levels of cognitive demands.  All taken into account, it seems that 

McDougal Littell presented richer opportunities for students to write proofs.  

Regarding my second research question, I found that Mrs. Davis and Mrs. Bethel 

generally offloaded (Brown, 2009) or adapted the textbook to align with the geometry 

team planning efforts; however Mr. Walker often improvised by posing additional proof 

tasks. Mr. Walker’s action increased opportunities for students to engage with tasks that 

required a higher-level of cognitive demand by supplementing the textbook. In these 

three classrooms, proof and proof-related tasks were enacted generally as procedures 

without connections. In the few instances in which enacted tasks required higher-levels of 

cognitive demands, teachers usually switched roles from being instructors to facilitators. 

More explicitly, for such tasks, teachers talked less and provided more time for students 

to work on tasks independently as well as within their groups, without providing 
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excessive guidance. During whole class discussions, the teachers generally completed the 

proofs for students and posed questions that required recollection of facts rather than the 

elaboration of arguments.   

These results suggest that there is a relationship between the levels of cognitive 

demand of enacted tasks and the proof schemes utilized. External conviction proof 

schemes were more visible when memorization and procedures without connections tasks 

were posed. In fact the frequency of codes relative to relationship of cognitive demands 

and proof schemes were greater than external conviction proof schemes in relations to 

lower-levels of cognitive demand than any other relations. Teachers and textbooks were 

viewed as the authority of the mathematics. Students were encouraged to mirror the 

teacher’s actions in constructing proofs and recall the appropriate reason to fill in the 

blanks from the list of reasons. Teachers sought to make the learning of proof more 

“comfortable” or “easy” such that students attain some form of success. The emphasis on 

rules and memorized reasons from a prepared list could have discouraged any original 

attempts at proofs. Moreover, sometimes students randomly selected reasons without 

evaluating the appropriateness of their choices. The few instances in which higher-level 

cognitive demand proof tasks were posed, analytical proof schemes were more evident 

than external conviction proof schemes. Whenever higher cognitive demand proof tasks 

were posed, students were challenged to logically link statements and reasons to create an 

acceptable proof, rather than merely focus on how many steps were needed to construct 

the proof. There were scant instances in which empirical proof schemes were observed. 

Based on the number of instances I observed, if empirical proof schemes existed, they 

were more likely for a proof-related task that required procedures with connections. Mr. 



	   198	  

Walker was the only teacher that posed proof tasks with a higher-level of cognitive 

demand (namely, procedures with connections).  

 For my third research question, my analysis indicates that teachers’ beliefs, 

experience, and desire to make mathematics easy, as well as the demand of community of 

practice and assessment, contributed to the three participants teachers decision regarding 

textbook use when teaching proof.  

Teachers believed that proof is important, that two-column proof is an effective 

means to teach proof, that proof is challenging to students and that students’ limited 

ability in proofs demands that low level proofs are taught. Furthermore, teachers had 

opinions about the potential strengths and limitations of their textbooks, and these 

opinions appeared to influence their decisions. For example, Mrs. Davis used her 

textbook for the past six years and had no objections to it, so she used the textbook 

without adaptation during her instructional practices. On the other hand, Mr. Walker 

objected to the small number of proof tasks in his book and chose to provide additional 

proof tasks during his lessons.  

Teachers’ experience influenced whether they deviate from their district-adopted 

textbook. For example, Mr. Walker noted that based on his experience he believed that 

two-column proof representation was the most practical means to introduce students to 

proofs. Although it may appear obvious that teachers’ experience influences how they 

teach proof and how they use textbook to do so, it is important to document it, since some 

teachers may trust the textbook more than others, and the adaptations they make depends 

on previous experiences.  
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The participant teachers’ desire to make mathematics “easy” significantly 

influenced enacted lessons and how students engaged with proof tasks. In many 

instances, the teachers completed the proof on the board and the students recorded the 

proof in their notes. The number of steps for a proof was a generally five or less. Proof 

tasks assigned as homework frequently required students to fill in the blanks, using words 

from the word bank or list of reasons.  

The academic community in a specific school can influence a teacher’s 

instructional practice. In this study, I document important differences among the 

participant teachers. For instance, the geometry team significantly contributed to Mrs. 

Davis’s and Mrs. Bethel’s instructional practices since this team plan collectively tasks to 

assign. However, Mr. Walker had more autonomy, since his department consisted of only 

two teachers. Mrs. Davis stated that she improved her instructional strategies by 

observing her colleagues teach proof and later following their actions as a model for her 

own teaching. Therefore, the professional community can influence how proofs are 

taught and what proofs are taught.  

Since proof is not the primary focus of the end of course assessment in geometry 

or in-class end of chapter exams, the value teachers place on proof is not as high as other 

topics (such as finding angles measurements, etc). Assessment influences in this way the 

priorities that teachers set when making decisions about teaching proof in geometry.  

Discussion 

Despite proof tasks being visible in subject specific geometry textbooks (Bass et 

al., 2004; Larson et al., 2007), more proof tasks should be included in geometry 

textbooks to facilitate students learning to prove. Of the three chapters examined, 7.41% 
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of the tasks in Prentice Hall Geometry and 13.1% of the tasks in McDougal Littell 

Geometry were proof tasks. The few instances of proofs, and the noticeable difference of 

level cognitive demands of proof tasks between the book supports the claim that 

textbooks needs to devote more attention to proofs, and should seek to increase the 

percentage of doing mathematics proof tasks.  

Chávez (2003) and Grouws and Smith (2000) have reported teachers use 

textbooks as primary resources for mathematical tasks, and my study confirms their 

conclusion. Even when teachers chose to deviate from the textbook during enacted 

lessons, most of the homework assignments came from the textbook. Additionally, the 

textbook structured the means in which teachers progressed from one mathematical idea 

to another. Teachers did not sporadically assign lessons, but carefully followed the 

sequence indicated by their textbooks. The decision to ignore particular lessons or use 

extra instructional days for certain lessons, are common examples of how teachers at not 

completely faithful to their textbooks and deviates from the authors’ recommendation 

(McNaught et al., 2010). Even considering Mr. Walker’s decision to pose additional 

proof tasks, the textbook was still a primary source for his homework assignments. In all 

three cases, it is clear that the textbook was a primary source of mathematics problems 

and a guide for content and sequence of their lessons. 

The overarching theoretical framework (Remillard, 2009) used for this study 

adequately captured teachers’ interaction with their curriculum resources as they taught 

proof in geometry. Remillard (2009) suggested that there exist a bidirectional relationship 

between teacher resources and curriculum resources, which can influence students 

learning.  Based on data sources, the three teachers in the study readily utilized the tasks 
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and their instructional practices aligned with emphasis of the geometry textbooks, as well 

as the agency and social capital within the school community. The teachers 

acknowledged that they collaborate with their fellow colleagues in sharing tasks. Unlike 

Mrs. Bethel and Mrs. Davis, who planned their instructional lesson with the geometry 

team, Mr. Walker had a greater autonomy in his practice. Given this particular freedom, 

Mr. Walker more readily deviated from the textbook when teaching proof. This 

interaction between curriculum resources and teacher resources greatly influenced the 

content covered and how it was covered.  

Bieda (2010) reported teachers  enacted proof tasks in the written curriculum as 

such. Extending the works of Bieda, my study found that even if the tasks require 

students to write complete proofs, teachers may reduce the level of cognitive demand of 

tasks in an effort to make the task more accessible to students. This finding is not isolated 

to teaching of proofs, considering that other researchers have documented that teachers 

have a tendency to reduce the levels of cognitive demand of tasks when enacted 

(Henningsen & Stein, 1997; Stigler & Hiebert, 1999).  

The teaching of proof, as I observed in these three classrooms, is consistent with 

previous findings (Martin & McCrone, 2001; McCrone et al., 2002): teachers were the 

mathematical authority in the classroom, proofs could be solved rather quickly, the proof 

tasks posed did not necessarily need to be proved and few opportunities were provided 

for students to make sense of the mathematics. Unfortunately, proof as it is currently 

taught, appears mundane and students can hardly see the importance of doing proofs in 

mathematics. This further compounds the complexity of teaching proofs, considering that 

Battista and Clements (1995) found creative ways of teaching proofs are ineffective to 



	   202	  

facilitate students learning to prove. Efforts must be made by textbook publishers and 

educators to pose richer proof tasks that require students to engage in the process of 

creating arguments and making sense of what needs to be proved. Furthermore, whenever 

teachers led whole class discussions the teachers primarily wrote the proofs for students. 

This practice diminished opportunities for students to think about proofs or associate 

hypotheses and theses. Even if the teaching of geometry is not restricted to proofs, 

(Jones, 2002), it is usually the context in which high school students traditionally learn 

about proofs. It is therefore important to place a greater emphasis as to how proofs are 

taught and what experience students have with proofs in geometry.  

Although various forms of proof representations appears in textbooks (Cirillo & 

Herbst, 2010), the teachers in this study used the two–column proof representation as the 

primary proof representation. The use of two-column proof representation reaffirmed 

claims made by researchers (Lakatos, 1976; Schoenfeld, 1986) that students view proofs 

as a linear process, which obscures students engaging with proofs.  

Factors influencing the teaching of proof such as teachers’ belief, although it 

cannot necessarily be controlled, should not be ignored.  Knuth (2002) found that that 

teachers believed that proof was a means to communicate mathematics and construct new 

knowledge. He also found that teachers considered the characteristics of a convincing 

proof argument to include concrete features and amount of details. Similar to Knuth, my 

results indicate that teachers’ beliefs is a factor that can contribute to their instructional 

practices of teaching proofs. The teachers believed that proof was important, students 

experience difficulty writing proofs and that two-column proofs are ideal when writing 
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proofs in geometry.  In fact, teachers encouraged students to write two-column proof 

before constructing proofs using other proof representations.  

Additionally, the lack of emphasis on proofs in assessment measures may 

influence teachers’ decision to reduce the attention given to proof during their 

instructional practices. Teachers seek for their students to do well on state-mandated 

exams. Hence they seek to ensure students are exposed to the content that will be 

primarily assessed. With that said, if proofs are not assessed frequently, and if assessed 

seldom requires at higher-levels of cognitive demands, the emphasis on doing proofs may 

be devalued.   

Finally, the results suggest that despite the three primary proof schemes identified 

by Harel and Sowder (1998), teachers who used the kind of subject specific geometry 

curriculum that these teachers used generally encourages students to develop external 

conviction proof schemes. When doing proofs, students were generally encouraged to 

memorize teachers’ actions and subsequently follow the model when doing similar 

proofs. Such practices limited students opportunities to engage in the doing of 

mathematics and suggested that teachers and textbooks are the sole bearers of 

mathematical knowledge. Not requiring students to think independently hinders students 

from creating their own arguments, as well as curtails the prospect of students 

considering how to logically connect ideas. Most of the proof tasks that the students of 

these three teachers had to do were known facts and did not require students to consider 

individual cases or new possibilities. Proof tasks of this nature further contributed to the 

development of authoritarian and ritual proof schemes, because the concluding 

statements were generally known to be true, so the attention was not placed on evaluating 
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the validity of statements but rather on the number of steps and key phrases that will 

generally prove the theorem. Thus, there were minute opportunities for students to 

strengthen their empirical proof schemes or analytical proof schemes. There were few 

lessons that fostered students developing empirical proof schemes. Students were seldom 

required to consider individual cases to make generalizable claims, or find contradictory 

arguments. To some extent, this is due to the number of tasks included in the textbooks. 

Moreover, the proof tasks posed in the exercises seldom varied from the examples 

provided in the lesson notes. If students had to provide a contradictory argument or 

counterexample, the context was generally known to be false (thus little to no thinking 

required). When analytical proof schemes were observed, generally the teachers allowed 

students to work independently. However, for most of the whole class discussion, the 

teachers in this study did the talking, and most of the thinking. Instructions about proofs 

would be significantly strengthened if teachers posed richer proof tasks and provided 

more opportunities for students to share their ideas about proofs as a class, rather than 

simply telling students.  

Implications 

 My results make clear that subject-specific geometry textbooks used by the teachers 

in this study provided limited opportunities for students to write proofs, or visualize 

complete proof arguments. I also examined cases of how geometry teachers use 

curriculum materials to teach proof. Teachers often enacted proof tasks as procedures 

without connections and authoritarian proof schemes were more evident when low-level 

cognitive demand tasks were posed. As I have discussed above, the results of this study 

have implications on textbook development and changing teachers’ instructional 
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practices.  

 Considering the major role geometry textbooks plays in the teaching and learning 

of proof, developers should revise the tasks they include in their textbooks so that 

students have more opportunities to create original proofs and experience tasks of a 

higher-level of cognitive demand. Including tasks that encourage students to explore and 

discover mathematical ideas could enhance the geometry textbooks I studied. The 

textbooks need to reduce the excessive amounts of proof tasks, which only require 

students to fill in blanks or identify missing links in proof tasks. 

 Teachers’ decision to make proof “easy” for students might have hindered students 

conceptualizing how to construct rich proofs. Emphasizing the memorization of a list of 

reasons and the structure of proof is a strategy that results from the decision and is 

counterproductive. Teachers should seek opportunities, either adapting or choosing 

carefully tasks, to challenge their students and let them explore different ways of writing 

proofs so they move beyond two-column proofs and learn that the format of the proof is 

less important than the arguments used in a proof.  

    The potential relationship between the levels of cognitive demands of tasks and 

proof schemes suggest that teachers should consider higher cognitive demand tasks in 

order to encourage the development of empirical proof schemes or analytical proof 

schemes. If textbook developers include these higher-level cognitive demand proofs and 

proof-related tasks, students would have more opportunities to develop these schemes. 

 Factors such as teachers’ beliefs and their intention to make proof easier 

significantly influenced the level of the cognitive demand of the enacted tasks. 

Consequently, teachers gave excessive amounts of guidance when working on proof 
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tasks. While these factors are related to the goal to have students obtain success in 

mathematics, such factors are subtracting opportunities for students to engage in the type 

of reasoning that proof entails. Although factors influencing the teaching of proof may be 

guided by good intentions, they may be a catapult for catastrophic results in students 

developing a feeble conception of writing proofs. Considering that students’ experience 

with proofs generally suggest that proof can be solved quickly, are less than 5 steps and 

require filling in the blanks, the notion that proofs embodies the essence of doing 

mathematics may never be realized.  

Implications for Future Research 

 In examining how geometry teachers use subject-specific curriculum materials for 

teaching proof, I found some areas of concern. Specifically the fact that there are few 

proof tasks in geometry textbooks and when enacting these tasks teachers primarily 

complete the proofs for students during whole class instruction. Since this study included 

only three cases, future studies can seek to validate these results by utilizing a larger 

sample of teachers, across multiple locations to increase the generalizability of claims 

made. Additionally, since this study was restricted to subject-specific textbooks in 

geometry, future studies can examine these questions using integrated curriculum 

materials, across multiple content strands or across grade levels. Given my finding that 

there exist a relationship between the levels of cognitive demands and proof schemes, 

future studies can seek to document the impact curriculum materials have on the proof 

schemes students develop. Considering the literature is limited relative to the teaching of 

proof in relation to curriculum materials, future studies are needed for the field of 

mathematics education.  
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 Another interesting observation was that teachers always required students to 

mark on the diagrams before writing proofs. Hence, future studies can seek to explore the 

role diagrams play in teaching proofs. Reflecting on the fact that teachers generally 

provided the diagrams, researchers could examine the effectiveness of teaching proofs in 

which students are required to construct the diagrams themselves.  

 Furthermore, teachers should have opportunities to reflect and learn from their 

practice. Changing ones practices is not always a flick of a switch. Therefore, we need to 

document teachers’ reflections of their instructional practices if interventions and models 

of “good” practices are provided. Hence, researchers can provide professional 

development on teaching proofs, and subsequently study teachers who participated in the 

program to document the influence of professional development on teachers’ 

instructional practices pertinent to proof.  

Implications for Teacher Education 

 Considering the different factors that contribute to how proof is taught and that 

teachers resort to tasks of low levels of cognitive demand when they teach proof, teacher 

education programs need to strengthen teachers understanding of how to develop rich 

proof arguments and promote the enactment of tasks that require higher-level thinking 

skills. For instance, they could provide samples of tasks representing both higher and 

lower levels of cognitive demands, and encourage preservice teachers to write their own 

tasks that require higher-level demands. There is no doubt that teachers’ knowledge can 

potentially affect their instructional practices of how they unpack proofs in the classroom. 

Teachers who are unable to prove may avoid teaching proofs due to their frail 

understanding of proof, or choose to stay on the periphery of facilitating rich proof tasks. 
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Mrs. Davis acknowledged that initially she was not good at proof and that her 

instructional practice improved over time after observing her fellow colleagues. Her 

desire to improve her practice is admirable, but it is unlikely that she observed effective 

practices related to the teaching of proof. Teachers should seek to have students engage 

in writing proofs, rather than doing the proofs for the students. For the same reason, it is 

not enough that teachers see how proofs are done. During their preparation, teachers 

should have abundant experiences with proofs in different areas of mathematics, using 

different formats and representations, and should experience themselves the struggles and 

successes of putting together convincing arguments. By deepening preservice teachers 

understanding of proofs and enriching their experiences with doing proofs teacher 

educators will positively influence how teachers teach proof to future students.  

 As it relates to assessment of proof, teacher education programs ought to 

encourage proof being viewed as a process that can be used in all aspects of mathematics, 

rather than simply a topic that is represented in few lessons within the textbook. Teachers 

ought to be encouraged to integrate proof in their assessment practices.  

 Finally, considering that not all of the tasks included diagrams in the book, 

however tasks enacted generally did, teacher educators needs to be more explicit about 

the use of diagrams in doing proofs. For example, teacher educators can recommend to 

preservice teachers to allow students to construct the diagrams rather than doing it for 

them. Hence, they can suggests that when teaching proofs not to use similar diagrams or 

aids to exercise tasks. This will seek to ensure that students are provided the opportunity 

to engage in the thinking practice of the discipline.  
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Implications for Professional Development 

 Teachers probably lack the pedagogical content knowledge needed to develop 

convincing arguments. If professional development can be a means enhance teachers’ 

ability to prove and teach proof, then it needs to provide opportunities for teachers to 

write proofs and to examine samples of students proof. These experiences may help 

teachers to reflect on students’ conceptions and misconceptions of proof.  

Furthermore, considering that all of the proof tasks observed were situated within 

an abstract setting, professional developers could discuss with teachers how could 

realistic problems help students provide conjectures that could be proved later.  

 Professional development experiences could help teachers become knowledgeable 

about factors that contribute to the maintaining or decline of the level of cognitive 

demand of mathematical tasks and help teachers see how this can affect the way their 

students experience proofs in the classroom. Mrs. Davis and Mrs. Bethel acknowledged 

during the initial interview that they pose low-level proof tasks, and I confirmed this 

during observed lessons. Both teachers were knowledgeable of the fact that the proof 

tasks posed required limited thinking, however they chose not to increase the levels of 

difficulty of the tasks. Professional development should seek to encourage teachers to 

pose higher-level tasks, and to avoid doing anything that contributes to the decline of the 

level of cognitive demand. While all these recommendations can be applied to other 

circumstances, my findings suggest that it is particularly important for teachers who need 

to enrich their strategies for teaching proof. 
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Limitations of the Study 

 This study focused on only three geometry teachers within the midwest region of 

the United States. It is not generalizable to all teachers, or across multiple mathematical 

content strands. Nevertheless, this study provides insight into how curriculum materials 

are used to teach proof in geometry. Considering that research is scarce in documenting 

how proof is taught, this study extends the literature with the transformative view that 

there exist a relationship between the levels of cognitive demand of tasks and proof 

schemes utilized during the enacted lessons.  

 Another limitation of the study is that it focused on only three chapters of district-

adopted textbooks during a portion of the semester, rather than the entire textbook or for 

a full semester. Nonetheless, the patterns in teachers’ instructional practices were 

repeated in all three chapters and during multiple observations. The results emphasized 

that generally geometry teachers’ engagement with tasks during whole class instruction 

encouraged procedures without connections and that teachers were the authority of the 

mathematics.  

 Finally, another limitation of the study was that the research design did not 

include an analysis of students learning of proof. However, previous literature 

acknowledged that students have difficulty constructing proof. My study did not seek to 

explore this notion further; rather it sought to gain an understanding about how proof is 

taught. By understanding how proof is taught future studies may seek to bridge effective 

teaching practices to students being able to write complete proof arguments.  
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Summary 

 In closing, my study found that district adopted curriculum materials provide 

minimum opportunities for students to construct proofs. I found teachers engagement 

with proof tasks required lower levels of cognitive demands. Furthermore, the results 

suggest that there exist a possible relationship between the level of cognitive demands of 

proof tasks and proof schemes used, and that various factors can contribute to how proofs 

are taught. The findings of this study have implications on teacher education programs 

and professional development initiatives. Moreover, the results of this study brings to 

light the need to improve how proof is taught in geometry. The results raise some 

concerns and underscore the need for teachers to provide greater opportunities for 

students to write proofs in its entirety by themselves. The questions teachers pose to 

students should not be merely to recall facts, but should develop students’ critical 

thinking skills and engagement in meaningful tasks. Furthermore, textbook developers 

should seek to reduce the number of low-level tasks, such as fill in the blank exercises, 

and increase the number of tasks in which students are required to write proofs. It was 

particularly notable that almost half of the proof tasks (for the chapters studied) in 

Prentice Hall Geometry required students to complete skeletal proofs by filling in the 

blanks. It is hoped that future subject-specific curriculum materials significantly increase 

students’ opportunity to prove and that a large portion of the proof tasks are situated 

within real world contexts. The process of learning to prove needs to be presented in a 

meaningful way such that students can value the practicality of proofs beyond the borders 

of their geometry classrooms.  
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APPENDIX A: CLASSROOM OBSERVATION PROTOCOL 

 
This protocol is adapted from Horizon Research Inc 36, and is used to examine how 
geometry teachers use curriculum materials to teach proof. 
 
PART I A. Background Information 
 
1. Observer:  ___________________________________________________________ 
 
2. Date(s) of Site Visit:  __________________________________________________ 
 
3. School Name:    ______________________________________________________ 
 
4. Teacher:  ____________________________________________________________ 
  
5. Class Period _________________________________________________________ 
 
B. Context and Nature of the Lesson 
1. Instructional Material used for this class of students (include text, chapter, section, 
page numbers if applicable): 
 
Mark which of the following math strands was the focus of this lesson: 
Geometry and Measurement      ___  Reasoning-and-Proving   ___  
Patterns, Functions and Algebra  ___  Number Concepts      ___  
Data and Probability               ___   Other       ___  
  
 If other, please provide details: ______________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 
 
C. Students: 
1. Grade:  ____________________ 2. Total number:   __________________ 
 
D. Outline of the Lesson: 
1. Please list the stated goals for the lesson as described in the instructional materials 
and/or provided by the teacher. 
 
 
 
 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
36	  This	  is	  adapted	  from	  Horizon Research, Inc. classroom	  observation	  protocol	  
developed for the Cases of Reasoning and Proving in Secondary Mathematics Project, 
with funding from the National Science Foundation (Award No. DRL-0732798)	  
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2. Briefly (2-3 paragraphs) describe the structure and flow of the lesson you observed 
[non- evaluative]. 
 
 
 
3. Describe how reasoning-and-proving was incorporated into the lesson. For example, 
are students intended to learn about aspects of reasoning-and-proving or use reasoning-
and-proving in order to learn a different mathematical concept? 
 
 
PART II A. Classroom Culture 
 
1. To what extent did the classroom culture/learning environment facilitate students’ 
opportunity to learn the targeted mathematical ideas in this lesson? For example, were 
students respectful to the teacher and each other? Did there appear to be high 
expectations for learning of all students? Were students willing and motivated to learn? 
 

1 2 3 4 
Greatly inhibited Somewhat inhibited Somewhat 

facilitated 
Greatly facilitated 

 
Please provide a rationale to support your rating. Use the questions above to guide your 
response: 
 
 
 
 
2. To what extent did the mathematical norms of the classroom facilitate students’ 
opportunity to learn the targeted mathematical ideas in this lesson? For example, do the 
students understand what counts as an acceptable mathematical explanation and 
justification? Do students challenge others thinking? Does the teacher press students to 
explain their thinking? Are the students doing most of the intellectual work? 
 
 

1 2 3 4 
Greatly inhibited Somewhat inhibited Somewhat 

facilitated 
Greatly facilitated 

 
Please provide a rationale to support your rating. Use the questions above to guide your 
response: 
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B. Use of Instructional Tools 
 
 
1. Teacher Tools 
To what extent did the teacher’s use of tools facilitate students’ opportunity to learn the 
targeted mathematical ideas in this lesson? Did the teacher use tools to attend to and/or 
keep track of student ideas (e.g., monitoring, selecting, or sequencing work)? Did the 
teacher’s use of tools distract students or did the absence of tools limit the teacher’s 
ability to aid students in learning? 
 

1 2 3 4 
Greatly inhibited Somewhat inhibited Somewhat 

facilitated 
Greatly facilitated 
 

 
Please provide a rationale to support your rating. Use the questions above to guide your 
response: 
 
 
C. Facilitation of the Task(s)    
 
To what extent did the teachers’ facilitation of the proof task and/or proof-related task37 
support students’ in learning the targeted mathematical ideas in this lesson? For example, 
did the teacher appear to have anticipated likely student responses to the task(s)? Did the 
teacher monitor students’ responses while they worked? Did the teacher select and 
purposefully sequence student work to be displayed? Did the teacher help the class make 
mathematical connections between different student responses and between student 
responses and the targeted mathematical ideas? 
 

1 2 3 4 
Greatly inhibited Somewhat inhibited Somewhat 

facilitated 
Greatly facilitated 
 

 
Please provide a rationale to support your rating. Use the questions above to guide your 
response: 
 
 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
37	  Proof Tasks – are tasks designed to engage students in proving, constructing 
mathematical conjectures and pattern generalization, as well as task that requires students 
to develop a proof argument. For this study, proofs and proof tasks may be used 
interchangeably. 
Proof-related tasks are tasks that are related to a proof in the sense that are meant to 
provide students with an opportunity to perform a step that may be used in later proofs 
and are not necessarily proof tasks by themselves. For example, completing the steps of 
an unfinished proof, identifying corresponding sides in a triangle, identifying the 
congruence criterion that must be used in a given proof, etc.	  
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D. Cognitive Demand of the Task(s)  
 
A teacher may choose mathematically simpler task(s) in order to focus on higher-levels 
of reasoning-and-proving. Focus on the cognitive demand with respect to the purpose of 
the task(s) when providing your rating and rationale. 
 
 
1. Intellectual Potential of the Original Task(s) 
Identify the primary kind of cognitive demand of the task(s) as it appeared in the resource 
materials. 
  
0 1 2 3 4 
No academic 
thinking 
required  

Memorization Use of 
procedures 
without 
connection to 
meaning, 
concepts or 
understanding.   

Use of 
procedures with 
connection to 
meaning, 
concepts or 
understanding.  

Engaging in the 
thinking 
practices of the 
discipline 

 
Please provide a rationale to support your rating: 
 
 
 
 
 
 
 
2. Intellectual Potential of the Planned Task(s)  
Identify the primary kind of cognitive demand of the task(s) as set up by the teacher. 
 
  
0 1 2 3 4 
No academic 
thinking 
required  

Memorization Use of 
procedures 
without 
connection to 
meaning, 
concepts or 
understanding.   

Use of 
procedures with 
connection to 
meaning, 
concepts or 
understanding.  

Engaging in the 
thinking 
practices of the 
discipline 

 
Please provide a rationale to support your rating: 
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3. Engagement with the Task(s) 
Identify the manner in which most students and the teacher actually engaged with the 
task(s) for the majority of the time. 
 
  
0 1 2 3 4 
No academic 
thinking 
required  

Memorization Use of 
procedures 
without 
connection to 
meaning, 
concepts or 
understanding.   

Use of 
procedures with 
connection to 
meaning, 
concepts or 
understanding.  

Engaging in the 
thinking 
practices of the 
discipline 

 
Please provide a rationale to support your rating: 
 
 
E.  Proof Schemes  
A teacher may “apply different methods to remove doubts in the processes of 
ascertaining and persuading accordingly:  “A person proof scheme consists of what 
constitutes ascertaining and persuading for that person. …It is important to note that these 
schemes are not mutually exclusive; people can simultaneously hold more than one kind 
of scheme” (Harel and Sowder, 1998, p. 244).  
 
Please identify the proof scheme(s) encouraged by the teacher during the enacted lesson.  

External conviction Proof 
scheme 

Empirical Proof 
schemes 

Analytical proof schemes 

   

Authoritarian Ritual Symbolic Inductive Perceptual Transformational Axiomatic 

Task  

       
 
Please provide a rationale to support your rating:  
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APPENDIX B: TASK COVER SHEET – BEFORE IMPLEMENTATION 
 
This instrument is adapted from Horizon Research Inc 38, and is used to examine 
how geometry teachers use curriculum materials to teach proof. 
 
Teacher Name:  ________________ 
 
Date(s) the task will be implemented: ________________ 
 
1.  Where did you find the task assigned during the class, and for the homework 
assignment (e.g. textbook, website, etc)? 
 
2.   What modifications, if any, did you make to the original task and why? 
 
3.  What specific mathematics idea (s) will be targeted in the lesson(s) with this task?  
 
4.   What do you think students already understand about these idea(s), either from 
previous instruction this year or in previous years or from their experiences outside of 
school?  
 
 
 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
38	  This	  is	  adapted	  from	  Horizon Research, Inc. classroom	  observation	  protocol	  
developed for the Cases of Reasoning and Proving in Secondary Mathematics Project, 
with funding from the National Science Foundation (Award No. DRL-0732798)	  
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APPENDIX C: TASK REFLECTION SHEET- AFTER IMPLEMENTATION 
 

This instrument is adapted from Horizon Research Inc 39, and is used to examine 
how geometry teachers use curriculum materials to teach proof. 

 
 
Teacher Name:  ________________ 
 
Date(s) the task was implemented:  _____________________________________ 
 
1.  Describe any directions oral or written you gave to students that are not included on 
the task itself.  Include what you communicated to students about expectations for their 
work.  
 
 
2.   Did you implement the task differently than you had planned?  If so, what changed 
did you make and why?  
 
 
3   Did students develop new understanding about the mathematical idea(s) targeted in 
this task?  How do you know?  
 
4.  Did students make mathematical arguments, either proofs or non-proofs, during the 
task?  if so, what argument did they make?  How did their engagement compare with 
what you had envisioned before implementing the task? 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
39	  This	  is	  adapted	  from	  Horizon Research, Inc. classroom	  observation	  protocol	  
developed for the Cases of Reasoning and Proving in Secondary Mathematics Project, 
with funding from the National Science Foundation (Award No. DRL-0732798)	  
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