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PHYSICAL IMPLICATIONS OF CHARACTERISTIC SPEEDS AND  

WAVEFORMS OF RAILS ON ELASTIC FOUNDATIONS 

 

Cory A. Kaufman 

Dr. P. Frank Pai, Thesis Supervisor 

 

ABSTRACT 
 

When a moving load is applied on an elastic rail with an elastic insulator, wave 

propagation can occur and become problematic after certain characteristic speeds are 

reached. Research of these waveforms and characteristic speeds is specifically applicable 

for understanding electromagnetic railgun dynamics. There are three characteristic speeds 

for an elastic rail on an elastic foundation: critical, shear, and bar speeds - critical speed 

being the slowest and the first speed reached by the armature, followed by shear and bar 

speeds respectively. Studying these speeds and the deformations associated with them is 

essential in understanding the dynamics and damage effects of rail-armature interaction. 

One dimensional analysis of a quasi-stationary load moving along an infinite 

beam on an elastic foundation reveals different waveforms between these characteristic 

speeds. Before the critical speed there is a standing wave on the rail. When the moving 

load resonates with the standing wave at a critical excitation frequency this is called the 

critical speed. After the critical speed, elastic propagation of waves occurs in front of and 

behind the load causing a bumpy path for the load as it moves. In the case of a railgun, 

the extremely high forces along with an uneven path can cause significant damage to the 

rail as well as large mass loss in the armature. As the moving load speed approaches the 

shear speed, the wave lengths in front of the load become shorter and shorter until the 

point at which propagating waves no longer exist in front of the load, which is known as 

the shear speed. Between the shear and bar speeds, a single exponentially decaying, non-

oscillating wave exists in front of the load, but backward waves continue to grow in 

amplitude and wavelength. Once the bar speed is reached, no transverse elastic waves can 

be pushed faster than the load, therefore no waves exist in front of the moving load, but 

significant backward waves can cause serious impacts since in reality the load has 
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multiple points in contact with the rail. Also important to note is that a backward 

longitudinal wave known as the bar-mode exists, and the rail acts like a rigid bar 

resonating with the elastic foundation after the bar speed.  

Furthermore, two-dimensional finite element analyses of rail cross-sectional 

planes can reveal the geometrical mode shapes and their longitudinal wave propagation 

within the rail. There are six relevant modes for a rail cross-sectional plane: bending with 

respect to three orthogonal directions, a longitudinal wave (bar-mode), a torsional wave, 

and a shear wave. Under different excitation frequencies the magnitudes and propagation 

speeds of these modes change. With an elastic foundation we show that some of these 

modes have cut-on speeds, which result in different critical velocities in the rail-armature 

system. Moreover, the relationship between the critical speeds and different geometrical, 

thermal, and insulator properties are examined. Understanding the waveforms and mode 

shapes of a typical rail-foundation is the goal of this research. With a firm understanding 

of the dynamics and accurate modeling, various computational scenarios are investigated 

to find a feasible solution that can reduce the damaging interaction between the armature 

and rails. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

 Large, rapidly moving loads have great effects on the dynamics of structures in 

contact with such loading. Some examples of these systems include train railways and 

airport runways. Serious vibrations and induced stresses can occur that are much greater 

than static stresses. Typical research is only done around the critical speed, however in 

higher speed applications more characteristic speeds are essential in studying the 

dynamics of such a system [1, 2]. The US Navy’s concept for an all-electric ship has 

pushed forward the study of electromagnetic railguns, especially in the area of extending 

rail lifetime and thermal control of quick, successive launches [3]. To this point little is 

understood about the interaction between the armatures and rails. Large forces, currents, 

magnetic fields, and sliding contact surfaces create a unique dynamical problem, and 

those extreme conditions along with a bulky containment make sensors and experimental 

data collection hard to come by [4, 5]. Further comprehension of the dynamics of an 

electromagnetic railgun system is necessary to understand this rail and armature 

interaction in order to affect design changes and extend the rail lifetime.   

 As electromagnetic railguns are capable of launching projectiles at high 

velocities, there are many possibilities in regard to their range of uses. The most 

commonly thought of is as a weapon. High projectile speeds give the railgun long range 

and armor piercing capabilities that have not been seen before. Implementation into an 

all-electric battle ship would increase the ship’s attack radius and penetration capabilities 

as well as decrease the weight and volume of ammunition carried aboard. Standard 

battleship rounds are currently propelled by an explosive, i.e. gun powder, and are not 

only bulky in size but also heavy in weight. Railguns would eliminate the need for that 

extra size and weight. Another possible use under investigation is micro-satellite launch. 

Putting a large communication satellite into orbit is expensive; on the other hand small 

micro-satellites could be launched into orbit relatively cheaply. Although, this requires 

launch speeds in excess of 10 km/s, well above typical railgun launch speeds [6]. While 

this is possible, the forces and dynamics of such a system become increasingly more 

complex. Damage to the micro-satellite under large pressures and magnetic fields during 
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launch would have to be strictly controlled in some manner in order to maintain the 

satellites working integrity. Even though most railgun research is focused on solid 

armatures, plasma armatures have their benefits too. Specifically, the high energy of 

plasma armature launches have been theoretically thought to be capable of impact fusion 

reaction [7]. The idea is to miniaturize the electromagnetic railgun concept and encircle a 

group of molecules with multiple railguns within a chamber. Filling the chamber with a 

controlled gas and firing upon the molecules from all directions would provide the energy 

needed to start the reaction through impact. This theory has been criticized though since 

scaling down to sizes that small has not been done before, and from a control standpoint, 

the exact timing of impact from multiple railguns would be extremely difficult to 

manage. 

A railgun works from the simple physics of the interaction of current-induced 

magnetic fields. Figure 1.1 shows the principle of a railgun design with the armature 

velocity in the direction of the Lorenz force. The current flows through the rails, and a 

magnetic field is induced around the rails as shown in blue. When the current runs across 

the armature, an electromagnetic force is generated due to the current moving through the 

magnetic field. The Lorenz force can be calculated by Eq. (1.1) the cross product of 

current density vector (J) and the magnetic field vector around the rails (B), but the  

 

Pulse

power

supply

Current
Armature 0v

 

Figure 1.1: Railgun design and working principle. 
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magnetic field around the rails is proportionally induced by the current within the rails, so 

the Lorenz force is effectively proportional to the current density squared.  

                         (1.1) 

Moreover, at the same time, the current across the armature is creating its own 

magnetic field and the current along the rails runs through this magnetic field. This 

creates Lorenz forces in the rails as well pushing them outward, transversely away from 

each other introducing the need for containment. Typical railguns produce extremely 

large Lorenz forces which cause launch accelerations ranging from 10
4
 to 10

6
 times 

gravity, launch velocities in the range of 1 to 3 km/s, contact pressures in the range of 10 

to 500 MPa, current densities around 0.1 MA/cm
2
, and peak currents in the range of 100 

kA to 5 MA [5].   

 These extreme interfaces are pushing the limits of the present understanding of 

sliding electrical contact surfaces. Structural deformations and damages are severe and 

they limit the lifetime of the rails. To overcome this obstacle three main types of damage 

must be examined, understood, and acted upon [3]. Startup damage exists in the first third 

of the rail. This occurs when the very high current is transmitted through the same point 

of the rail for a relatively long time as the armature velocity is slow and it causes thermal 

damage and melting. For moderate velocity shots less than two kilometers per second 

there is armature transitioning. Armature transitioning is when the armature loses contact 

with the rails during launch [8-12]. For high velocity shots greater than two kilometers 

per second a failure mode called gouging exists [2, 13, 14]. The focus of this work is 

more related to modeling the rail and armature dynamics so start-up damage will be 

overlooked.  

Armature transitioning exists in moderate velocity shots (< 2 km/s). When the 

armature moves along the rail, it causes deformation waves along the length of the rail. 

As it accelerates it begins to pass over those waves causing excitation of the elastic 

system. Vibrations such as these cause the armature to pitch, roll, and yaw. The resulting 

forces and intermittent contact between the rail and armature follow elastic behavior, 

bouncing away from each other effecting a loss of contact between them [9, 10]. 

Gouging is damage caused by material interaction between the rails and armature 

in the form of material removal or melting. Dynamic deformations of the rails due to the 
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extreme forces and conditions cause slight gaps between the armature and rails allowing 

the armature to pitch, yaw, and roll. These movements cause intermittent contact between 

the armature and rails. When inertial forces are so great that the materials exhibit fluid-

like behavior, shock-induced pressure creates a region of plasticity under the location of 

impact [2]. Tangential motion of one body with respect to the other shears and deforms 

material at the points of impinging contact. When the shearing forces and interaction 

region becomes large enough to remove material, a gouge has been formed. Continual 

use and interaction will result in the gouge growing until the materials are no longer in 

contact [13].  

Friction loss is a possible occurrence at high speeds. At a velocity of 3 km/s the 

friction loss is about 5% of the electrical loss, and significant increases up to 20% have 

been observed at 5 km/s [15]. The friction force strongly depends on the dynamic 

deformation characteristics of the rails because small deformations due to loading and 

stress waves can have a dramatic effect on the contact pressure and flow of current 

between the armature and rails [16, 17]. This has been experimentally shown around the 

critical speed using finite element analysis (FEA) [10, 11, 18]. Moreover, it is true even 

at the beginning of launch when the armature’s speed is well below the critical speed, that 

small deformations radically affect the contact pressure and current flow [19]. 

 

1.2 Motivation 

 As armature transitioning and gouging are mainly caused by dynamic interaction 

between the armature and rails, study of structural dynamics should play a key role in 

understanding railgun dynamics and bore life. There are many studies on wave dynamics 

of rail-foundation systems, and many wave effects have been observed in experiments [1, 

5, 10-12, 14-27]. However, phenomenological observations are the heart of almost all of 

these studies. Literature review indicates that the actual causes and physical implications 

of the three characteristic speeds known as critical, shear, and bar speeds are not clearly 

revealed and understood even up to this moment. For example, the critical speed is often 

described to be the minimum speed at which an unattenuated wave can radiate from the 

moving load - that is a phenomenological definition, but what causes the radiating wave 

is not fully known. The causes of shear and bar speeds are not well studied and 
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understood in the literature either because most conventional engineering applications 

only involve speeds that are well below the shear speed. For example, Achenbach and 

Sun [27] explained the shear and bar speeds to be the armature speeds when a leading or 

a trailing resonance occurs, but the formation and shape of the waveform are not looked 

at. Furthermore, Chen and Huang [23] explained the critical speed to be the speed when 

the rail-foundation resonance happens at /k m  , where k=spring constant of the 

insulator and m=mass per unit length of the rail. We show in this work that /k m   

corresponds to the bar speed, instead of the critical speed. For a rail-foundation system, a 

harmonic force at a fixed location can excite and radiate a transverse elastic wave away 

only if the excitation frequency is greater than a critical excitation frequency, but no 

relation is known between this critical excitation frequency and the critical speed [28]. 

Moreover, why and how do the waveforms change at the characteristic speeds is not 

understood along with the physical implications of different waveforms around these 

speeds. Most reports in the literature only examine the transverse deformation and 

bending rotation because Timoshenko’s beam theory uses these two variables, but the 

role of shear rotation has not been studied. 

Before now, studies on characteristic speeds and wave dynamics of rail-

foundation systems have used multiple methods including complicated Fourier 

transforms. Huang proposed a unique dynamic stiffness method which is easier and more 

straightforward for derivation and understanding than the Fourier transform, but is 

inapplicable for our use as it only works for armature speeds below the shear speed [23, 

24]. This paper proposes an alternative, generalized dynamic stiffness method for the 

study of wave dynamics of rail-foundation systems that will be valid and accurate for all 

speeds. The actual causes and physical implications of the three characteristic speeds will 

be investigated through detailed derivation, reasoning, and numerical simulations which 

show wave propagation dynamics as well as physical phenomena around and between 

characteristic speeds. Moreover, acoustics and optical modes will be used to show that 

high speed wave dynamics is primarily caused by interactions between bending and shear 

rotations.  
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CHAPTER 2 

GOVERNING EQUATIONS 

2.1 Electromechanical Model 

In this work railguns will be modeled as a beam on an elastic foundation. The 

rails are usually made of copper alloys, and separated from a rigid outside containment 

(laminated steel) by an insulator. An elastic foundation is used to account for the elastic 

behavior of the rail insulator which is often made of a fiberglass material called G-10 or 

garolite (similar to the circuit board material FR-4). A simple electromechanical model of 

the system is shown in Fig. 2.1. A capacitor bank is used as the power source, and the 

changing rail length in which the current flows is modeled as a variable inductor. 

 

 

 

Figure 2.1: Electromechanical model of a railgun with a capacitor power supply. 

 

2.2 Electrical model 

The fundamental equations of motion for a capacitor driven electromagnetic 

launcher can be derived using an electromechanical Lagrangian L . Fig. 2.1 shows the 

electromechanical model of launcher where the circuit consists of a capacitor with a 

capacitance 0C , an inductor with an inductance 0L , and an overall resistance 0R . The 

barrel, treated as a variable inductor, can be modeled as a linear function of the armature 

position which agrees well with experiments. Therefore, we assume  

 

( ) ' ,   ' constantL x L u L       (2.1) 
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where u is the armature’s displacement, 0/u du dt v  , and 'L  is referred to as the 

inductance gradient of the launcher. For an infinite pair of rectangular conductors running 

parallel to one another, we have [18] 

0' log 1.5 k e

d
L

B C





  
     

     

 (2.2) 

where d  is the distance between the centers of rails, and B and C represent their cross-

sectional dimensions  with  C bring the smaller one. Variables  and k e 
 
are tabulated in 

Grover’s book [29]. For example, the Cornell launcher has =0.389k and 0.00249e  , 

and hence we obtain ' 0.273 /L H m  from Eq. (2.2), which is only an approximation 

because the rail length is finite here. An experimental value of 'L can be found using a 

precision LCR meter. 

The electromechanical Lagrangian L of the system is given by 

2 2 2

0

0

1 1 1
( ' )

2 2 2
L mu q L L u q

C
                       (2.3) 

The loss of armature mass during launching is neglected. The Rayleigh dissipation 

function  is defined as 

2

0

1
sgn( )

2
Nu u R q                      (2.4) 

where N is the normal contacting force, q is the charge, and μ is the friction coefficient. 

Hence, we obtain from Lagrange’s equation that 

21
0 sg )

2
n( '

d L L
mu N u qL

dt u u u


   
      

   
               (2.5) 

0 0

0

1
0 ( ' ) ( ' ) 0

d L L
L u uL q R L q q

dt q q q C

   
         

   
          (2.6) 

where the initial condition is 0(0)q q . These are two coupled nonlinear ordinary 

differential equations. Eq. (2.5) clearly shows that the propulsion force on the launcher is 

21
'

2
propP L q             (2.7) 

This simple approximation works surprisingly well when compared to experimental data 

[18]. 
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2.3 Bernoulli-Euler Beam Model 

Little research has been done on the dynamics of railguns, but some modeling has 

been done using Bernoulli-Euler and Timoshenko beam models. For the general beam 

shown in Fig. 2.2, if it is assumed to be a Bernoulli-Euler beam, Fig. 2.3 shows the loads 

on the free-body diagram of a differential element. 

 

 

 

 

 

 

 

Figure 2.2: A cantilevered beam subject to a general distributed load. 

 

 

 

 

 

 

Figure 2.3: A differential element of a Bernoulli-Euler beam. 

 

From the free-body diagram, Eq. (2.8) is derived to be the equation of motion where 

w(x,t) is the displacement of the rail, /w w x      , and / .w w t    Taking Fig. 2.2 as 

our base model then adding an insulator and a rigid foundation underneath effectively 

introduces a spring force and a damper force in beneath the free-body diagram in Fig. 2.3. 

From this we get Eq. (2.9). As the containment is multiple orders of magnitude more 

rigid than the rail and insulator, modeling it as a rigid body will not adversely affect the 

accuracy of our model. Furthermore applying a pretension loading on the rails can have 

positive effects on the dynamics of the system. Adding a pretension loading N causes a 

longitudinal force in the free body diagram and directly affects the shear forces. Through 

some derivations with the inclusion of a longitudinal force we obtain Eq. (2.10) [30, 31]. 

w(x,t) 

dx 

Varying load,  P(x,t) 

M+Mx*dx 

P *dx 

 

V+Vx*dx V 

M 
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  ̈        )     ̈ )               (2.8) 

  ̈     ̇            )      ̈ )              (2.9) 

  ̈     ̇               )      ̈ )        (2.10) 

 

For Eq. (2.8)-(2.10), m is the mass of the rail per unit length, c is the damping coefficient 

of the insulator per unit length, k is the stiffness of the insulator per unit length, E is 

Young’s modulus of the rail, I is the area moment of inertia of the rail, J is the rotary 

inertia of the rail per unit length, and f(x,t) is the distributed load per unit length. For a 

uniform isotropic beam, m = Aρ and J = Iρ, where ρ is the density of the beam material. 

We add the term ''Nw  to account for any possible longitudinal compressive pre-load in 

order to understand the influences of preloading on characteristic speeds. This type of 

model only works for systems under low frequency excitations because the Bernoulli-

Euler model predicts that waves can travel at a high frequency with a speed of infinity, 

which is erroneous [28].  

 

2.4 Timoshenko Beam Model 

A Timoshenko model takes into account two deformation variables, w and  , 

pictured in Fig. 2.4. The governing equations are derived using Newton’s second law and 

are shown in Eqs. (2.11) and (2.12), where Eq. (2.11) governs the transverse vibration, 

and Eq. (2.12) governs the rotational vibration [31]. 

 

 

Figure 2.4: Timoshenko beam model and variables. 
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  ̈      ̇          (   (    ))
 

               (2.11) 

2 ( ') ( ) 0J c EI kAG w                                   (2.12) 

where ( )w   is the bending rotation angle of the deformed cross section,   is the 

shear rotation angle of the cross section, 1 2 and c c
 

are the corresponding material 

damping coefficients per unit length of the beam, and  is the shear correction factor. For 

isotropic beams with rectangular cross-sections, 5 / 6   [31, 32, 33]. The G-10 material 

for the rail insulator is actually a viscoelastic material, and Eq. (2.11) shows that the 1c  

can also be used to account for the damping property of G-10. 

For a uniform beam, one can substitute '  from Eq. (2.11) into           )     

to obtain the following high-order equation: 

 

1

2

2 1 2 1 2

1

2

1 '' 1 '' 1 ''

''

iv c EIN EIk N mEI N
EI w N w J w c w

AG AG AG AG AG AG

kc Jk c c c J c m Jm
c w m w w w kw

AG AG AG AG

cEI J
P P P

AG AG AG

     

   

  

        

 
      

   

          
          
          

     
     
     

P

   (2.13) 

 

Some of the terms in Eq. (2.13) are not accounted for in the literature (e.g., [9,10,22,23]). 

To neglect shear deformation one can substitute G  , 1c c and 2 0c   into Eq. (2.13) 

to obtain the Bernoulli-Euler beam theory in Eq. (2.10). 
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CHAPTER 3 

CHARACTERISTIC SPEEDS 

3.1 Shear and Bar Speeds 

Under free or boundary-excited vibrations (i.e., P=0), solutions of Eq. (2.13) have 

the form 

j( ) 2
,  e x tw   





                                                   (3.1) 

where   is the vibration frequency,   is the wave number, j 1  , and   is the 

wavelength. Substituting Eq. (3.1) into Eq. (2.13) with 0P  yields 

 

1

2

2 1 2 1 2

1

4 2 2 2 2

2 3 4

1 1 j 1

j 0j

c EIN EIk N mEI N
EI N J c

AG AG AG AG AG AG

kc Jk c c c J c m Jm
c m k

AG AG AG AG

     

   

     

   

       

 
     



 

         
         
         

     
     
     

  

(3.2) 

If 1 2 0P N c c    , i.e. neglecting damping and pre-compression,  Eq. (3.2) reduces to 

 

4 2 2 2 2 4 0
EIk mEI Jk Jm

EI J m k
AG AG AG AG

     
   

   
          

   
        (3.3) 

 

This dispersion equation relates   to  , and it can be used to calculate the phase and 

group velocities of an elastic wave. The phase velocity pv
 
is the propagating speed of a 

harmonic wave. If a constant-phase point of a harmonic waveform is followed, we have

const.x t    and 

p

d

d

x
v

t




                                                               (3.4) 

The group velocity gv
 
is the propagating speed of a multi-harmonic wave’s modulated 

amplitude [28], and it is the speed at which a multi-harmonic wave’s energy and 

information travel in a medium and is given by 
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g

d

d
v




                        (3.5) 

Because pv
 
should be a finite number for any elastic wave in a beam [28], we have

 ( 2 / )   when  . Hence, it follows from Eq. (3.3) that 

 

4 2 2 4 0 ,
Jm mEI G E

J EI
AG AG


      

   

 
        
 

               (3.6) 

 

For a wave with 0  , Eqs. (3.1) and (3.4) indicate that it is nothing but a wave 

propagating along the –x direction. So, Eqs. (3.4) and (3.6) define two characteristic 

phase speeds [33, 34]:

 

shear bar,    
G E

V V


 
 

     

(3.7) 

Next we explain the physical implications of these two characteristic speeds. With 

 ,   and 1 2 0P N c c    , Eqs. (2.11) and (2.12) reduce to 

'' 0mw AGw       (3.8) 

'' 0Jψ EIψ       (3.9) 

At high frequencies, Eq. (3.8) shows that the transverse displacement w is caused by 

vertical shearing ( 0 and 'w   ), as shown in Fig. 3.1. Eq. (3.9) shows that the 

cross-sectional rotation   is caused by horizontal shearing ( 0 and w      ) and it 

results in repeated compression/extension on upper/lower parts of the cross section, as 

shown in Fig. 3.2. Substituting Eq. (3.1) and 
j( )e x t    into Eqs. (3.8) and (3.9) yields 

Eq. (3.7). Hence, Eqs. (3.7)-(3.9) reveal that these two speeds are the propagating speeds 

of a transverse shear wave and a horizontal shear wave, respectively. Eq. (3.8) behaves 

like a string under a pretension AG  [31], and thus the wave speed at any frequency is 

/ /m G   . As ' 0w   in Eq. (3.9), the beam behaves like a rigid bar on an elastic 

foundation (see Fig. 3.2). Hence, the bar speed barV corresponds to resonance at 

/k m  . Substituting /k m   into Eq. (3.3) yields / /kJ EIm k Em  
 

and therefore 
bar/ /E V    , which is the speed of any longitudinal 
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extension/compression wave in the material. For isotropic materials, shear barV V because 

/ (2 2 )G E E     , where   is the Poisson ratio. Since a wave propagating at barV

has no relative transverse deflection ( ' 0)w  , shearV
 

is the highest speed for any 

transverse deflection waves. Figs. 3.1 and 3.2 show that shear and bar speeds can be 

realized only if the shear rotation  is included in the modeling.   

 

 

Figure 3.1: Rail deformation pattern at the shear speed (transverse shear wave). 

 

Figure 3.2: Rail deformation pattern at the bar speed (longitudinal shear wave). 

 

When   is given a value, the wave numbers from Eq. (3.3) are of the following form. 

2 22
2 1 3

1

2 2 4

1 2 3

i

i 1 2 1 2 1 2 i i

ˆˆ ˆ ˆ ˆ ˆ,  4
ˆ2

ˆ ˆ ˆ, ,

ˆ ˆ ˆˆ ˆ ˆ ˆIf 0 : ( j , j ), 0, 0

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆIf 0 : ( , ), ( j , j ),or ( , j ), 0, 0

r R
R r r r

r

EIk mEI Jk Jm
r EI r J r m k

AG AG AG AG

R a b a b a b

R a a b b a b a b



  
   





 
  

   
           

   

      

           

(3.10) 

For ˆ 0,R  Eqs. (3.10) and (3.1) show that ˆ ˆˆ ˆj  and ja b a b    represent two exponentially 

decaying waves moving to the right and left, respectively. Moreover, ˆ ˆˆ ˆj  and ja b a b    

are impossible solutions because they grow to infinity at far sites. For ˆ 0,R 

2 1
ˆ ˆj  and j  b b are exponentially decaying solutions, and 

2 1
ˆ ˆj  and jb b

 
are impossible 
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exponentially growing solutions moving to the right and left, respectively. However, 

1 2
ˆ ˆ and a a

 
represent two possible non-decaying waves propagating to the right, and 

1 2
ˆ ˆ and a a 

 
represent two possible non-decaying waves propagating to the left. Hence, 

ˆ 0R   determines the critical (cut-on) frequency that can excite the beam to have a 

propagating wave, and the corresponding critical speed ( ˆ/ / a    ) is the minimum 

phase velocity for a harmonic wave to propagate away [34]. When ˆ 0,R  1 2
ˆ ˆ=a a . When

ˆ 0R  , 1 2
ˆ ˆ and a a

 
are different due to different relative motions between '  and w   (or 

 ). The high-speed mode is often called the optical mode, and the low-speed one is 

called the acoustic mode. The low-speed mode is often the main concern. For railguns, 

however, both speeds need to be examined because railguns may accelerate up to Mach 

10 during launch [3]. 

However, this critical speed is under a harmonic excitation at a fixed location. For 

a railgun, its moving armature excites the system through dynamic interaction with 

dynamically deformed rails, and the corresponding critical speed is different, as shown in 

Section 3.2 below.    

 

3.2 Critical Speed 

In the derivation of the critical speed, Vc, of a rail-foundation system we consider 

Timoshenko’s model in Eq. (2.13) with a concentrated load  ̂ moving at a constant 

velocity νo along the x direction. After the load is applied for a while and damping exists, 

the beam deformation becomes a static geometry with respect to an observer traveling 

with the load. This is known as a quasi-stationary state. The dynamic stiffness method 

that Chen and Huang [23] presented is only good for waves at speeds below the shear 

speed. Hence we propose a generalized dynamic stiffness method that is applicable for 

waves at any speed and can deal with higher-order shear-deformable beam theories using 

two or more variables. In addition, we use the concepts of buckling and resonance to 

explain the physical implications of the critical speed and reveal different characteristic 

waveforms around the three characteristic speeds.  

First, we define a moving spatial coordinate and derive the spatial and time 

derivatives of the transverse displacement as [1, 22-23, 27] 
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const. const.

0

4

const. const.

0 0

( , ) ( , ),  '

,   

t t

x s

w w
s x v t w x t w s t w

x s

w w w
w v w v w

t t s t s

 

 

 
     

 

     
     
        (3.11) 

When the beam deformation becomes quasi-stationary we have 

const. 0sw

t





         (3.12) 

and the solution has the following form: 

( ) e sw s 
      (3.13) 

As it is a concentrated load  ̂ at 0 0s x v t   , we have ˆ( , ) ( )P x t P s , where ( )s
 
is 

an impulse function known as the Dirac delta function. Substituting Eqs. (3.11)-(3.13) 

into Eq. (2.13) yields 

2 2 2
2 4 30 0 1 0 0 2 0
0 0 2

2 2
2 21 2 0 0 2
0 1 0

2

2 0 0

( ) ( )
( ) 1

( )
    

ˆ' '' e s

N mv EI Jv c v N mv c v
EI Jv v c

AG AG

c c v EI Jv k kc
N mv c v k

AG AG

c v EI Jv
P

AG AG



 
 

 
 

  
 



      
      

   

    
        

  

 
   
   (3.14) 

The terms 
2

0N mv
 
and 

2

0EI Jv
 
in Eq. (3.14) show how the armature’s moving velocity 

affects the system’s properties and hence changes the critical speed. Since the singular 

terms in Eq. (3.14) are zero (i.e., ( , ) 0P x t  ) for the two separated domains 

0 and 0,s s 
 
we will solve for solutions for these two separated domains. As all the 

coefficients in Eq. (3.14) are real numbers, the four wave numbers from Eq. (3.14) with 

P=0 are in the following form: 

i 1 1 2 2 1 1 2 2 1 1 2( j , j , j , j ),   0, & 0a b a b a b a b a b b                              (3.15) 

where ia
 
and ib

 
are real numbers and 2a

 
can be negative or positive.  It follows from Eq. 

(3.15) that 

1 2 3 4

4 3 2 2 2 2 2

1 2 1 2 1 2 1 2

2 2 2 2 2 2 2 2

1 2 1 2 1 2 1 2 1 1 2 2

0 ( )( )( )( )

  = 2( ) ( 4 )

   2( ) ( )( )

a a a a b b a a

a a a a b a a b a b a b

       

  



    

      

      

             (3.16) 
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Comparing Eqs. (3.14) and (3.16) we obtain 

1 0 2 0
1 2 2 2

0 0

2( )a
c v c v

a
AG N mv EI Jv

   
  

     (3.17) 

Then from Eqs. (3.13) and (3.15) the quasi-stationary solution for 0 and 0s s   should be 

in the following form: 

i 1 1 2 2 1 1 2 2

4
( j ) ( j ) ( j ) ( j )

i 1 2 3 4

i 1

( ) e e e e e
s a b s a b s a b s a b s

w s C C C C C
    



    
                 (3.18) 

Using Eqs. (3.11) and (3.12) and substituting Eq. (3.18) into Eq. (2.12) yields 

4
i

i i i i i 2 2
i 1 0 i 0 2 i

( ) e ,  ,   
( )

is
AG

s D D g C g
AG Jv EI v c

  


  

  
  


                 (3.19) 

If  N = c2 = 0, Eq. (3.17) indicates that ɑ1 +ɑ2 <0 if  0 shear/  v G V   .  If ɑ1 >0 and 

ɑ2 <0, it follows from Eqs. (3.13) and (3.18) that 1e 0,
a s s  1e ,

a s s 

2e
a s s  , and 2e 0

a s s  . Because it is an infinite beam, the solution should 

satisfy ( ) ( ) 0w w     if any damping exists. Therefore, if ɑ1 >0 and ɑ2 <0, the quasi-

stationary solution should be in the following form: 

1 1 1 1

2 2 2 2

( j ) ( j )

1 3

( j ) ( j )

2 4

( ) e e     for - 0

( ) e e   for    0

a b s a b s

a b s a b s

w s C C s

w s C C s

 

 

     


    

   (3.20) 

Because ( )w s
 
should be a real function, 1 3 and C C  along with 2 4 and C C

 
should be 

complex conjugate to each other. Moreover, 1b  is the wave number, and 1 12 / b 
 
is 

the wavelength of the wave within 0s   . Alternately, 2b  is the wave number and

2 22 / b 
 

is the wavelength of the wave within 0 s  . At the point s=0, 

( ) and ( )w s s
 
should be continuous and the external concentrated force F  and moment 

M  should balance with the internal shear forces and moments. Therefore from the 

boundary conditions, we have   

 

 

 

s s

s s

(0 ) (0 ),   (0 ) (0 )

(0 ) (0 ) (0 ) (0 ) (0 ) (0 )

(0 ) (0 ) (0 ) (0 )

w w

F V V AG w ψ w ψ

M M M EI ψ ψ

 



   

     

   

 

     

   
       (3.21) 
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where /sw w s   , /s s    , (0 ) and (0 )V V 

 
are internal shear forces, and 

(0 ) and (0 )M M 

 
are internal bending moments. Substituting Eqs. (3.20) and (3.19) into 

Eq. (3.21) gives 

 

The [ ]K
 
matrix here is called a generalized dynamic stiffness matrix, and it is a function 

of the moving load speed 0v .  

When [ ] 0K 
 
occurs for a specific value of 0v , the displacement variables 

i  (i 1 4)C  
 
cannot be obtained from Eq. (3.22) and the actual deformed geometry is 

unknown. In other words, the buckling load of the beam-foundation system becomes 

zero, and a small transverse load can cause huge displacement in the rails, meaning the 

system stability margin has been reached. It also means that a harmonic excitation force 

with a frequency close to zero can cause resonance. Hence, [ ] 0K 
 
determines the 

critical velocity (i.e., 0 cv V ). 

If no damping, 1 2 0c c  , the coefficients of 
3  and    in Eq. (3.14) are zero 

and we obtain  

 

2

0
2

2 2

0 0

2

2 2

0 0

2( )

4 ( )

EIk Jk
N m v R

AG AG

EI Jv AG N mv AG

EIk Jk
R N m v k Jv EI

AG AG

 


 

 

 
    

 
  

  
       

     (3.23) 

If 0 0R   , we obtain from Eqs. (3.23), (3.15), (3.19) and (3.22) that  

 

i 1 1 2 2 1 1 2 2

2 1 2 1 4 1 3 2 4 1 3 2

1 2 2 1 2 2 1 1

( j , j , j , j )

0, 0, , , ,

[ ] 4 (

 

)( )

a b a b a b a b

a a b b g g g g

K AGEI g g g g



   

    

    

            

  
    (3.24) 

 

Contrarily, if 
20 0 and 0R    , we obtain from Eqs. (3.23), (3.15), (3.19) and 

(3.22) that  
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 i 1 2 1 2 1 2 1 2

3 1 4 2 3 1 4 2

1 2 2 1 2 2 1 1

j , j , j , j ,  0,0

, , ,

[ ] 4 ( )( )

b b b b a a b b

g g g g

K AGEI g g g g



   

    

      

        

   
          (3.25) 

 

Finally, if 0R  , we have 2 1   and 2 1g g
 
and hence [ ] 0K 

 
for Eq. (3.24) and 

Eqs. (3.25). This argument is similar to that for Eq. (3.10). That is why the critical speed 

corresponds to 0R  and it follows from Eq. (3.23) that, if no damping, 

2

2 2 1 3

c

1

2 2

1 2 3

4

2

, 2 4 , 4

r r r r
V

r

Jk Jk EIk EIk
r m r m N kJ r N kEI

AG AG AG AG   

  
 

      
              
             (3.26) 

where Vc< 0 is for the case with v0 < 0. Moreover, if N = c2 = 0 but c1 ≠ 0, Eq. (3.17) 

indicates that 0 < ɑ1< -ɑ2 (or ɑ1+ ɑ2<0) if v0<Vshear. Hence, the waveforms on the two 

sides of the load are different. Substituting v0 =Vbar= √    into the R in Eq. (3.23) yields 

2( )R N EA  . In other words, Vc<Vbar and Vc =Vbar only if a pre-compression force 

N EA   is applied on the beam to make R=0. However, this is physically impossible 

because a pretension force of EA means that the beam needs to be stretched to have a 

strain value of one. Since Vc  is determined by the buckling phenomenon, pretension 

increases the buckling load and therefore the critical speed as well. Next we explain the 

cause and physical implication of the critical speed cV . When 0 cv V , 1 2 0a a  and 

1 2b b . Hence, it is a standing harmonic wave (consisting of two harmonic waves having 

the same amplitude and frequency but traveling along opposite directions) with a 

wavelength 12 / b  . Substituting 1b  and 1 0b v   (i.e. 0 /v   ) into Eq. (3.3) 

yields 0=0. In other words, when the wave oscillates for one period, the load moves 

across exactly one wavelength of the standing wave. This synchronous motion causes 

resonance and thus divergence. The quasi-stationary buckling strength of the beam-

foundation system then becomes zero. Civil engineers use the same concept to define the 
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critical speed for a car on a bridge by using the bridge length as / 2 ( / )   and the 

first standing-mode frequency as the vibration frequency [36].  

For Bernoulli-Euler beams, substituting 0J   and G    into Eq. (3.26) yields 

 

c

4kEI N
V

m


 

    (3.27) 

 

For the reason that cV
 
is determined by 

1/4E , it is difficult to increase cV
 
by increasing E. 

Eq. (3.27) also clearly indicates that a tension loading (N<0) increases the value of cV .  

 

3.3 Quasi-Stationary Waveforms 

To obtain the quasi-stationary waveform for a concentrated load traveling along 

an infinite beam on an elastic foundation, one needs to assume a loading value (e.g.,

ˆF F ), solve for i  (i 1 4)C   using Eq. (3.22), and then use Eqs. (3.18) and (3.19) to 

obtain ( ) and ( ).w s s However, Eqs. (3.20) and (3.22) are only valid for 0 shearv V . 

When 0v
 
changes from 0 shearv V

 
to 0 shearv V , the term 2

0( )AG N mv   in Eq. 

(3.23) changes sign (if N=0) and thus we have  

 shear 0 bar i 1 2 1 2 1 2 2if : j , , j , , 0, 0V v V b a b a a b a         (3.28) 

Hence, the term 4

4e
s

C


 
with 4 2a  

 
should be excluded from the solution for s>0 and 

included in the solution for s<0, i.e., 

31 4

2

1 3 4

2

( ) e e e   for - 0

( ) e                            for    0

ss s

s

w s C C C s

w s C s

 



      


             

(3.29) 

Substituting Eq. (3.29) into Eq. (3.21) yields Eq. (3.22) with the negative signs in the 

fourth column of [ ]K  being removed. 

When 0v
 
changes from 0 barv V to 0 barv V , the term 2

0( )EI Jv
 
in Eq. (3.23) 

changes sign and we have  

 bar 0 i 1 2 1 2 1 2if : j , j , j , j , 0V v b b b b a a              (3.30) 
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If any damping exists (i.e., 1 2 and/or 0c c  ), both 1 2 and a a are positive. Hence, the 

solution has the following form: 

31 2 4

1 2 3 4( ) e e e e   for - 0

( ) 0                                              for    0

ss s sw s C C C C s

w s s

         


   
                   (3.31) 

 

In other words, ( ) ( ) 0w s s  for s>0. There are no waves in front of the moving load 

because barV
 
is the highest possible speed for any elastic waves to propagate in an elastic 

medium. However, there are waves right behind the moving load even when the load 

moves at a speed higher than Vbar, because a moving load can drag a deformed wave 

pattern faster than Vbar. Substituting Eq. (3.31) into Eq. (3.21) with (0 ) (0 ) 0w     

yields Eq. (3.22) with the negative signs in the second and fourth columns of [ ]K  being 

removed. When 0 barv V , the moving load may cause resonance between the beam and 

the elastic foundation because the beam behaves like a rigid bar at this speed, as shown in 

Fig. 3.2. 
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CHAPTER 4 

MULTIDIMENSIONAL ANALYSIS 

4.1 Introduction 

Elastic wave propagation in a rail-foundation structure is essentially a 3D 

problem, but the Timoshenko beam model presented in Eqs. (2.11) and (2.12) simplifies 

it as a 1D waveguide problem under the assumption that deformed cross-sectional planes 

remain flat. If the cross-sectional dimensions of rails are small (i.e., thin beams), the 

dynamic effects of wave propagation on the cross-sectional plane may be negligible, but 

cross-sectional warpings can significantly affect structural stiffness and need to be 

accounted for [31, 33, 37]. Next we show the influences of cross-sectional warpings on 

the critical speed and other characteristic speeds by performing 2D sectional modeling 

and analysis. We factorize the rail’s displacement field into one function describing the 

cross-sectional warping using 2D finite elements and one complex exponential function 

describing the wave propagating along the longitudinal axis (ignoring transverse wave 

propagation, i.e., waves traveling within the plane). This method is valid for computation 

of elastic waves of any wavelength.  

 

4.2 Two-Dimensional Finite-Element Analysis of Cross-Sectional Warpings 

Here we derive the wave propagation equations for an infinite, straight beam 

using the following extended Hamilton principle  

 
2

1

0
t

nc
t

T W dt                                                         (4.1) 

where T represents the kinetic energy, Π the elastic energy, and Wnc the non-conservative 

work from any external loading. For an arbitrary point on a cross section, its 

displacements are assumed to have the following form:  

( /2) ( )

1

( )

2

( )

3

( , , , ) ( , ) ( , )

( , , , ) ( , )

( , , , ) ( , )

j x t j x t

j x t

j x t

u x y z t u y z e u y z je

u x y z t v y z e

u x y z t w y z e

    

 

 

  





  





               (4.2) 

For this paper we are only concerned with waves propagating along the x direction (i.e. 

longitudinally), therefore u(x,y,z,t) becomes u(y,z) multiplied by the propagating wave in 
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the x direction         ). Then the linear strain-displacement relations can be obtained 

from Eq. (4.2) as:  

( )( )
23 2 311 1

( ) ( )

22 2 13 1 3

( )( )
12 1 233 3

( )

,   ( )

( )

j x tj x t
z y z yx

j x t j x t

y y z x z

j x tj x t
y x yz z

u u v w eu ue

u v e u u w u je

u u v u jeu w e

  

   

  

 

  

 



 



      


      
       

                         (4.3) 

The displacement 1u
 
being multiplied by -j in Eq. (4.2) is to assure the quadrature 

between 1 2 and u u
 

and 1 3 and u u , as shown by 13 12 and  
 

in Eq. (4.3). For an 

orthotropic material, strains ij  
are related to stresses ij

 
by the material stiffness matrix 

[ ]Q  as 

11 12 1311 11

12 22 2322 22

13 23 3333 33

4423 23

5513 13

6612 12

0 0 0

0 0 0

0 0 0
[ ] ,[ ]

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

Q Q Q

Q Q Q

Q Q Q
Q Q

Q

Q

Q

 

 

 

 

 

 

    
    
    
       

      
    
    
    
         

                         (4.4) 

Hence, the variation of elastic energy of a beam segment having a length  is given by 
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             (4.5) 

where ij  
denotes the complex conjugate of ij . Moreover, the variation of kinetic energy 

is equivalent to the virtual work done by inertial forces iu
 
as 

2

1 1 2 2 3 3( )d ( )d
V V

T u u u u u u V u u v v w w V                                (4.6) 

Because there is no external loading (i.e., free vibration) and the problem domain 

contains exactly one wavelength , we have 0ncW  . The 2D domain is then discretized 

using 2D shape functions for four-node quadrilateral elements as [38] 
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1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4

{ } { }, { } { }, { } { },{ } { , , , }

{ } { , , , } ,{ } { , , , } ,{ } { , , , }

T T T T

T T T

u N u v N v w N w N N N N N

u u u u u v v v v v w w w w w

   

  
                       (4.7) 

Substituting Eq. (4.7) into Eqs. (4.5) and (4.6) and then into Eq. (4.1) and using the 

regular finite element assembly technique gives [37, 38]: 

 2 2

2 1 0

1 1 1 1 1 1

[ ] [ ] [ ] [ ] { } {0}

ˆ{ } { , , , , , , } ,{ } { j, , , , j, , }T T

n n n n n n

K K K M q

q u v w u v w q u v w u v w

     

   
                   (4.8) 

where n is the total number of nodes and { }q  is the global displacement vector. To ease 

the solution process for the polynomial eigenvalue problem shown in Eq. (4.8) we rewrite 

it as 

 
1

2

2 1 0

1
[ ] [ ] { } { },  [ ] [ ] [ ] [ ]i iK K q q K M K K 





     
                               (4.9) 

Then, Eq. (4.9) can be rewritten into the following standard eigenvalue problem: 

1 2
{ }[ ] [ ] 1

{ } { },   { }
{ }[ ] [0]

qK K
q q q

qI 

   
    

  
                                        (4.10) 

For a given vibration frequency  , Eq. (4.10) gives i ij  (i=1,...,6 )a b n   , but 

there are 3n repeated answers because of the definition of { }q  shown in Eq. (4.10). For 

the case that 

1 1 1,{ } { , , , , , , } ,  0T

n n na q u v w u v w a                                   (4.11) 

it follows from Eq. (4.2) that it represents two propagative waves along the +x and -x 

directions, respectively. For the wave along the +x direction, we have 

j( /2) -j( /2)
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  





   

 

 

      

   

   

   (4.12) 

where 2iu
 
denotes the 2u

 
of the ith node on the cross section. Eq. (4.12) shows that 1u

 
has 

a phase delay with respect to 2 3 and u u
 
by 90 . In other words, they are complex modes, 

and several continuous plots are needed in order to show their deformation sequence. 

However, at / 4,ax t    the deformed cross-sectional geometry 1i 2i 3i( , , )u u u
 

is 

proportional to i i i( , , )u v w , and we will use this i i i( , , )u v w
 
to demonstrate the deformed 

cross-sectional geometries later in Sec. 5.3. For the case that 
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j , j ,  0b b b                                                            (4.13) 

it represents two exponentially decaying evanescent waves along the +x and -x 

directions, respectively. For another case that 

j  & j ,  , 0a b a b a b                                                    (4.14) 

it represents two evanescent traveling waves along the +x and -x directions, respectively. 

For again another case that 

1 1 1 1 1 1
ˆj ,{ } { j( j), j, j, , j( j), j, j} , 0

T

n n n n n n
a b q u u v v w w u u v v w w b             (4.15) 

it represents an evanescent standing wave along the -x direction.  For the last case that 

1 1 1 1 1 1
ˆj ,{ } { j( j), j, j, , j( j), j, j} , 0

T

n n n n n n
a b q u u v v w w u u v v w w b                 (4.16) 

it represents an evanescent standing wave along the x direction because, for example, 
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v
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(4.17) 

All other modes are impossible exponentially growing modes. Of course, the most 

important modes are those propagative modes shown in Eq. (4.12). 
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CHAPTER 5 

NUMERICAL RESULTS 

5.1 Wave Numbers 

 For numerical studies we consider the medium caliber launcher (MCL) of the 

Institute for Advanced Technology for the reason that it is one of the most studied rail 

launchers in the world [39]. Its material and geometric properties are shown in Table 5.1. 

 

Table 5.1:  Properties of the MCL of the Institute for Advance Technology. 

E = 120 GPa G = 47 GPa   = 8320 kg/m
3
 k/b = 8.44 * 10

11
 N/m

3
 

b = 3.0 cm h = 1.0 cm I = 2.5 * 10
-9

 m
4
 k = 5/6 

Vc = 1355.3 m/s Vshear = 2169.6 m/s Vbar = 3797.8 m/s  

 

 The four wave numbers from Eq. (3.15) are shown changing with the moving 

load speed v0 ranging from zero to 12 km/s or approximately nine times the critical 

velocity in Figs. 5.1-5.3, where a1± jb1 represents waveforms behind the load, and a2± jb2 

represents waveforms in front of the load. Values of a2 and a1 represent the exponential 

decay of a forward and backward wave respectively, hence a = 0 means there is no 

exponential decay of the wave and the possibillity of wave propagation. Values b2 and b1 

represent the frequency of the waves in front of and behind the load, respectively and can 

give the wavelength through λ=2π/b .  

Figure 5.1 shows α over moving load speeds from zero to the shear speed. The 

dotted lines represent the imaginary numbers b1 and b2. For speeds less than Vc the real 

parts are symetrical about zero, and the imaginary parts are the same b1 = b2, i.e. the 

waveform is symmetric around the load.  Since a1> 0 and a2< 0 there are no propagating 

waves in front of or behind the load. After the critical velocity (Vc=1355.3 m/s) the real 

parts become zero and the imaginary parts split. Therefore speeds above Vc have 

propagating waves because a1 = a2 = 0. If damping coefficient c ≠ 0 then propagating 

waves will exponentially decay and only exist around the load. As v0 increases towards 

the Vshear, b2 approaches infinity and b1 goes to a small finite number, hence the backward 

wavelengths become longer and the forward wavelengths become shorter because the  
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Figure 5.1: Wave numbers ( )i i ia jb   for 0 shearv V . 

 

Figure 5.2: Wave numbers ( )i i ia jb   for shear 0 barV v V  . 
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wave number is proportional to the frequency and inversely proportional to the 

wavelength (λ=2π/b). 

If shear 0 barV v V  , Fig. 5.2 shows that a1 = b2 = 0 so there are propagating waves 

behind the load (a1=0, b1≠0), and none in front of the load, i.e. no frequency since b2 = 0. 

As the moving speed increases b1 is a small positive number slowly decreasing, meaning 

the backward propagating wavelengths continue to steadily increase. On the other hand a2 

goes from negative infinity at Vshear to negative infinity at Vbar. With a2 being a 

continuously a negative number and b2=0, there is only a single non-oscillating 

exponentially-decaying wave in front of the load after Vshear. An unusual phenomenon 

exists in this forward exponential wave. Just above Vshear the exponential a2 has a large 

value of -∞ (i.e. the wave decays quickly), but it approaches a smaller finite number 

between Vshear and Vbar then returns to -∞, meaning the exponential wave grows in size 

from Vshear=2169.6 m/s  to v0≈2800 m/s and then decreases back before Vbar. There is no 

evidence as to why this occurs. 

 

Figure 5.3: Wave numbers ( )i i ia jb   for 0 barv V . 
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 Figure 5.3 has all values of α for moving load speeds greater than Vbar up to 12 

km/s. After Vbar there are no real parts to the wave numbers (i.e., a1 = a2 = 0), b1 is a small 

positive number that slowly decreases to zero, and b2 starts from infinity and decreases 

towards zero as the moving load speed increases. Since b1 and b2 are non-zero, it seems 

that there are waves in front of and behind the load with different wavelengths, and the 

waves do not decay because a1 = a2 = 0. In reality b1 and b2 represent two unattenuated 

backward propagating waves with different frequencies because Eqs. (3.30) and (3.31) 

show that all the wave numbers now correspond to s<0. Therefore the beam has reached 

the phase velocity known as Vbar, and no waves exist in front of the moving load. b2 now 

represents a backward propagating wave known as the longitudinal shear wave seen in 

Fig. 3.2. The shear wave has a smaller wavelength than the other backward propagating 

wave b1 and shows high frequency extension/compression (optical mode) within the rail 

as discussed in Sec. 3.1. Again, larger moving load speeds continue to increase the 

wavelength of both of these waves. 

 

5.2 Wave Forms 

 The waveforms corresponding to different values of 0v  are shown in Figs. 5.4 to 

5.25. Fig. 5.4 shows the waveform of the rail for the armature speed at 0.5 times the 

critical velocity. The x-axis is the distance along the rail where s=0 represents the 

position of the moving load. As we can see from the model the largest deformation is at 

s=0 – the location of the moving load, and the waves are quickly damped moving away 

from the load. Knowing the basic waveform below critical speed, the physical changes in 

the waveform can be seen in Figs. 5.5, 5.6, and 5.7 showing 0v  0.7Vc, 0.9Vc, and 0.98Vc 

respectively. These figures show an increasing max amplitude at the load, a decreasing 

exponential decay, and a shortening of the wavelength as the v0 approaches Vc. Note that 

the amplitude and wavelength in front of and behind the load are the same for all 

variables because the real part of the wave numbers have symmetry about zero a1=-a2, 

and the imaginary parts are equal b1=b2. 

 After the critical speed the waves begin to propagate forwards and backwards 

along the rail (i.e. a1=a2=0). The new waveform appears as shown in Fig. 5.8 for 
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v0=1.05Vc. This waveform is consistent for armature speeds between the critical and 

shear speeds. As the velocity increases between the critical and shear speeds, b1 decreases 

and b2 increases, and hence the wavelengths in front of the armature decrease while the 

wavelengths behind the armature increase. Moreover, the amplitude of all waves 

decreases. Figures 5.8-5.13 show how the waveforms change between the critical and 

shear speeds. After the critical speed we notice that all wave amplitudes are decreasing 

with increasing speeds whereas the wavelengths move in opposite directions with the 

forward wavelengths decreasing and the backward wavelengths increasing. Concurrently, 

we notice that  has the same amplitude in front of and behind the armature for all 

speeds between critical and shear velocity. 

 Another waveform transformation, and possibly the most drastic waveform 

change, happens after the shear speed is reached. After the shear speed, waves no longer 

propagate in front of the moving load (given b2=0). A single exponentially decaying, 

non-oscillating wave exists in front of the armature (a2<0), while the backward waves 

continue to grow with increases in speed. The waveform right beyond the shear speed is 

depicted in Fig. 5.14. Figs. 5.14-5.19 show the change in amplitude and wavelength when 

shear 0 barV v V  .  

 Once the bar speed is reached, there is no longer any waves in front of the moving 

load as no elastic waves are capable of propagating in front of the load. Two more 

notable transformations occur above bar speed; the backward wave takes on an extra 

harmonic wave due to the development of a short-wavelength shear rotation known as the 

longitudinal shear wave, and   and γ, which have been in phase from the starting 

velocity v0=0 now become out of phase by 180° - in other words, the bending-shear 

coupling went from a forward propagating low energy mode (acoustic mode) to a 

backwards high energy mode (optical mode). This deformation pattern can be seen in 

Fig. 3.2 and is supported by the deformations shown in Figs. 5.20-5.25. These figures 

show the waveforms for speeds up to 3Vbar (≈12 km/s). 

We can see that although v0 is greater than Vbar waves still exist behind the load. This 

means a constant load moving at a speed higher than barV  can drag a deformed wave 

profile to move faster than barV . As a real armature has multiple points of contact with the  
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Figure 5.4: Waveform at 0.5Vc.         Figure 5.5: Waveform at 0.7Vc. 

  

Figure 5.6: Waveform at 0.9Vc.         Figure 5.7: Waveform at 0.98Vc. 

  

Figure 5.8: Waveform at 1.05Vc.         Figure 5.9: Waveform at 1.1Vc. 
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Figure 5.10: Waveform at 0.7Vshear.         Figure 5.11: Waveform at 0.8Vshear. 

  

Figure 5.12: Waveform at 0.9Vshear.         Figure 5.13: Waveform at 0.95Vshear. 

  

Figure 5.14: Waveform at 1.1Vshear.         Figure 5.15: Waveform at 1.2Vshear. 
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Figure 5.16: Waveform at 0.7Vbar.         Figure 5.17: Waveform at 0.8Vbar. 

  

Figure 5.18: Waveform at 0.9Vbar.         Figure 5.19: Waveform at 0.95Vbar. 

  

Figure 5.20: Waveform at 1.1Vbar.         Figure 5.21: Waveform at 1.3Vbar. 
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Figure 5.22: Waveform at 1.5Vbar.         Figure 5.23: Waveform at 2.0Vbar. 

  

Figure 5.24: Waveform at 2.5Vbar.         Figure 5.25: Waveform at 3.0Vbar. 

 

rails, the deformation of the backward wave becomes bumpy from the front contact 

points and will cause impacts at rear contact points causing rail damage.  

Keeping in mind the differences in waveforms between each of the characteristic 

speeds, Figs. 5.26-5.29 show the max amplitude and wavelengths of the waves in the rails 

for all speeds up to 12 km/s, or about nine times the critical velocity. From these figures 

we can see potential problematic speeds for railgun launches; the discontinuity of the 

amplitudes of w,  , and γ at Vc from parametric excitation (discussed next) and the large 

deformations at higher speeds. As the armature speed increases the waves seem to grow 

in an almost linear fashion after Vshear. 

To help explain what the critical frequency is we examine the cut-on frequency 

obtained from ˆ 0R  in Eq. (3.10) from the Timoshenko model. Figures 5.31 and 5.32  
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Figure 5.26: Peak displacement of w for all speeds up to 12 km/s. 

 

Figure 5.27: Wavelengths of w for all speeds up to 12 km/s. 
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Figure 5.28: Peak displacements of  and γ for all speeds up to 12 km/s. 

 

Figure 5.29: Wavelengths of   and γ for all speeds up to 12 km/s. 
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shows the dispersion cures ω-V and ω-β respectively. When the excitation frequency 

changes, the corresponding wave velocity and wave number change, where 

cut 16017.4 Hz. 
 
At ωcut we have cutV  , cut 0  , and cut  (since λ=2π/β). This 

is an impossible propagative wave because cut barV V , and hence the cut-on frequency 

cannot be used to explain the critical speed. On the other hand if the wave frequency 

increases to c 24207 Hz,   the corresponding phase velocity obtained from Eq. (3.10) is 

=1355.3 m / scV
 
and the wave number is c 112.22 rad/m  . As shown in Fig. 5.31, it is 

the minimum free-wave phase velocity, and it is called the critical speed because an 

armature starting from zero velocity will reach this speed first. After the armature reaches 

this speed, if it accelerates further and there is only one contacting point between the rail 

and armature, it needs to climb over and hence resonate with the deformed beam 

geometry causing parametric excitation. The waveforms shown in Figs. 5.8 through 5.13 

are parametrically excited vibrations.  However, a real armature as seen Fig. 5.30 always 

has two or more points contacting with the rails. If the characteristic contacting length is

, the armature will intend to excite the rail at a frequency /V  due to disturbing 

forces caused by the random roughness of contacting surfaces. This is known as forced 

excitation and hence, even when the armature speed is less than cV , rail vibration is 

expected, especially when   is close to one of the natural frequencies of the rail-

foundation system. When the armature speed reaches cV  the forced excitation frequency 

( /cV , e.g., Point #1 on Fig. 5.31) is higher than the parametric excitation frequency 

( /c c cV    ). When the wavelength decreases to   , a worse vibration happens 

because the rail is subject to both parametric and forced excitations at the same frequency 

(i.e., Point #2 on Fig. 5.31). If the excitation frequency is also equal to a natural 

frequency of the armature-rail system, the situation is even worse. Therefore, the 

armature length plays an important role in the design of railgun dynamics. Figure 5.31 

also shows that there are two different   values corresponding to one velocity value. The 

lower one is for the backward propagating wave and the higher one is for the forward 

propagating wave (again see Figs. 5.8 through 5.13). 
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The broken straight line in Fig. 5.32 represents the dispersion curve of a non-

dispersive material, and it tangents to the dispersion curve of the rail-foundation system 

at the critical frequency c . When the wave speed increases from zero, the broken 

straight line rotates clockwise with respect to the origin at ( , ) (0,0)    until it touches 

the    curve at c .   

Note that the amplitudes of the forward and backward radiating shear rotation waves 

shown in Figs. 5.20-5.25 and Fig. 5.28 above Vbar are all about 2.4  ( - / ( ))F GA , and 

the shear rotations introduce the small local bumps to the backward transverse waves. 

Hence, shear rotation plays an important role in the wave dynamics of railguns when 

0 cv V  , and it is important to have accurate modeling of shear rotation. However, when 

shear rotations are significant, Figures 3.1 and 3.2 show that the assumed, flat deformed 

cross- sections are too much restrained because Timoshenko’s beam theory uses only two 

variables (i.e.,  and w  ) to describe the deformation of a beam, which is essentially a 3D 

solid in nature, especially at high frequencies. 

 To improve the beam theory by accounting for 3D stress effects one can adopt a 

higher-order shear-deformable beam theory using more than two displacement variables 

to describe the out-of-plane and in-plane cross-sectional warpings, such as a layer-wise 

beam theory or a sublamination beam theory [31, 32, 40]. The generalized dynamic 

stiffness method shown in Eqs. (3.20)-(3.22), (3.29), and (3.31) can be easily extended to 

deal with such beam theories with more displacement variables. However, the number of 

resulted governing partial differential equations increases with the number of 

displacement variables. One way to reduce the number of displacement variables in a 

high-order beam theory that accounts for 3D stress effects is to use just a small number of 

important cross-sectional warping modes from 2D cross sectional analysis [41, 42].  

From Section 3.2 we derived the critical speed formula as shown in Eq. (3.27), 

which is nonlinear in nature. As the pre-compression (N>0) decreases, the critical speed 

will increase with most square of the Pre-compression N. Figure 5.33 shows the effect of 

the pre-compression load on the critical speed. Due to our directional assumption from 

Section 3.2, N>0 means a compression load while N<0 is a tension load. From this we 

can clearly see that applying a tension load can increase the critical speed, and even 
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Figure 5.30: Railgun armature. 

 

Figure 5.31: The V  dispersion curve. 

  

Figure 5.32: The    dispersion curve. 

  

 
 

 
 
  

  
 

 V
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Figure 5.33: Change in the critical speed with respect to pre-compression loading. 

 

though Eq. (3.27) is nonlinear, the resulting change in critical speed is almost linear over 

a range of ±600 kPa with a rate of -0.139 (m/s)/(kPa). Using this, we can increase the 

critical speed and decrease the period between the critical and shear speed, i.e. decrease 

the time and range of speeds at which forward deformation waves propagate.  

 

5.3 Influences of Cross-Sectional Warpings 

First we perform the cross-sectional analysis derived in Chapter 4 using the rail 

properties shown in Table 5.1 without the elastic foundation. Using 200 4-node 

quadrilateral elements with 231 nodes and 693 degrees of freedom (DOFs) the cross-

sectional mesh is shown in Fig. 5.34. Figure 5.35 shows the dispersion curves of the six 

propagative waves that exist below 60 kHz. The frequency range 0 to 60 kHz was used 

because we chose to ignore in-plane propagating waves in the y and z directions in Eq. 

(4.2). Therefore wavelengths shorter than the cross-plane dimensions b and h will not be 

used. Under these assumptions the propagating waves in the x-direction, longitudinally, 

are the longitudinal wave (the bar-mode), the transverse waves due to bending with 
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respect to the y and z axes (b2 and b3 respectively), local bending around the x axis (b1), 

the torsional wave (t-mode), and the shearing on the xy plane (the s-mode). When the 

vibration frequency is 40 kHz,   the deformation patterns of the six mode shapes are 

shown in Fig. 5.38. Under these conditions no explanation for any critical velocities can 

be seen. 

When an elastic foundation is added in the z-direction to account for the G-10 

insulator, the same mode shapes exist below 60 kHz. The G-10 insulator properties in 

Table 5.1 are used. Figure 5.36 shows the effect of the z-direction elastic foundation on 

the dispersion curves, and Fig 5.39 shows the six mode shapes of the rail with a 

foundation at 40 kHz. Comparing Figs. 5.35 and 5.36, some shifting of the mode 

velocities and wavelengths is observed. For example, at 40 kHz without the foundation, 

barV   3,713.6 m/s, sV   32,383 m/s, and b1V  3,989.4 m/s, whereas with the foundation, 

barV   3,715.7 m/s, sV  32,399 m/s, and b1V  5,467.1 m/s. The significant difference in a 

rail with an elastic foundation is the b2 and t-modes cut-on frequency is no longer zero. 

While ωcut=0 for b2 and t-modes on a free rail as seen in Fig 5.35, Fig. 5.36 shows ωcut 

≈15 kHz for a rail on an elastic foundation.  

 

  

Figure 5.34: The 2D cross-sectional mesh used for FEA. 
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Figure 5.35: Dispersion curves of propagating modes without foundation. 

 

Figure 5.36: Dispersion curves of propagating modes with foundation. 
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Figure 5.37 a, b, c, and d show the deformed 3D cross-sectional geometries and 

their 2D projections of the four propagative waves in a rail without foundation when the 

vibration frequency is ω=10 kHz. Conversely, Fig. 5.37 e and f show the two propagative 

waves when ω=10 kHz when a foundation exists. There are two things to note from Fig. 

5.36. The cut-on frequency of the b2 and t modes is greater than 10 kHz when the rail is 

on an elastic foundation. Hence, there is no b2 or t mode at 10 kHz for the rail with 

foundation, and the wave traveling speed and wavelength of the other modes are similar 

for the rail with and without the foundation. This also holds true in Figs. 5.38-5.41 that 

show the modes with and without foundations at 40 kHz and 60 kHz respectively.  

Comparing Figs. 5.38 and 5.39 to Figs. 5.40 and 5.41 shows that, when the 

frequency increases, the wavelengths decrease and the in-plane warping displacements 

increase. At the same time, we see that out-of-plane warpings become restrained at higher 

frequencies. The most significant change of the cross-sectional geometry happens to the 

bar-mode. Results show that the cross-section remains flat at low frequencies, but the 

cross section is curved with respect to the z-axis at a high-frequency vibration, as shown 

in Figs. 5.37 a, e, 5.38 c, 5.39 c, 5.40 b, and 5.41 b. Figures 5.39 and 5.41 also show that 

the shear warping of the b3 and b2-modes becomes more severe when the vibration 

frequency increases. Moreover, the out-of-plane torsional warping displacements of the t-

mode increase when the vibration frequency increases. 

At low frequencies, the four propagative wave speeds can be estimated using the 

Euler-Bernoulli beam theory as 
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(5.1) 

where the torsional area moment of inertia, 1I , is obtained from the theory of elasticity to 

account for the influence of torsional warping [33]. At low frequencies, the values of barV

and tV
 
from sectional analysis agree well with the two fixed values from Eq. (5.1). 

However, Figs. 5.35 and 5.36 show that, when the cross-sectional warpings increase with 
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the frequency, barV
 
decreases because cross-sectional deformations like the b1 and s-mode 

provide extra local degrees of freedom to absorb the dynamic energy and hence slows 

down the forward propagating speed.  On the other hand, tV  increases with the frequency 

because in general out-of-plane warping displacements are more restrained at high 

frequencies. Moreover, these two elastic waves become dispersive at high frequencies. 

These phenomena may not be important for common low-frequency vibration problems, 

but it needs to be considered for railgun dynamics because the armature speed of railguns 

can be up to 10 km/s [6]. 

 For the transverse modes b2 and b3, when   increases, Figs. 5.37-5.39, show that, 

under a flexural vibration, shear deformation of the cross section becomes more 

significant when the frequency and/or the thickness increases. At 20 kHz  , the three 

values of b2V
 
obtained from the sectional analysis (Chapter 4 without a foundation), 

Timoshenko’s beam theory (Eq. (2.13)), and the Euler-Bernoulli beam theory (Eq. (5.1)) 

are 1081.9, 1072.0, and 1173.7 m/s, respectively. At 60 kHz  , the three values of b2V  

are 1621.1, 1594.0, and 2033.0 m/s, respectively. We can see that the Bernoulli-Euler 

model diverges at high frequencies, which is expected as examined in Sec. 2.3. However, 

analysis from the Timoshenko and 2D cross-sectional model agree well with each other. 

Furthermore, at 20 kHz  , the three values of b3V  are 1607.1, 1594.8, and 2033.0 m/s, 

and at 60 kHz  , the three values of b3V  are 2038.5, 2005.2, and 3521.2 m/s, 

respectively. It is obvious that the Euler-Bernoulli beam theory is not accurate for high-

frequency analysis due to its dramatic divergence, and the use of the shear correction 

factor  in Timoshenko’s beam theory is able to appropriately account for the shear 

warping effect at high frequencies. However, the frequency from the sectional analysis is 

slightly higher than that from Timoshenko’s beam theory because the cross-sectional 

warping is restrained during high-frequency vibration. 

Figures 5.36, 5.37, and 5.39 show that the b1-mode and the s-mode have non-zero 

cut-on frequencies because they are local deformation modes behaving like elastic waves 

in an elastic material sitting on an elastic foundation. For the b3-mode shown in Figs. 5.38 

d and 5.39 d, its bending rotation is in phase with its shear rotation (i.e., an acoustic 

mode, see ψ and  in Figs. 5.10-5.13). On the other hand, the bending rotation and the 
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shear rotation of the s-mode shown in Fig. 5.38 a and 5.39 a are 180 out of phase (i.e., an 

optical mode, see ψ and   in Figs. 5.22-5.25).  

It shows in Fig. 5.36 that the elastic foundation makes the wave speed of the 

longitudinal wave discontinuous around 15800 Hz. The elastic foundation also changes 

the cut-on frequency of the b1-mode from 34662 Hz in Fig. 5.35 to 36850 Hz in Fig. 5.36, 

and that of the s-mode from 39654 Hz to 39641 Hz. The elastic foundation makes the t-

mode and the b2-mode have cut-on frequencies at 15135 Hz and 15864 Hz, respectively.  

Figure 5.36 shows that the b2-mode has a critical speed (the lowest speed at which a b2-

mode wave can propagate) of 1347.6 m/s at 23510 Hz, which agrees well with those 

shown in Fig. 5.31 from Timoshenko’s beam theory. More importantly, the torsional 

mode introduces another critical speed of 1715.8 m/s at 36000 Hz. Just like the critical 

speed of the b2-mode, this critical speed of the t-mode may play an important role in 

railgun dynamics. 

 Furthermore, the G-10 insulator provides electrical insulation from the 

containment in the y direction as well. Adding another elastic foundation to our rail 

cross-sectional model in the y-direction provides another implication. Figure 5.42 shows 

the new rail dispersion curves. From the figure the elastic foundation in the y-direction 

adds another critical frequency. There are actually three critical speeds; not only those of 

the b2 and torsional modes, but the b3 mode now has a cut-on frequency of -cut on = 

12745 Hz and a critical speed of 1852.4 m/s at 21028 Hz. While the b3 mode by itself is 

a transverse deformation that is not in the direction of the armature, interaction between 

the propagating waves of these three critical speeds can cause seemingly random 

vibrational patterns in all directions. This may be why the armature can lose contact with 

the rail and help to explain armature transitioning. As previously mentioned, armature 

transitioning occurs in low velocity shots (< 2 km/s) [8-12]. Under 2 km/s there are three 

critical speeds of a rail on an elastic foundation, i.e., there are three deformation patterns 

propagating away from the moving load at these speeds. Furthermore, forward 

propagating waves can induce bouncing as the accelerating armature travels over them, 

and possibly result in loss of armature and rail contact through pitch, roll, and yaw of the 

armature - i.e. armature transitioning.  
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(a)          (b) 

 

(c)          (d) 

 

(e)          (f) 

Figure 5.37: The deformation mode shapes at 10 kHz: (a,b,c,d) bar, torsion, b3, and b2 

modes without the foundation, and (e,f) bar and  b3 modes with the foundation. 
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(a)          (b) 

 

(c)          (d) 

 

(e)          (f) 

Figure 5.38: The deformation mode shapes at 40 kHz without the foundation: (a) shear,  

(b) b1, (c) bar, (d) b3, (e) torsion, and (f) b2 mode. 
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(a)          (b) 

 

(c)          (d) 

 

(e)          (f) 

Figure 5.39: The deformation mode shapes at 40 kHz with the foundation: (a) shear,  

(b) b1, (c) bar, (d) b3, (e) torsion, and (f) b2. 
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(a)          (b) 

 

(c)          (d) 

 

(e)          (f) 

Figure 5.40: The deformation mode shapes at 60 kHz without the foundation: (a) shear,  

(b) b1, (c) bar, (d) b3, (e) torsion, and (f) b2. 
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(a)           (b) 

 

(c)          (d) 

 

 (e)          (f) 

Figure 5.41: The deformation mode shapes at 60 kHz with the foundation: (a) shear,  

(b) b1, (c) bar, (d) b3, (e) torsion, and (f) b2. 
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Figure 5.42: Dispersion curves with y and z direction foundations. 

 

The size of cross-section can have dramatic effects on the cross-sectional 

warpings and thus the three critical speeds. For the most part, the smaller a cross-section 

the more rigid it behaves. Figure 5.43 shows the dispersion curves for a rail of half the 

height and width of our nominal IAT rail from Table 5.1 (i.e. a/2, b/2). Figures 5.42 and 

5.43 show that the critical speeds of b3, t, and b2 modes decrease from 1852 m/s, 1727 

m/s, and 1349 m/s in Fig. 5.42 to 1656 m/s, 1637 m/s, and 1167 m/s in the half-size 

model. The frequencies of the critical speeds have increased dramatically as well. We can 

also see that the high frequency mode shapes of b1 and s modes are no longer present and 

the bar mode is fairly constant at all frequencies since the high-frequency b1 and s modes 

no longer allow local degrees of freedom to absorb energy. Note that the b1 and s modes 

still exist but their displacements are negligibly small. All of these agree with our 

knowledge that smaller cross-sections behave in a more rigid fashion. Conversely for a 

larger cross-section, we would expect more degrees freedom, and more elastic behavior. 

Figure 5.44 shows the dispersion curves for a rail cross-section twice the height and 

width of our nominal model (2*a, 2*b). This time we see the opposite effect. The critical  
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Figure 5.43: Dispersion curve for half the nominal height and width. 

 

 

Figure 5.44: Dispersion curve for twice the nominal height and width. 
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speeds increase to b3V = 2028 m/s, tV = 1832 m/s, and b2V = 1541 m/s, their corresponding 

frequencies decrease, and more high-frequency modes exist. We see that in general, as 

the rail cross-section increases in size the critical speeds will increase while their 

frequencies decrease, and more high-frequency modes exist. 

Further comprehension of the critical speeds includes understanding of their 

perspective change with respect to variable changes in the rails. Most importantly change 

in size can either restrain wave speed or introduce more high-frequency modes and local 

degrees of freedom. Sensitivity of the critical speeds with respect to the cross-sectional 

size, i.e., the rail width and height can be seen below in Figs. 5.45 and 5.46, respectively. 

Figure 5.45 shows the three critical speed sensitivities with respect to the rail width. All 

other dimensions/variables remain the same as those in Table 5.1. From this figure we 

can see that the rail width has greatest effect on the torsional mode while almost no effect 

on the b3 mode. This is expected since increase in the width directly affects the inertial 

properties of a beam under bending. Hence for I=
3 /12ab , the rail width is the cubic term 

for the b2 mode and the single term for the b3 mode. Therefore we see much greater 

sensitivity of the b2 mode with respect to the rail width. The torsional mode on the other  

 

 

Figure 5.45: Critical speed sensitivity with respect to the rail width. 
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Figure 5.46: Critical speed sensitivity with respect to the rail height. 

 

 

 

Figure 5.47: Critical speed sensitivity with respect to the spring insulator. 
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hand changes with the relationship between width and height. The largest torsional 

modes occur with a height/width ratio of 1 and will decrease as the ratio increases or 

decreases. Furthermore, Fig. 5.46 shows the critical speeds sensitivity to changes in the 

rail height. Again the torsional mode is affected the most by changing the height/width 

ratio (as a/b approaches 1 the critical speed increases), but in this case the variable height 

is the cubic bending inertial property for the b3 mode and single term in the b2 mode 

causing greater sensitivity in the b3 mode.  

Although we chose to ignore propagating waves with wavelengths under 3 cm, 

expanding our FEA to find the dispersion curves at high frequencies greater than 100 

kHz, we see that all the waves speeds relating to forward propagation converge to a 

single speed,  2376.8 m/s. Recall that above the shear speed forward wave propagation no 

longer exist, therefore this represents our shear speed Vshear= 2376.8 m/s for our 2D 

cross-sectional analysis which compares favorably with our Timoshenko model where we 

have Vshear = 2169.6 m/s. 

Because the elastic foundation has profound effects on the characteristic speeds of 

a rail-foundation structure, the elastic modulus of the foundation is introduced here as 

another sensitivity variable. Figure 5.47 shows the influences of Young’s modulus E. All 

three critical speeds change linearly with the elastic modulus, agreeing well with the 

simplified beam models. The b2 mode has the greatest slope, followed by the b3 and 

torsional modes. While this is not unsuspected, it should be noted that the spring 

foundation interacts primarily with transverse motions (e.g., the b2 and b3 modes), while 

the torsional wave is an internal wave which has more out-of plane displacements than 

transverse displacements. Therefore we expect the elastic foundation to affect the 

torsional mode the least.  

The effects of temperature are also examined because temperature change can 

have significant effects on material properties. For example, as the temperature of a 

material increases the energy in the molecular structure increases and the molecules begin 

to vibrate more rapidly. This causes the material to become softer. Hence, the elastic 

modulus of most materials decreases with temperature increase. Figure 5.48 shows the 

elastic modulus of some common materials over a large temperature range [43]. Our 

analysis will include the temperature range from 0 to 140 degrees Fahrenheit as this 
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includes the low temperature range for the possibility of cold firing and the high 

temperature range around the failure temperature of G10 for repetitive launches. Within 

our temperature range we can see from Fig. 5.48 that the elastic modulus behaves in a 

linear fashion, and from the nominal elastic modulus of copper at 70 degrees we have a 

+3% change at 0 degrees and a -3% change at 140 degrees. The Poisson ratio and density 

change can be considered negligibly small over this temperature range. The shear 

modulus changes with the elastic modulus from the simple elasticity equation G = E / 

(2*(1+υ)) [44]. From this we can assume that the internal properties of the rail change 

linearly and the change of response is also linear. Since the changes are internal to the 

rail, we can expect the torsional mode to be affected the most as per our reasoning of 

transverse and longitudinal elasticity above. The temperature sensitivity is shown in Fig. 

5.49. This compares favorably with our previous analysis, i.e., the torsion mode is the 

most affected one, followed by the b3 and b2 modes, respectively. Comparing Figs. 5.47 

and 5.49, we can see that the variable in each is an elastic parameter and they behave 

linearly. Furthermore, the difference between external and internal elasticity can be seen. 

The external elastic foundation has more influences on the transverse modes b2 and b3 

while the internal elastic modulus has more influences on the out-of plane warpings like 

the torsional mode. The influence of the elastic insulator on critical speeds is linear, and it 

ranges from greatest to least on the b2, b3, and t modes, respectively. The opposite is true 

for the elastic modulus: the greatest to least on the t, b3, and b2 modes, respectively. This 

leads us to believe that the larger the transverse deformation within a mode is, the less the 

in-plane deformation that occurs. Also, from our previous analysis, transverse 

deformations occur at low frequencies as they are restrained at higher frequencies unlike 

the in-plane deformations. 

After variable sensitivity analysis it is only logical to examine multivariable 

sensitivity. Although in some applications the variable sensitivities do not agree well with 

each other, it was found that our sensitivity analyses could be combined together for 

quick multivariable changes with accurate results. For that reason, the sensitivity graphs 

were reformatted below for Figs. 5.50 through 5.53 into ratios of a nominal value for 

quick reference estimations. Table 5.1 has the nominal reference values. To quickly 

estimate the critical of a rectangular rail, simply use the ratios of the sensitivity variables 
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Figure 5.48: Elastic modulus for common metals vs. temperature. 

 

 

 

Figure 5.49: Critical speed sensitivity with respect to the temperature. 
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Figure 5.50: Rail width sensitivity for quick reference.  

 

 

 

Figure 5.51: Rail height sensitivity for quick reference.  
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Figure 5.52: Rail insulator sensitivity for quick reference.  

 

 

 

Figure 5.53: Rail temperature sensitivity for quick reference.  
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        Table 5.2: Seven examples of using sensitivity charts. 

Example 1  b3 T b2 

0.5*z calculated with sensitivity 1943.95 1276.47 1199.55 

1.2*y calculated with FEA 1946 1312 1202 

1.1*k error 0.001055 0.027084 0.002035 

Example 2  b3 T b2 

0.8*z calculated with sensitivity 1732.01 1670.27 1231.79 

0.8*y calculated with FEA 1727 1667 1230 

0.8*k error -0.0029 -0.00196 -0.00146 

Example 3  b3 T b2 

1.2*z calculated with sensitivity 1852.86 1722.23 1334.90 

1.2*y calculated with FEA 1856 1719 1337 

0.8*k error 0.001693 -0.00188 0.001572 

Example 4  b3 T b2 

1.1*z calculated with sensitivity 1943.42 1709.60 1399.99 

1.2*y calculated with FEA 1923 1713 1402 

1.1*k error 0.01062 0.001983 0.001434 

Example 5  b3 T b2 

2*z calculated with sensitivity 2052.214 1834.958 1539.818 

2*y calculated with FEA 2028 1832 1541 

1*k error -0.01194 -0.00161 0.000767 

Example 6  b3 T b2 

1.75*z calculated with sensitivity 1953.53 1847.948 1465.624 

1.5*y calculated with FEA 1954 1862 1470 

0.9*k error 0.000241 0.007547 0.002977 

Example 7  b3 T b2 

.5*z calculated with sensitivity 1665.899 1623.335 1170.769 

.5*y calculated with FEA 1656 1637 1167 

1*k error -0.01765 0.008347 -0.00323 

 

 

to find the corresponding critical speed ratios and multiply them all together. Example, 

for the b2 mode [(b2 estimate) = (b2 nominal)*(b2 ratio from height)*(b2 ratio from 
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width)*(b2 ratio from elastic foundation)*(b2 ratio etc.)]. To verify this, seven examples 

were provided in Table 5.2. Upon inspection, with the exception of the torsional mode in 

the first example, all the error between the critical speeds calculated by the sensitivity 

charts and our FEA code are around or under one percent. Therefore these sensitivity 

charts provide an accurate way to quickly estimate the three critical speeds for a 

corresponding rectangular rail cross-section within the range of the sensitivity chart 

variables.  As the temperature change has a change on the critical speed on the same 

order of magnitude as the error (around or under 1%) we can fairly easily assume overall 

temperature effect as negligible, but the rails themselves during launch are not at a 

uniform temperature. Therefore, it would be interesting to note that propagating waves 

will have slightly varying speeds as they travel through the rail. For forward propagating 

waves the deformation wave will be traveling towards cooler rails at the muzzle, slowing 

the wave speed. If the temperature variance is large enough we could see larger 

deformations as some waves begin to catch up and compound on the waves in front of 

them. We see the same effect in the ocean as the water reaches the shallows before land 

causing a variance in speed and creating waves.  

Next, two other cross-sectional geometries were examined to observe the effects 

of geometry change. Assuming a similar armature size, a U-shaped rail and T-shaped rail 

were made to cradle the armature and limit y-direction motion as well as the pitch angle. 

Using these new geometries with the material properties in Table 5.1, we create two more 

cross-sectional models from the equations in Chapter 4 to examine the effects on the 

mode shapes and critical speeds. The cross-sectional view and elemental mesh of the U-

shaped rail is shown in Fig. 5.54. Figure 5.55 is the dispersion curve associated with the 

U-shaped rail. The three critical speeds have changed to b3V = 1980 m/s at 28000 Hz, tV = 

1667 m/s at 28500 Hz, and b2V = 1452 m/s at 21500 Hz. Since we essentially changed the 

overall size of the rail, we might find that using the overall cross-sectional size and 

sensitivity charts may compare favorably with these results. Comparing this with an 

overall size change beff=1.5*bnom sensitivity chart we see that b3V =1853 m/s, tV = 1999 

m/s, and b2V = 1456 m/s do not compare well with our FEA of the U-shaped rail. On the 

other hand the results can be explained theoretically using previous ideals. As b3 and b2  
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Figure 5.54: U-shaped rail. 

 

Figure 5.55: Dispersion curve for the u-shaped rail. 
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Figure 5.56: T-shaped rail. 

 

Figure 5.57: Dispersion curve for the t-shaped rail.  
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modes are bending modes, looking at the bending inertial changes in the U-shaped rails 

shows that we have increases in both Iz and Iy, therefore we should see resulting increases 

in the b3 and b2 modes. The U-shaped rail decreases the ratio of height/width towards 1, 

but the lack of material in the middle of the rail greatly decreases the elasticity of the 

cross-section under a twisting load. We see a resulting decrease in the torsional critical 

speed. A similar analysis can be done with the T-shaped rail as well. The cross-sectional 

mesh is shown in Fig. 5.56 and the dispersion curve is shown in Fig. 5.57. The 

corresponding critical speeds have become b3V = 1724 m/s at 17500 Hz, tV = 1875 m/s at 

45000 Hz, and b2V = 1451 m/s at 21500 Hz. Again comparing with an overall size change 

does not provide good results. If we then compare with the U-shaped rail, it can be seen 

that the bending inertia about the y-axis is the same, and it follows that the associated 

critical speed of the b2 mode is the same for both models. The z-axis bending inertia 

decreases in the T-shaped rail and we see a correlation where the b3 critical speed drops 

to b3V = 1724 m/s. For the torsional critical speed, there is an increase from the U-shaped 

rail. The material of the T-shaped rail is more towards the middle of the cross-section 

increasing twisting rigidity and thereby increasing the critical speed associated with the 

torsional mode.  
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CHAPTER 6 

SUMMARY AND CONCLUSIONS 

6.1 Summary 

This thesis provides detailed derivations and explanations of the actual causes and 

physical implications of the three characteristic wave speeds (i.e., critical, shear, and bar 

speeds), the corresponding waveforms, and their roles in wave dynamics of rail-

foundation structural systems like railguns. Moreover, several erroneous derivations and 

explanations in the literature on characteristic speeds of rail-foundation structures are 

pointed out. Furthermore, a numerical method for 2D sectional finite-element analysis of 

cross-sections is proposed, and the influences of cross-sectional in-plane and out-of-plane 

warpings on characteristic speeds are numerically investigated in detail. 

 

6.2 Conclusions 

 One-dimensional analysis of a quasi-stationary load moving along an infinite 

beam on an elastic foundation reveals different waveforms between the three 

characteristic speeds. Before the critical speed there is a standing wave on the rail. The 

critical speed is when the moving load starts to resonate with the resulting wave profile 

and the quasi-stationary buckling load of the rail-foundation system becomes zero. Above 

the critical speed waves begin to propagate from the armature resulting in an uneven path 

for the armature to traverse. Between the critical and shear speeds is the only speed 

region where transverse waves can propagate forward. The bar speed is the highest speed 

for any elastic wave to propagate within the rail and it happens when the rail behaves like 

a rigid bar and resonates with the elastic foundation. Therefore no forward waves exist in 

front of the armature after this speed, but the rail has large waves behind the armature 

causing rear contacting points of the armature to bounce and impact the rails. It was also 

found that the shear and bar speeds are determined by the material properties of the rail 

while the critical speed is be affected by geometrical and external factors. In other words, 

the critical speed can be changed by adjusting the elastic foundation’s Young’s modulus 

or by applying a pretension to the rails. Applying a pretension loading is shown to be able 

to decrease the speed gap between the critical and shear speeds, thereby decreasing the 

speed zone of propagating waves. Furthermore bending and shear rotations are coupled in 
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an acoustic mode (in phase) in front of the armature when the armature speed is below 

the shear speed, and they are coupled in an optical mode (out of phase) behind the 

armature when the armature speed is beyond the bar speed. Hence, shear rotation plays an 

important role in wave dynamics of railguns. 

Finite-element analyses of rail cross-sectional planes show the mode shape 

geometries and their longitudinal wave propagation within the rails. For a rail on an 

elastic foundation there exist three critical speeds beyond which waves begin to 

propagate away from the armature; one critical speed is associated with each of the b3, 

b2, and torsional modes. Size and geometry greatly influence these three critical speeds, 

but the torsional mode is affected more by internal changes to the rail since it is mainly 

an out-of-plane deformation. On the other hand, the critical speeds corresponding to the 

b2 and b3 bending modes are more affected by external properties as they have more in-

plane and transverse deformations. 
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