
INTERACTIVE WEB-BASED TRACK EDITING AND MANAGEMENT

A Thesis presented to the

Faculty of the Graduate School

University of Missouri

In Partial Fulfillment of the

Requirements of the Degree

Master of Science

by

PHANEENDRA MADALA

Dr. Kannappan Palaniappan

MAY 2012

The undersigned, appointed by the Dean of the Graduate School, have
examined the thesis entitled

INTERACTIVE WEB-BASED TRACK EDITING AND MANAGEMENT

Presented by Phaneendra Madala,

A candidate for the degree of Master of Science and hereby certify that in their
opinion it is worthy of acceptance.

Dr. Kannappan Palaniappan

Dr. Jianlin Cheng

Dr. Filiz Bunyak

ii

ACKNOWLEDGMENTS

I would like to thank my advisor Dr. Kannappan Palaniappan for his

support and guidance during this project. I completely utilized every opportunity I

had during my study at University of Missouri with his help and encouragement. I

would also like to thank all my colleagues at the lab for their assistance and

advice for this project.

I would like to thank Dr. Jianlin Cheng and Dr. Filiz Bunyak for giving me

high-quality knowledge and also for taking time to serve on my project

committee.

 I should thank my parents for constantly motivating me during this project.

I thank my brother for guiding me in a right path in all aspects.

 Finally, I thank all my friends, without their support at the right moment,

this wouldn’t be possible.

iii

Table of Contents

Acknowledgments .. ii

List of Figures .. vi

List of Tables ... xiii

Abstract

1. Introduction .. 1

1.1 A Brief Description of FireFly .. 2

1.2 Video Annotation Tools .. 13

2. FireFly User Interface (Version 2) ... 23

2.1 Visualization ... 23

2.2 Manual Ground Truth Generation .. 24

2.3 Editing/Correction ... 24

2.4 Types of Datasets and Objects .. 27

2.5 Technology .. 28

3. Track Database Representation .. 38

3.1 Cell Tracking .. 38

3.2 Database .. 41

3.3 Object Attributes ... 42

iv

4. User Track Editing Operations .. 56

4.1 Need for Automatic Track Label Propagation 56

4.2 Creating (Missing) Track Information ... 57

4.3 Adding or Extending Track Information .. 63

4.4 Joining Tracks .. 67

4.5 Deleting Spurious Points/ Splitting Tracks 69

4.6 False Splits .. 74

4.7 False Merges ... 75

4.8 ID Switches .. 76

4.9 Efficient FireFly Update Operations After a User Editing Operation

 ... 77

4.10 Interactive Track Edit Method ... 79

4.11 Single Object Interactive Tracking .. 87

5. Track Updating and Management .. 91

5.1 Track Management Implementation ... 91

5.2 Updating Previous Frame Objects ... 91

5.3 Updating Current Frame Objects and Their Descendants 93

5.4 Updating Subsequent Frame Objects and Their Descendants 94

v

6. Conclusions & Future Work ... 97

A. General FireFly Features and Enhancements 100

B. Limitations in Using the IE Browser... 111

C. Evolution of the FireFly User Interface ... 112

D. FireFly Development and Environment .. 117

Bibliography ... 120

vi

List of Figures

1.1 Microscopic image of bacteria, annotated in second column 3

1.2 Annotated and tracking of objects in FPSS Dataset 4

1.3 Annotated and tracking of objects in Virat dataset 5

1.4 Annotated objects of Video surveillance .. 7

1.5a FireFly System Design ... 9

1.5b Hierarchical database organization of the data elements. 10

1.5c FireFly System User Access .. 11

1.6 Interface of LabelMe: Shows the segmented objects 14

1.7 Interface of LabelMe video ... 16

1.8 Interface of KOLAM ... 17

1.9 Interface of ViPER ... 18

1.10 Interface of Allen Brain Atlas .. 19

1.11 OMERO.web sample interface .. 21

1.12 Bisque Sample Interface .. 22

2.1 Visualization of data using FireFly ... 23

2.2 FireFly graphical tools to represent objects ... 24

2.3 Segmentation correction in Bacteria dataset ... 25

2.4 Classification correction in HeLa cells dataset 26

2.5 Track correction in HeLa cell dataset ... 27

2.6 Sample FireFly interface ... 28

2.7 Flex Framework Architecture ... 32

2.8 Flex Compilation Process .. 32

2.9 Sample action script code .. 33

2.10 Flex communication with the server ... 33

2.11 Cairngorm Micro Architecture .. 35

3.1 Object split in a frame sequence .. 39

vii

3.2 Lineage tree representation of an object split in a frameset 40

3.3 Lineage tree representation of an object merge in a frameset 41

3.4 Lineage tree representation of an object merge in a frameset 42

3.5 Attribute panels for different objects including point, line, box, polyline and

polygon ... 44

3.6 Point objects in a frame .. 45

3.7 ObjectID of an object in different frames ... 45

3.8 ObjectID and ParentID of an object in a frame sequence 46

3.9 ObjectID and ParentID of an of an object in case of Merge 47

3.10 ObjectID and ChildrenID of an object in a frame sequence 48

3.11 ObjectID and ChildrenID of an object in a frame sequence 49

3.12 Trajectories of objects in a frame .. 50

3.13 Root Labels of objects in a frame sequence ... 51

3.14 Lineage of objects in a frame sequence ... 52

3.15 Lineages of objects in a complex scenario ... 53

3.16 Root Labels of an object in a frame sequence .. 54

3.17 TrackletIDs of an object in a frame sequence .. 55

4.1 Spurious point in Frame T+1 ... 56

4.2 Missing track information in a frameset before edit operation 58

4.3 Track information in a frameset after edit operation 59

4.4 Trajectory of Object 17 from frame 0 to frame 172 60

4.5 User linking Object 17 at frame 0 with new child 61

4.6 Trajectory of object 17 and automatic ParentID, Root label and Lineage

update ... 62

4.7 Trajectories of Object 17 before and after creating link operation 62

4.8 Missing track information in some frames in a frameset at the beginning

and end of the track before track extend operation 63

4.9 Track information after user edit operation in a frameset to add missing

nodes .. 63

4.10 Visualization of trajectory of object 23 at Frame 13 and object 24 at Frame

14 before adding object 14 to the track ... 65

viii

4.11 Trajectory visualization of object 24 at Frame 14 after adding object to the

track .. 65

4.12 Trajectories visualization before and after extending track 66

4.13 Two different tracks of the same object before join operation 67

4.14 Track information after joining two tracks after join operation 68

4.15 Trajectory visualization of two different tracks .. 68

4.16 Joining object 24 at frame 14 and track 1 .. 69

4.17 Trajectory visualization before and after joining track 1 and track 2 69

4.18 Track information before deleting spurious objects in a frameset 70

4.19 Track information after deleting spurious objects in a frameset 70

4.20 Trajectory of Object 1 from frame 0 to frame 8 .. 71

4.21 Object 1 deletions in the frame 3 ... 72

4.22 ChildrenID of Object 1 update in the frame 2 ... 72

4.23 Attributes of Object 1 updated in the frame 4 ... 73

4.24 Trajectories of Object 1 before and after delete operation 73

4.25 Track information of false object split in a frameset 74

4.26 Track information after correcting false object split 75

4.27 Track information of false merge of objects .. 75

4.28 Track information after correcting false merge of objects 76

4.29 Track information of objects whose ParentID and ChildrenID attributes are

switched .. 76

4.30 Track information of objects after correcting ID Switching 77

4.31 Sequence of update operation in FireFly .. 78

4.32 Track mode is enabled in the frame 57 .. 79

4.33 Sample frames objects selected to create track 80

4.34 Track is created for selected objects .. 81

4.35 Track mode is disabled and trajectory of UPS vehicle 82

4.36 Track of UPS vehicle before (a) and after (b, c, d) Ctrl+x operation 84

4.37 Object (ID=1) is selected propagate and create track 88

4.38 Single Object Interactive Tracking Mode is enabled in frame 26 89

4.39 Single Object Interactive Tracking with Auto Advance feature (left) and

without Auto Advance feature (right) .. 90

ix

4.40 Single Object Interactive Tracking Mode is disabled in frame 55 90

5.1 User edited ParentID of Object 2 from 3 to 1 .. 92

5.2 Algorithm modifying previous frame objects ... 93

5.3 Algorithm modifying the current frame objects and their descendants 94

5.4 User edited ChildrenID of Object 2 from 3 to 6 95

5.5 Algorithm modifying the subsequent frame objects 96

A.1 Login Screen ... 100

A.2 User lab menu .. 101

A.3 FireFly workspace view for Read-Write access 102

A.4 Class layer chooser widget ... 104

A.5 Frame advance widget .. 104

A.6 Drawing Tool Chooser .. 105

A.7 Settings control widget .. 105

A.8 Help widget ... 105

A.9 FireFly workspace view for Read-Only access 106

A.10 Status bar ... 107

A.11 Point Drawing ... 107

A.12 Line Drawing ... 107

A.13 Box Drawing ... 108

A.14 Polyline Drawing ... 108

A.15 Polygon Drawing ... 108

A.16 Debug Window ... 109

A.17 FireFly Help Text .. 110

C.1 Attribute Window version 1 .. 112

C.2 Attribute Window version 2 with tabbed window 113

C.3 Attribute Window version 3 ... 114

C.4 Save/Display settings version 1 ... 115

x

C.5 Save/Display settings version 2 ... 115

List of Tables

2.1 Possible errors and operations in segmentation 25

2.2 List of datasets supported by FireFly ... 27

3.1 Co-ordinates of different types of objects .. 43

A.1 FireFly widgets and their controls ... 103

B.1 Key conflicts in IE ... 111

C.1 Settings in Save/Display widget .. 116

xi

Abstract

Image and video analysis is the process of extracting useful information

from an image. With advances in optical and computational technologies, image

and video analysis is becoming an increasingly important tool in biological,

medical and defense applications. Motion characteristics and behaviors of

objects can be studied from image sequences, such as the spatio-temporal

behavior of cells and organisms in microscopy videos or vehicles and people in

surveillance videos. Manual supervised and automatic object tracking are used to

study migration, lineage, cellular events and population scale dynamics in

microscopy applications and multi-target behavior in defense applications.

FireFly is a rich multimedia web-based tool based on Adobe Flash and

Flex with server side PHP and MySQL, for managing image collections,

collaborative ground truth generation, manual and supervised analysis of images

and video including labeling, annotation, ground truthing, algorithm output

inspection, comparison and correction, etc. The main objective of this project is

to extend FireFly and add interactive editing and updating tracking information by

automatically propagating the track information to upstream and downstream

frames in the annotation/ video event database.

1

Chapter 1

Introduction

One of the main objectives of computational image/ video analysis is to

automatically extract useful content information about objects/events in images

and video and use this information in further reasoning, discovering and decision

making. Applications range from tracking object in wide-area motion imagery [22]

to studying bacterial behavior in microscopy video. The process of retrieving

information is made faster by image and video analysis algorithms. The collection

of data produced by these algorithms for a set of images is used by the

researcher to study the spatio-temporal characteristics and behaviors of objects,

such as the spatio-temporal behavior of cells and organisms in microscopy

videos. During algorithm design, it is often highly desirable to have annotated

ground truth information to facilitate development and testing image/ video

analysis algorithms. However, due to the complexity of visual information [23],

data generated by image and video analysis algorithms may produce errors that

need to be manually corrected. Therefore, the data from image and video

analysis needs to be validated against ground truth during the algorithm design

stage [24].

In general, researchers work with large video datasets to study the

behavior of objects and events, where each image may consist of tens to

thousands of objects. Ground truth generation for such large video datasets will

2

be time consuming and require an expert to perform the annotation process with

few errors.

There are a few automated tools such as LabelMe [2], LabelMe video [6],

Kolam [7], ViPER [1] and Allen Brain Atlas [8] available to enable faster and more

accurate ground truth generation. In this thesis we discuss version 2 of FireFly

[3] tool which is used for managing video collections, collaborative ground truth

generation, and manual and supervised analysis of images and video including

object/ event labeling, annotation, ground truthing, algorithm output inspection,

comparison and correction and other annotation capabilities. FireFly is developed

at the Multimedia and Visualization Laboratory at University of Missouri is a

generic tool which allows users to work with different datasets. It is a rich

interactive media web-based tool, which can be accessed from anywhere on any

platform through a web browser and helps researchers from multiple domains to

work collaboratively on annotating video datasets on a remote (secure) archive.

1.1 A Brief Description of FireFly

Figure 1.1 represents microscopic images of bacteria and second column

shows the zoomed and annotated polygon objects visualized with different colors

to identify them easily. Zoomed portion is same as red colored portion of an

image in the first column. Each object is tagged with their associated labels.

Label represents with class ‘B’ (Bacteria) and unique ObjectID.

3

Figure 1.1: Microscopic image of Bacteria, annotated in second column

 Figure 1.2 shows the annotated objects and tracking of vehicle and

persons in FPSS dataset. The small circles in the trajectory/track represent the

position of an object at starting and current frame of the track. The static objects

in this dataset are not annotated such as parked vehicles which are not involved

in any activities.

4

Figure 1.2: Annotated and tracking of objects in FPSS Dataset

Figure 1.3 shows the annotation of 4 events and tracking of persons and

vehicles in Virat dataset. Firefly classifies the events in Virat dataset into 14

catagories where each event is represented with different color. Figure 1.3a

shows annotation of an event “person getting out of vehicle” in blue colored box,

5

annotations of person, annotation of vehicle and also track of vehicle. small

circles in the trajectory/track of vehicle represents the position of vehicle in its

previous frames. Figure 1.3b shows annotation of an event “person opening

vehicle trunk”, annotation of two persons and trajectory/track of two persons. The

small circle on trajectory represents the position of that person at starting and

current frames. Figure 1.3c shows annotation of an event “person carrying an

object”, annotation of two persons and trajectory/track of two persons. The small

circle on trajectory represents the position of that person at starting and current

frames. Figure 1.3d shows annotation of an event “person getting into vehicle”,

annotation of an event person carrying an object”, annotation of two persons.

6

Figure 1.3: Annotated and tracking of objects in Virat dataset

7

Figure 1.4 shows sample frames from video surveillance dataset. Objects

in this dataset are buildings, road, metro and cars. Second column shows these

objects annotated with colors. Third column in the Figure 1.4 shows the zoomed

view of second column.

Figure 1.4: Annotated objects of Video surveillance

In general, Image and video analysis algorithms are used to identify and

generate data of each object in these images. Due to the complexity of the image

and video analysis task, automatic algorithms are expected to produce incorrect

data. Therefore, a professional manually corrects the outcome of image and

8

video analysis algorithms by comparing it with corresponding objects in an

original image (ground truth). Each of these images may contain hundreds to

thousands of objects and correcting each object will not only be time consuming

but also error prone. FireFly helps the researcher to visualize the annotations

(tracks, classes, segmentation and contours/mask) on the original image and

provides a set of tools to edit them interactively, which reduces the time used for

correction and gives more accurate data.

The general system of FireFly is represented in Figure 1.5a. FireFly front end

is developed in Adobe Flex 3 and it is compiled to produce .swf file. As FireFly is

a web application, it runs inside the web browser with the help of Adobe Flash

Player plug-in to run the .swf format applications. All the requests on the server

side are processed by Zend Framework which is open source software

framework for PHP to provide reusability and modularity through Model View

Controller (MVC) design. Video event database consists of tables developed and

maintained using MySQL software and PHP script performs reading and writing

operations on database based on the request received. The complete

communication between the client and server is through binary format called

Action Message Format (AMF) introduced by Adobe to maintain serialization of

objects between server (PHP) and client (ActionScript) applications. Video

datasets are located on the server and used by client side Flex application by

sending HTTPRequest.

9

Figure 1.5a FireFly System Design

Figure 1.5b represents the hierarchical database organization of data

elements in FireFly. The top most level in the hierarchy is Labs, where each user

in the FireFly belongs to at least one lab. Examples of Labs would be biomedical

lab, surveillance lab, etc. Each Lab consists of collection of projects related to

their field and each project consist of different ImageSets (is the name used in

the FireFly graphical user interface but in the database tables this element is

referred to as Frameset_ImageData to be more expressive). Figure 1.5c

represents the user access architecture for FireFly video/image datasets. FireFly

allows multiple users to create their own annotations for a dataset and each of

these annotations of a specific dataset share a same image/video sets. The

creator of the annotation is called owner of the annotation and owner of the

10

annotation can share his annotation to any FireFly user by providing read only or

read/write access permissions their user ID’s. Read only permission limits user to

view the annotations and restricts user to perform any edit/save/delete

operations. Read/Write permissions allow user to perform edit/delete/save

operations on annotations and these modifications are not restorable. In the

previous versions of FireFly, Annotation is implemented with the name Dataset

and Imageset is implemented with the name Frameset. But the new naming

convention, Annotation is found to be appropriate for representing annotations

with respect to the Imageset and similarly Imageset is observed to be appropriate

for representing video/image datasets.

Figure 1.5b Hierarchical database organization of the data elements. ImageSet (sometimes

referred to as Frameset) is the name used in the FireFly graphical user interface but in the

database tables this element is referred to as Frameset_ImageData to be more expressive.

11

Figure 1.5c FireFly system user access

The main functionalities of FireFly include:

 Visualization: FireFly visualizes the images of original image/video

datasets and also visualizes the data and properties of objects generated

by image/ video analysis algorithms using graphical tools.

 Data Management: FireFly maintains central database server to provide

collaborative environment. Database consists of information related to

user authentication, authorization, datasets and object and event

properties. FireFly effectively updates the database for every user update

operation.

 Manual Segmentation: It is a process of partitioning an image into small

segments, where each segment provides meaningful information from an

image. Each of such segments is visualized in the FireFly using labels and

boundaries. FireFly provides various object structures like point, line, box,

12

polygon and polyline which allow the user to interactively segment the

image.

 Manual Classification: It is the process of assigning partitioned segments

to one of the categories. The classification is done based on the

characteristics of the object. FireFly maintains classification attributes of

each object [4] and allows the user to enter these attributes for newly

added objects.

 Manual Tracking of an object: The main objective of tracking is to find the

spatial-temporal association of an object or group of objects in a dataset.

Manual supervised and automatic object tracking are used to study

migration, lineage, cellular events and population scale dynamics and also

helps in understanding the classification cycle [4]. In general, track

information is generated by various automated trackers, e.g. [5] and

FireFly, provides interactive interface to visualize and edit this track

information for ground truth generation or for correction.

Automated track generation for a critical dataset is expected to be a

challenging task and requires manual edit operations by user to correct the

association relationships among the objects. The manual edit operation on an

object will eventually effect the track information of that object and requires

propagating these updates to upstream and downstream frames in a dataset

for consistency. Manual propagation of the track updates is a tedious and

time consuming process. In this project, efficient algorithms were introduced,

13

to automatically update and propagate the track information based on the

user edit operation on one object.

1.2 Video Annotation Tools

Video annotation tools help the researchers to gather ground truth and also

help in validating the image/video analysis algorithms. Some of these tools such

as NeuronJ and DCellIQ were discussed in [3]. In this section we discuss other

tools such as LabelMe [2], LabelMe Video [6], Kolam [7], Viper [1], Allan Brain

Atlas [8], OMERO.Web [25] and Bisque [26].

1.2.1 LabelMe

 LabelMe [2] is a database and an online annotation tool for the purpose of

object detection and recognition research. LabelMe was created by Computer

Science and Artificial Intelligence Laboratory at the Massachusetts Institute of

Technology. Large sets of images or video are needed for object detection and

recognition study therefore; they introduced an online tool which helps in building

annotation for datasets from large population of users. This tool is designed in

Javascript to provide an online drawing interface. It provides polygon drawing

tool to segment the objects and allows a user to label the segmented object. The

resulting labels are stored in XML file format [2]. A sample interface is shown in

Figure 1.6.

14

A Matlab toolbox is also provided to perform operations on annotations,

query datasets, communicate with online tool and etc.

Figure 1.6 Interface of LabelMe: Shows the segmented objects [5]

 However, there are many concerns in this annotation collection method.

One of them is the complexity of polygons provided by the use, i.e. user may

provide simple or complex boundaries for an object. Another issue is labeling,

e.g. there are multiple ways to label an object. These decisions are left to the

user to know the different ways of thinking in segmenting an image. This tool is

used for ground truth generation. This tool is not used for object classification

and object tracking.

15

1.2.2 LabelMe video

 LabelMe video [6] is an online video annotation tool which is used to

create an open database of videos where users are allowed to upload, annotate

and download. This annotated video database is used to obtain statistics of

moving and static objects, and information regarding their interactions, which are

helpful in tracking and activity recognition applications, e.g. video surveillance. It

consists of two main features, object annotation and event annotation. Object

annotation is similar to the annotation functionality in LabelMe, which consists of

segmentation and its motion.

User is allowed to annotate the object using polygon drawing and these

polygon boundaries are propagated throughout the sequence. The user is also

allowed to navigate through the video and edit the polygons propagated across

different frames. Event annotation is designed to annotate the interaction

between the objects. LabelMe video interpolates the missing polygons between

key frames using interpolation techniques [6]. LabelMe video provides tracking of

objects in a frame but it doesn’t support the lineage tracking, such as tracking in

case of cell division. FireFly helps in maintaining and propagating the track

information to daughter cells when there is a cell division. Figure 1.7 shows the

interface of LabelMe video. There are three objects which are annotated in the

video with their description.

16

Figure 1.7 Interface of LabelMe video [6]

1.2.3 KOLAM

 KOLAM [7] is an open source, extensible architecture for visualization and

tracking wide-area motion imagery created by the University of Missouri. KOLAM

uses Qt API and UI framework to provide interactive tracking and trajectory

management for WAMI datasets. Tracking in KOLAM can be accomplished in 3

ways: automated object tracking by interfacing with various external tracking

algorithms and visualizing the resulting trajectories; manual tracking used for

generating ground truth, and assisted object tracking for editing and trajectory

drawing [7]. A sample object tracking using KOLAM is shown in the Figure 1.8.

17

Figure 1.8 Interface of KOLAM [7]

KOLAM is mainly designed to support large datasets scalable from

hundreds of gigabytes to petabytes in size. To display these images efficiently,

KOLAM partitions or tiles the images to subimages of the larger dataset through

the process of a quad-tree like regular tiling. These tiles represent the partitioned

non-overlapping regions of the image and allow on-demand access to those tiles

that are required to display. KOLAM is a desktop application, that limits the users

to install software locally and the extracted data are saved locally which again

limits researchers to collaborate on a single dataset.

1.2.4 ViPER

 Language and Media Processing Lab, at university of Maryland introduces

a video analyzing tool called Video Performance Evaluation Resource, ViPER

[1]. It provides interface for tracking people and detecting text. ViPER-Ground

18

Truth and ViPER-Performance Evaluation are two tools available to provide

ground truth and compare the results of analysis with ground truth. It provides

various shapes like rectangle, ellipse, point, etc to annotate the ground truth [1].

Sample video tracking interface of ViPER-GT is shown in the Figure 1.9

Figure 1.9 Interface of ViPER [1]

 This tool is developed in Java and the data is stored in XML format which

is later used by the ViPER-PE to compare the analysis data. It provides an API

for other applications to interface and use this data. However, Viper is a desktop

application, which requires local installation of the software and need the videos

to be on a local host to process.

19

1.2.5 Allen Brain Atlas

 Allen Brain Atlas, ABA [8] is a web-based, three-dimensional atlas of gene

expression. It provides visualization tools for studying in situ hybridization-based

(ISH) expression patterns. It enables users to visualize gene expression data

from the mouse brain in 3D at a resolution of 100µ User can download ISH

data which is in XML format to their own computational environment via API or

via freely available software, Brain Explorer [9] provided by ABA. It segments the

anatomic regions using smooth overlay of polygons and provides shading

regions for better visualization. It enables mouse operations on high resolution

images such drag, rotate, zoom in, zoom out, and toggle operation on

segmentation [8].

Figure 1.10 Interface of Allen Brain Atlas [8]

20

 In comparison with FireFly, ABA visualizes the images and provides better

interface for viewing the data in 3D but, does not provide tools for a user to

manually annotate the objects. Whereas, FireFly visualizes the data and provides

various tools for a user to annotate the image.

1.2.6 OMERO.web

OMERO (OME Remote objects) [25] is open source software introduced

by Open Microscopy Environment (OME) for the storage and manipulation of

microscopy data. OMERO.web is a web application used for annotation,

visualization and management of microscopy data. OMERO.web supports many

of the features from their desktop application called OMERO.insight.

OMERO.web also supports the visualization of big images which can be panned

and zoomed and provides good interface for user to browse the images and

details the metadata of each image. OMERO.web allows user to open multiple

images which helps in comparing the data [25]. The sample interface of

OMERO.web is shown in the Figure 1.11.

21

Figure 1.11 Sample interface of OMERO Web [25]

OMERO.web is an up-and-coming tool which currently visualizes the

server data and ROI (Region of Interest) which are annotated in OMERO.insight

and editing of ROI is yet to be supported.

1.2.7 Bisque (Bio-Image Semantic Query User Environment)

Bisque [26] is introduced by University of California Santa Barbara. It is a

web tool which provides researchers with organizational and quantitative analysis

tools for 5D image data. In addition to image database management, tool also

provides imaging, annotation of text and graphics, analysis and visualization of

results. Bisque provides internal and external analysis and visualization tools.

Internal analysis methods are executable through web whereas external analysis

requires additional computation resources and feature which are not accessible

22

through the web [26]. Results of analysis are stored in the form of tags, images

and graphical objects. Sample interface of Bisque is shown in the Figure 1.12.

Figure 1.12 Sample interface of Bisque [26]

 Bisque web components are built in AJAX and the communication among

various components is achieved using REST services like HTTP requests with

XML and JSON.

23

Chapter 2

FireFly User Interface (Version 2)

FireFly is a tool used for 3 purposes: visualization, manual ground truth

generation and editing/correction.

2.1 Visualization

Firefly visualizes the original dataset/image sequence along with various

associated annotations (tracks, classes, segmentation and contours/mask).

FireFly visualizes these annotations using graphical objects/structures such as

points, lines, boxes, polylines and polygons.

Figure 2.1 Visualization of data using FireFly

24

Figure 2.1 shows the visualization of data using FireFly. Image sequences

consist of original images required for the validation and database consists of

segmentation information of the objects, such as co-ordinates of contours,

classification information and track information. FireFly tool reads the image from

image sequences and uses interactive tools to represent the data in the

database on an image.

2.2 Manual Ground Truth Generation

FireFly provides all the required graphical tools, point, line, box, polygon

and polyline to represent the objects as shown in the Figure 2.2. These objects

help the user to generate the ground truth manually. Every object consists of an

attribute window which stores the attributes related to the classification and

tracking information of an object such as temporal, difficulty, class name, etc.

Figure 2.2 FireFly graphical tools to represent objects

2.3 Editing/Correction

Sometimes the data generated by automated trackers or algorithms may

have errors, in which case, the user is provided with an interactive interface to

make corrections to the existing annotations.

Correction of data using FireFly involves:

25

 Segmentation Correction: In segmentation process each object is clearly

located by drawing contours/skeleton of an object. Table 2.1 lists all

possible errors in segmentation and the operations required to correct

them. Figure 2.3 depicts the segmentation error of incorrect merge, where

two objects are segmented as one object. Split operation is not yet

provided, and therefore, the entire segment is deleted and two objects are

created to correct the segment.

Segmentation Problem Action FireFly operation

Spurious point Delete Delete key or Delete button

Missing object Add Select and Drop necessary
object from tool widget

Incorrect location Edit – Move objects Click operation to select
and edit by dragging the
object

Incorrect shape Edit – Move points in the
object

Select point in a object and
edit by dragging the point.

Available for point, line and
box objects

Incorrect Split Edit – Select two objects to
merge

Not yet implemented

Incorrect Merge Edit – Select object and
split

Not yet Implemented

Table 2.1 Possible errors and operations in segmentation (implemented solutions are
shown in bold)

Figure 2.3: Segmentation correction in Bacteria dataset

26

 Classification Correction: For classifying objects, FireFly automatically

visualizes the objects using different class labels and colors based on the

data from automated classification methods [5]. FireFly allows the user to

interactively edit the class of an object. Figure 2.4 shows the classification

correction on FireFly.

(a) (b)

Figure 2.4 Classification correction in HeLa cells dataset

 Tracking Correction: Tracking is done by linking segmented objects from

Frame To frame in the image sequence. This tracking information is

stored in the object attributes and is used in drawing the trajectory of an

object. Therefore, it is important for a user to verify the track of an object in

a frameset. When a user makes changes to the object attribute

information, FireFly will update the information automatically and

propagate it through to previous and succeeding frames to maintain

correct track data. The track correction visualization in FireFly is shown in

Figure 2.5.

27

(a) (b)

Figure 2.5 Track corrections in HeLa cell dataset

2.4 Types of Datasets and Objects

The main characteristic of FireFly is, it being a generic tool. In order to be

a generic tool it needs to supports different datasets. To begin with, FireFly was

developed to support the datasets which are primarily required by Multimedia

and Visualization Laboratory at University of Missouri. Some of the datasets

supported by the applications are listed in table 2.2.

DATASETS

Cell Labeling/Tracking

Cell Segmentation

Bacteria Labeling

Bacteria segmentation

Vessel Segmentation

Histopathology

Cell Segmentation

Satellite Image Classification

OBJECTS

Points

Contours

Polylines, Polygons

Polylines, Polygons

Lines, Contours, Boxes

Filled Polygons, Contours

Contours

Points, Boxes, Lines, Polylines and

28

Surveillance Video Labeling

Wide-area Video Labeling

Polygons

Points, Boxes, Lines, Polylines and

Polygons

Points, Boxes, Lines, Polylines and

Polygons

Table 2.2: List of datasets supported by FireFly [3] (currently supported datasets are shown in
bold)

FireFly supports labeling and annotation of biological, medical and

defense imagery. It is also flexible to add new components to this tool to support

more datasets. A sample user interface of FireFly is shown in Figure 2.6

Figure 2.6 Sample FireFly interface

2.5 Technology

FireFly allows researchers from various domains to use the tool for ground

truth generation. If FireFly was to be designed as a desktop application, multiple

29

platform support is required, which repeatedly increases the cost of maintenance.

Considering this issue, FireFly was developed as a web application. Web

applications offer many other advantages over desktop applications namely:

 Web applications can be used anywhere in the world by connecting to

the internet.

 No local installation of software required

 It is easy to add or upgrade features without disturbing the existing

version

 It is platform independent and

 Easy to develop

But one of the primary advantages of developing a desktop based

application is, it provides a very rich set of user interface as compared to web

applications. Also, desktop applications will use the same screen and exchanges

the data behind it, which reduces the time for displaying the output.

However, this limitation is overcome by Rich Internet Applications (RIA)

introduced by Macromedia in the year 2002. Macromedia addresses some of the

important features that rich client technologies must include [10]. Rich Internet

Applications is defined as “combining the best user interface functionality of

desktop software applications, with the broad reach and low-cost deployment of

Web applications and the best of interactive, multimedia communication” [11].

But, most of these applications require the installation of software, which runs the

applications on a browser. The biggest advantage of using this software is ease

30

of development. This type of approach is generally referred to as “Sandbox”

approach, it allows developers to understand the platform for development and

assure the user to run applications in the same way on different browsers [12].

Some of the platforms which have a major market are Adobe, HTML 5, Java and

Microsoft Silverlight. With the advantages of Adobe over other platforms, FireFly

is developed using Adobe Flex. The advantages of Adobe Flex over other

platforms are discussed in section 2.5.1 [13].

2.5.1 Comparing Platforms with Adobe Flex

 HTML/JavaScript/Ajax:

HTML / JavaScript are not consistent across browsers and require more

complex programming as compared to Adobe Flex. Whereas, Flex runs

the same applications on all web browsers using Adobe Flash Player plug-

in [13].

 JSF:

Java Server Faces (JSF) works on server side, whereas Adobe Flex

works on client side. Also, it is very complicated to develop complex UI

using JSF as it requires additional component libraries [13].

 Microsoft Silverlight:

Microsoft Silverlight is a framework for rich Internet applications. It uses

XML based language XAML. However, it is owned by Microsoft and is not

an open source framework as compared to Adobe Flex. Third party Flex

has the advantages of components that are regularly contributed by the

open source community [13].

31

Tools like FireFly must provide rich user interface with different widgets to

experience the same usability as a desktop application to provide:

 Interactivity for the user to generate the ground truth

 Support multimedia to provide video streaming, images and graphical

content and finally

 Faster performance

FireFly incorporates the characteristics of RIA to meet the above

requirements.

2.5.2 Adobe Flex

Adobe Flash is a platform used to support animation, video and rich

internet applications. Flash supports Shockwave Flash (SWF) file format, which

has .swf file extension. Adobe Flex is a software developing kit (SDK) that allows

developers to build rich internet applications easily and rapidly on Flash platform.

Flex is expected to perform well in all the foundations listed in [14]. One of the

main advantages of Flex is it separates the presentation and data access layers.

It is designed around XML and data can be read and written using simple

HTTPService call, which separates it from backend server technology like PHP,

J2EE, .NET, etc.

2.5.3 Flex Framework

Figure 2.7 shows Flex framework architecture which mainly consists of

class libraries, MXML, ActionScript. MXML is the heart of the Flex framework.

32

MXML is a markup language based XML introduced by Adobe. Flex uses two

languages ActionScript and MXML to build rich Internet applications. MXML is

used for layout, structuring and ActionScript [15] that controls the MXML

components [13].

Figure 2.7 Flex Framework Architecture [13]

The libraries provide APIs for components such as controls, containers

and remote service objects. In MXML compilation process, MXML file gets

converted to ActionScript class and this is compiled to .swf file format as shown

in Figure 2.8. Sample code of action script and MXML code is shown in Figure

2.9.

Figure 2.8 Flex Compilation Processes [13]

33

Figure 2.9: Sample MXML and action script code

2.5.4 Working with the server

Flex applications are client based, therefore they require access to a Web

server. The Flex communication with the server is shown in Figure 2.10.

Figure 2.10: Flex communication with the server [13]

In the above figure, Flex applications which are embedded within the

HTML file contains the logic to communicate with the server using Web services

34

(SOAP and XML) or HTTP Services using simple text or XML. Flex uses Action

Message Format (AMF) to directly communicate with Web servers by remote

object invocation APIs.

2.5.5 Frameworks for Flex

Frameworks improve the efficiency of creating new software. Developers

can increase productivity by concentrating on the requirements of the application

rather than the application infrastructure. Frameworks provide a set of libraries,

intended for reuse. While the libraries and their methods are invoked by the user,

the framework defines flow of control for applications. Cairngorm and Swiz are

the two frameworks used in FireFly. Cairngorm is one of the main open source

frameworks for Flex applications [16]. It is based on MVC model architecture.

Model layer in Cairngorm holds data objects and their state and the View layer

represents the graphical user interfaces. View layer communicates with

controllers through events and binds the data to match Model layer [21]. This

framework allows designers, developers and data service developers to work in

parallel. Micro architecture of Cairngorm is shown in the Figure 2.11.

35

Figure 2.11: Cairngorm Micro Architecture [21]

Swiz Framework is for Adobe Flex to simplify the RIA development [17].

Swiz offer Inversion of Control, which is an object oriented programming practice

where objects are bounded automatically by framework at run time rather than

compile time, this will reduce the complexity of development in an interactive

application. Swiz also offers event handling, simple life cycle for asynchronous

remote calls and doesn’t follow folder structure. It is easy to understand and

36

develop. Swiz provides two main tags: Autowire and Mediate. While Autowire

tags are used to represent the dependency of an object, Mediate tags are

responsible for handling the events, anywhere in the application. This helps the

developer to concentrate entirely on the functionality.

2.5.6 Communication using Zend-AMF

Flex has various ways of communicating with the server like Remote

Object calls, HTTPService calls, and WebService calls. A simple GET and POST

method which require retrieving the information using HTTPService call or XML

can be used for transfer of data using WebService. However for large

applications the communication of data structures will be complex and the

serialization of these structure using WebServices and HTTPService call will be

complicated. Remote provides an easy way of serialization using Action

Message Format (AMF).

AMF is a binary format introduced by Macromedia. It is used for

communication between client and server and also used to serialize the objects.

As AMF is in binary format, it uses many optimization techniques to reduce it

size. AMF was design to serialize and deserialize quickly using low memory and

less CPU computation. AMF in ActionScript-2 is called AMF0 and for later

versions it is called AMF3. The major advantage of AMF3 is that the object is

compressed in zlib for faster transfer.

37

Zend is an open source application framework based on PHP. It consists

of package called Zend AMF [18] and is used for communication between Flex

application and PHP.

38

Chapter 3

Track Database Representation

3.1 Cell Tracking

Cell is the fundamental and basic structural unit of all living organisms.

Cell proliferation and migration are common behaviors of cells required for the

development and maintenance of any living organism. Understanding their

dynamic behavior helps a biologist to predict physiological process in health,

diseases and drug reactions. The behavior of a cell is therefore captured in a

microscopic image at regular time intervals and these image sequences are used

by the researchers to study spatio-temporal behavior of cells, their migration, and

their ancestral information. This involves tracking of a cell in the image sequence

[19].

Tracking basically requires connecting the segmented cells from Frame

To frame. Track information helps in drawing a trajectory of an object in the

image sequence and gives more accurate analysis for the researcher to study

the behavior. The most common behaviors of these cells observed during image

and video analysis are

a. Cell migration: Every cell in a living organism will migrate from one

place to another, trajectories of this migration will help the

39

researchers to understand the direction, speed and other important

characteristics

b. Cell proliferation: This is the increase in number of cell population

where a cell grows and divides to reproduce by binary fission [20].

We refer to this scenario as object splitting. Object split in a HeLa

dataset and is shown in the Figure 3.1

c. Cells entering and leaving the field of view: Since the objects

migrate from place to place, new objects may add to the frame and

also existing objects may leave the frame.

d. Visual overlap: While cells do not merge, they may appear to

merge due to segmentation problems or projection from 3D to 2D

(i.e. cell sliding under another cell). We refer to this scenario as

objects merge.

Figure 3.1 Object split in a frame sequence

40

However the object tracking is not limited to cells, and can be used in

other biological dataset/image sequence such as microorganisms, tissues, etc.

and non-biological datasets, e.g. Vehicle tracking in surveillance imaging.

We use parent and child relationships to link different instances of the

same object in time and also to link parent cells to its daughter cells in case of

cell division. Consequently this linkage encodes both trajectory and lineage

information of an object. The parent and child association is represented in a

lineage tree data structure where each object resembles a node in a tree and

edges are labeled in lineage data representation. For example in the Figure 3.2,

label of the edge from root node 1 to its child is represented as 1. When there is

a split in the path, label is appended with an alphabet like ‘1a’, ‘1b’, ‘1aa’, ‘1ab’,

etc.

Figure 3.2 Lineage tree representation of an object split in a frameset

In the Figure 3.3, Object 5 is a merge of Object 2 and Object 3. The

identity of Object 5 path is represented as (1a -1b), which contains both parent’s

path information.

41

Figure 3.3 Lineage tree representation of an object merge in a frameset

The tracking information is generated by algorithms [5] and Firefly adds

this information to the object attributes.

3.2 Database

 Figure 3.4 represents ERD of FireFly tables associated with track

information. FireFly uses seven tables such as Attribute, MarkedObject,

PointObject, LineObject, BoxObject, FreeFormPoint and FreeFormPoly tables for

storing track information and for drawing trajectory. MarkedObject is significant

table in FireFly which consists of markedObjectID as a primary key, classification

attributes and other object related information. Basically, trajectory is drawn using

the centroid of an object which is calculated from the co-ordinates of an object

stored in the tables’ specific to an object type (PointObject, LineObject,

BoxObject, FreeFormPoint and FreeFormPoly). Since, attributes of different

dataset may vary; Attribute table uses key-value format to store the attributes

values. This will helps FireFly to be general and allow storing multiple attribute

formats. Typically, for every object, FireFly stores 4 attributes for track

information: Parent, Childrens, Lbl and SegID as keys and their associated

values. The database attribute names such as Parent, Childrens, Lbl and SegID

42

represents Object attribute names- ParentID, Childrens, RootLabel and

Lineage/SegmentID in the Firefly Attribute Panel. Since the user interface of

Firefly is improvised with each of its versions, there is a need to change the

database attribute names in the future to make it consistent with the user

interface names. FireFly uses unique auto increment number for every object in

the database called markedObjectID. markedObjectID is a primary key in

MarkedObject table and is a foreign key in other tables to relate object with its

track and segment information.

Figure 3.4 FireFly tracking Database ERD

43

3.3 Object Attributes

From the previous chapter we have seen the various types of datasets and

types of objects such as point, line, box, polygon, etc required to represent the

dataset. These objects consist of various attributes for object classification and

tracking purposes as shown in the Figure 3.5. The classification attributes are

a. Class Label: Class label represents the class to which an object belongs

to. This is the common attribute for all types of objects

b. Co-ordinates: This is the x, y co-ordinates on the image where the object

is located. This attribute varies with the type of object as listed in table 3.1

Object Type Co-ordinates

Point X, Y

Box X, Y, Width, height

Line X1, Y1, X2, Y2

Polyline CENTROID X, Y

Polygon CENTROID X, Y

Table 3.1 Co-ordinates of different types of objects

c. Difficulty: This attribute conveys the difficulty that an expert experienced to

classify the object

d. Temporal: This attribute conveys the number of frames that are required

to compare to classify the objects

e. Other: This provides and other information that may be used to make a

decision on classification

44

Figure 3.5: Attribute panel for different objects including point, box, line, polyline and polygon

FireFly uses five attributes ObjectID, ParentID, ChildrenID, Root Label,

Lineage/SegmentID and TrackletID (yet to implement) to store the track

information and these are explained in the following sections.

3.3.1 ObjectID

Every object in a frame is assigned with a unique identification number

called ObjectID. ObjectID cannot be zero or less than zero. FireFly, by default

45

assigns the ObjectID to the maximum ObjectID value in that frame added one

(Maximum+1) for a new object created. Figure 3.6 represents the visualization of

an image and associated objects in FireFly. Each object is visualized with a color

and label. Color represents the class the object belongs to and label consists of

class name, x and y coordinates and a unique ObjectID that is used to identify an

object quickly in a frame.

Figure 3.6 Point objects in a frame

A single object instance can hold different ObjectID numbers in different

frames. For example, in Figure 3.7, Object ‘1’ in Frame ’T’, Object ‘1’ in Frame

‘T+1’, Object ‘3’ in Frame ‘T+2’, Object ‘4’ in Frame ‘T+3’ and Object ‘4’ in Frame

‘T+4’ are instances of the same object in different frames.

Figure 3.7 ObjectID of an object in different frames

ObjectID

46

3.3.2 ParentID

Parent for an object is its instance in the previous frame and ParentID of

an object represents the ObjectID of its parent. For an object which does not

have any instance in the previous frame is considered as a root object (similar to

the root node in a tree data structure) and its ParentID is assigned to ‘-1’. Figure

3.8 represents parent association for the objects in the frames Frame T to Frame

T+4.

Figure 3.8 ObjectID and ParentID of an object in a frame sequence

In some scenarios, object may have more than one parent (i.e. object has

more than one instance in the previous frame) which is referred as an object

merge. ParentID of an object in this case consists of ObjectID of its parents

separated by a comma.

In Figure 3.9 Object 1 in Frame T+1 is an example of object split scenario,

where it consists of two parents: Object 1 and Object 2 in Frame T. Therefore,

the ParentID of object 1 in Frame T+1 consists of ObjectID 1 and ObjectID 2 with

a comma separated.

ObjectID

47

Figure 3.9 ObjectID and ParentID of an object in a frame sequence in case of merge

3.3.3 ChildrenID

A child for an object is its instance in the subsequent frame and

ChildrenID of an object represents the ObjectID of its child. An object which does

not have any instance in the subsequent frame is considered as a leaf object

(similar to the leaf node in a tree data structure) and its ChildrenID is assigned to

‘-1’. Figure 3.10 represents children association for the objects in the frames

Frame T to Frame T+4.

48

Figure 3.10 ObjectID and ChildrenID of an object in a frame sequence

In some scenarios, object may have more than one child (i.e. object has

more than one instance in the subsequent frame) which is referred as an object

split. ChildrenID of an object in this case consists of ObjectID of its children

separated by a comma.

In Figure 3.11 Object 4 in Frame T+3 is an example of object split

scenario, where it consists of two children: Object 4 and Object 6 in Frame T+4.

Therefore, the ChildrenID of object 4 in Frame T+3 consists of ObjectID 4 and

ObjectID 6 with a comma separated.

ObjectID

49

Figure 3.11 ObjectID and ChildrenID of an object in a frame sequence

3.3.4 Root Label

Tracking of an object involves connecting the instances of an object from

frame to frame. This is accomplished by associating parent and children of an

object as discussed in the sections 3.2.2 and 3.2.3.

Figure 3.12 shows the visualization of trajectories of various objects in a

dataset, drawn using their corresponding track information. In a critical dataset,

each frame is expected to have numerous objects and differentiating each

object’s track is difficult. Therefore, every individual track is assigned with a

unique identification number called Root Label.

50

Figure 3.12 Trajectories of objects in a frame

Root Label is initiated for every root object (i.e. ParentID is -1) and

propagated through its descendants. Root Label initiation must be a unique

number; therefore each root object is initiated with the maximum Root Label

value in a dataset added one (Maximum +1).

In an object merge scenario (i.e. object has more than one instance in the

previous frame), object contains more than one parent and each parent object

has a unique Root Label. Root Label of one of the parent object must be chosen

to propagate to maintain unique and consistent track information. Therefore,

minimum of parents Root Label values is chosen to be propagated through its

descendants.

51

In Figure 3.13, root object ‘Object 1’ in Frame T is initiated with the Root

Label 12 and it is propagated through all its descendants. Object 2 in Frame T+2

is an example of object merge scenario, which has two parents: Object 9 and

Object 2 in Frame T+1. Minimum of the two Root Labels of Object 9 and Object 2

(i.e. minimum of 12, 14 is 12) is chosen as its Root Label.

Figure 3.13 Root Labels of objects in a frame sequence

3.3.5 Lineage (or SegmentID)

Lineage attribute is used for drawing the trajectory of an object. It contains

tree edge labels as shown in the figures 3.2 and 3.3. Lineage for the root object

will have the same Lineage as its Root Label. For example; in the Figure 3.14,

Object 1 at Frame T, is a root object. Its Lineage will be same as its Root Label –

‘12’. Object 2 at Frame T+1 will split into two objects: 2 and 3 at Frame T+2.

ObjectID

52

Therefore, in Frame T+2 the Lineage for Object 3 is 12a, but for Object 2, it is a

merger of two objects, thus it acquires both Lineage from its parents with a ‘-’

separator (12b-14).

Figure 3.14 Lineage of objects in a frame sequence

Figure 3.15 depicts the Lineages of objects in a complex scenario with

multiple split and merge situations. Lineage attribute is implemented using

SegmentID name in the previous versions of Firefly, however, this attribute is

changed to Lineage as most suitable naming convention to represent complete

history of its parents.

ObjectID

53

Frame 3.15 Lineages of objects in a complex scenario

Figure 3.16 depicts the object track information and lists all track attributes

of an object in a frameset.

54

Figure 3.16 Root Labels of an object in a frame sequence

3.3.6 TrackletID

In order to efficiently access, display and modify trajectory information it may be

useful to maintain a separate table of TrackletID information. A tracklet is a

sequence of objects with one-to-one relationships without any splits or merges.

That is the in- and out-degree of each node in a tracklet is one (one parent and

one child) or zero (source or sink node). If there is any splits or merges then one

TrackletID ends and a new TrackletId is started (ie each TrackletID can be

associated with a single line for drawing without branching or forks). Using

TrackletIDs enables efficient drawing, maintaining track level information such as

the total number of points in the tracklet, etc. Figure 3.17 represents trackletIDs

of an object in a frame sequence. Note that TrackletID database field is not yet

implemented in the FireFly database and it is shown in the Figure 3.17 for

55

illustration.

Figure 3.17 TrackletID of an object in a frame sequence. Note that the TrackletID database field

is not yet functional in the FF database and is shown here for illustration

56

Chapter 4

User Track Editing Operations

4.1 Need for Automatic Track Label Propagation

For a critical dataset, tracking is a challenging task which requires additional

manual editing operations to correct the track data generated from automated

tracker/software. Track editing involves connecting objects from different frames

by associating the parent, ChildrenID and label properties. Figure 4.1 shows the

track information from Frame T to Frame T+4. During ground truth correction,

Object 2 at Frame T+2 is found to be a spurious point and requires a ‘manual

delete’ operation by the user to delete the object. The delete operation eventually

changes track information for objects in the frames T+3 and T+4. User must edit

the parent, ChildrenID and label properties for these to maintain consistent track

information. Practically, this manual edit operation for track label propagation is

time consuming and infeasible for large populations of objects.

Figure 4.1 Spurious point in Frame T+1

57

Therefore, an automatic track updating algorithm is required when an edit

operation is made on an object. This requires studying all possible scenarios of

manual track edit operations to implement feasible algorithm. The possible

instances, when manual correction is required are:

 Creating track information

 Adding or Extending track information

 Deleting spurious points / Splitting tracks

 Joining tracks

 False merge

 False split

 ID switches

4.2 Creating (Missing) Track Information

In this case, a frameset is missing the complete track information of an

object or an object itself is missing. In both the scenarios user must provide the

ParentID and ChildrenID attribute details for that object in every Frame to build

the track information.

58

Figure 4.2 Missing track information in a frameset before edit operation

Figure 4.2 explains the scenario where an object is created in every frame

and the track information has to be provided manually. When a new object is

created, ParentID and ChildrenID are assigned to ‘-1’ and Root Label and

Lineage will be null by default. To build the track for an object, the user must

manually edit the parent and children attributes. At the point of saving the track

information, Root Label of new object will be the maximum Root Label in the

database added one and Lineage is the same as Root label. Track information

can be built by editing either ParentID or ChildrenID of an object. In Figure 4.3,

the Root Label and Lineage is propagated automatically after editing the

ParentID and ChildrenID information of an object. Operations on FireFly involve,

editing the ParentID and ChildrenID attributes in the attribute window. Root Label

of the parent object will be propagated to the current object and it descendants.

59

Figure 4.3 Track information after user edit operation in a frameset

Operation on FireFly:

FireFly uses rich internet application flex to visualize the objects and track

information. It interfaces with the user via a window to manually edit the

classification and tracking properties of an object. When a user double clicks on

an object, an attribute window will pop up with all the attributes information of that

object. Figure 4.4 shows the attribute window of Object 17 with a label on the top

representing dataset number which the user is working on, frame number of the

object, ObjectID and the type of graphical shape. Since object 17 in frame 0 is

missing track information, its ParentID and ChildrenID are represented with -1

and Root label and Lineage are null. Trajectory is drawn for any object by

selecting the Auto Trajectory or Draw Trajectory in the attribute window. Auto

Trajectory draws the trajectory for the complete path of an object in a dataset.

Draw Trajectory draws the trajectory between the start and end frames

mentioned in the attribute window. Since there is no track information presented,

trajectory is not being drawn for the object 17 from frame 0 to 172 as selected in

the attribute window.

60

(a)

(b)

Figure 4.4 Trajectory of Object 17 from frame 0 to frame 172 (a) New Attribute panel (b) Old

Attribute Panel. Note that other figures in this chapter may show the old version of the attribute

panel.

61

To generate track information for any object, user has to manually link the

parent and children of that object throughout the dataset; this involves manually

entering the ObjectID of its parent and children in the attribute window as shown

in the Figure 4.5. When user links the object 17 at frame 0 with its children,

algorithm will automatically updates the ParentID and also propagates the root

label and Lineage for object 17 at frame 1 as shown in the Figure 4.6.

Figure 4.5 User linking Object 17 at frame 0 with new child

62

Figure 4.6 Trajectory of object 17 and automatic ParentID, Root label and Lineage update

Similarly, user must manually link the children of object 17 in every frame

to automatically propagate the root label and Lineage in a dataset. Figure 4.7

shows the trajectory of object 17 before and after creating link.

(a) Before creating link operation (b) After creating link operation

Figure 4.7 Trajectories of Object 17 before and after creating link operation

63

4.3 Adding or Extending Track Information

In this case, track information is edited to extend the existing track. In

Figure 4.8, there exists a track with a Root Label 12, but, objects in the Frame T

and Frame T+4 which belong to the same track are missing in the track

information. This missing object information can be added to the existing track by

appending missing object information to ParentID or ChildrenID in the track.

When an object is added to the ChildrenID list, Root Label and Lineage are

automatically propagated to the child object and its descendants.

Figure 4.8 Missing track information in some frames in a frameset at the beginning and end of the

track before track extend operation

Figure 4.9 depicts the Root Label and Lineage propagation after joining

new objects to the existing track.

64

Figure 4.9 Track information after user edit operation in a frameset to add missing nodes

Operation on FireFly:

 Figure 4.10 shows two frames 13 and 14 with trajectory visualization of

object 23 at frame 13 and missing track information of object 24 at frame 14. To

join the object 24 to the track requires manual edit operation of entering ObjectID

23 to the ParentID attribute of object 24 at frame 14. Algorithm automatically

propagates the Root Label 1 to object 24 as shown in the figure 4.11.

65

Figure 4.10 Visualization of trajectory of object 23 at Frame 13 and object 24 at Frame 14 before

adding object 24 to the track

66

Figure 4.11 Trajectory visualization of object 24 at Frame 14 after adding object to the track

(a) Before extending track (b) After extending track

Figure 4.12 Trajectories visualization before and after extending track

67

4.4 Joining Tracks

In some instances, two or more different tracks are joined together due to

the error in an algorithm or due to a missing object in one of the frames. These

two tracks with different Root Labels can be joined together by a leaf object and

a root object of the two tracks. In the Figure 4.13, the track with Root Label 12

and the track with Root Label 14 originally belong to the same track with Root

Label 12.

Figure 4.13 Two different tracks of the same object in a frameset before join operation

The two tracks are manually joined by adding Object 3 at Frame T+3 to

the ChildrenID list of Object 2 at Frame T+2 as shown in Figure 4.14. When

ChildrenID are edited manually, the ParentID of Object 3 is updated

automatically and Root Label of Object 2 at Frame T+2 is propagated to Object 3

and its descendants.

68

Figure 4.14 Track information after joining two tracks in a frameset after join operation

Operation on FireFly:

 Figure 4.15 shows the visualization of two different tracks. To join these

two tracks requires user to link the leaf node of track 1 and root node of track 2

as shown in Figure 4.16.

Figure 4.15 Trajectory visualization of two different tracks

69

Figure 4.16 Joining object 24 at frame 14 and track 1

Figure 4.17 Trajectory visualization before and after joining track 1 and track 2

4.5 Deleting Spurious Points/ Splitting Tracks

In the process of track editing, spurious objects are identified and deleted.

When an object is deleted the track is updated automatically by splitting the track

into two tracks. In Figure 4.18, Object 2 at Frame T+2, is identified as spurious

and track information needs to be updated.

70

Figure 4.18 Track information before deleting spurious objects in a frameset

Figure 4.19, shows the track information update after deleting Object 2.

The ParentID and ChildrenID list of parents and ChildrenID objects are updated

automatically. Object 3 at Frame T+3 ParentID is updated to -1 and becomes the

root object for its descendants. Root Label is assigned to the maximum Root

Label added one.

Figure 4.19 Track information after deleting spurious objects in a frameset

Operation on FireFly:

Figure 4.20 shows the attribute window of Object 1 with a label on the top

representing dataset number which the user is working on, frame number of the

71

object, ObjectID and the type of graphical shape. Figure 4.20 also, visualizes the

trajectory of track label 1 from frame 0 to 8 using Auto Trajectory or Draw

Trajectory selection.

Figure 4.20 Trajectory of Object 22 from frame 0 to frame 10

During track correction, object at Frame 3 is identified as a spurious

object. User can manually delete this object using the ‘delete’ keyboard key or

using the delete button available on the attribute window. When a manual delete

operation is performed, application makes a PHP server call to update parent

and ChildrenID objects and to propagate the Root Label. Since Object 1 in

Frame 2 has it ChildrenID as 1, which does not exist anymore, the algorithm will

update its ChildrenID to -1. Similarly ParentID of Object 1 from Frame 4 is

updated to -1 and a new track/Root Label is propagated as shown in figures

4.21, 4.22 and 4.23.

72

Figure 4.21 Object 22 deletions in the frame 3

Figure 4.22 ChildrenID of Object 22 update in the frame 2

73

Figure 4.23 Attributes of Object 1 updated in the frame 4

The new track label will be the maximum value retrieved from the

database added one. This new label is propagated to all the descendant objects

of Object 1 (at Frame 3) in the following frames (frame 4 to frame 8) as shown in

the Figure 4.24.

(b) Before Delete Operation (b) After Delete Operation

Figure 4.24 Trajectories before and after delete operation

74

4.6 False Splits

In this case, the track information consists of a false split of an object. This

will lead to wrong perception of two different tracks as a single track or creating a

new branch to track which does not exist originally. Figure 4.25 shows false split

of Object 3 at Frame T+1 into two objects 2 and 5; where originally there exists

no split. User must manually edit the ChildrenID list of an Object 3 at Frame T+1

and delete Object 5 at Frame T+2 and Object 6 at Frame T+3.

Figure 4.25 Track information of false object split in a frameset

Figure 4.26 shows the track after false split correction, which involves user

to change the ChildrenID of Object 3 at frame T+1 and algorithm will update the

Root Labels and Lineage of its descendants and updates Object 5 at T+2 and its

descendants with new Root Label and Lineage.

75

Figure 4.26 Track information after correcting false object split

4.7 False Merges

In this case, there is a false merge of objects. User must manually edit the

parent list of the merged object. The ChildrenID lists of parent objects are

updated automatically. New Root Label and new Lineage are propagated to all

the descendants. In Figure 4.27, Object 2 at Frame T+2 is false merge with false

parent Object 7. User must manually update the ChildrenID list of Object 7 at

Frame T+1 or the parent list of Object 2 at Frame T+2.

Figure 4.27 Track information of false merge of objects

Figure 4.28 shows the automatic propagation of Root Label and Lineage

after correcting the ChildrenID of Object 7 at T+1.

76

Figure 4.28 Track information after correcting false merge of objects

4.8 ID Switching

In this case ID is either ParentID or ChildrenID. Figure 4.19 depicts the

example of ID switching. The ChildrenID of Object 2 and Object 7 at Frame T+2

are switched due to an algorithm error. To correct the track information and user

must manually switch the ParentID of Object 3 and Object 7 at Frame T+3 or

manually switch the ChildrenID of Object 2 and Object 7 at Frame T+2.

Figure 4.29 Track information of objects whose ParentID and ChildrenID attributes are switched

Figure 4.30 shows the automatic Root Label and Lineage propagation of

correcting the ParentID or ChildrenID values.

77

Figure 4.30 Track information of objects after correcting ID Switching

4.9 Efficient FireFly Update Operations after a User Edit

All these cases are examined and solved by using a reliable algorithm

which automatically propagates the Root Labels and Lineages in lineage data

representation. These algorithms are implemented in PHP and are invoked by

the FireFly when needed. Figure 4.31 shows the consequent FireFly system

functions based on user attribute edit operation. FireFly uses event handling

functions for every user interactive operation. When user performs delete or edit

operations on the object attributes, the corresponding event handler function is

invoked and passes a request to the server for necessary updates. PHP on the

server handles this request and execute the update functions to propagate the

changes.

78

Figure 4.31 Sequence of update operation in FireFly

‘Attributes’ is an important table in the database which contains attribute

information of all the objects. This table data is fetched by the update functions to

update the changes in the track information. PHP functions make a ‘return call’ to

the event handler on updating the table data and event handler will reload all the

frames in a dataset to reflect the new attribute values. The implementation of

PHP functions is discussed in detail in the chapter 5.

79

4.10 Interactive Track Editing Methods

 Previously discussed track editing operations are manual operations

which requires user to manually edit the ParentID and Children attributes for

every object. In creating manual ground truth for large datasets, this procedure

will be a time consuming and complex process for the user to make frequent

frame change operations for knowing object’s parents and children. A fast track

editing approach is recommended with more interactivity and less manual edit

operations. This interactive track editing method involves selecting objects in

different frames and applying two shortcut keys: Ctrl+j to create a track and

Ctrl+x to delete a track. The steps involve in interactive track

creating/connecting are

Step 1: Ctrl+t to enable Track Mode (“Track Mode: Enabled” appears on screen

as text feedback to user) as shown in the Figure 4.32.

80

Figure 4.32 Track mode is enabled in the frame 57

Step 2: Select object in each frame to connect/ create a track (only one object

can be selected in each frame).

Step 2a: If the wrong object is selected then deselect the object (by clicking the

selected object) and select the correct object.

Step 2b: Repeat Step 2 for each new frame as shown in Figure 4.33. In this

scenario UPS vehicle objects were selected from frame 57 to frame 70 to create

a track and Figure shows some of sample frames of object selected.

81

Figure 4.33 Sample frames objects selected to create track

Step 3: After selecting object in last frame then Ctrl+j to join all selected objects

in to a single track automatically. Parent and child relationships are added to the

Attribute panel automatically and new Root Label is generated if there is no track

exists or Root Label is propagated (“Track joined” appears on screen as text

feedback to user”) as shown in the Figure 4.34.

82

Figure 4.34 Track is created for selected objects

Step 4: If track creating operations are finished then Ctrl+t to disable track mode.

(“Track Mode: Disabled” appears on screen as text feedback to user) as shown

in the Figure 4.35. Figure shows the trajectory of UPS vehicle with small circles

representing vehicle position in previous frames.

Figure 4.35 Track mode is disabled and trajectory of UPS vehicle

83

The steps involve in interactive link/edge deleting are

Step 1: Ctrl+t to enable Track Mode (“Track Mode: Enabled” appears on screen

as text feedback to user).

Step 2: Select objects in any two neighboring frames to disconnect/delete a

link/edge (only one object can be selected in each frame).

Step 2a: If the wrong object is selected then deselect the object (by clicking the

selected object) and select the correct object.

Step 3: Ctrl+x to delete an edge/disconnect the track between the selected

objects. New parent and child are added to the Attribute panel automatically.

New Root Label is generated and propagated for the new track. (“Track

disconnected” appears on screen as text feedback to user”). Figure 4.36 shows

UPS vehicle track before and after Ctrl+x operation.

84

Figure 4.36 Track of UPS vehicle before (a) and after (b, c, d) Ctrl+x operation

Step 4: If link deleting operations are finished then Ctrl+t to disable track mode.

(“Track Mode: Disabled” appears on screen as text feedback to user).

Interactive Track Editing helps the users to interactively and quickly perform track

corrections. Interactive track editing operations of manual track corrections

(section 4.1) are discussed below.

 Creating track information: Creating track information using Interactive

Track Editing approach involves steps of interactive track

creating/connecting discussed before.

85

 Adding or Extending track information: Adding/Extending track of an

object using Interactive Track Editing approach involves

- Step 1: Ctrl+t to enable interactive track editing mode

- Step 2: Select objects which are supposed to join to the existing track

and select first/last object (based on direction of extending track) of

existing track

- Step 3: Ctrl+j to propagate the existing track information to the selected

objects

- Step 4 : Ctrl+t to disable Interactive Track Editing mode

 Deleting spurious points / Splitting tracks: Deleting spurious point

involves normal delete operation and track information will automatically

updated. Splitting track using Interactive Track Editing approach involves

steps of interactive link/edge deleting discussed before.

 Joining tracks: joining tracks using Interactive Track Editing approach

involves following steps

- Step 1: Ctrl+t to enable interactive track editing mode

- Step 2: To join two tracks, select the leaf/last object of one track and

root/starting object of another track.

- Step 2a: To join multiple tracks, select the leaf/last object of the first

track whose information should be propagated to other track objects

and select all objects of other tracks.

- Step 3: Ctrl+j to join tracks or propagate the first track information to

other tracks

86

- Step 4 : Ctrl+t to disable Interactive Track Editing mode

 False merge: False merge correction using Interactive Track Editing

approach involves following steps

- Step 1: Ctrl+t to enable interactive track editing mode

- Step 2: Select false parent object and object of false merge

- Step 3: Ctrl+x to split the link/track between false parent object and

object

- Step 4 : Ctrl+t to disable Interactive Track Editing mode

 False split: False split correction using Interactive Track Editing approach

involves following steps

- Step 1: Ctrl+t to enable interactive track editing mode

- Step 2: Select false child object and object of false split

- Step 3: Ctrl+x to split the link/track between false child object and

object

- Step 4 : Ctrl+t to disable Interactive Track Editing mode

 ID switches: ID switch correction using Interactive Track Editing approach

involves following steps

- Step 1: Ctrl+t to enable interactive track editing mode

- Step 2: Select false child object and object of ID switch

- Step 3: Ctrl+x to split the link/track between false child object and

object

- Step 4: Repeat step 2 and step 3 for all ID switches

87

- Step 5: Select objects and Ctrl+j to join the split objects to correct ID

switches

- Step 6 : Ctrl+t to disable Interactive Track Editing mode

4.11 Single Object Interactive Tracking

During manual ground truth generation in a large datasets using the above

interactive track editing operation involves two steps, in first step, user must

manually create an object in every frame and in second step, user must select

object in each frame and Ctrl+j to join all selected objects in to a single track.

This procedure is time consuming in some large datasets with thousands of

frames and each frame may consist hundreds of objects. A faster and interactive

approach is recommended to generate manual ground truth with track creating.

In this method, user can create object and also propagate its track information in

each frame with a single click operation at each frame. Steps involved in single

object interactive tracking method are

Step 1: Select an object to propagate and create a track as shown in the Figure

4.37. Red colored object selected in the figure is person, its object ID (ID) is 1

and Root Label/Track ID (T) is null (no track).

88

Figure 4.37 Object (ID=1) is selected propagate and create track

Step 2: Ctrl+s to enable single object interactive tracking mode (“Single object

interactive tracking ON. ctrl-s to exit” appears on screen as text feedback to

user). Figure 4.33 represents the screen when Single Object Interactive Tracking

Mode is enabled.

89

Figure 4.38 Single Object Interactive Tracking Mode is enabled in frame 26

Step 3: Go to next frame and click on the frame to create an object (previously

selected object at step 1 is created at mouse clicked location)

Step 3a: After mouse click operation object is created and trajectory of an object

is drawn automatically. If Auto Advance option is selected in the Save Display

settings widget, frame will be automatically advanced to next frame with each

mouse click operation. If Auto Advance option is disabled then user must

manually advance to next frame.

Step 3b: Repeat Step 3 for each new frame.

90

Figure 4.39 Single Object Interactive Tracking with Auto Advance feature (left) and without Auto
Advance feature (right)

Step 4: After selecting object in last frame then Ctrl+s to disable single object

interactive tracking mode (as shown in Figure 4.34) and automatically create a

track for the objects created in single object tracking mode as show in Figure

4.35 with new Root Label 1 (T= 1).

Figure 4.40 Single Object Interactive Tracking Mode is disabled in frame 55

91

Chapter 5

Track Updating and Management

5.1 Track Management Implementation

FireFly helps the user to change the ParentID or ChildrenID anytime and the

Root Label is propagated to its descendants automatically. Whenever there is an

edit operation by the user, values are passed to the algorithm on the server for

automatic propagation of Root Label and Lineage to the descendants. Algorithm

supports all the cases discussed in the previous chapter. This algorithm is

divided in to 3 stages of updates:

 Updating previous frame objects

 Updating current frame objects and their descendants

 Updating subsequent frame objects and their descendants

5.2 Updating Previous Frame Objects

This module consists of two steps. In the first step we retrieve objects from

the previous frame which are either parents of current frame edited object or an

old parent, which is not a parent of current object following editing. In the second

step, the ChildrenID attribute of retrieved objects are modified according to the

changes made by the user. For example, in the Figure 5.1, ParentID of Object 2

in Frame T+1 is changed manually from 3 to 1.

92

Figure 5.1 User edited ParentID of Object 2 from 3 to 1

When user does this change the first step in the algorithm will retrieve

objects from the previous frame. These objects are either parents of Object 2 or

previous frame objects which have Object 2 in their ChildrenID list. Therefore,

from previous Frame T, objects 3 and 1 are retrieved for an update. In the next

step ChildrenID attribute of these objects are compared with user edited object

and modifies accordingly. ChildrenID attribute of Object 3 in Frame T is updated

from ‘2’ to ‘-1’, since it does not have any ChildrenID in its list. Similarly, for

Object 1 in Frame T, ChildrenID value is updated from ‘5’ to ‘5, 2’ as Object 2 is

added to its ChildrenID list by the user.

93

Figure 5.2 Algorithm modifying previous frame objects

Algorithm 1 Updating Previous Frame Objects

Input: ObjID

Output: None//Updates all previous frame objects

1. prevframeobjs[] = getPreviousFrameObjects(ObjectID, ParentID, Frameno);
2. foreach (object in previousframeobjs) do
3. if (object is a new parent) then
4. add ObjID to object->ChildrenID
5. end if
6. if (object->ChildrenID contains objID but not a parent) then
7. remove ObjectID from object->ChildrenID
8. if object->Children== null then object->Children= -1
9. end if
10. end for

Algorithm 1: Updating previous frame objects

5.3 Updating Current Frame Objects and Their Descendants

This module updates the Root Label and Lineage of current frame objects

according to the new siblings in the current frame. The current frame objects are

retrieved which are in the ChildrenID list of ParentID object. In the Figure 5.3,

94

from the ParentID of Object 2, Object 5 is identified as its sibling. Object 2,

Object 5 and their descendants are update with new Lineage.

Figure 5.3 Algorithm modifying the current frame objects and their descendants

Algorithm 2: Updating current frame objects

Input : ObjID

Output: None

Functionality: Update Root Label and Lineage of sibilings
1. siblingameobjs[] = getPreviousFrameObjects(ObjectID, ParentID, Frameno);
2. Foreach siblingameobjs
3. If parent -> chidrenlist is greater than 1 then
4. Update Lineage of child with appended alphabet
5. End if
6. End for

Algorithm 2: Updating current frame objects

5.4 Updating Subsequent Frame Objects and Their Descendants

This module is the combination of the above two modules. It retrieves the

objects from subsequent frame and updates their ParentID, Root Label and

Lineage. Similar to the ‘updating previous frame module’, all the objects which

are either ChildrenID of edited object or have edited object’s ObjectID in their

95

parents list are retrieved from subsequent frame. For example, in the figure, user

changes the ChildrenID attribute from 3 to 6 for Object 2. This module retrieves

Object 3 from Frame T+2 and updates its ParentID with -1 in the first step.

Similarly, Object 6 is retrieved and adds ObjectID 2 to its ParentID. Now, similar

to updating current frame objects module; Lineage and ParentID of these

retrieved objects are modified. Object 3 and Object 6 in the Frame T+2 are

updated to ‘minimum’ of their parents Root Label or Maximum Root Label if they

don’t contain the parent. Lineage is updated to their parent’s Lineage in lineage

data format or updated to their Root Label if no parent exists.

Figure 5.4 User edited ChildrenID of Object 2 from 3 to 6

96

Figure 5.5 Algorithm modifying the subsequent frame objects and their descendants

Algorithm 3: Updating subsequent frame objects and their descendants

Input : ObjID

 Output: None

Functionality: Update ParentID, Root Label and Lineage of sibilings

1. nextframeobjects[] = nextFrameObjects(ObjectID, ParentID, Frameno);

2. Foreach nextframeobjects

3. if (nextframeobject is new child)then

4. add ObjID to object->ParentID

5. update RootLabel and Lineage

6. end if

7. if (nextframeobject isnot child)then

8. Update object->ParentID

9. Update RootLabel and Lineage

10. end if

11. end for

Algorithm 3: Updating subsequent frame objects and their descendants

97

Chapter 6

Conclusions & Future Work

Image and video analysis algorithms are validated through ground truth

generation and this process is accomplished by using FireFly. FireFly also

supports visualization and editing/correcting the ground truth using interactive

interface. Being a web application it provides a collaborative environment for

researchers to work on a dataset. It is developed as a flexible and extensible tool

to add new features on demand. This project extends the features of FireFly with

track generation, visualization and editing capabilities. All possible user editing

scenarios have been studied and necessary functions are implemented in PHP

at the server to propagate the updates. It uses rich internet application Flex to

provide interface for editing parent, child and track label properties. These edit

operations are handled by the server, which updates the database with

consistent track data and reflects the updated track at user interface. The

automatic track edit and management reduces the time for the user to propagate

changes and maintain consistent track data for accurate analysis.

 FireFly provides rich interface for visualization, ground truth generation

and editing. Here are some enhancements as an example for future

enhancements to FireFly:

98

 Segmentation Editing

- Single Object Attributes Updates: Editing automated segmentation

by changing the parameters such as width, height and length of the

graphical shapes are required in segmentation editing. This feature is

supported for box and line objects. This feature should be extended to

other graphical objects like polygon and polyline.

- Merge/Split Operations: In some cases, two close objects are

represented as a single object. A split operation of the contour should

be provided to the user to correct the segments rather than deleting

and redrawing two contours. Similarly, a merge operation should be

provided in the case of an incorrect split of an object.

 Coloring Strategies to Visualize Densely Clustered Large

Populations of Objects

- For Bacteria dataset, each frame may consist more than 500 objects

and representing each individual object may require coloring them

uniquely. Currently, all the objects are represented in a single color.

Providing different colors is not recommended as some of the colors

are difficult to differentiate. Therefore, a four coloring method must be

added to identify the objects from its neighbors.

 Flex 3 to Flex 4.5 Migration

- The user interface of FireFly is been developed using Flex 3 SDK

which only supports web and desktop applications. But in future FireFly

99

must be extended to support on mobile and tablet devices. There

should be a migration in FireFly from Flex 3 to Flex 4.5 which supports

building Flex applications for Google Android OS, BlackBerry Tablet

OS and Apple iOS.

 Create new table for trajectories

- In the current version of FireFly, Attribute table is used to store object

classification and track attributes, this involve calling multiple database

queries on multiple tables to pull the necessary trajectory information.

Since, FireFly allows many options to the user to customize the

trajectory drawing, a separate table is required to store trajectory

related information thereby reducing the database queries and

efficiently handling the trajectory information.

100

Appendix A

General FireFly Features and Enhancements

 The first screen in the FireFly system is the login screen which checks

user authentication. Once authenticated, the available labs, projects and

respective datasets, that belongs to the user are displayed.

Figure A.1 Login Screen

Since FireFly works on a single database, a read-write conflict is expected

when two individual users are working on the same dataset. Therefore, FireFly

uses binary semaphore mechanism to lock the dataset from concurrent Read-

Write operations. In the Figure A.2, a ‘0’ value for ‘lock’ represents the dataset

101

that is available for Read-Write access and a value of ‘1’ represents datasets that

are available for Read-Only access. FireFly also stores the authorizations details

for each user. Permission ‘1’ in the Figure A.2 represents Read-Write access for

the user and ‘0’ represents Read-Only access.

(a)

(b)

Figure A.2 User lab menu (a) new user interface (b) old user interface

102

The workspace view with HeLa datasets is represented in Figure A.3.

Figure A.3 FireFly workspace view for Read-Write access

FireFly provides five widgets to the left side of the screen. These widgets

are listed in the table A.1.

103

Widget Name Reference

Figure

Controls Purpose

Class chooser A.4

 List of all

classes with

respect to dataset

 Check box is used to show objects

of that class.

 Uncheck will hide those class

objects.

Frame advance

widget

A.5

 Zoom control

 Frame

navigation control

 Bad Frame

and Auto save

controls

 Frame Buffer

control

 Displays image file name and user

access type on top the widget.

 Displays current frame number and

total number of frames.

 User can jump to the specific frame

directly. User can set the frame as bad

frame.

 Auto save will saves all the objects

in a frame automatically when frame is

changed.

 It shows the number of frames

buffered and what frames buffered in the

frame buffer control.

Drawing tool

chooser

A.6

 List of tools  Currently FireFly consists of point,

line, box, polygon and polyline tools.

Settings widget A.7

 Save and

display controls

 Copy objects will copy the objects

from previous frame or previous and

display them in the current frame

 Save objects will save the current

frame objects to the database. Used

when Auto Save option is disabled

 Export image will make a image of

current frame with objects and export the

image to the specified location

Help Widget A.8

 Tutorial  Explains how to use each control in

each widget and attribute details.

104

Attribute

window

3.4

 Double click

on object

 Gives classification and track

attributes of an object

Table A.1 FireFly widgets and their controls

Figure A.4 Class layer chooser widget

Figure A.5 Frame advance widget

105

Figure A.6 Drawing Tool Chooser

Figure A.7 Settings control widget

106

Figure A.8 Help widget

 Figure A.9 shows the sample workspace displayed to the user who has

Read-only access. In this scenario, the ‘Tool choose’ widget, the ‘Settings

control’ widgets and all edit operations are disabled.

Figure A.9 FireFly workspace view for Read-Only access

107

Figure A.10 shows the status bar which can toggle using F2 (or Fn+F2) key. This status

bar is located on bottom of every frame and consists of information about the frame and

objects in the frame.

Figure A.10 Status bar

Annotating is an easy process in the FireFly. User can select the tool from tool chooser

widget and has to click and drag the mouse to draw a line or box object. For polygon and

polyline object drawing user needs to click to drop points for the polyline or polygon and

press ‘c’ (close) to close the polygon or to stop drawing polyline.

Figure A.11 Point Drawing

Figure A.12 Line Drawing

108

Figure A.13 Box Drawing

Figure A.14 Polyline Drawing

Figure A.15 Polygon Drawing

Figure A.16 represents debug window which can be toggled using F1 key (or Fn+F1 Key

if F1 key is overloaded). Debug window gives the information used for the user to

understand the operations and modifications made.

109

Figure A.16 Debug Window

110

Help:

F1 (or Fn+F1) Key: Use this key Displays/hide the status of current events such as number of

Frame selected, tools choose etc.

F2 (or Fn+F2) Key : Use this key to Display/hide the information window with information such

as current frame number, cursor location, number of objects etc

Zoom- in /Out: Use Mouse wheel to zoom in and out of the current frame.

Drag the mouse pointer to scroll through current frame

Accessing a particular frame: Use forward or previous arrow from FrameAdvance tool or enter
a particular frame number.

Class Chooser Tool: Class chooser tool shows the various classes based on the dataset

selected.

Save/Display Panel: This panel can be used to for various save or display options as below:

Save Now- Saves all the objects of the current frame to database

AutoSaveOff - Deactivates the AutoSave functionality while traversing through frames

Not Editable? - Deactivates all the save and display functionality. The changes to objects are not
saved after

Attribute window: To see the attribute window of an object, click on the object once and double
click it again. Attribute windows shows various attribute of a marked object such as propagated
id, class, xy coordinates, classification and tracking attributes as below.

ObjectID: Unique identification number for object in a frame

ParentID: ObjectID of its parent object (same object in previous frame). -1 if object doesn't have
any parent.

ChildrenID: ObjectID of its child object (same object in next frame). -1 if object doesn't have any
child.

Root Label: Unique number assigned for each track

Lineage: Uses root label to draw trajectory for object track. Follows lineage representation in case
object split

Auto Trajectory: Draws trajectory of an object on frame progress

Draw Trajectory: Draws trajectory of an object in specified start and end frames

Key 'c': Stop polyline drawing or join last point and starting point in case of polygon drawing

Figure A.17 FireFly help text

111

Appendix B

Limitations in Using the IE browser

 FireFly uses various shortcut keys to increase the efficiency and reduce

number of widgets to make user interface simple. Some of the shortcut keys in

FireFly include F1, F2, Ctrl-t, Ctrl-x, Ctrl-j, Ctrl-s, c, etc. These shortcut keys are

selected to be implemented since they convey the meaning of feature and

therefore it would be easy for the user to remember. Running FireFly application

in Internet Explorer browser has some limitations in using these short cut keys as

some of them conflict with Internet Explorer’s shortcut keys. Table shows the

shortcut keys which conflict with the IE browser keys. However FireFly runs as

expected in other browsers such as Firefox, Chrome, Safari, etc.

Key FireFly Internet Explorer

F1 Debug Window Help and Support

Ctrl-t Enable track mode Opens new tab

Ctrl-j Joins the object

track

View downloads

history

Table B.1 Key conflicts in IE

112

Appendix C

Evolution of the FireFly User Interface

 They have been many changes made to the FireFly user interface to

make the usage of FireFly simpler to the user. The two main widgets which has

been completely changed from FireFly initial development are Attribute Window

and Save Display Settings widgets. Figure shows the initial version of FireFly

Attribute window where all classification and trajectory attributes are displayed in

a single window.

Figure C.1 Attribute Window version 1

Figure shows the modified attribute window with tabbed window interface.

Attribute window differentiate the classification and trajectory attributes in two

113

tabs. Trajectory details tab consists of trajectory/ track attributes and other

trajectory display settings such as

 Draw Trajectory to display trajectory between mentioned start and end

frames.

 Auto trajectory displays the trajectory of an object from its start frame to

the current frame.

 Toggle points will hide/displays the frame points within the trajectory

 Samplings points sample the frame points within the trajectory

 Head and Tail displays the trajectory number of frames mentioned in Head

to the current frame and Tail specifies the number of frames after the

current frame.

Figure C.2 Attribute Window version 2 with tabbed window

114

Figure shows the current Attribute Window where trajectory display

settings such as Head, Tail, Sampling points, Toggle points settings have been

moved to the Save/Display setting widget and these settings are globally effected

on all the trajectories. Auto trajectory is changed to Show trajectory setting and

by default the start and end frame of trajectory is set to the global settings (in

Save/Display settings) and any changes to the start/end frame will affect the

trajectory display locally to that object trajectory.

Figure C.3 Attribute Window version 3

Figure shows the initial version of Save/Display settings, which consists of

Label mask, Save objects, Copy objects settings.

115

Figure C.4 Save/Display settings version 1

Figure shows the current version of Save/Display widget with the

additional following settings as shown in the table

Figure C.5 Save/Display settings version 2

116

Settings Description

Class Labels Hide the class labels for objects

Trajectories Draw trajectories of all objects

Hide Points Hide frames points in the trajectory

Auto advance Auto advance settings for single object tracking

Head and Tail Head and Tail settings for trajectory drawing

Sampling Points Sample the frame points in trajectory drawing

Point Object Size Increase/decrease the point object size

Font Size Increase/decrease font size of text

Traj Point Size Frame point increase/decrease in trajectory drawing

Traj Line Size Increase/decrease the trajectory line size

Line Color Trajectory line color to

-class : same as class color

-single: white color

-multiple: each object is assigned with random color

Point Color Trajectory points color to

-class : same as class color

-single: white color

-multiple: each object is assigned with random color

Start and End Frames Global start and end frames for trajectory drawing

Table C.1 Settings in Save/Display widget

117

Appendix D

FireFly Development Environment

 FireFly uses Flex, Flash, MySQL and PHP technologies. Adobe Flex is a

software development kit for the development of Rich Internet Applications. Flex

applications can be built on Adobe Flash Builder software and it is available at

https://www.adobe.com/cfusion/tdrc/index.cfm?product=flash_builder. Adobe

Flash Builder is also available as a plug-in for Eclipse and Eclipse is available at

http://www.eclipse.org/downloads/packages/eclipse-ide-java-ee-

developers/heliossr2. Flash Builder installation procedure on windows and as a

plug-in on Eclipse is explained at

http://kb2.adobe.com/cps/921/cpsid_92180.html. FireFly application is developed

using Flex 3.5 SDK; therefore Flex 3.5 SDK must be downloaded

(http://opensource.adobe.com/wiki/display/flexsdk/Downloads) and imported to

the Flash Builder to compile FireFly application. Flex applications are compiled to

.swf files which need Flash Player software installed on browser to run these

files. Flash Player plug-in for browser can be downloaded at

http://get.adobe.com/flashplayer/.

Development of Flex code

FireFly uses subversion to store the back up of code, this helps the new users

to get required credentials and simply check out the latest code from the

repository. Also, whenever the new feature is updated, user can check in the

https://www.adobe.com/cfusion/tdrc/index.cfm?product=flash_builder
http://www.eclipse.org/downloads/packages/eclipse-ide-java-ee-developers/heliossr2
http://www.eclipse.org/downloads/packages/eclipse-ide-java-ee-developers/heliossr2
http://kb2.adobe.com/cps/921/cpsid_92180.html
http://opensource.adobe.com/wiki/display/flexsdk/Downloads
http://get.adobe.com/flashplayer/

118

updated code to the subversion, which allows other development users to

consistently update their localhost code base with the modified feature.

Subversion installation procedure is explained at http://www.rose-

hulman.edu/class/csse/resources/Subclipse/installation.htm. FireFly application

is compiled and deployed on the server after testing the application on localhost.

Some of the resources for quick learning Flex applications development are:

 http://livedocs.adobe.com/flex/3/

 http://blog.flexexamples.com

 http://cookbooks.adobe.com/flex

Debugging Tools

 Debugging tools used for debugging Firefly application are

 Flash Debugger plug-in for web browsers will help the developers in

prompting error/exception messages with the line numbers and also with

trace of function calls.

 Flash Builder provides debug feature which helps the developer to run the

applications with control break points. Debugging Flex applications is

explained at http://help.adobe.com/en_US/flashbuilder/using/index.html.

 Charles Web Debugging is also an important tool which provides HTTP

monitor/proxy that helps the developers to view all HTTP request and

response made from their browser to the internet. Since the

communication between FireFly application is in Action Message Format,

http://www.rose-hulman.edu/class/csse/resources/Subclipse/installation.htm
http://www.rose-hulman.edu/class/csse/resources/Subclipse/installation.htm
http://livedocs.adobe.com/flex/3/
http://blog.flexexamples.com/
http://cookbooks.adobe.com/flex
http://help.adobe.com/en_US/flashbuilder/using/index.html

119

Charles helps in viewing the contents of Flash Remoting / Flex Remoting

messages as a tree. (Available at http://www.charlesproxy.com).

PHP Development

PHP code is available on the meru server and can be accessible to one

with required credentials. In order to connect to php you can connect through

securefx or any ftp client, connect to host: meru.cs.missouri.edu with pawprint

and password. To setup FireFly application on the localhost, developers must

have to install a WampServer which is available at

http://www.wampserver.com/en/. Latest version of PHP can be downloaded from

server and copied to the WampServer software location on the localhost

(C:/wamp/www). Service-config.xml file in the Flex code consists of the server

path has to be modified to the localhost path.

Database

FireFly uses MySQL database for storing all data associated with different

tables which is located on meru server and users must have required credentials

to access the database. To setup the database on localhost, download and

install MySQL software from http://dev.mysql.com/downloads/. FireFly database can

be build from the .sql file located in the subversion. Necessary database

authentication details are supposed to be changed in the application.ini file of

PHP code.

http://www.charlesproxy.com/
http://www.wampserver.com/en/
http://dev.mysql.com/downloads/

120

Bibliography

1. D. Doermann and D. Mihalcik. Tools and techniques for video performance
evaluation. In 15th int. conf. Pattern Recongnition, volume 4, pages 167-170.
http://viper-toolkit.sourceforge.net, 2000.

2. Bryan C. Russell, Antonio Torralba. LabelMe: a database and web-based tool
for image annotation. International Journal of Computer Vission, volume 77,
pages 157-173. http://people.csail.mit.edu/brussell/research/AIM-2005-025-
new.pdf, May 2008.

3. Beard, D. FireFly- web based interactive tool for the visualization and
validation of Image Processing algorithms. Master’s thesis, University of
Missouri, 2009.

4. I. Ersoy, F. Bunyak, V. Chagin, C.M. Cardoso, and K. Palaniappan.
Segmentation and classification of cell cycle phases in fluorescence imaging.
Lecture Notes in Computer Science (MICCAI), 5762:617-624, Sep. 2009.

5. F. Bunyak, K. Palaniappan, V. Chagin, and C.M. Cardoso. Cell segmentation
in time-lapse fluorescence microscopy with temporally varying sub-cellular
fusion protein patterns. In Proc. IEEE Engineering in Medicine and Biology
Society Conference (EMBC), pages 1-5, Minneapolis, MN, Sep. 2009.

6. Jenny Yuen, Bryan Russell, Ce Liu, Antonio. LabelMe video: Building a Video
Database with Human Annotations. 2009 IEEE 12th International Conference
On. 2009. 1451-1458.

7. A. Haridas, R. Pelapur, J. Fraser, F. Bunyak, K. Palaniappan, “Visualization of
automated and manual trajectories in wide-area motion imagery”, 15th Int.
Conf. Information Visualization, London, 2011.

8. Allan R. Jones, Caroline C. Overly, Susan M. Sunkin. “The Allen Brain Atlas:
5 years and beyond”. Nature Reviews Neurosciences, Vol. 10, No. 11. 2009

9. Christopher Lau, Lydia Ng, Carol Thompson, Sayan Pathak, Leonard Kuan,
Allan Jones, Mike Hawrylycz. “Exploration and visualization of gene
expression with neuroanatomy in the adult mouse brain”. BMC Bioinformatics,
Vol. 9. 2008.

10. Joshua Duhl (2003). IDC white paper on Rich Internet Applications [White
paper]. http://lib.trinity.edu/research/citing/APAelectronicsources.pdf

http://viper-toolkit.sourceforge.net/
http://people.csail.mit.edu/brussell/research/AIM-2005-025-new.pdf
http://people.csail.mit.edu/brussell/research/AIM-2005-025-new.pdf
http://lib.trinity.edu/research/citing/APAelectronicsources.pdf

121

11. Jeremy Allaire. Macromedia flash mx—a next-generation rich client.
Technical report, March 2002.

12. Farrell, J.; Nezlek, G.S.; , "Rich Internet Applications The Next Stage of
Application Development," Information Technology Interfaces, 2007. ITI 2007.
29th International Conference on , vol., no., pp.413-418, 25-28 June 2007.

13. Amitava Kundu, Charu Agarwal, Anushka Chandrababu, Mukul Kumar,
Karthik Ramanarayanan, Raul F. Chong. Getting started with Adobe Flex.
May 2010. IBM Corporation.

14. J. C. Preciado, M. Linaje, S. Comai, and F. Sanchez-Figueroa. Designing rich
internet applications with web engineering methodologies. In WSE ’07:
Proceedings of the 2007 9th IEEE International Workshop on Web Site
Evolution, pages 23–30, Washington, DC, USA, 2007. IEEE Computer
Society

15. Grossman, Gary; Huang, Emmy. (2006). "ActionScript 3.0 overview". Adobe
Systems Incorporated.

16. Lu Gao; Li-Yong Zhou; , "The improvement of RIA's software framework in
Flex," Electronic and Mechanical Engineering and Information Technology
(EMEIT), 2011 International Conference on , vol.8, no., pp.4351-4354, 12-14
Aug. 2011

17. Swiz framework. http://swizframework.jira.com. Retrieved 11/5/2011.

18. Wade Arnold. Zend Framework: Zend_Amf Component Proposal. January
2008.

19. Erik Meijering, Oleh Dzyubachyk, Ihor Smal, Wiggert A. van Cappellen.
Tracking in cell and developmental biology. Seminars in Cell &
Developmental Biology, Volume 20, Issue 8, October 2009

20. "Definition". Biology Online Dictionary. http://www.biology-online.org.
Retrieved 11/10/2011.

21. Adobe Consultant team. Developing Flex RIAs with Cairngorm Micro
architecture. [OL] http://www.adobe.com

22. Palaniappan, K.; Bunyak, F.; Kumar, P.; Ersoy, I.; Jaeger, S.; Ganguli, K.;
Haridas, A.; Fraser, J.; Rao, R.M.; Seetharaman, G.; , "Efficient feature
extraction and likelihood fusion for vehicle tracking in low frame rate airborne
video," Information Fusion (FUSION), 2010 13th Conference on , vol., no.,
pp.1-8, 26-29 July 2010.

http://swizframework.jira.com/
http://www.biology-online.org/
http://www.adobe.com/

122

23. Jaeger, S.; Palaniappan, K.; Casas-Delucchi, C.S.; Cardoso, M.C.; , "Dual
Channel Colocalization for Cell Cycle Analysis Using 3D Confocal
Microscopy," Pattern Recognition (ICPR), 2010 20th International Conference
on , vol., no., pp.2580-2583, 23-26 Aug. 2010.

24. F. Bunyak, A. Hafiane, K. Palaniappan, Histopathology tissue segmentation
by combining fuzzy clustering with multiphase vector level sets. Software
Tools and Algorithms for Biological Systems, Ed. H. R. Arabnia and Q.N.
Tran, Advances in Experimental Medicine and Biology Series, Springer, Part
V1, Chapter 41, pp. 413 – 424, 2011

25. Johnston, J.; Nagaraja, A.; Hochheiser, H.; Goldberg, U.; , "A flexible
framework for Web interfaces to image databases: supporting user-defined
ontologies and links to external databases," Biomedical Imaging: Nano to
Macro, 2006. 3rd IEEE International Symposium on , vol., no., pp.1380-1383,
6-9 April 2006

26. Kristian Kvilekval, Dmitry Fedorov, Boguslaw Obara, Ambuj Singh and B.S.
Manjunath, “Bisque: A Platform for Bioimage Analysis and Management”
Bioinformatics, vol. 26, no. 4, pp. 544-552, Feb. 2010.

