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PROTEIN STRUCTURAL MODELS SELECTION 

USING 4-mer SEQUENCE AND COMBINED SINGLE 

AND CONSENSUS SCORES 

 

Alazmi, Meshari 

Dr. Dong Xu, Thesis Supervisor 

ABSTRACT 

Quality assessment for protein structure models is an important issue in 

protein structure prediction. Consensus methods assess each model based on 

its structural similarity to all the other models in a model set, while single scoring 

methods, such as Opus-ca and RW, evaluate each model based on its structural 

properties. In this work, a novel method proposed and developed to effectively 

combine consensus methods and single scoring methods for better quality 

assessment. At first, a new method called Single Position Specific Probability 

(SPSP) Score is proposed based on consensus method using 4-mer sequence. 

Specifically, every letter in the 4-mer sequence represents a state for a local 

region consisting of four amino acids. A machine learning method (Neural 

Network) helped to combine several single scoring methods, RW, DDFire, and 

OPusCa with consensus methods, SPSP and Consensus Global Distance Test-

Total Score (CGDT-TS) to achieve a good combination of all the terms. The 

method was tested on two benchmark datasets and achieved improvements over 

the state-of-the-art methods. The first benchmark was on Yang Zhang’s data 

containing 56 targets. The second benchmark was from Rosetta data containing 

35 targets. For Zhang’s data, the CGDT score is 0.6058, while combined method 
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achieved 0.6105. For Rosetta data, the CGDT score achieved 0.4255, while 

combined method achieved 0.4529. 
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Chapter 1.  Introduction 

Protein structure prediction is a method to predict the three dimensional 

structure of a protein from its sequence. Protein structure prediction has been a 

difficult research topic ever since scientists began developing the cell biology 

system [55, 56]. The more protein sequences identified, the more work needs to 

be done to predict their structures which simplifies determining their functions 

[56]. X-ray crystallography and nuclear magnetic resonance (NMR) are 

experimental protein structure determination methods. They are very costly and 

require too much time to determine one structure. Starting with the sequence and 

using computational methods to predict the structure gives scientists more 

opportunities to work in this field and solve the problems associated with 

experimental methods [57]. Some reviews showed the importance of 

computationally predicted models in applications [58, 59]. For example, high-

accuracy models are useful in studying catalytic activity. In addition, predicted 

models are particularly useful even with medium accuracy up to 6 ̇ RMSD. For 

example, the function of the protein is predictable using 3-D structures [59]. 

Quality assessment is one of the most challenging problems in protein 

structure prediction. It is important to choose the best model within a set of 

models for further study of attributes. Such study can lead to structure refinement 

and potential societal benefits in applications such as drug design. In this study, 

quality assessment of predicted models is based on comparing methods 

developed with GDT score, chosen standard measurement. This thesis, 
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therefore, helps solve the problem of how to assess protein structure prediction 

models. 

Quality Assessment methods for protein structure prediction models can 

be split into four major approaches based on the strategy. The first category is 

physical-based energies [60, 61]. It mainly calculates atomic-level energy of a 

model relying on fundamental physics. The disadvantage of this method is that 

the energy value is sensitive to minor changes in the structure. The second 

category is knowledge-based scoring functions. Knowledge-based methods give 

better results than physics-based methods. They rely on statistical information of 

real proteins’ characteristics. For example, Opus-ca [39] is based on molecular 

interaction energies from C-alpha atoms. Another example is RW [41] scoring 

method which considers side-chain orientation as a useful input. The third one is 

the consensus approach [62-64]. The main idea is that all decoys (structural 

models) will vote to the one that is the closest to them in structural similarity. The 

best method occurs when the best model is among the major cluster; and it is not 

recommended to pursue a method if the best model is an outlier in the structural 

pool. The last approach is machine-learning methods [63, 66]. For example, 

neural network (NN) and support vector machine (SVM) are based on trained 

data with known targets. The trained model tested on unseen data. 

Preprocessing the data to meet classification data needs required formulation to 

fit the general idea of classification. The features are the method scores. The 

training process for this method was based on GDT, RMSD, or Z-score 
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measurements as a target to rank models; then testing was conducted on decoys 

for unseen targets. 

 Two methods were developed in this work. The first method is a Single 

Position Specific Probability (SPSP) Score method using 4-mer sequence. Every 

letter in the 4-mer sequence represents a state for a local region consisting of 

four amino acids. The local regions are clustered based on their pseudobond 

angles between every four C-alpha atoms such as pseudobond bending angles 

and pseudobond torsion angles. Having all the 4-mer sequences for all the 

decoys in one target led to comparisons using a consensus-based method. 

Although this method alone does not have outstanding performance in model 

selection, when combined with other single score methods such as RW, Opus-

ca, and DDFire[73], it outperformed CGDT. The second method is a combination 

of several scoring methods. In this method, we trained neural network models to 

effectively capture the underlying correlation among different scoring methods. 

Specifically, the score differences from different methods for a pair of decoys 

were used as input features, which were mapped to the difference of actual 

model quality by neural networks. 

The second step consisted of classifying the differences into two classes. 

If the real GDT difference is positive, then it went to the first class; otherwise, it 

was in the second class. The training process used leave-one-out method. For 

training data, 1000 records were randomly picked from N-1 targets. Finally, the 

model was tested on the remaining target that had not taken anything from for 

the training purpose.  
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Assessing models generated by computational methods with known native 

structure is easily done by measuring the similarity between the model and the 

real structure. Methods available for that task include GDT, RMSD, and TM-

score.  

First, GDT (Global Distance Test) measures the similarity between two 

protein structures with identical amino acids sequences but different 3D 

structures. It ranges between 0 and 1. It scores 1 if the two structures are 

identical. The GDT score compares two structures under cutoff thresholds which 

are 1 Å, 2 Å, 4 Å, and 8 Å. Then, the score is the average of the aligned residues 

with the four thresholds. It is calculated as [51]. 

   (     )                  

where    is a percent of structurally aligned residues that follow a certain 

threshold between the       proteins structures. 

GDT score is used as the major assessment criterion at CASP (Critical 

Assessment of Structure Prediction), which is a biannual competition for protein 

structure prediction disciplines. This CASP endorsement led to selection of GDT-

TS as the measurement and validation of the methods used in this research [50].  

Root-Mean-Square Deviation (RMSD) is the average distance between the 

residues, while Cα represents the whole residue. RMSD measures the similarity 

between two structures and translates/rotates them until it minimizes the score. 

However, it gives a high score for similar structures except in local regions such 

as a loop if they differ in that region. Thus, the global score was affected by minor 

changes [50]. 
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Chapter 2. Existing Methods for Protein 

Structure Prediction Quality Assessment 

 

In this chapter, the protein structure prediction quality assessment (QA) 

problem is addressed and some terms are defined. Then, some existing methods 

which fall into four categories: physics-based energies, knowledge-based scoring 

functions, consensus methods, and machine learning based approaches are 

explained with more details. 

 

2.1. What is a QA problem? 

When protein structure predictions from different servers are used for a 

target and the native structure of that target is known, quality assessment 

measures the predicted structure and gives it a score showing how much it is 

similar to the native structure. Thus, some predictions are near-native; some are 

close to the native; some share regions with the native, and some are far from 

the native. The measurement is based on the similarity between the native and 

predicted structures. Choosing a measurement is a topic subject to debate, but 

GDT-TS (Global Distance Test-Total) score was chosen as an assessment for 

the methods because it superimposes the predicted structure until it matches the 

native thereby minimizing the distances. It works well with good predicted 

structures. The main reason for using GDT-TS is because of the credibility it has 

gained in CASP competitions since 2002 [49]. Here, QA gives a score to every 
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predicted structure. After that, the score can be used to select or rank the 

models. 

2.2. Physics-based Energies: 

Any physics-based energy function relies on thermodynamic hypothesis 

[1]. These functions are based on physical properties in atomic level [1]. Potential 

energy functions illustrate the relationships between the points (atoms) in the 

system [70]. Force field functions calculate the potential energy. They are based 

on internal and external terms, e.g., CHARMM [2] [3], AMBER [4]. Having four 

sequential atoms, the potential energy calculation is based on the following 

information: 

A) internal terms 

1. Covalent Bond length between two atoms. 

2. The valence angle between 3 adjacent atoms which cares about the 

atomic orbitals. 

3. The dihedral angle between 1, 2, 3, and 4 atoms which is the angle 

between 2 planes. The first plane is 1, 2 and 3 atoms. The second 

plane forms 2, 3, and 4 atoms. 

4. Urey-Bradley distance between 1 and 3 atoms. 

5. The distance between 1 and 4 atoms. 

6. Improper dihedral angle between a line and a plane in 4-point shape. 

B) External terms (Van der Waals interactions ): 

1. Lennard-Jones (LJ) potential measures the interaction between two 

neutral atoms. 
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2. Electrostatic interactions between charged atoms are measured by 

Coulomb’s law. 

These are the standard points needed to calculate the potential energy. 

Other information can be extracted from the structure and it can help in 

calculating the energy. For example, Y. Harano et. al. [5] considered hydration 

free energy. 

Physics-based approach requires a lot of information which leads to 

computational processing and is very time-consuming [6]. It is also subject to 

minor changes in the protein structure prediction. These are the main 

disadvantages of the physics-based approach. 

2.3. Knowledge-based Scoring Functions: 

Knowledge-based (statistical) scoring functions are based on relative 

frequency in a database of a set of proteins which takes the general pattern in 

the database [7-11]. Statistical scoring functions are also based on optimization 

method [12-22]. Optimization methods are discussed later. These function inputs 

record the distances between residues, or the distances between the atoms, and 

also indicate solvent accessibility, dihedral angles, and packing density. Because 

they describe the protein, they are called protein descriptors [70]. After 

organizing this information according to what the statistical scoring functions 

need, this information is processed based on statistical analysis of the weighted 

linear sum of pairwise contacts [15, 16, 23-26]. Calculations are based on 

structural distribution of structural descriptors or optimized the weight: 
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 (      )            ∑    

 

 

W.C is the inner product,    is the frequency of      type of descriptor. W is 

the weight. 

Here, the weight plays an important role. The weight can be calculated 

from the frequency distributions of native proteins or calculated using optimized 

methods. 

Frequency distribution is based on descriptors which fit to low-energy 

states (Boltzmann assumption) [23]. It uses solvent terms based on contact 

potentials between amino acids pairs [24]. Sippl [27] as well as H. Zhou and Y. 

Zhou [28] considered distance-dependent energy functions for different ranges 

and their pairwise interactions. Nishikawa and Matsuo added dihedral angles, 

solvent accessibility and hydrogen-bonding showing how that information can 

determine the structure of the protein. [29]. Singh and Tropsha considered not 

just pairwise, but also higher-order interactions [30]. Li and Liang detected three-

body interactions [31].  

Miyazawa-Jernigan considers potential function and how a pair of 

residues interacts if their contact is under a particular threshold. The contact 

potentials are: 

o Residue-residue contact potential. 

o Residue-Solvent contact potential. 

o Solvent-Solvent contact potential. 
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An advantage of using solvent molecules is that they cannot be detected in X-

ray crystal structures [70]. 

There are 3 types of statistical potentials to calculate the interactions between 

amino acids: 

o Contact potential functions (Miyazawa-Jernigan) [24]. 

o Distance dependent potential functions [32]. 

o Geometric potential functions: 

1. Voronoi diagram [33]. 

2. Delaunay triangulation [30]. 

3. Alpha shape of the protein molecules [34]. 

 

Some other analyses are based on optimization. Optimizations are usually 

maximization of the energy gap between native proteins and decoys with the 

lowest score. Optimization methods require generation of a large set of decoys. 

Knowledge-based pairwise potential functions are usually in the form of weighted 

linear or nonlinear sum of interacting residue pairs. It is the same as the 

functional form used in statistical potential, where the weight coefficients are 

derived from database statistics. Several optimization methods have been 

applied to find the weight vector (w) of linear and nonlinear potential functions 

[12-14, 17, 35, 36]. 

 

Comparing knowledge-based with physics-based energy functions, 

knowledge-based scoring functions are not time-consuming, cost less and are 
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more accurate than physics-based scoring functions [37]. However, knowledge-

based energy functions have room for error due to noisy data. Opus-psp [38], 

Opus-ca [39], DFIRE [40], and RW [41] are examples of knowledge-based 

energy scoring functions. 

Knowledge-based energy statistical scoring functions are good in 

specificity. They may recognize bad decoys because they are trained based on 

native structures, but the scores are usually not sensitive or accurate. 

Nonetheless, knowledge-based scoring functions in some cases contain a 

lot of noise because of their statistical properties. Thus, sometimes they fail to 

identify correctly-folded protein structures. Even though they are much simpler 

than physics-based ones, they still have very complex structures and need many 

sources of information for calculation. Additionally, due to the fluctuation of 

protein folding, protein quality prediction using these scoring functions can be 

unreliable. Because of these limitations, any knowledge-based scoring functions 

are not dependable. Some of the most popular knowledge-based energy scoring 

functions are Opus-psp [38], Opus-ca [39], DFIRE [40], and RW [41] which will 

be described more in detail in the result section. 

2.4. Consensus Methods: 

Consensus methods are the average of the pair-wise similarity between all 

the decoys [43] such as 3D-Jury system [42]. Consensus methods use all the 

information from all the decoys [44]. It compares every decoy with the other 

decoys [44]. It is simple [42] and does not need computational process. It does 

not need complicated methods to calculate the energy as in empirical force field 
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or knowledge-based statistical potentials (see section 2.1). It is actually an 

optimistic method because it follows the most frequent pattern appearing in the 

ensemble [45]. Consensus method gives credibility to the majority of the models 

even though they may be poor [45]. If the model is not included with the majority 

of the models, that can result in a model choice that is inferior to the best model 

and excludes it from the best model cluster [45]. The advantages of this method 

are simple because it doesn’t require a lot of information, and powerful because it 

achieves excellent results in a dataset that contains multiple targets. It performed 

well in CASP7 and CASP8 [44]. On the other hand, a disadvantage of this 

method is that it cannot assess single decoys because it is based on voting from 

sets of decoys. Therefore, using single decoys excludes the consensus-based 

method [44]. Another disadvantage is that if the best model is not among the 

most frequent group; then, this method will prefer an inferior model over the best 

model simply because it shares common features with the others [44]. This is the 

basis of the consensus method. 

 

2.5. Machine learning based approaches: 

Machine-learning methods have performed quite well in CASP8. For 

example, neural network (NN) and support vector machine (SVM) are based on 

training and testing data. In some states, some methods scores can be 

considered as features [46]. Also, Wang, Tegge, and Cheng [47] used 3-D 

coordinates to extract relative solvent accessibility and secondary structure as 

features. Machine learning methods are based on trained data with known 
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targets and tested on unseen data.. Preprocessing the data to meet classification 

data needs requires some formulation to fit the general idea of classification for 

model selection data. The training process is based on the GDT, RMSD, or Z-

score measurements as a target to rank models. Testing can be then conducted 

on all decoys for one target. Some methods combine single methods which 

calculate the score in different perspectives such as MULTICOM-CLUSTER [48] 

which finds a good reference subset for the ensemble. Then, the other models 

were compared with a reference subset. QMEANclust [44] uses consensus-

based information and the QMEAN method. QMEANclust deletes bad models 

and then ranks the remaining models based on the consensus-based method. 

 

 

 

 

 

 

 

 

 

 

 

  



 

13 
 

Chapter 3.  Methods and Materials 

In this chapter, different kinds of methods are proposed for protein 

structure prediction quality assessment. The assessment of the methods is the 

GDT-TS measure. Every method considers or measures the predicted structure 

from different levels or approaches. Some chosen methods were combined, and 

the results showed very significant improvement over the existing methods. 

Combined Method performs better than the state-of-art methods. Good Quality 

assessment methods correlate with the GDT-TS score over all the predicted 

structure scores. The inputs for Single Position Specific Probability (SPSP) Score 

based on 4-mer sequence are sensitive. The inputs were the pseudo-bond 

angles. These angles are bending pseudo-bond angles and torsion pseudo-bond 

angles. Calculation of both types of angles is discussed later. The goal from 

these inputs is to cluster those angles into 17 clusters as mentioned in the Wei-

Moe method [71]. This method is called the 4-mer method because it is based on 

four residues. It only considers C-alpha positions. It can calculate the angles 

between every four adjacent residues using sliding window. They are dependent 

on each other because they share three residues. After having the 4-mer 

sequence for every predicted structure, model selection methods based on 4-mer 

sequence can be done. Some of them are based on the consensus approach 

and others are based on knowledge-based approach. In the next sections, 

calculating the bending pseudo-bond angles, dihedral (torsion) pseudo-bond 

angles, and then extracting the 4-mer sequence, which is based mainly on the 

states, are addressed. Finally, model selection methods are explained in detail, 
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which are based on the 4-mer sequence and the combined method between the 

single scores and the 4-mer sequence based methods. 

3.1. Bending pseudo-angles: 

3.1.1. Definition: 

Bending pseudo-angles are the angles between 3 points in 3-D 

dimensions. Having three points in an object, A, B, and C, the bending angle will 

be the angle between the vector AB and the vector BC. Thus, it is called ABC 

angle.  

 A 

 

                                B  

Figure 1. The ABC Angle 

3.1.2. Calculating the bending angle: 

Calculating the bending angle needs only the coordinates (x, y, z) of three 

points A, B, and C. First step is to calculate the difference between x1 and x2, y1 

and y2, as well as z1 and z2 for the first two points. Then, the same thing must 
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be done with the second and third point, which calculates the difference between 

x3 and x2, y3 and y2, and finally, z3 and z2. All these calculations are shown 

below:  

 

 

Second, since the differences between the coordinates of A, B and B, C 

atoms are calculated; it is easy to calculate the magnitudes between the two 

vectors based on Euclidean distance. As follows: 

 

 

That the third step calculates the angle between the two vectors which is 

the dot product of the vectors divided by multiplication of the vectors scalars as 

follows: 

 

 

 

To convert the angle to radian instead of degree, this formula was used as 

follows: 
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3.2. Dihedral (Torsion) pseudo-angles: 

3.2.1. Definition: 

Dihedral angle is the angle between two planes. It is the angle between 

four points. Every three points will represent a plane. Let say K, I, J, L are 

adjacent points. KIJ represents a plane and IJL represents another plane. The 

dihedral angle is the angle between KIJ plane and IJL plane.  The figure below 

shows the dihedral angle between the planes. 

 

Figure 2.  A Dihedral Angle between Two Planes. 

3.2.2. Calculating the dihedral pseudo-bond angle: 
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 Calculating a dihedral angle needs the coordinates (x, y, z) for all 

the four points. The first step was calculating the differences between the 

coordinates, x2 with x1, x3 with x2, x4 with x3, y2 with y1, y3 with y2, y4 

with y3, z2 with z1, z3 with z2, and z4 with z3. 

 

 

 

 After that, cross products between the three vectors were calculated. 

 

 

 

 

Then, the magnitudes were calculated and multiplied together. 

 

After that, calculating the angle by the dot product method was done as shown in 

the next formula. 

 

Dihedral angle range is [Pi, -Pi], so the sign or the direction had to be taken care 

of. To determine the direction: 
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The points in the previous definitions for bending angles and dihedral 

angles are C-alphas. Thus, pseudo-bond angles between the residues are 

represented by only C-alphas in the backbone  

3.3. 4-mer sequence: 

3.3.1. Definition: 

4-mer means considering only four residues. This method can cluster the 

pseudo-angles given which are the bending pseudo-angles and dihedral pseudo-

angles to 17 clusters. Every cluster will be represented by a letter. These clusters 

are called states in CLESUM method. CLESUM is based on the mixture model 

for the angles probability. For every four residues, there are three angles. First is 

ABC bending angle. Second is ABCD dihedral angle. Third is BCD bending 

angle. Thus, every C-alpha has 2 angles     and 1 dihedral angle (  , so 

                which is treated as a point   . This method plotted this 

distribution on x, y and z dimensions. They found out that the peaks are 17 peaks 

which are considered as clusters. Most of these points fall into these 17 clusters. 
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3.3.2. Extract 4-mer sequence for a given structure 

To calculate the probabilities of the angles falling in a state, a mixture 

model of several normal distributions solved this issue.   is the index of the C-

alphas,   is the index of the cluster,   is the mean, ∑  is the symmetric 

covariance matrix of the normal distribution for the angles of a cluster, and   is a 

priority parameter for each cluster. 

 

                                

                      

         

    |            
 
  |∑  

  

 
|
    

       
 

 
       

  ∑  
  

 
          

        

        

                   |     

Some fixed parameters taken directly from their table are as follows: 
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Table 1. The 17 Structural States Taken from [71] 

State   |∑  
  

 
|
    

 
  ∑  

  

 
 

                             
I 8.2 1881 1.52 0.83 1.52 275.4 -28.3 84.3 106.9 -46.1 214.4 

J 7.3 1797 1.58 1.05 1.55 314.3 -10.3 46 37.8 -70 332.8 

H 16.2 10425 1.55 0.88 1.55 706.6 -93.9 245.5 128.9 -171.8 786.1 

K 5.9 254 1.48 0.70 1.43 73.8 -13.7 21.5 15.5 -25.3 75.7 

F 4.9 105 1.09 -2.72 0.91 24.1 1.9 10.9 -11.2 -8.8 53 

E 11.6 109 1.02 -2.98 0.95 34.3 4.2 15.2 -9.3 -22.5 56.8 

C 7.5 100 1.01 -1.88 1.14 28 4.1 6.2 2.3 -5.1 69.4 

D 5.4 78 0.79 -2.30 1.03 56.2 3.8 4.2 -10.8 -2.1 30.1 

A 4.3 203 1.02 -2.00 1.55 30.5 9.1 8.7 6 5.7 228.6 

B 3.9 66 1.06 -2.94 1.34 26.9 4.6 4.9 9.5 -5 54.3 

G 5.6 133 1.49 2.09 1.05 163.9 0.6 3.8 2 -3.7 32.3 

L 5.3 40 1.40 0.75 0.84 43.7 2.5 1.4 -7 -2.9 34.5 

M 3.7 144 1.47 1.64 1.44 72.9 2.1 4.8 1.9 -7.9 72.9 

N 3.1 74 1.12 0.14 1.49 25.3 3.2 3.1 9.9 0.9 83 

O 2.1 247 1.54 -1.89 1.48 170.8 -0.7 3.7 -4.1 3.1 98.7 

P 3.2 206 1.24 -2.98 1.49 48 8.2 7.3 -4.9 -6.6 155.6 

Q 1.7 25 0.86 -0.37 1.01 28.4 1.5 1.2 3.4 0.1 19.5 

 

3.4 Method 

3.4.1. Methods for Protein Structure Predictions Quality Assessment 
Based on 4-mer Sequence 

 
CLESUM method clusters every four adjacent residues to a state (17 

clusters). Given predicted structure information as the bending and torsion angle, 

CLESUM method gives back a sequence. Every letter in this sequence 

represents a cluster for four adjacent residues. Thus, a 4-mer sequence for that 

structure is in hand. From here, model selection methods based on 4-mer 

sequence were done on this sequence. 

3.4.1.1. Single Position Specific Probability Score (SPSP) 
 
This method requires a set of decoys. It is based on a consensus-based 

approach. The aim from this method is to measure the similarity per position (per 

column) for all the sequences. For a set of decoys, the first step is calculating the 
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pseudo-bond angles as dihedral angles, and bending angles as mentioned 

above. Step 2 is extracting the 4-mer sequences using CLESUM as mentioned 

earlier. As a result, a set of sequences represents the local regions in the 

predicted structures. Then Position Specific Probability Matrix (PSPM) was 

calculated which is a 17 * Sequence length matrix. Step 3 requires calculating 

the score for every sequence by summing the probability for every column. 

Here is calculation of the PSPM score with numbered steps: 

1)  PSPM (Position Specific Probability Matrix) was calculated based on 

all the decoys sequences. 

                      

when 

                    

                                          ,

                                                  

                                                     

2)  To calculate the probability, it is just PSPM divided by the number of 

the decoys. 

           
         

         
 

3)   Calculating the score for every decoy is just summing the rows 

together. 

           ∑          
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3.4.1.2. Pair Score: 

 Calculating the pair scores must have all sequences for decoys for one 

target. The aim of this score is to calculate the probability for every two adjacent 

states out from the 17 states. The following step is calculating the pair scores for 

every 4-mer sequence. 

 For every target, the following steps must be done: 

1-  Calculate the PPM (Pairwise Probability Matrix) which is a 17*17 matrix. 

2- For every adjacent pair states (letters), add one point in the matrix that 

matches these two letters. By doing that, the matrix is filled with the 

frequency. 

3-  Sum the rows together to calculate the probability. 

4- Divide every element in the matrix by the sum of the row to give the 

probability of every two adjacent 4-mer sequences. 

5- Take every two adjacent letters and find out their probability in the matrix; 

then add it to the score. By the end, this score can be used to rank the 

models. 

 

 

 

A. PPM calculation: for every target, for all the decoys. 
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when: 

                                         

                                                                                

                                                       

B. Dividing by the sum of the row gives the probability of a decoy 

                  ∑       
    

   
 

C. To calculate the score for every 4-mer sequence (k): 

         ∑                         
             

   
 

 

3.4.1.3. Sum SPSP and Pair Scores: 

For every target, there is a Single Position Specific Probability Score (SPSP) and 

a pair scores for a decoy. This score must be added together. 

                                      

                                  

3.4.1.4. P (4-mer Seq Letter|AminoAcidSequence) Scores: 

To calculate P (4-mer|AA), the following steps were done to calculate P (4-

mer|AA): 
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First, the pattern was calculated as a pairwise matrix between 17 states 

and 20 amino acids from more than 10,000 native structures. In other words, the 

frequency was calculated between the 4-mer sequence and amino acid 

sequence, resulting in a 20*17 matrix. In this case, only the third amino acid and 

its pair in the 4-mer sequence were considered because the third amino acid 

actually represents the dihedral angle and shares between the two bending 

angles, so it is the most important residue. The aim from this method is to 

calculate what the probability between the third amino acid and the 4-mer state 

is. 

                                    

when: 

                                                  

                                                    

                                                 

                                                            

 

Summing the row (amino acid letters) helps in calculating the probability (4-

mer|AA). 

 (          |          
 (          )   (        )

 (        )
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3.4.1.5. P (AminoAcidSequence|4-merSeq): 

Summing the columns (4-mer letters) helps to calculate the probability 

(AAseq|4merSeq) 

          |            
 (        )    (          )

 (          )
 

                                     

                                          

After getting the general matrices from native structures, these matrices applied 

on the decoys as follows: 

                            |            

when 

                                                

                                

                          

                                      

3.4.1.6. Refined Single Position Specific Probability Score (SPSP): 

After looking over the Single Position Specific Probability (SPSP) Score 

results, it was determined to be the best method over all the 4-mer methods. 

Modifying this score by Refined Single Position Specific Probability (RSPSP) 
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Score which assigns 0 for the states that they have less frequency than 20 per 

column (position) might give a better performance. The aim from this method was 

to remove the bad decoys as expected based on 4-mer sequences which 

represent basically local structure. 

             

when 

              

After ignoring the models that have less than 20 frequencies, the probability and 

the scores were calculated as explained in the Single Position Specific 

Probability (SPSP) Score method was done. 

3.4.1.7. P (4-merseq|Secondary Sequence): 

This method has to have secondary sequence for every decoy. The goal 

was to get the frequency of what the 4-mer state or letters represents in 

secondary structure. Because every 4-mer sequence represents four amino 

acids, four secondary sequence letters represent one state. It is also important to 

note that a secondary sequence has three main structures: coil(C), helix (H), and 

beta sheet(S).  First step was to extract the pattern from native structures to fill a 

17*81 matrix between 4-mer sequence and secondary sequence. 17 represents 

the states for 4mer sequence, while 81 represents four combinations of the (H, 

C, S) secondary sequence which are 3^4. Then, applying this matrix on the 

decoys assesses the decoy based on this method. 
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To fill out the matrix from the natives the following formula was calculated as 

follows: 

                          

when: 

                                                    

                                                      

                                                 

                                                              

Step 2 used this matrix to apply it on the decoys.. The previous condition is also 

applied to the score calculation. 

         ∑            
             

   
 

                              

                                                      

                                                 

 
3.4.1.8. Consensus 4-mer Sequence (CombinedMethod for Single 
and Pair Scores): 
 
Consensus sequence is the sequence that appears most of the time.  This 

method was calculated based on adjacent letters and their frequency in all 
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decoys, which is a small segment from two letters. Thus, calculating the 

probability for every letter based on that position and the following position 

(sliding window method) is the main idea behind this method. The goal was to 

find the consensus 4-mer sequence and compare it with the decoys to assign a 

score for every decoy. This method has to have all the 4-mer sequences. 

First, for every two adjacent letters, a 17*17 matrix was calculated which 

represents two adjacent letters in the sequence for all the decoys and shows how 

diverse they are. After that, the biggest number was found in the matrix which 

represents the frequency of two adjacent pairs. The two adjacent letters were the 

ones with the highest frequency found which represents a local 2-letter 

consensus region. The same thing was done for the other segments consisting of 

two letters. For example, first letter is with the second; the second is with third, 

and so on. 

For every two adjacent letters, calculating the PPM (Pair Probability 

Matrix) splits the sequence into segments. Every time, the most frequent two 

adjacent letters are found and take only the first letter to represent the position of 

a common or consensus letter. After extracting the consensus sequence for the 

whole length, comparing it to all the decoy sequences gives an idea of how close 

the decoys are to the consensus. 

                    

when 
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To find the corresponding letters for two-letter regions, the maximum value 

must be found. Those letters will be the local consensus segments in particular 

positions. This step was done for all sequences to extract the consensus 4mer 

sequence overall. 

 Comparing the consensus sequence with every decoy sequence gave a 

score to every decoy 

                    

when 

                  

                                   

                                         

 

 

3.4.2. Combining Method: 

Looking at the results of all the previous methods led to combining all the 

scores together with a resultant performance which was better than previous 
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state-of-the-art methods. The computational process for the combination method 

gave a hint of the value of combining some methods not previously combined as 

possible ways to improve the process. All combinations of the scores have been 

tried to find the best combination methods. The best combination (shown in the 

following sections) costs less and shows a better performance. The following 

flowchart explains the general idea of CombinedMethod. 

               

 

 

 

 

              Model1      Model2 

 

 

 

 

 

         Test model2 on 

 

 

 

 

Figure 3 A flowchart of CombinedMethod. It shows the process for target   . This 

process was repeated for all the targets using the Leave-one-out method. In both 
training Datasets, 1000 records were randomly sampled from every target    
except    because it is the testing target. 

5 methods scores as features and real GDT as a target 

DDfire, Opus-ca, RW, 4-mer-Seq Single score, and CGDT 

Each method, score difference for every pair of decoys 

|∆𝐺𝐷𝑇| >     5, class1; else, class2 |∆𝐺𝐷𝑇| >      

Training Data {N-𝑇𝑗} 

Training Data: {N-𝑇𝑗} 

Testing Data: 𝑇𝑗 target 

∆𝐺𝐷𝑇 >  , class1; else, class2 

Only Class1 

Rank target j decoys 
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3.4.2.1. Preprocessing the Data: 

For a better trained model, the observations that have GDT difference less 

than 0.01 were removed before randomly generating the training data–a step that 

addressed a previous problem with redundancy. Since the real GDT score was 

not used in the testing data, a model was trained to distinguish the observations 

(records) that have a value difference between their real GDT score of less than 

0.025. Records showing less than 0.025 were put in the second class; otherwise, 

they are in the first class. Thus, for every target, training and testing data were 

generated using the leave-one-out method. A total of 1000 records (the 

differences of the scores for all the methods) were randomly picked from N-1 

targets to generate the training data. Then, the model was tested on the last 

target. From the results of the testing data, the records that were expected to 

have a GDT difference higher than 0.025 were considered for the next model as 

a testing data. This new testing data was used for the testing process mentioned 

in the next step. 

3.4.2.2. Combined Score: 

Combination method combined single scores (Opus-ca, RW, DDfire, and 

CGDT) with consensus score (Single Position Specific Probability (SPSP) Score) 

using neural network method in Weka tool [72]. For generating the data, the 

differences for every decoy against the others were calculated for every method 

as follows 
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 As features, the decoy difference scores were used in every method. The 

real GDT differences for the decoys were used as a target for the trained model. 

Then, the records were classified into two classes. If the real GDT difference is 

positive, then it goes to the first class; otherwise, it is in the second class. For 

training process, the leave-one-out method was used. For training data, 1000 

records were picked randomly from N-1 targets. Neural network parameters were 

set, i.e., rotations = 1000, learning rate = 0.05 and momentum = 0.1. After 

training the model, the model was tested on the remaining target that had not 

taken anything from for the training purpose. This test data is the new test data 

that was mentioned in the preprocessing step. 

 After testing the model on testing data, the prediction results were 

processed. If it is 2, then the second decoy is better than the first one; otherwise, 

the first one is better since every observation consists of a pair of two decoys. 

Based on the prediction, one point was added to the decoy that is better than the 

other and. Then, the decoys were ranked based on the new combined score. 

 CombinedMethod using linear regression was used to improve the 

performance over the classification methods. Unlike a neural network, classifying 

the points or the records into classes was not needed. The score on an as is 

basis was enough to run the regression methods. For the target in neural 
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network, it is only 1 or 2, but in the linear regression, just the GDT difference as it 

is was taken without classifications. Other steps are the same. 

3.5. Datasets 

 The methods were applied on two benchmarks produced by different 

model generation methods. Benchmark 1 was from Zhang’s lab, generated by 

the I-TASSER ab initio modeling tool [69] containing 56 proteins. The other one, 

benchmark 2, was generated by the Robetta server or Rosetta [67, 68], 

containing 35 CASP8 proteins. Each protein in both benchmarks had hundreds 

of decoys. Figure 2 shows the maximum, average and minimum GDT-TS score 

for models of each protein using both benchmarks. The best of model for each 

protein had a GDT-TS score greater than    , which ensured that the pool 

contained some reasonably good models. 
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3.5.1. Yang Zhang’s Data 

 

Fig. 4. Y-axis Shown Here as the Real GDT-TS Score to the Native Structure. 
 X-axis is the proteins of Yang Zhang’s data sorted by maximum of the GDT-TS 
score. 
 

 

 

Figure 5. Comparison between Sequence Lengths in the 56 Targets in Yang 
Zhang’s Data. 
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3.5.2. Rosetta Data 

 

Fig. 6. Y-axis is the Real GDT-TS Score to the Native Structure. X-axis is the 
Proteins of Rosetta Data Sorted by Maximum of the GDT-TS Score. 

 

 

 

Figure 7. Comparison between Sequence Lengths in the 35 Targets in Rosetta 
Data. 
 

Yang Zhang’s data had a small range between 47 to 118 residues. It had 

more targets than Rosetta. On the other hand, Rosetta data had a wider range 

between 55 to 326 residues in just 35 targets. Rosetta Data is harder than 



 

36 
 

Zhang’s data in terms of sequence length. Also, the average GDT-TS score in 

Rosetta data is less than the average in Zhang’s data. There are other factors 

besides sequence length and the average GDT-TS score. 

3.5.3. Target Difficulty 

The targets were classified into three categories.  First, hard targets have 

GDT-TS scores less than 0.4. Second, medium targets have a GDT-TS score 

between 0.4 and 0.6. Third, easy targets have a GDT-TS score more than 0.6. 

Those cutoffs were used on Zhang’s and Rosetta data. 

 

Table 2: Distribution of 56 Targets in Zhang’s Data Based on Cutoff Thresholds 

Category GDT-TS No. of Targets 

Hard [0, 0.4] 11 

Medium [0.4, 0.6] 23 

Easy [0.6, 1] 22 

 

Table 3: Distribution of 35 Targets in Rosetta Data Based on Cutoff Thresholds 

Category GDT-TS No. of Targets 

Hard [0, 0.4] 30 

Medium [0.4, 0.6] 5 

Easy [0.6, 1] 0 
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Chapter 4.  Results and Performance 

In the test, each score was used to rank the models of a given protein. 

Four different methods were used to compare the performance of each scoring 

method. Table 1 compared the methods, 4-mer sequence Single Position 

Specific Probability (SPSP) Score and CombinedMethod, with the single scores, 

RW, DDfire, and Opus-ca, and also, the CGDT, and the real GDT. The 

comparison between the methods was in terms of the first selection of the model 

“GDT1”, average Top5 selections of the models, the Top5 selection, and the 

Pearson and Spearman correlations between the real GDT and the score of a 

method. The methods were done on datasets, 56 targets in Zhang’s data and 35 

targets in the Rosetta data. Table 4 shows how the CombinedMethod can give a 

better performance on all the state-of-the-art methods including CGDT. On the 

other hand, 4-mer sequence Single Position Specific Probability (SPSP) Score 

does not really give good results by itself, but it helps significantly the 

combination method performance. Taking this method out of the 

CombinedMethod will not make CombinedMethod better than CGDT. From here, 

Single Position Specific Probability (SPSP) Score of 4-mer sequence is a 

complementary of single scores in the model selection problem. 
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Table 4. Comparison of Methods and their Performance Overall on Yang 
Zhang’s Data 

Score Top1 bestTop5 AvgTop5 

GDT 0.6946 0.6946 0.6767 

CGDT 0.6058 0.6280 0.6039 

Dfire 0.6010 0.6398 0.5904 

DDFire 0.6006 0.6387 0.5906 

Opus-ca 0.5959 0.6367 0.5925 

RW 0.5954 0.6381 0.5879 

SPSP 0.5847 0.6161 0.5734 

Given4merSeq 0.5572 0.6191 0.5561 

GivenProSeq 0.5634 0.6143 0.5587 

RefinedSPSP 0.5764 0.6191 0.5736 

SecondarySeq 0.5322 0.5997 0.5426 

Cons.Seq 0.5795 0.6177 0.5707 

CombinedMethod 0.6105 0.6309 0.6056 

Pair Score 0.5531 0.6123 0.5575 

SumOfPaSPSPscore 0.5750 0.6203 0.5712 

 

 

Figure 8. Performance in Yang Zhang’s Data of Combined Score (Green) vs. 
Best GDT (Blue) on y-axis and 56 Targets on x-axis for Top1 Selection. 
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Table 5: Comparison of methods for the average Z-score on Yang Zhang’s Data 

Score Top1 Best Top5 Avg Top5 

GDT 2.4372 2.4372 2.1133 

CGDT 0.8951 1.2804 0.8501 

Dfire 0.8055 1.4693 0.6414 

DDFire 0.7902 1.4367 0.6381 

Opus-ca 0.7348 1.3505 0.6618 

RW 0.6831 1.4305 0.6084 

SPSP 0.5015 1.0157 0.3860 

Given4merSeq 0.3849 1.1138 0.2468 

GivenProSeq 0.2026 1.1471 0.1524 

RefinedSPSP 0.4617 1.0669 0.3929 

SecondarySeq -0.0855 0.9633 0.0420 

Cons.Seq 0.4660 1.0807 0.3437 

CombinedMethod 0.9660 1.3224 0.8672 

Pair Score 0.2323 1.1206 0.2666 

SumOfPaSPSPscore 0.4007 1.1479 0.3657 

 

Table 6: Comparison of methods and their performance overall on Rosetta Data 

 

Score Top1 Best Top5 Avg Top5 

GDT 0.5449 0.5449 0.5219 

CGDT 0.4255 0.4622 0.4060 

DDFire 0.3901 0.4666 0.3788 

Opus-ca 0.3763 0.4551 0.3663 

RW 0.3662 0.4567 0.3696 

SPSP 0.3435 0.4173 0.3534 

CombinedAllAboveScores(NN) 0.4529 0.4796 0.4309 

CombinedMethod(Lin.Reg.) 0.4477 0.4763 0.4212 

Pair Score 0.3214 0.3796 0.3294 

SumPaSiScores 0.3449 0.3928 0.3407 

GivenProSeq 0.3242 0.3917 0.3215 

Given4-merSeq 0.3127 0.3636 0.3116 

ConsSeq 0.3489 0.4023 0.3482 

RefinedSPSP 0.3426 0.4173 0.3534 
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Figure 9. Performance in Rosetta Data of Combined Score (Green) vs. Best 
GDT (Blue) on y-axis and 35 Targets on x-axis for Top1 Selection. 
 

Table 7: Comparison of methods for the average Z-score on Rosetta Data 

 

 

 

Score Top1 Best Top5 Avg Top5 

GDT 4.3545 4.3545 3.8657 

CGDT 1.7480 2.5113 1.4647 

DDFire 1.2535 2.8060 1.0614 

Opus-ca 1.2360 2.5751 0.8730 

RW 0.8735 2.7475 1.0064 

SPSP 0.3866 1.7615 0.5441 

CombinedAllAboveScores(NN) 2.3241 2.9434 1.9968 

CombinedMethod(Lin.Reg.) 2.3427 2.8545 1.7890 

Pair Score 0.0190 1.1338 0.2102 

SumPaSiScores 0.4285 1.3777 0.3711 

GivenProSeq 0.0156 0.9296 -0.0179 

Given4-merSeq 0.0934 1.3384 0.1148 

ConsSeq 0.4128 1.3670 0.4187 

RefinedSPSP 0.3649 1.7615 0.5436 
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Table 8: Comparison of methods and their performance overall on Zhang’s Data 

 
Benchmark 1 

 
GDT1 avgGDT5 Pearson Spearman 

GDT_TS 0.6946 0.6767 1 1 

Opus-ca 0.5959 0.5925 0.5105 0.4156 

CGDT 0.6058 0.6039 0.6969 0.5845 

Ddfire 0.6006 0.5906 0.5266 0.4403 

RW 0.5954 0.5879 0.4899 0.4172 

SPSP 0.5847 0.5734 0.4312 0.3299 

CmbindMthd 0.6105 0.6056 0.7112 0.6011 

 

"GDT1" is the average GDT_TS score of Top1 model; "avgGDT5" is the average 

of the mean GDT_TS score of top 5 models. "Pearson" indicates the Pearson 

correlation to real GDT_TS and "Spearman" is the Spearman correlation to the 

real GDT_TS score. 

Table 9: Comparison of methods and their performance overall on Rosetta Data 

 Benchmark 2 

 GDT1 avgGDT5 Pearson Spearman 

GDT_TS 0.5449 0.5219 1 1 

Opus-ca 0.3763 0.3663 0.2961 0.2739 

CGDT 0.4255 0.4060 0.5274 0.5584 

Ddfire 0.3901 0.3788 0.3108 0.2722 

RW 0.3662 0.3696 0.2983 0.2766 

SPSP 0.3435 0.3534 0.2304 0.2462 

CmbindMthd 0.4529 0.4309 0.5601 0.5615 

 

"GDT1" is the average GDT_TS score of Top1 model; "avgGDT5" is the average 

of the mean GDT_TS score of Top5 models. "Pearson" indicates the Pearson 



 

42 
 

correlation to real GDT_TS and "Spearman" is the Spearman correlation to real 

GDT_TS score. 

 After designing an adequate number of methods and calculating the 

results on two datasets, it was time to analyze them and compare the overall 

results. In the next graphs, comparisons between couples of methods were 

viewed and the real GDT score in every graph. It would be difficult to understand 

the performance for every method if they were all plotted in one graph. For this 

reason, the graphs have a variety of methods of performance. The graphs 

considered model selections for Top1 and the best one of the Top5 and the 

average 5 for both benchmarks. 

4.1. Performance on Zhang’s Data 
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Figure 10. Performance in Zhang’s Data of DDFire, DFire, RW, Opus-ca, and 
Best GDT (Blue) on y-axis and the 56 Targets on the x-axis for Top1 Selection. 
 
 In the above graph, DDfire and Dfire have almost the same curve except 

in few a targets such as 256B which explains the reason for not seeing the green 

curve in DDfire results. Even in the overall results, Dfire and DDFire performed 

the best among the plotted methods such as 1PGX target, but they (Dfire and 

DDFire) showed the worst results in some targets such as 1B09, 2CR7, 1NE3, 

and 1KJS. DDfire and Dfire predicted the best decoy in 1MLA target. Meanwhile, 

Opus-ca and RW did not do a good prediction in this target. Even though Opus-

ca performed the third best in overall results among all four methods, it ranked 

the best in some targets such as 1G1C, 1CEW, and 1SRO. However, Opus-ca 

also performed the worst in some targets such as 1AF7. The last method, RW, 

had interesting results performing the worst in some cases such as 1TEN and 
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1MLA but predicting the best decoy in the 1KJS target. Some methods shared 

the same score in some targets such as the 1HBK target. 

 

Figure 11 Performance in Yang Zhang’s Data of ConsSeq, SPSP, PaSiScores, 
and Best GDT (Blue) on y-axis and the 56 Targets on the x-axis for Top1 
Selection. 
 

In the above graph, the comparison is between the 4-mer methods. The 

overall results show that Single Position Specific Probability (SPSP) Score was 

the best, then ConsSeq, and finally PaSiScore. Single Position Specific 

Probability (SPSP) Score performed the best in target 1TIF, 1DI2, and 1SHF. On 

the other hand, it performed the worst in some targets such as 1PGX. ConsSeq 

method performed the best in 1MKY, 2REB, 1CY5, and 1MLA. However, it 

performed the worst in some targets such as 1AF7. PaSiScore performed the 

best in 1SFP, 1EGX, and 1B72 even though it showed the lowest results overall. 

PaSiScore performed the worst in some targets such as 1VCC, 2CR7, and 
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1GYV. The plot also shows where some methods shared the same score for 

some targets such as 1AH9, and 1CEW. 

 

Figure 12. Performance in Yang Zhang’s Data of PairScore, SecSeq, 
GivenAASeq, Given4merSeq, and Best GDT (blue) on y-axis and the 56 Targets 
on the x-axis for Top1 Selection. 
 
 All the methods in the above graph are 4mer methods. In the overall 

results, GivenProSeq performed the best, then Given4mer, Pair Score, and the 

last is Secondary Sequence method. GivenProSeq performed the best in some 

targets such as 1CEW. However, it performed the worst in some targets such as 

1HBK and 2REB. Given4merSeq method performed the best in some targets 

such as 1ABV, and 1CSP targets. It also performed the worst in some targets 

such as 1ITP, 2F3N, and 1GJX targets. Pair score performed the best in some 

targets such as 1OGW and 2PCY targets even though it did not perform well in 

some cases such as 1DI2 and 1AOY. Secondary sequence method performed 
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the best in some targets such as 1VCC and 1GNU targets. However, it 

performed the worst in a lot of targets such as 1TFI, 1B09, and 1CSP targets. 

 

Figure 13. Performance in Yang Zhang’s Data of CGDT, CombinedMethod and 
Best GDT (Blue) on y-axis and the 56 Targets on the x-axis for Top1 Selection. 
 
 CombinedMethod performed better than CGDT in the overall results. In 

the plot, CombinedMethod performed better in some targets such as 1ABV and 

1THX targets. However, both methods shared the same score in many targets 

because the model was trying to maximize the score among a set of methods, 

and because the CGDT performed the best after CombinedMethod ranking on all 

methods. Now, CombinedMethod learned most likely from CGDT. From the plot, 

CGDT performed a little bit better than CombinedMethod in few targets such as 

1TIF and 1ITP because the model had some error. 
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Figure 14. Performance in Yang Zhang’s Data of DDFire, CombinedMethod, 
SPSP, and Best GDT (Blue) on y-axis and the 56 Targets on the x-axis for Top1 
Selection. 
 
 The above graph has three different methods from different aspects. In 

terms of the overall results, CombinedMethod was better than DDFire and Single 

Position Specific Probability (SPSP) Score. CombinedMethod performed the best 

in some targets such as 1B4B, 1NE3, 1BM8 and 1AF7. It did not perform the 

worst case in any target which was expected. DDFire performed the best in some 

cases such as 1PGX, 2REB, and 1MLA. However, it performed the worst in 

some other cases such as 1HBK, 1ABV, and 2CR7. Single Position Specific 

Probability (SPSP) Score performed the best in some targets such as 1KJS, 

2CR7, and 1GYV. However, it performed the worst in some cases such as 

2REB, 1TIG, and 1B72. 
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Figure 15.. Performance in Yang Zhang’s Data of CGDT, Combined Score, and 
best GDT (Blue) on y-axis and the 56 Targets on the x-axis for Top5 Selection. 
 
 In the overall results, combined score performs better than CGDT. In the 

above figure, CombinedMethod performed the best in some targets such as 

1ABV, 1AF7. CGDT performed better in some targets such as 2A0B. However, 

both methods have similar scores in most targets which explain the reason for 

not seeing the green curve. It was expected to have similar results for these 

methods especially in the Top5 selection due to the fact that CGDT performs 

better than other methods except for the CombinedMethod, and the 

CombinedMethod performed better than the state-of-art methods. 
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Figure 16. Performance in Yang Zhang’s Data of ConsSeq, SPSP, PaSiScore, 
and Best GDT (Blue) on y-axis and the 56 Targets on the x-axis for Top5 
Selection. 
 
 In the Top5, PaSiScore performs the best; then ConsSeq; and the last is 

Single Position Specific Probability Score (SPSP)  in the overall results. 

PaSiScore performed the best in 1ITP, 1BM8, and 1OF9 targets. However, it 

performed the lowest in some targets such as 1NE3 and 1AF7. ConsSeq 

performed the best in some targets such as 1BM8, 1TIF and 2REB. However, it 

was the worst in some cases such as 1KJS and 1SRO. Single Position Specific 

Probability (SPSP) Score performed the best in some targets such as 1NE3 and 

1MLA. However, it performed the worst in some cases such as 1MN8, and 1OF9. 
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Figure 17. Performance in Yang Zhang’s Data of PairScore, SecSeq, 
Given4mer, GivenProSeq, and Best GDT (Blue) on y-axis and the 56 Targets on 
the x-axis for Top5 Selection. 
 
 In the above graph, the comparison is between 4-mer methods. In the 

overall results, Given4mer performed the best followed by GivenProSeq, Pair 

score, and SecSeq respectively. Given4mer method performed the best in some 

targets such as 1ABV, 1AF7, and 1SHF. However, it performed the worst in 

some targets such as 1GJX and 1PGX. GivenProSeq method performed the best 

in some targets such as 2A0B. However, it also performed the worst in some 

targets such as 1B72. PairScore performed the best in some targets such as 

1B72 and 1ITP. In this target, it predicted the best decoy. On the other hand, it 

performed the worst in some targets such as 1NPS. Secondary sequence 

performed the best in some targets such as 1NPS. However, it performed the 

worst in some targets such as 1BM8, 1NE3, 1TFI, and 1SHF. 
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Figure 18. Performance in Yang Zhang’s Data of DDfire, DFire, RW, and Best 
GDT (Blue) on y-axis and the 56 Targets on the x-axis for Top5 Selection. 
 
 In the above graph, the methods show only single scores. In the overall 

results, Dfire performed the best, then DDfire, RW, and Opus-ca respectively. 

Dfire and DDFire methods had similar results. Dfire performed better in 1ORG 

target. DDfire performed better in 1PGX target. They both performed high in 

1SHF. However, they both performed the worst in 2CR7. RW performed the best 

in some targets such as 1KJS, 1GNU, and 1MKY. However, it performed the 

worst for some targets such as 1MLA. Opus-ca performed the best in some 

targets such as 1HBK and 2A0B. However, it performed the worst in some 

targets such as 1AF7 and 2REB. Overall all in the plot, all the methods 

performed very well because of the capability to choose the best one from the 

Top5 models. 
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Figure 19 Performance in Yang Zhang’s Data of Combined Score, DDFire, 
SPSP, and best GDT (Blue) on y-axis and the 56 Targets on the x-axis for Top5 
Selection. 
 
 In the above graph, the comparison is between mixed methods from 

different aspects. In the overall results, DDFire had the best performance, then 

CombinedMethod, followed by Single Position Specific Probability (SPSP) Score. 

CombinedMethod performed the best in some targets such as 1AF7 and 1BM8. 

However, it performed the worst in some cases such as 1KJS and 1MLA. DDFire 

performed the best in some targets such as 1VCC, 1AH9 as well as 1O2F and 

1B72. However, it performed the worst in some cases such as 1HBK and 2CR7. 

Single Position Specific Probability (SPSP) Score performed the best in a few 

targets such as 1R69. However, it performed the worst in some targets such as 

1MN8 and 1B72. 
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Figure 20 Performance in Yang Zhang’s Data of CGDT, CombinedMethod and 
best GDT (Blue) on y-axis and the 56 Targets on the x-axis for Avg5 Selections. 
 
 In the above graph, CombinedMethod still performed better than CGDT. It 

also performed better in the overall results. CombinedMethod performed the best 

in some targets such as 1ABV. However, it performed the worst in some targets 

such as 1BM8. In most cases, CombinedMethod and CGDT have similar scores. 
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Figure 21. Performance in Yang Zhang’s Data of ConsSeq, SPSP, PaSiScore 
and Best GDT (Blue) on y-axis and the 56 Targets on the x-axis for Average 
Top5 selections. 
 
 In the above graph, all the methods are 4-mer methods. In the overall 

results, Single Position Specific Probability (SPSP) Score performed the best, 

then PaSiScore followed by ConsSeq. Since it is the average of the Top5 

models, there were no big differences between the scores in every target. For 

example, SPSP performance was very similar to the others. It achieved a good 

score in some targets such as 1CSP and 1O2F. In this kind of a plot, if there is a 

big difference in some targets, there should be a big match or mismatch for that 

target with a method. The goal was to analyze the methods that match some 

targets as well as the methods that do not match other targets. In this way, 

understanding how a given target fits such a method helps in selecting fitted 

methods for particular targets. For the Top5 average, the scores tell whether it is 

a good fit method for a target. ConsSeq performed better than the other methods 
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in some targets such as 1BM8 and 1NPS. However, it performed the worst in 

some targets such as 1O2F. PaSiScore performed the best in some targets such 

as 1TFI. However, PaSiScore performed the worst in some targets such as 

1VCC and 1AF7. 

 

Figure 22. Performance in Yang Zhang’s Data of Opus-ca, DDFire, DFire, RW, 
and Best GDT (Blue) on y-axis and the 56 Targets on the x-axis for Average 
Top5 Selections. 
 
 In the above graph, the methods are all single scores. In the overall 

results, they performed better as follows: Opus-ca, DDFire, DFire, and then RW. 

Opus-ca performed the best in few targets such as 1BM8, 1HBK and 1B72. 

However, it performed the worst in few other targets such as 1AF7. DDFire and 

Dfire methods gave almost similar results even for the average of the Top5 

models. They did not perform the best or the worst significantly. RW performed a 

little better than the other methods in a few targets such as 1TIG and 1EGX. 

However, RW performed the best in targets such as 1GJX and 1AH9. 
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Figure 23. Performance in Zhang’s Data of PairScore, SecSeq, GivenProSeq, 
Given4mer and Best GDT (Blue) on y-axis and the 56 Targets on the x-axis for 
Average Top5 Selections. 
 
 In the above graph, all the methods are 4-mer methods. In the overall 

results, the ranking for these methods are as follows: GivenProSeq, Given4mer, 

PairScore, and SecSeq. GivenProSeq performed better in some targets such as 

1ABV, 1HBK and 1NPS. However, it performed the worst in some targets such 

as 1ITP, 1PGX, 1CEW, and 1MLA. Given4mer method performed better than the 

other targets such as 1GJX. However, it performed the worst in some targets 

such as 1R69. Pair score performed the best among the methods in some 

targets such as 2PCY, 1GYV, 1PGX, 1TFI, and 1DTJ. However, it performed the 

worst in some cases such as 1NPS. Secondary sequence method performed the 

best over the other methods in some targets such as 1VCC. However, it 

performed the worst in some other targets such as 1TFI, 1AH9, and 1SH
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Figure 24. Performance in Yang Zhang’s Data of SPSP, DDFire, 
CombinedMethod, and Best GDT (Blue) on y-axis and the 56 Targets on 
the x-axis for Average Top5 Selections. 

 In the above figure, the methods are from different aspects. Overall 

CombinedMethod performed the best; DDfire came in second; the last was 

Single Position Specific Probability (SPSP) Score. CombinedMethod performed 

the best in some targets such as 1ABV, 1AF7, and 1HBK. CombinedMethod did 

not show any significant worst cases. DDfire performed the best in some cases 

such as 1SHF and 1B72. However, DDfire performed the worst in some cases 

such as 1HBK and 2CR7. Single Position Specific Probability (SPSP) Score 

performed the worst in some cases such as 1NPS, 1SHF, and 1B72. 
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4.2. Performance on Rosetta Data 

 

Figure 25. Performance in Rosetta Data of CGDT, CombinedMethod and Best 
GDT (Blue) on y-axis and the 56 Targets on the x-axis for Top1 Selection. 
 
 Overall CombinedMethod performed better than CGDT. CombinedMethod 

performed the best in some targets such as T0472, T0409, and T0469. In those 

targets, CGDT performed very low compared to the CombinedMethod. CGDT 

performed better in T0396 target. However, CGDT performed low in some 

targets such as T0507 and T0472. CombinedMethod showed significant 

improvement in performance over the state-of-the-art methods. 
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Figure 26. Performance in Rosetta Data of DDFire, Opus-ca, RW, and Best GDT 
(Blue) on y-axis and the 56 Targets on the x-axis for Top1 Selection. 
 
 In the above graph, all the methods are single scores. Overall DDFire 

performed the best; Opus-ca came in second; and the last was RW. DDFire 

performed better than the other methods in some targets such as T0485, T0433, 

and T0473. However, it performed worse than the other methods in some cases 

such as T0444 and T0415. Opus-ca performed better in some targets such as 

T0444, T0498, and T0415. However, it performed worse in some targets such as 

T0469 and T0396. RW performed better in some targets such as T0471 and 

T0509. However, it performed worse in some other targets such as T0459 and 

T0472.  
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Figure 27. Performance in Rosetta Data of PairScore, GivenAASeq, Given4mer, 
and Best GDT (Blue) on y-axis and the 56 Targets on the x-axis for Top1 
Selection. 
 
 In the above graph, all the methods are based on 4-mer sequence. In the 

overall results, GivenAASeq performs the best; Pair score comes second, and 

Given4mer ranked last. GivenAASeq performed the best in some targets such as 

T0455, T0480, and T0437. However, it performed the worst in some cases such 

as T0408, T0459 and T0499. Given4mer performed the best in some targets 

such as T0498, T0485 and T0415. However, it performed the worst in some 

targets such as T0469, T0492, T0479, and T0488. Pair score performed the best 

in some targets such as T0409 and T0459. However, it performed the worst in 

some other targets such as T0455. 
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Figure 28. Performance in Rosetta Data of SPSP, ConsSeq, PaSiScore, and 
Best GDT (Blue) on y-axis and the 56 Targets on the x-axis for Top1 Selection. 
 
 In the above graph, all the methods are based on 4-mer sequence. 

Overall ConsSeq performed the best followed by PaSiScore and then Single 

Position Specific Probability (SPSP) Score. ConsSeq performed the best in some 

targets such as T0491 and T0479. However, it performed worse than the other 

methods in some cases such as T0444 and T0469. PaSiScore performed better 

in some targets such as T0392 and T0408. However, it performed worse than 

T0491 and T0488. Single Position Specific Probability (SPSP) Score performed 

better in some targets such as T0444 and T0455. However, it performed the 

worst in T0409. 
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Figure 29. Performance in Rosetta Data of DDFire, SPSP, Combined Score, and 
Best GDT (Blue) on y-axis and the 56 Targets on the x-axis for Top1 Selection. 
 
 In Figure 28, the compared methods are from different aspects. Overall 

CombinedMethod ranked first, then DDFire, and Single Position Specific 

Probability (SPSP) Score was last. CombinedMethod performed better in most 

cases such as T0471, T0472, T0415, and T0396. As expected, it did not give 

significantly lower results than the other methods. DDFire performed better in 

some targets such as T0455, T0433, and T0488. However, it performed worse 

than the other methods in some cases such as T0492 and T0396. Single 

Position Specific Probability (SPSP) Score was inferior to all other methods. 

Single Position Specific Probability (SPSP) Score performed less than the other 

methods, notably in targets T0507, T0485, and T0509. 
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Figure 30. Performance in Rosetta Data of CGDT, CombinedMethod and Best 
GDT (Blue) on y-axis and the 56 Targets on the x-axis for Top5 Selection. 
 
 In the above graph, CombinedMethod performed better than CGDT. 

CombinedMethod performed better in some cases while CGDT had low scores, 

notably in T0444, T0455, T0475, T0507, and T0432. However, in many cases 

CGDT had similar scores. CGDT performed better than CombinedMethod in few 

cases such as T0503 and T0480. This was due to some error in the model for 

the CombinedMethod. 
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Figure 31. Performance in Rosetta Data of DDFire, Opus-ca, RW, and Best GDT 
(Blue) on y-axis and the 56 Targets on the x-axis for Top5 Selection. 
 
 In the above graph, the methods are single scores only. In the overall 

results, DDFire performed the best, then RW, and finally Opus-ca. DDFire 

performed the best in some cases such as T0469, T0458, and T0485. However, 

it performed the worst in some cases such as T0392. Opus-ca performed the 

best in some cases such as T0415, T0454, and T0453. However, it performed 

the worst in some cases such as T0471, and T0437. RW performed the best in 

some cases such as T0503, T0475, and T0467. However, RW performed the 

worst in some cases such as T0507, T0432, T0396, and T0499. 
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Figure 32. Performance in Rosetta Data of PairScore, GivenAASeq, Given4mer, 
and Best GDT (Blue) on y-axis and the 56 Targets on the x-axis for Top5 
Selection. 
 
 In the above graph, all the methods are based on 4-mer sequence. In the 

overall results, GivenAASeq performed the best, while PairScore came in 

second, and the last was Given4mer. GivenAASeq performed the best in some 

targets such as T0455, T0437, and T0492. However, it performed the worst in 

some cases such as T0432. PairScore performed the best in some targets such 

as T0471, T0467, and T0469. However, it performed the worst in some cases 

such as T0392 and T0499. Given4mer performed the best in some targets such 

as T0498 and T0472. However, it performed the worst in some cases such as 

T0467, T0454, and T0479. 
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Figure 33. Performance in Rosetta Data of SPSP, ConsSeq, Sum of Pair-SPSP 
score, and Best GDT (blue) on y-axis and the 56 Targets on the x-axis for Top5 
Selection. 
 
 In the above graph, all the methods are based on 4-mer sequence. In the 

overall results, Single Position Specific Probability (SPSP) Score performed the 

best over all the methods, with ConsSeq ranking second, and PaSiScore ranking 

last. Single Position Specific Probability (SPSP) Score performed the best on 

some cases such as T0503, T0432, and T0492. However, it performed the worst 

in T0446. ConsSeq performed the best in some cases such as T0415 and 

T0488. However, it performed the worst in some cases such as T0507, T0471 

and T0509. PaSiScore had the worst performance in all the cases, most notably 

in T0491 and T0502. 



 

67 
 

 

Figure 34. Performance in Rosetta Data of DDFire, CombinedMethod, SPSP, 
and Best GDT (Blue) on y-axis and the 56 Targets on the x-axis for Top5 
Selection. 
 
 In the above graph, the methods are from different aspects. In the overall 

results, CombinedMethod performed the best. DDFire ranked second followed by 

Single Position Specific Probability (SPSP) Score. CombinedMethod performed 

the best in some cases such as T0454, T0502, T0396, and T0415. However, it 

performed the worst in some other cases such as T0480. DDFire performed the 

best in some cases such as T0498, T0437, and T0488. However, it performed 

the worst in some cases such as T0503. Single Position Specific Probability 

(SPSP) Score performed the best in some cases such as T0408, T0503, and 

T0392. However, it performed the worst in some other cases such as T0444, 

T0509, and T0433. 
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Figure 35. Performance in Rosetta Data of CGDT, CombinedMethod and Best 
GDT (Blue) on y-axis and the 56 Targets on the x-axis for Avg5 Selection. 
 
 In the above figure, CombinedMethod performed better than CGDT in the 

overall results. CombinedMethod performed better than CGDT in some targets 

such as T0472, T0432 and T0433. However, CombinedMethod performed worse 

than CGDT in some targets due to training error such as T0480.  
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Figure 36. Performance in Rosetta Data of DDFire, Opus-ca, RW, and Best GDT 
(Blue) on y-axis and the 56 Targets on the x-axis for Avg5 Selection. 
 
 In the above graph, all the methods are single scores. In the overall 

results, DDFire performed the best followed by RW and then Opus-ca. DDFire 

performed the best in some targets such as T0485 and T0469. However, DDFire 

performed the worst in some targets such as T0392. Opus-ca performed the best 

in some targets such as T0392. However, it performed the worst in some other 

targets such as T0409. RW performed the best in some targets such as T0471 

and T0503. However, it performed the worst in some other targets such as 

T0396.  
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Figure 37. Performance in Rosetta Data of PairScore, GivenAASeq, Given4mer, 
and Best GDT (Blue) on y-axis and the 56 Targets on the x-axis for Avg5 
Selection. 
 
 In the above graph, all the methods are based on 4-mer sequence. Pair 

score performed the best, GivenAASeq, and then Given4mer. Pair score 

performed the best in some targets such as T0469 and T0467. However, it did 

not perform a distinct low score. GivenAASeq performed the best in some targets 

such as T0437. However, it did not receive a really significant bad performance 

score. Given4mer performed the best in some targets such as T0498, T0453, 

and T0499. However, it performed the worst in some other cases such as T0545 

and T0479.  
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Figure 38. Performance in Rosetta Data of SPSP, ConsSeq, Sum of Pair–SPSP 
score, and Best GDT (Blue) on y-axis and the 56 Targets on the x-axis for Avg5 
Selection. 
 
 In the above graph, all the methods are based on 4-mer sequence. 

Overall Single Position Specific Probability (SPSP) Score performed the best 

followed by ConsSeq and then PaSiScore. SPSP performed the best in some 

cases such as T0503. It did not perform badly in all cases. ConsSeq method 

performed the best in some cases such as T0488. However, it performed the 

worst in some cases such as T0400. PaSiScore did not perform better than any 

of the other methods, performing the worst in T0491 and T0492. In general, the 

curves go close to each other in most cases. That means they pick the Top5 

models in a very close way. 
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Figure 39. Performance in Rosetta Data of SPSP, DDFire, Combined Score, and 
Best GDT (Blue) on y-axis and the 56 Targets on the x-axis for Avg5 Selection. 
 
 In the above graph, the methods are from different aspects. Overall, 

CombinedMethod performed the best followed by DDFire and then Single 

Position Specific Probability (SPSP) Score. CombinedMethod performed the best 

in some targets such as T0509, T0502, and T0432. DDFire performed the best in 

some targets such as T0488. However, DDFire performed the worst in some 

other targets such as T0396. SPSP performed the best in some targets such as 

T0503. However, SPSP performed the worst in some targets such as T0479 and 

T0509. 
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Table 10.  Best and Worst performance of the Methods over the Targets in Both 
Benchmarks for Top1 Model Selection. 
 

Top1 in both Benchmarks 

 Yang Zhang’s Data Rosetta Data 

Method 
Best 

performance 
Worst 

performance 
Best 

performance 
Worst 

performance 

CGDT 1TIF,1ITP 1ABV T0396 T0507,T0472 

DDFire 1MLA 1B09,2CR7 T0485,T0433 T0444,T0415 

Opus-ca 1CEW,1SRO 1AF7 T0415,T0444 T0469,T0396 

RW 1KJS 1TEN T0471,T0509 T0459,T0472 

SPSP 1SHF,1DI2 1PGX T0444,T0455 T0409 

Given4merSeq 1ABV,1CSP 1ITP,1GJX  T0498,T0485 T0492,T0479 

GivenProSeq 1CEW 2REB T0480,T0437 T0408,T0499 

Cons.Seq 1MKY,2REB 1AF7 T0491,T0479 T0444,T0469 

CombinedMethod 1ABV,1THX 1ITP T0469,T0472 T0396 

Pair Score 1OGW,2PCY 1DI2,1AOY T0409,T0459 T0455 

SumOfPaSPSPscore 1B72 1VCC,2CR7 T0392,T0408 T0491,T0488 

 

Table 11.  Best and Worst Performance of Methods Over Targets in Both 
Benchmarks for the Best Model Chosen from the Top5 Models Selection. 
 

Top5 in both Benchmarks 

 Yang Zhang’s Data Rosetta Data 

Method 
Best 

performance 
Worst 

performance 
Best 

performance 
Worst 

performance 

CGDT 2A0B 1ABV T0503,T0480 T0444 

DDFire 1SHF 2CR7 T0458,T0485 T0392 

Opus-ca 1HBK,2A0B 1AF7,2REB T0454,T0453 T0471,T0437 

RW 1KJS,1MKY 1MLA T0503,T0475 T0507,T0432 

SPSP 1NE3,1MLA 1OF9 T0432,T0492 T0446 

Given4merSeq 1ABV,1SHF 1GJX,1PGX T0498,T0472 T0454,T0479 

GivenProSeq 2A0B 1B72 T0455,T0437 T0432 

Cons.Seq 1BM8,2REB 1KJS,1SRO T0415,T0488 T0507,T0471 

CombinedMethod 1ABV,1AF7 2A0B T0444 T0503,T0480 

Pair Score 1ITP,1B72 1NPS T0471,T0469 T0392,T0499 

SumOfPaSPSPscore 1ITP,1OF9 1NE3,1AF7 T0454 T0491,T0502 
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Table 12.  Best and Worst Performance of Methods Over Targets in Both 
Benchmarks for the Average Top5 Models Selection. 

 
Avg5 in both Benchmarks 

 Yang Zhang’s Data Rosetta Data 

Method 
Best 

performance 
Worst 

performance 
Best 

performance 
Worst 

performance 

CGDT 1BM8 1ABV T0480 T0472,T0432 

DDFire 1SHF,2F3N 1NE3 T0485,T0469 T0392 

Opus-ca 1BM8,1B72 1AF7 T0392 T0409 

RW 1TIG,1EGX 1GJX, 1AH9 T0471,T0503 T0396 

SPSP 1CSP 1ITP T0503 T0446 

Given4merSeq 1GJX 1R69 T0498,T0453 T0545,T0479 

GivenProSeq 1ABV,1HBK 1ITP, 1MLA T0437 T0432 

Cons.Seq 1BM8,1NPS 1O2F T0488 T0400 

CombinedMethod 1ABV 1BM8 T0472,T0432 T0480 

Pair Score 2PCY,1PGX 1NPS T0469,T0467 T0473 

SumofPaSiScores 1TFI 1VCC, 1AF7 T0509 T0491 
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Figure 40. The Relationship between Combined Score and Real GDT on 1SFP 
Target in Yang Zhang Data 
 

In the above graph, figure 40, 1SFP target decoys scores are plotted. It is 

considered to be an easy target in Zhang’s Data. On the y-axis the real GDT was 

considered as a standard measurement. The combined score is on the x-axis the 

combined score. It partially correlates with real GDT. There are 308 decoys. 

Some of them correlate with GDT. However, the others are above or below the 

expectations. Combined score can predict one of the best decoys and ranks it 

the first. Some decoys share the same score from both measurements. 
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Figure 41. The Relationship between Combined Score and Real GDT on 1AF7 
target in Yang Zhang Data 

 
In the above graph, figure 41, 1AF7 target decoys scores are plotted. It is 

considered to be a medium target in Zhang’s Data. On the x-axis is the real GDT. 

On the y-axis is the combined score. It partially correlates with real GDT. There 

are 527 decoys. Some of them correlate with GDT. However, the others are 

above or below the expectations. Combined score can predict one of the best 

decoys and rank it as first. Some decoys share the same score from both 

measurements. 
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Figure 42. The Relationship between Combined Score and Real GDT on 1BM8 
Target in Yang Zhang Data 
 

In the above graph, figure 42, 1BM8 target decoys scores are plotted. It is 

considered to be a hard target in Zhang’s Data. On the x-axis is the real GDT. On 

the y-axis is the combined score. It partially correlates with real GDT. There are 

329 decoys. Few of them correlate with GDT. However, most of them are above 

or below the expectations. Combined score is not able of rank the best decoy in 

this target. Some decoys share the same score from both measurements. 
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Figure 43.  The Relationship between Combined Score and Real GDT on T0415 
Target in Rosetta Data 
 

In the above graph, figure 43, T0415 target decoys scores are plotted. It is 

considered to be a hard target in Rosetta Data. On the x-axis is the real GDT. On 

the y-axis is the combined score. It partially correlates with real GDT. There are 

400 decoys. Some of them correlate with GDT. However, the other some are 

above or below the expectations. Combined score ranks the best decoy in this 

target among the Top5 models. Some decoys share the same score from both 

measurements. 
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Figure 44.  The Relationship between Combined Score and Real GDT on T0491 
Target in Rosetta Data 
 

In the above graph, figure 44, T0491 target decoys scores are plotted. It is 

considered to be a hard target in Rosetta Data. On the x-axis is the real GDT. On 

the y-axis is the combined score. It partially correlates with real GDT. There are 

400 decoys. Some of them correlate with GDT. However, the other some are 

above or below the expectations. Combined score ranks the best decoy in this 

target to the first decoy. Some decoys share the same score from both 

measurements. 
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Figure 45. The Relationship between Combined Score and Real GDT on T0498 
Target in Rosetta Data  
 

In the above graph, figure 45, T0498 target decoys scores are plotted. It is 

considered to be a hard target in Rosetta Data. On the x-axis is the real GDT. On 

the y-axis is the combined score. It is scattered with real GDT. There are 400 

decoys. Most of the decoys share the GDT score if we look at it from the side. 

Combined score fails to rank the best decoy in this target. 
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Figure 46. Comparison between combined score and CGDT in 1ABV from 

Zhang’s Data. 

 In the previous graph, this is an example to show that combined score 

performed better than CGDT. Combined score chose a decoy that has GDT 

score better than the first decoy picked by CGDT. In the upper graph, combined 

score picked a decoy had 0.48. However, CGDT chose the first decoy that had 

0.39. CGDT cannot differentiate between different clusters whether they are 

similar to each other or not. For example, looking from y-axis, there are two 

clusters at the end of the graph which are clustered based on the real GDT 

However, looking from x-axis, there is only one cluster at the end of the graph. 
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Figure 47. Comparison between combined score and CGDT in 1THX from 

Zhang’s Data. 

 In the previous graph, combined score also performed better than CGDT. 

The first decoy was chosen by combined score had 0.78. However, the first 

decoy was chosen by CGDT had 0.73. The interesting note is that CGDT had 

really dense cluster which seems that this target is an easy target to be 

predicted.  

-2 -1 0 1 2 3 4
0.4

0.5

0.6

0.7

0.8

0.9

Combined Score

R
e
a
l 
G

D
T

The relationship between Combined score and GDT-TS for.1THX Target. Number of Decoys:302

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1
0.4

0.5

0.6

0.7

0.8

0.9

CGDT Score

R
e
a
l 
G

D
T

The relationship between CGDT and GDT-TS for.1THX Target. Number of Decoys:302



 

83 
 

 

Figure 48. Comparison between combined score and CGDT in T0472 from 

Rosetta Data. 

 In the previous graph, the first decoy chosen by combined score had 0.44. 

However, the first decoy chosen by CGDT had 0.3. The ranges are different. 

That tells that CGDT could give a low score for decoys far from where the density 

is. Another notice is that CGDT seems to be denser than combined score. 
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Figure 49. Comparison between combined score and CGDT in T0469 from 

Rosetta Data. 

 In the above graph, combined score performed well. The first decoy 

chosen by combined score had 0.67 GDT score. However, the first decoy chosen 

by CGDT had 0.50. Also, CGDT has a wider range and denser in the middle. 
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Figure 50. Comparison between combined score and CGDT in T0507 from 

Rosetta Data. 

 In the previous graph, the first decoy chosen by combined method had 

0.38 GDT score. However, the first decoy chosen by CGDT had 0.26. Also, the 

same notice, CGDT seems to have a wider range and denser.  
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Future Work 

The main factors helping combined score performs better than CGDT 

score were the CGDT score itself and the 4-mer sequence SPSP as features in 

training data. The main challenge is redundancy when the data generated as a 

pair-wise matrix for all the decoys. Removing those redundant observations more 

efficiently, not only from the training data but also from testing data, will improve 

performance significantly. Also, using regression methods might help improve 

performance better than classification methods. Although the performance of 

consensus methods was not as good as expected, the consensus methods still 

proved helpful in combination method. Adding more features as scores might 

help improve the overall scores. 

 CombinedMethod can be improved properly by improving some machine 

learning aspects such as taking the number of positive records and the number 

of negative records to be almost equal for training datasets. It helps the model to 

learn better. As a result, the performance may become better on the testing data. 

Also, setting different parameters for neural network should be considered.  

 Target classification before prediction shows how to deal with different 

kinds of classes. For example, easy targets should not be treated as hard targets 

or medium targets. Using different methods for different levels of target difficulty 

helps improve the score. Setting some criteria for sequence alignment search is 

one way to do the classification. For example, setting E-value <0.005 with BLAST 

hit gives an easy target case. Other hits are medium cases. No hits are hard 

targets. 
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 Trying different approaches in machine learning might add some 

improvement. Machine learning should not be restricted to classification methods 

such as neural network or SVM. Other worthwhile machine learning approaches 

are as regression, such as SVM regression, k nearest neighbor regression, and 

regression by discretization based on random forest. 

 Deleting redundant decoys that have the same GDT score with other 

decoys will help the model learn better and get better results since the error will 

be minimized. For example, if there are three decoys that have a 0.4 GDT score, 

two of them should be removed for only training datasets. 

 Repeating CombinedMethod and adding the new combined score as a 

feature until convergence or until a fixed number of repetitions is achieved will 

improve the score. Also, deleting one feature, such as the lowest method 

performance, is better if the new CombinedMethod is added as a new feature. 

 On a larger scale, learning from a target and applying it to a similar target 

is another good research procedure. In this case, classifying the targets into 

classes needed to be done. In every class, there must be at least two targets. 

One target is for training; and the other is for testing, and vice versa. 

Classification can be done as a sequence similarity between the targets, 

recording sequence length, secondary structure, and solvent accessibility. If 

there is a target that has no other similar target in the dataset, a target from 

different datasets should be found for training data. In this way, the training and 

the testing will have something in common. Such target selection utilizing the 
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CombinedMethod will give higher weight to the method that fits those kinds of 

targets. 
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Chapter 5.  Conclusion 

 Having only the prediction information for set of decoys for one protein, 

the challenge was how to measure a protein structure prediction, whether 

individually or in a set of decoys, and how to rank them and pick the best decoy 

which is closest to the native. Assessing a prediction is mainly based on two 

categories. First, the knowledge-based approach is based on previous 

knowledge from natives whether extracting a pattern that the natives have or 

characteristics in a particular angle or level since the proteins have a lot of 

factors they depend on. The knowledge-based class can measure the single 

decoys. The fact is that learning from natives and applying to decoys is not 

suggested because the decoys are different from natives. Second, the other 

class is based on consensus-based approach. In this case, it requires a set of 

decoys. Consensus method is a measure between the decoys in the same 

target, and it is a very successful method. 

 In this thesis, most of the methods were based on the consensus-based 

approach. For example, Single Position Specific Probability (SPSP) Score 

measures per position. PairScore measures the frequency of pair states in a set. 

Cons.Seq measures the decoys to the most frequent sequence. In the 

knowledge based approach,   the general matrix was calculated based on native 

structures. Then, this matrix was applied on the decoys. For example, the 

method for calculating the probability of 4-mer sequence given Amino acid 

sequence is a 17 states by 20 amino acids matrix, and vice versa. Another 
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example, secondary structure sequence, is a 17*81 matrix. Those methods did 

not perform as well as expected. 

This research developed a CombinedMethod approach to address the 

quality assessment problem for protein structure prediction. Methods based on 4-

mer sequence did not get any improvement over single scores such as DFire and 

RW, but they contributed significantly in the combination method. Single Position 

Specific Probability (SPSP) Score for 4-mer sequence was based on consensus 

approach. It performed the best among all the other suggested methods based 

on 4-mer sequence. Using methods based on 4-mer sequence individually fails 

in model selection and does not perform better overall than single scores. 

However, the fact that 4-mer methods performed better in some targets including 

CGDT in some targets inspired the idea of using the combination method. 

Removing Single Position Specific Probability (SPSP) Score from the 

CombinedMethod consistently gives a significantly bad score--less than CGDT. 

In this way, Single Position Specific Probability (SPSP) Score based on 4-mer 

sequence is an important feature as complementary to the other scores in the 

CombinedMethod. Preprocessing the data helps achieve a higher score. For 

example, removing the observations that have GDT difference less than 0.01 

contributed to the training of the model enabling it to learn better. As a result, 

CombinedMethod performed better than the state-of-the-art methods. Refining 

the method selection process can help researchers improve protein selection 

modeling, saving time and yielding better results in the future. Using the 

CombinedMethod proved to be a way to accomplish these goals in that it proved 
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to be more efficient. This finding can save time, yield better results, and reduce 

cost. 
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