\qquad

SOME FACTORS INFLUENCINA

the

GERMINATION OF CORN.

A Thesis by
J. Wm. Read

Presented for the degree of

Master of Science in Agriculture

University of Missouri.
1908.

PLATES.

Opposite
No. of Plate Title page
I Difference in height of growth of imnature stages. 8
II Typical kernelsfrom immature samples. 16
III . Representative kernels from con- formation samples. 44
IV \& V Difference in height of growthOP
Conformation and Composition samples. 46
VI \& VII A duplicate test of IV \& V. 47

CONTENTS.
PageIntroduction1-5
The Problem of Maturity 6-16
The Curing Problem 17-38
The Conformation and Composition Problem 39-56
Problem of Variation with Individual Ears 57-69
Summary 69-70

INTRODUCTION.

One line of agricultural investigation that has been much neglected is that of detemining wat factors may Inrluence the germination of corn. There has been in fact no direct work done along this line that is available in published form. It is, nevertheless, a very important problem and deserves more attention than it has received. With this view in mind some experiments were undertaken during the fail and winter of 1907-08 for the purpose of getting more definite infomation on the subject.

The scope of the work was made somewhat extensive, and for the sake or convenience it has been divided into four separate parts. These divisions have been termed;

1. The Maturity Problem.
2. The Curing Problem.
3. The donrormation and Composition Problem.
4. The Individual Variation Problem.

Each of these different problems will be found treated separately in the order named.

The method of germinating that was followed
throughout the entire work was one which required a great deal of time and considerable patience, but it was preferred
to any other because of its greater degree of eficiency in maintaining unfform conditiong especially those of
moisture. Some fifteen or twenty germinating boxes $21 / 2 \times 3$ feet, and $21 / 2$ inches deep were made and filled practically full with clean sifted oreok bottom sand. The boxes were left open enough to afford good drainage. In a box of this size four df five hundred kernel samples could be germinated at one time. This was the number usually gemninated in one box, and where duplicates of a corn sample were germinated, as was done in practically every test, they were planted side by side in the sand. The planting was all done by simply taking one kernal at a time and setting it right end down into the sand. When a sample had been stinck, the kernels were pressed down uniforirly and then covered over with a thin layer of sand, enough sand being used to prevent the kernels from pushing out upon germination. When the desired number of poxes had been filled in this manner, they were placed in the germinating room and kept supplied with the proper anount of mopsture.

The boiler room in the basement of the Agricultural Building was used for gemminaing. It was large enough for all purposes, was kept at a rather high temperature, and the air in the room was at all times thoroughly saturated with moisture from steam pipes. The conditions for germinating were very ideal. This was shown by the fact
that the com would come up and grow from four to five inches In five or six days after being set in the sand. The advantages of emploing such a method of germination are:

1. Each individual kernel has equal opportunity to show what it can do.
2. Moisture supply can be kept more uniform.
3. Affords a very accossible means for studying the vigor of germination and rapidity of growth from time to time.
4. Offers a very desirable way for ascertaining the number the of strong and weak stalks. When a sample was to be removed and counted, the hand was forced along between the bottom of the box and the layer or sand containing the mass of roots, bringing up by this means a small block of stalks at a time. The sand was allowed to become somewhat dry before the samples were taken up for the purpose of facilitating the separation of the strong and weak stalks so they could be easily counted. As soon as a sample had been removed the sand it had occupied was sifted for the ungerminated kernels.

The work on maturity consisted in gathering from the ileld a number of samples representing different stages of growth. The stages selected were, in the order of
their maturity:

1. Fairly late roasting ear.
2. Very late roasting ear.
3. Hard dough.
4. Farly Indented.
5. Pulpy. mealy.
6. Corn rather hard and well indented.

Several samples of the hard dough and pulpy nealy stages were cured Rax by different methods for comparison.

The curing problen was conducted on a la ger scale than any one of the other three. Work was begun on twenty-five different samples of mature (except two) corn, but since nine of these were under ground and werenot given the amount of attention that was intedded in the beginning, this part of the work is virtually confined to exporiments carried out with sixteen different samples. Fairly good corn was selected to make the samples from, but no special attention was given to excellence and uniformity of type. If an ear looked to be all right, it was put into the genoral stook, from which the different individual samples wore selected. Nubbins and inferior looking ears were discarded.

The conformation and composition part of the
work was devoted to experiments with eleven different samples or mature corn. The samples were: High and Low

Protein; Large and Small Germ; Short and Long Kernel;
Smooth Germ Coat and Sharp Pointed Kernel; Wrinklea,
Blistered and Discolored Germ Coats. They were paured. ofe just as enumerated as above, with the exception or the discolored gem coat, which was mated with a miscellaneously picked sample. All of these samples were kept in the basement of the Agricultural Building, where the temperature remained constant at about 70 degrees F. Comparative tests were made from time to time.

The work on variation with individual ears
consisted in makeng a number of consecutive germinations of a one hundred ear sample. The ears were numbered from one up to one hundred, and an individual performance record was kept of each ear. Special pains was taken to see that kernels from every ear received uniform treatment in each of the eleven tests that was made. The succeeding pages of this paper are given over to sumarizing and discusfdingnthe experimental results obtained along the different lines of investigation.

The division of the work presented at this point was undertaken for the purpose of ascertaining what differences there might be in the germinative strength of corn gathered at different stages of maturity. An experiment of this natore probably has a direct value to the practical famer, and ałso possesses much scientiric interest.

Exporiments were conducted upon six dif:erent stages of growth. These were in the order of their maturity: Fairly late roasting ear; very late roasting ear; hard dough stage; early indented stage; pulpy mealy stage, and hard, well indented stage. A word of explanation is probably necessary. In connection with the last three named samples. The early indented stage consistod of ears that were somewhat more mature than the hard dough stage and the kernels showed young indentation. The pulpy mealy was still more mature and was considerably more advanced in the process of indentation. The name "pulpy mealy" was applied to it because when the contents of a kernel were removed they could be pressed between the fingers into a sort of dry mealy pulp, which had enough moisture present to cause a very slight elastic consistency. In the last stage the corn was hard and well indented. Apparentiy it had about reached its full growth and it only remained for it to harden
and cure. On being gathered at this stage, of course, it was not allowed to mature on the stalk in the field. This fact, however, did not seen to be in any manner very disadvantageous since the sample gave a total average percent germination of 94.7 , table 11 .

The results of the tests with the difeerent sainples and treatments are tabulated in the tables that follow. In every table except , one given below the results include duplicate tests. In the first test 500 kernels from the each corn sample were germinated, while second test consisted of three 500 kernel samples taken from each corn sample and germinated side by side at the same time. Evory 500 kernels was a composite of the corn sample from which it was taken, the same number of kernels being taken from each ear in the sample. All the corn samples were kept dry during the time of curing and were transferred to a warm room before cold weather came on.

PLATE I.

The plate above shows photographs of 500
kernel samples from the different stages of naturity, as they grew in the germinating boxes. The difeerences in height of growth are not brought out very well since the corn had Pallen down gady before photographing. The most noticeafle thing is the hidher and better growth of the more mature stages.

TABLE 1.

Fairly late roasting ear stage, husked imediately and sun cured.
A fifteen ear sampie.

When germi- nated	No. of test	Hejght of best stalks in Inches	Number strong stalks	Number weak stalks	Number ungermi nated	$\begin{aligned} & \text { Avg. \% } \\ & \text { germi- } \\ & \text { nation } \end{aligned}$	Duration of test
Feb. 22	1	4 to 5	164 140 143	135 158 138	$\begin{aligned} & 201 \\ & 202 \\ & 219 \end{aligned}$	$\begin{aligned} & 58,6 \\ & 58.6 \end{aligned}$	6 da.
	Avg. of three samples Avg. totals		$\begin{aligned} & 149 \\ & 149 \end{aligned}$	$\begin{aligned} & 143.6 \\ & 143.6 \end{aligned}$	$\begin{aligned} & 207.3 \\ & 207.3 \end{aligned}$		
Avg. \% and non	ong ge rminat	eak germ,	29.8	28.7	41.4		

TABLE 8.

Very late roasting ear stage, husked ininediately and sun cured. A fifteen ear sample.

Hard dough stage, husked imediately and house cured. A fifty ear sample.

TABLE 4.
Hard dough stage, not indented. Husked imediately and sun bured. A fifteen ear sample.

$\begin{aligned} & \text { Phen } \\ & \text { farmi- } \\ & \text { fation } \end{aligned}$	NO. 09 test	Height of best stalks in inches	Number strong stalks	Number weak stalks	Number ungerminated	Avg. \% germination	Duration 09 test
Feb. $222^{*} 4$ to 5			244 259 281	143 128 138	$\begin{array}{r} 113 \\ 113 \\ 81 \end{array}$		6 da.
4vg. of three trials			861.3	136.3	102.3	79.6	
			220.4	201.6	78	84.4	
fvg. total \% strong germ eak germ, and non-germ.			44.1	40.3	15.6		

Hard dough stage, suspended by husk in seed house. A fifteen ear sample.

When germinated	NO. 01 test	```HeIght of best stalks in inches```	strong stalks	Nuniber weak stalks	Number ungerminated		Duration of test
Dec. 14	1	4 to 5.5	298	160	42	91.6	5 da 6 da
			295	181	24		
		5 to 6	270	185	45		
Feb. 22	2		364	126	10.		
Avg. of three trials Avg. totals Avg. total of strong gem, weak germ, and non-gern.			309.6	164	26.3	$\begin{aligned} & 94.8 \\ & 93.2 \end{aligned}$	
			304	162	34		
			60.8	32.4	6.8		

TABLE 6.
Farly indented stage, between hard dough and pulpy mealy stages.

Pulpy mealy stage, left in husk. cured in seed house. A thirtyfive ear sample.

When germi- nated	NO. of test	Height of best stalks in inches	Number strong stalks	Number weak staiks	Number ungerminated		Dura- tion of tost
Dec. 1414 to 5.5			309	159	32	93.6	5 da.
Feb. 22		3 to 4	298	120	82		6 d.a.
	2		249	136	115		
			320	126	54		
Avg. of three trials			289	127.3	83.6	$\begin{aligned} & 83.3 \\ & 88.4 \end{aligned}$	
Avg. totals Avg. total\% strong germ, weak germ, and non-germ.			298.9	143.1	58		
			79.8	28.6	11.6		

TABLE 8.

Pulpy mealy stage. Husked and let remain in bran sack six wooks, When it was taken out of sack and placed on shelves in seed house.

A fifty ear sample.

When germinated	NO. 09 test	Height of best stalks in inches	Number strong stalks	Number weak stalks	Number ungerminated	$\begin{aligned} & \text { Avg. \% } \\ & \text { germi- } \\ & \text { nation } \end{aligned}$	```Dura- tion of test```
Dec. 14. 13 to 3.5			358	122	20.	96	6 da.
			301	154	45		
Feb. 22	2	4 to 5	259	197	44		6 da.
			283	158	59		
Avg. of three trials Avg. totals			281	169.6	49.3	$\begin{aligned} & 90.2 \\ & 93.1 \end{aligned}$	
			319.7	145.8	34.5		
Avg. Fotal \% of strong germ, weak germ, and ion-germ.			-	15.8	54.5		
			63.9	29.1	6.9		

Pulpy mealy stage, suspended by husk in seed house. A thirty-five ear sample.

When germinated	No. 09 test	Height of best stalks in inches	Number strong stalks	Number weak stalks	Number ungerminated	Avg. \% germination	Dura- tion of test
Dec. 14124 to 5.5			353	123	24	95.3	5 da.
			262	218	20		
Peb. 2	2	4 to 5.5	1293	180	27		6 da.
			i^{255}	226	19		
Avg. of three trials			270 311.8	$\begin{aligned} & 208 \\ & 165.2 \end{aligned}$	22	$\begin{aligned} & 95.6 \\ & 95.4 \end{aligned}$	
Avg. totals Avg. total of strong germ					23		
weak germ, and non-germ.			62.	33.	4.6	$95 \cdot 4$	

TABLE 10 .

Pulpy mealy stage, husked immediately and sun cured. A twenty ear. sample.

TABLE 11.

Corn hard, pretty well indented. This stage nas practically reached ita full growth. A twenty car sample.

When germi- nated	NO. Of test	Height or best stalks in inches	Number strong stalks	Number weak stalks	Nunber unger- minated	Avg. of gemilnation	Duration 01 test	
Dec. 14. 14 to 5			393	85	22	95.6	5 da.	
Feb. 22	2	4 to 5	361	119	20		6 cia.	
			310	126	64			
			360	130	10			
Avg. of three trials Avg. totals			$\begin{aligned} & 343.6 \\ & 368.5 \end{aligned}$	125	31.3	93.894.7		
			105	26.5				
Avg. total os sirong germs,weak eerm., and non-germ,				73.7	21	5.3	94.7	

A SUMMARY OF THE ELTVEN PRECEDING TABLES.

The Sample \quad S	$\begin{aligned} & \text { No. } \\ & \text { strong } \\ & \text { stalks } \end{aligned}$	No. weak stalks	$\left\lvert\, \begin{aligned} & \text { AVERAGE } \\ & \text { No } \\ & \text { unger- } \\ & \text { mina- } \\ & \text { ted } \end{aligned}\right.$	$\begin{aligned} & \text { TOTAI } \\ & \text { \% } \\ & \text { ger- } \\ & \text { mina } \\ & \text { tion } \end{aligned}$	S $\left\lvert\, \begin{aligned} & \text { \% } \\ & \text { strong } \\ & \text { germi } \\ & \text { tion } \end{aligned}\right.$	$\left\lvert\, \begin{gathered} \text { op } \\ \text { weak } \\ \text { gor- } \\ \text { mina } \\ \text { inon } \end{gathered}\right.$	$\left\lvert\, \begin{gathered} q \\ \text { unger } \\ \text { mina } \\ \text { ted } \end{gathered}\right.$
\therefore.. Faily late roasting ear stage. Husked imediately and sun cured.	14.9	143	207.3	58.6	29.8	28.7	41.4
i3. Very late roasing ear stage Husked immediately and sun cured.	$\underbrace{}_{128.7}$	198.3	173	65.4	25.7	37.6	34.6
i. Hard dough stage. Husked immediately and house cared	2.252.2	155.8	92	81.6	50.4	31.1	18,4
t. Herd dough stage. Husked imediately and sun cured.	220.4	201.6	78	84.4	44.1	40.3	15.6
(5. Hard dough stage. Suspended by husk in seed house.	- 304	162	34	93.2	60.8	32.4	6.8
13. Early indented stage. Husked and house cured.	-275.8	120.2	104	79.2	55.1	24	20.9
". Pulpy mealy stage. Left in husk and cured in seed house	898.9	143.1	58	88.4	79.8	28.6	12.6
13. Pulpy, mealy stage. Husked, let remain n bran sack six weeks and then placed on shelves in feed house	319.7	145.8	36.5	93.1	63.9	29.1	6.1
9. Pulpy, mealy stage, suspended by husk in seed house.	-311.8	165.2	23.	95.4	62.4	33.	$\underline{2.6}$
10. Pulpy nealy stage. Husked and sun cured.	308	174.1	18.	96.4	61.6	34.8	3.6
11. Corn hard. Well indented.	368	105	26.5	94.7	73.7	21	5.3

An examination of the tables above, expecially the sumary table number 12 shows that with but one exception that the germinative power increases with maturity. It is naturally expected that such would be the sase. The exception mentioned is the early indented stage, which failed to germinate 20.9 percent against 13.6 percent, the total average percent germination from the three different samples of the somewhat less matire hard dough stage. However, since only one sample of the early indented stage was tosted and a sample of the hard dough stage whichhad received the same sort of treatment failed to germinate 18.4 percent, it is highly probable that the exception noted is not the general rule, but rather the reverse when an average of a number of samples is taken. for example, sample number 5 in the table shows stronger geminative power than number 7; but this was shown to be an exception when a total average of each stage is considered. The same thing is true when
In samples number 9 and 10 are compared with number il, but here again the average gives the advantage to the more mature stage. Firther, a comparison of samples number 5, 8, 9, 10 and ll, in this table with sample number 1 in a similar table constructed for the mature corn, page19, shows that even in the hard dough, pulpy mealy, and veli indented. stages, a stronger germinative power may exist than in a fairly good samle of mature corn which receives the same treatment in storing. This is a rather unexpected

PLATE II.

The above plate shows photographs of typical Kernels solected from the samples ropresonting the six different stages of maturity.

1. Fairly late roasting ear.
2. Very late roadting ear.
3. Hard dough stage.
4. Early indented stage.
5. Pulpy mealy stage.
6. Corn hard, well indented:
result. It would be very intoresting to see what might happen in actual Pield tests. Samples 9 and 10 each show an average germinating strength of over 95 percent and number

11 gives 94.7 percent for its total average germination. Seed corn that does no better than this is rocom end as fair corn for planting purposes. Considerable diferences are noted in the performance of the variously cured samples from the hard dough and pulpy mealy stages, but theseace to be attributed more to the samples them selves than to the methods of curing since the gathering of the samples was deferred until it was a little late in the season, which made it somewhat difficult to select perfectly ideal samples.

The sample.

1. Failly late roasting ear stage,
2. Very late roasting ear stage.
3. Hard dough stage.
4. Barly indented stage.
5. Pulpy mealy tage.
6. Com hard. Mell indented.

The Sample.

Fairly late roasting ear stage. Very late roasting ear stage. Hard dough stage.

Early indented stage.
Pulpy mealy stage.
Corn hard. Well indented.

The sample,

Failly late roasting ear stage.

Very late roasting ear stage.

Hard dough stage.
Early indented stage. .
Pulpy mealy stage.
Corn hard. Well indented.
Chart showing summary of average total percent germination The mumerals correspond to sample having the same numeral on folder cover.

The Sample.

1. Fairly late raọsting ear stage.
2. Very late roasting ear stage.
3. Hard dough stage.
4. Early indented stage.
5. Pulpy mealy stage.
6. Corn hard.

THE CURING PROBLEM.

The question of the best nethods for curing seed corn is one that vitally concems the practical famer. There are no doubt many worthless practices in use today. These have not been dealt with here, neither has much time been given to careful methods of keeping, but attention has been paid more exclusively to the conditions of exposure that may be called injurious. Practical conclusions can oftentimes be drawn from negative as well as positive results. If deleterious conditions are known they can be avoided, Which amounts to the sane thing as knowing what to do and then doing it.

Sixteen samples of corn were subjected to different treatments and methods of keeping from the time of gathering until March l4th, after which time no further tests were made. These samples were:(I) corn kept in warm room; (2) Shock in ed field, cut first weok in September; (3) shuck corn in seed house; (4) snapped corn in seed house; (5) shucked corn in closed orib; (6) snapped corn in closed crib; (37) suspended by husk in open air; (8) suspended in open air with husk ried on; (9) suspended by husk under seed house shed; (10) suspended by husk in seed house; (11) shucked corn in open crib; (12) snapped corn in open crib; (13) shucked into meal sack September 19th; (14) snaped into meal sack September 19th; (15) snapped corn exposed on bare groung Januaxy llth; (16) shucked corn exposed on bare ground January lith.

At diferent times during the winter duplicate 500. kernel test samples were taken from all the above for purposes of testing. An equal number of komels: was selected from each ear composing any given sample. By this means purely reprosentative samples were obtained for germinating. Duplicate tests of paired samples (e.g. , snapped and shucked corn in open crib) were carried out side by side in the same box for the purpose of insuring more unifom conditions for any two samples which were being compared and studied together. Results from the exporiment are shown below.

Sample kept in warm room. This sample was stored in a warm place in the basement of the Agricultural Building, on October 7, 1907. Consequently it was not exposed to any weather conditions which might injure its germinative power.

A fifty ear sample.

TABLE 2.
Corn from shock in field.
The corn was cut ans shocked the first Wok in September when it was somewhat green. The shocks were made tuleve hills square. A fity ear sample.

Shucked corn, kept in seed house. A fifty ear sample.

fnapped corn kept in seed house.
A fifty ear sample.

TABLE 5.
Shucked corn in closed crib. (covered baipel in open) A fifty ear sample.

TO. of tost	$\begin{aligned} & \text { Sample } \\ & \text { taken } \end{aligned}$	```Hoight of best stalks in inches```	$\begin{aligned} & \text { Nunber } \\ & \text { strong } \\ & \text { stalks } \end{aligned}$	Number weak stalks	$\begin{aligned} & \text { Tumbor } \\ & \text { unger- } \\ & \text { minated. } \end{aligned}$	Avg. ${ }^{2}$ gomination	$\begin{aligned} & \text { Dura- } \\ & \text { tion } \\ & \text { of } \\ & \text { test } \end{aligned}$
1	Dec. 1	3 to 4	409	83	8	98.4	6 da.
	Jan. 7	2. toz. 5	330	145	25	94.9	5 da. 5 da.
	$\begin{gathered} " 1 " \\ \text { Avg. } 0: \end{gathered}$	2 to 2.5 duplicates	304 317	$\begin{aligned} & 170 \\ & 157.5 \end{aligned}$	26		
3	Feb. 8	3 to 4	313	169	18	92. 4	6 da.6 da.
	" "	3 to 4	198	244	58		
	Avg. of	duplicates	255.5	206.5	38		
4	Feb. 29	2 如 3	391	90	19	96.5	$\begin{aligned} & 5 \text { da. } \\ & 5 \text { da } \end{aligned}$
	" "	2 to 3	441	43	16		
	Avg. of	duplicates	416	66.5	17.5		
$\begin{aligned} & 5 \\ & n \end{aligned}$	Mar. 14	5 to 6.5	395	85	20	96.1	$\begin{aligned} & 6 \text { d.a• } \\ & 6 \text { da. } \end{aligned}$
	" "	5 to 6.5	381	100	19		
	Avg. of	duplicates	388	92.5	19.5		
Avg. totals IVg. total of strong gem, woak germ, and non-gorm.			356.8	121.2	22	95.6	
			77.3	24.2	4.4		

TABLE 6.
Shaped corn in closed crib. (in covered barel in open)pifty ear sample.

Comn suspended by husk in open air. A twenty-five ear sample.

NO. of test	Sample taken	Height of best stalks in inches	Number strong: stalks	Number weak stalks	Number ungerminatod		Duration of test
1	Dec. 1	3 to 4	429	66	5	99	6 da.
8	Jan. 7	2 to 2.5	202	256	42		5 da.
"	" "	2 to 2.5	208	257	35		5 da.
	Avg. of	duplicates	205	266.5	38.5	92.3	
3	Feb. 8	2 to 3.5	278	184	38		6 da.
11	" "	2 to 3.5	313.5	$\frac{153}{168.5}$	$\frac{34}{36}$	92.8	6 da.
4	Feb. 29	2 to 3.5	418	60	22		5 d.a.
"	" "	2 to 3.5	375	81	44		5 da.
	Avg. of	d.uplicates	396.5	70.5	33	93.4	
${ }^{5}$	Mars 14	5 to 6	378	85	37		6 da.
	" 14	5 to 6	322	159	29		6 da.
	Avg. of	duplicates	350	122	33	98.4	
	Avg. to	als	333.8	136.7	29.5	94.1	
Avg. Weak	total \%	strong germ	, 66.7	27.3	5.9		

TABLE 8.

Com hahging in open with husk tied on at both ends. A twentyfive ear sample.

1 Dec. 13 to 4	381	50	69	36.2	6 da.
2. Jan. 7 I to 2.5	238	165	97		5 da.
" " 1 to 2.5	230	179	91	27.8.	5 da.
3 Avg. of duplicates	234	172	94	81.2	
3 ll " l - 8 2 to 3.5	307	31	112		6 da.
" " " 2 to 3.5	333	67	100		6 da.
Avg. of duplicates	320	74	106	78.8	
4 F Feb. 29 2 to 3.5	330	85	85		5 da.
" " 2 to 3.5	352	58	90		5 da.
Avg. of duplicates	341	71.5	87.5	82.5	
5110	278	122	100		6 da.
" " 5 to 6 Avg. of duplicates	273	139	88		6 da.
Avg. of duplicates	275.5	130.5	94	81.2	
Avg. totals Arg. total of strong ore	309.9	99.6	90.5	81.9	
Teak germ., and nongerm.	62	19.9	18.1		

forn suspended by husk under shed of seed house. Thirty-ifive ear sample.

	$\begin{aligned} & \text { Sample } \\ & \text { taken } \end{aligned}$	```Height of best stalks in inches```	$\begin{aligned} & \text { Number } \\ & \text { strong } \\ & \text { stalks } \end{aligned}$	Number weak stalks	Number ungerminated	Avg. \% germination	$\begin{aligned} & \text { Dura- } \\ & \text { tion } \\ & \text { of test } \end{aligned}$
1	Dec. 1	3 to 4	427	57	16	96.8	6 da.
2	Jan. 7	1 to 2	179	262	59		5 da.
"	" "	1 to 2	169	238	93		5 da.
	Avg. of	duplicates	174	250	76	84.8	
5	Feb. 8	2 to 3.5	432	51	17		
"	" "	3 to 3.5	429	54	17		6 dal
	Avg. of	duplicates	430.5	52.5	17	96.6	
4	Feb. 29	4 to 4.5	305	175	20		5 da.
"	" "	4 to 4.5	309	170	21		5 da.
	Avg. of	duplicates	307	172.5	20.5	95.9	
,	Mar. 14	- 5 to 6	407	75	18		6 da.
	" "	5 to 6	390	94	16		6 da.
	Avg. of	duplicates	393.5	34.5	17	96.6	
Avg	Avg. to	als	347	123.5	29.5	94.1	
Avg. veak	germ.,	trong germ., nd non-germ.	, 69.4	24.7	5.9		

Corn suspended by husk in seed house. A fifty ear sample.

1 Jan. 7 2to 3	276	138	88	87. $1 / 2$80.9	$\begin{aligned} & 5 \text { da. } \\ & 5 \text { da. } \end{aligned}$
" " 2 to 3	287	170	43		
Avg. of duplicates	281.5	154	65.5		
8 Feb. 8 2 to 3.5	288	176	36	90.1	6 da.
* " 2 to 8	206	231	63		6 da.
Avg. of duplicates	247	203.5	49.5		
8 Feb. 294 to 5	379	103	18	96.5	$\begin{aligned} & 5 \text { da. } \\ & 5 \text { da. } \end{aligned}$
" " " 4 to 5	383	100	17		
Avg. of duplioates	381	101.5	17.5		
4. Mar. 145 to 6.5	328	140	32	93.6	6 da. 6 da.
" " 5 to 6.5	378	90	32		
Avg. of duplicates	353	115	32		
Avg. totals Avg. total of strong ge	315	143.5	41.5	91.7	
Weak germ., and non-germ.	63	28.7	8.3		

Snucked corn in open crib (i.e. in slatted crate of about 100 ear capacity and kept out in open).

A lifty ear sample.

TABLE 14.

Com snapped into meal sack September 19, 1907. The sample had never dried out, the kernels were quite full of moisture and the husks were damp and mouldy._...A fifty ear sample.

Between Jan. 7 and Feb. 8 the above sample (table l4) apparorty sufrered much worse than a like sample exposed on baro ground, (table 15). This is probably due to the fact that the sample on the Ground had opportunity to dry out considerably before the fall in temperature.

TABLE 15.
Sapped corn exposed on bare ground January ll, 1907. This sample

TABLE 16.
Sincked corn exposed on bare gound January 11, 190\%. Sample taken
trom shucked corn in seed house. A lifty ear sample.

Note:
The numerals in this table and the one following refer to the number of the preceding table which contains the result of the experiments with the sample indicated.
x Test one of these samples was made Jan. 7th instead of Dec. lst.

The Sample.

Avg.\%	Avg.\%	Avg.\%	Avg. \%
germi-	germi-	gomini-	gemi-
nation	nation	nation	nation
of	Of	Of	$0{ }^{\circ}$
test	Einal	Exnty	test
1	test	test	1
		1	minus
		minus	avg.
		avg. \%	total
		germi-	\% ger-
		nation	mina-

of finaltest tion

1. Varm room. (basemant)	91.7	91.8	-. 1	. 1	91.8
2. Shock in-field cut first weok in Sept. x	83.9	95.2	-6.3	-3.1	92
3. Shucked corn in seed house.	97.4	98.3	-. . 9	- . 2	97.6
4. Snapped corn in seed house.	96.6	94	+2.6	+2.	94.6
5. Shweked corn in closed crib.	. 98.4	96.1	+2. 3	+2.8	95.6
6. Snapoed corn in closed crib.	. 97.4	94.3	+3.	+1.9	95.5
7. Suspended by husk in open air.	99 •	93.4	+5.6	+4.9	94.1
3. Suspended in open air, husk tied on.	86.2	81.2	+5.	+4.3	31.9
9. Suspended bu husk under seed house shed.	96.8	96.6	+.2	+2.7	94.1
10 Suspended by husk in seed house. x	86.9	93.6	-6.7	-4.8	91.7
11 Shucked corn in open crib.x	92.2	93.7	-1.5	-1.6	93.8
12 snapped corn in open crib.x	95,9	92.9	+3	t1.4	94.5
13 Shucked into meal sack Sentember 19th.					
14 Snapned into meal sack September 19th. \mathbf{x}	90.9 73.3	$\begin{aligned} & 94.1 \\ & 66.5 \end{aligned}$	-3.2 +6.8	-1.1 +5.7	67.6
15 Snapped corn exposed on bare ground Jan. llth. (Sanple taken from corn gathered into meal sack			-		
Sept. 19th. \quad x	70.9	62.5	+8.4	+5.8	65.1
16. Shucked corn exposed on bare ground Jan. 11th. (Sample taken from shucked mature corn in seed house)	96.1	74.1	+22	+12.7	83.4

A brief summary of weather conditions between periods of taking samples from the field.
lst period, from December lst to Jan 7th.

The highest temperature for this period was 67 degrees F., and the lowest temperature 15 degrees F. The mean of daily maximum temperatures was 44.3 degrees $\mathrm{F} .$, and of daily minimum temperature 28.1 degrees. The average temperature for the period was 36.1 F. Rain fell on four different days, amount to a sum total of 1.26 inches. Snow fell on five days, giving a total of 7 inches. The weather we see was not severe but there was considerable alternate freezing and thawing. snow The rain and xar came about the days of lowest temperature.

2nd period, from January and to Febraury 8th. Maximum temperature 58 degrees F., minimum temperature 2 F . For a period of eight to ten days the minimum temperature ranged from 2 to 10 degrees F. Mean of daily maximum temperatures 14.2 F., and of lowest daily temperature $21 \mathrm{~F} . \quad$ The average daily temperature 31.9 F. Rainy days, 7, inches of rain 1.78. Snow fell on five days, amounging to $\&$ total of 11 inches. This period includes the severest weather of the entire winter.

3rd period, from February 8 th to February 29th.

Maximum temperature 71 F., and minimum 8 F.
Mean of daily maximum temperatures , of daily minimum
temperatures , average daily temperature
Rained on ten days; snowed on five days; total rain 4.06 inches; total snow 1.49 inches. Throughout this entire period the rain was so distributed that it would keep the exposed samples pretty well soaked all the time.

4th period, from February 29 th to March 14 th.

Maximum temperature $74 \mathrm{~F} .$, minimum 22 F .
Average of daily maximum temperatures 55.4 and of daily minimum temperatures 34.5. Average daily temperature 44.9. Number rainy days 4; snowy days, none. Total rain, 1. 13 inches. During this period the weather was becomming more mild all the time.

Sample. Shucked com in seed house.
Ploce III. Tho curves show variation in
percent strong gemination, weak germination, ant total percent gemmation at the different periods of mating tests.

Red cumber - is strong gemination.
Green curve- of teak germination.

Sample. Suspended in open aim; must tied on.
Figure VIII. The curves show variation in the
percent strong germination, percent weak germination, and total percent germination at the different periods of making tests.

Sample. Snapped com in open crib.
Figure XII. The curves show variation in the percent strong gemination, percent weak gemination, and total percent gemination at tho difionont periods of making tosts.

Red enave - is strong germination.
Gean curve - \#p weak germination.
Black curve o total gemination.

The Sample.

1. Warm room. (Basement)
2. Shock in field. Out first week in September. x
3. Shucked corn in seed house. 4. Snapped corn in seed house.
4. Shucked corn in closed crib.
5. Snapped corn in closed crib.
6. Suspended by husk in open air.
7. Suspended in open air, husks tied on.
8. Suspended by husk under seed house shed.
9. Shspended by husk in seed house. x
10. Shucked corn inopen crib. x
11. Snapped corn in open crib. x
12. Shaked into meal sack Sept. 19th. x
13. Snapped into meal sack Sept. 19th. x
14. Snapped corn exposed on bare ground Han. llth. (Portion of
15. corn gathered into meal sack Sept. 19th).
x
16. Shucked corn exposed on bare ground, Jan. 11th. (Sample taken from pure corn in seed house.) x
x. Test one of these samples was made Jan. 7th instead of Dec. lst.

The Sample.

1. Warm room. (Basement)
2. Shook in field. Cut first in september. x
3. Shucked corn in seed house.
4. Snapped corn in seed house.
5. .. Shucked corn in closed crib.
6. Snapped corn in closed crib.
7. Suspended by husk in open air
8. Suspended in open air, husks tied on.
9. Suspended by husk under seed house shed.
10. Suspended by husk in seed house. x
11. Shucked corn in open crib. x
12. Snapped corn in open crib. x
13. Shucked into meal sack

Sept. 19th. x
14. Snapped into meal sack Sept. 19th. x
15. Snapped corn exposed on bare ground Jan. 11th. (Portion of corn gathered into meal sack sept. 19th.) x Shucked corn exposed on bare ground Jan. llth. (Sample taken from pure corn in seed house.) x
x. Test one of these samples was made Jan. 7th instead of Dec. lst.

1.

Warm room. (Basement) Shock in field. Cut first week in September. x
3. Shucked corn in seed house. 4. Snapped corn in seed house.
5. Shucked corn in closed crib.
6. Snapped corn in closed crib.
7. Suspended bu husk in open air
8. Suspended in open air and husk tied on.
9. Suspended by husk under seed house shed.
10. Suspended by husk in seed house. x
11. Shucked corn in open crib. \mathbf{x}
12. Snapped corn in open crib. x
13. Shucked into meal sack Sept. 19th. x
14. Snapped into meal sack Sept. 19th. x
15. Snapped corn exposed on bare ground January llth. (Portion of corn gathered into meal sack sept. 19th) x.
16. Shucked corn exposed on bare ground Jan. 11th. (Sample taken from the pure corn in the seed house.) x
X. Test one of these samples was made Jan. 7 th instead of Dec. lst.

An inspoction of the preceding tables, and especially of the last two tables, which contain a good sumary of the total results, will show some interesting variations. In ten cases out of sixteen the corn samples showed an increase in germinative power followint the test which was made on January 7th. The foliowing five samples of the ten which behaved in this manner show quite a large increase: Corn from shock in field, Table 2 ; Snapped corn in closed crib, Table 6; Corn suspended by husk in seed house, Table 10; Corn suspended by husk under shed of seed house, Table 9. To attempt a conclusive explanation for this rise in germination from the data thus far obtained would be unscientific. However, it does appear in the above experiments to be the rule rather than the exception since it is necessary to exclude three of the samples out of the six which did not show the rising variation. The severe conditions to which these three samples were exposed would except them from a comparison with the remaining thirteen. They are (1) Corn snapped into meal sack September 19th, Table 14; (2) Snaped corn exposed on bare ground January lith, Table 15; and (3) Shucked corn exposed on bare ground JanUary llth, Table 16. A glance at these tables will show a decided decrease in germinating capacities, due no doubt to the freezing of the kornels when they were quite full of moisture.

If such a variation as noted in the ten tests is a natural occurrence, it offers a field for scientific Investigation along this line. It is not known that any investigator has proved that corn has a resting period like many other seeds. It appears from the above experiments that there may be a period corresponding to a resting poriod, and that the samples germinated on January 7th were passing through this stage of maturity. It would seem reasonable also to ruppose that the fall at this time was caused by weather conditions since the lowest temperatures came about the time of some rainy and snowy days, and caught the corn when it had considerable moisture content.

Where the first test of the samples was made on December lst, the percent of germination as a general thing, was higher than in any subsequent test, and in all of the ten tests excent one (Shucked corn in closed crib, Table 5) that gave the deorease on January 7th the trial following (made on February 8th) showed a rise in percent germination. Such a result as this comes rather unexpectedly in view of the fact that the temperature following some rainy and snowy weather during the intervening period fell as low as 2 degrees F., the lowest temperature during the entire season and remained thus for two or three days. This would seem to off-set the weather explanation offered for the deorease on January 7th. Whether or not the fall in
germinative power on January 7th was caused by a resting period, or was brought about independently by the cold spell cannot be satisfactorily explained at present, and the question raised remains to be investigated further.

A study of the effect of various treatments does not permit any very conolksive statements. Samples 1 and 2 In Tables 1 and 2 show very ifttle difference in the final outcome. It may be said that sample number 1 , (basement) was not on the whole a very good sample of corn, its highest average percent germination of any duplicate test being only 91.9 percent. It is of some interest to find that sample number 2 taken from shock in field which was out the first week in September when the corn was rather green, gave a total average germination of 92 percent, a little stronger than the basement sample. The average of the last duplicate samples germinated from the shocked corn was 95.2 percent: Table 2. This is certainly to be considered strong germination for corn out at that stage of maturity, especially after having remained out all winter. The sample that remained in the basement showed very ilttle variation from time to time in its germinating capacity. This would seem to indicate that the variation occurring in the exposed samples we̊fe caused by conditions of temperature and moisture. It appears from samples 3 and 4 in the Giammary tables 17 and 18, that the shucked corn in the seed
house kept some better than the snaped corn, the average total percent germination amounting to 97.6 for the shucked and 94.6 for the samped. The first trial made on December lst gave 97.4 percent germination for the shucked, and 96.6 percent for the snapped, which shows a greater falling off for the snapped corn as just stated. A comparison of numbers 5 and 6, snapped and shuck samples in closed crib, does not show such a difference in favor of either sample. If any advantage may be claimed at all, it would seem to belong to the snapped corn. As regards conditions of temperature and moisture they could not be very different in the closed crib than in the seed house, if any, the samples in the closed crib were a little mrin more openly exposed. In the next two samples numbers 7 and 8 we observe quite a difference. This seems to be due to the samples themselves and not to exposure. Sample number 8 shows inferior gemmination all through the experiment. The decrease in germinative power during the time of the experiment is practically the same in each sample, showing that the effect of the season was about equal in both cases. Samples 9 and 10 show an appreciable difference when the average percent is considered from January 7 th , on. A total average percent germination of the sample suspended by husk in seed house was 91.7, while the sample hanging by husk under shed of seed house gave 93.4 percent. Here
again the difference would seem to be in the quality of the samples, since if there were any difference in exposure the advantage would be claimed by the sample in the seed house, which gave the poorest germination.

Data on samples 11 and l2, shucked and snapped corn In open crib, show a slightly better gerination for the saapod cornm but the difference is practjcally negligible. The next two samples number 13 and 14, shucked and snap ed into meal sack on September l9th, show a vory marked advantage for the shucked sample. This is explained by the fact that the corn snapped into the meal sack at this early date and let remain there did not have opportunity to dry out. In fact when the first test was made the snapped sample was quite full of moisture, the husks were mouldy, and even the kernels were somewhat softened and swollen. The sample shucked into the meal sack had a much better opportunity to dry out, but it also retained considerable mojsture. The average total percent gemmination throughout the entire experiment for the shucked sample was 92 , and for the snapped sample 67.6. The last two samples in the table, sampped and shucked corn exposed on bare ground, show quite a decrease in each sample. The snapped corn that was exposed was taken from the corn gathered into a meal sack September 19th. The exposed sample fared be ter than its counterpart, which was left in sack in seed house.

This is probably due to the fact that the sample exposed on bare ground had opportunity to dry out some before the freezes came and therefore suffered less from them. The shucked sample was taken from shucked rature corn stored in seed house. Durink the time it was out (from Jan. IIth to Mar. 14 th) it showed a deterioration of 22 percent. In summarizing on this part of the work it may be said that as regards the severity of the winter, no very conclusive results were obtained. The exposed samples of mature corn sufferend a little worse than samples protected, but probably we cannot attribute this entirely to exposure. It must be borne in mind that an ear of corn ff from a general Rield represents a group of individuals having widely different strains of blood and breeding. It might be claimed here that several ears in a sample would Obliterate individuality, but even on the basis of this claim It cannot be expected that similar conditions of temperature and moisture would affect all kernels on an ear or all the ears in a sample in the same manner. Neither can it be supposed that all kernels on any ear or all the ears in any sample would possesis the same inherent tendency to germinate. Since after all the kernel is the unit of germination it would seom that the emphasis should be laid on this point. These factors then must be redomed with, when two diferent samples of corn are given like treat ents and compared with reference to germination. This point will be brought
out more clearly when we come to consider the perfomance record of one hundred individual ears.

It is true that the winter in general was comis paratively mild. There was no severely cold weather and the low temperature that did occur lasted only for a short period. The belief that merely greezing temperatures are injurious to the germinating power of seed corn Is not given much weight by these experiments. The writer is inclined to doubt the deleterious effe t of freezing temperature on seed corn, especially if the sample is pretty well dried out. It appears that the temperature may even go much lower without any bad effect. That corn has a remabkable vitality is proved by the fact that oftentimes ears of corn will lie buried close to the surface of the ground all winter and in the spring a fine glump of stalks will appear. To further demonstrate this some results form an experiment conducted along this line are given below.

On November and nine samples or corn were put under ground, three different buryings being nade. Two buryings were laid out in the open, one of which consisted in placing a sample each of snapped, shucked and shelled corn In a box and sinking this to a depth of about three feet, While in the other case similar samples were put dow only six inches without being placed in a box. The shelled
corn in this case as also in the one following was put in a small thin cotton bag for the purpose of keeping it in place. The third group of like samples was buried six inches deep under the shed of the seed house where it was hoped that the ground would romain fairly dry, but on account of poor drainage it did not do this. On March 7th these samples were dug up and transfered to the basement of tho Agricultural Building, where they were given an opportunity to dry out. When they were dug up the samples looked rotten and absolutely muined so far as germination was concerned. They were water soakod, soured, and indeed a good portion of the Kemels had decayed. The samplos buried three fect deep were practically no better off in this respect, in fact the place where they were buried had become, it sooned, a reservoir of wator and mud. While the samples were drying out in the pasement and getting in a better shape for handing a large number or kernels sorouted, and grew as rapidly apomently as any other Kemels would. The samples geminated so well, contrary to all expectation, that it was considered unnecessary to make trials of all the samples and gemminating tests were made of only the three different shelled samples. These samples had also germinated considerably before 500 kernels from each were selected and planted in the germinating
boxes. The rasults, thereiore, that follow below do not fully represent by any means the germinative strength.

Underground from November and to March 7 th.
I. Shelled corn buried three feet deep in box.

Strong	Weak	Ungemi-
stalks	stalks	nated
72	79	349

2. 'Shelled corn buried in bag, six inches deep, under shed of seed house.

Strong	Weak	Ungemai-
stalks	stalks	nated

81
64
355
3. Shelled com buried six inches deep in open.

Strong stalks	Weak stalks	Ungermi- nated
30	16	454

In tests one and two we see that about one-third of the kernels gemminated, notwithstanding that many of the kernels had already germinated before the tests wore made. It is rather romarkable that any of the kernels should have germinated at all, knowing the condition they were in When taken out of the ground. The results serve to 1llustrate the germinative vitality of corn.

In concluding it may be said that the principal precaution to be taken in the preserving of seed corn is that of keeping it dry. Just how low a temperature well dried corn will stand without injury cannot be stated.

THE CONFORMATION AND COMPOSITION PROBLEM.

This division of the work was undortaken to find out what differences there might exist in the geminative power of samples of corn which may be aharacterized as high and low protein, large and smail germ, long and short kemel, sharp pointed kernel, biistered, wsinkled, smooth, and discolored germ coat. It has been cal led the confomation and composition problem for want of a more suitable name. The tem conformation rofers more particularly to the long and short kemels, wrinkled and blistered gern coat, and shaprt pointed kernels, while composition has more special reference to high and low protein, and large and small germ. (or high and low oil). The apolication of the two terms however, cannot be distinctly separated, and for this reason the name is to a certain degree apmopriate. The method of selecting these various samples was purely mechanical, depending entirely upon what could be seen with the naked eye. In making up the samples of high and low protein a few kernels were taken from about the middle of the ear and cross-sectioned with a sharp pocket knife. The ears which had kernels showing a large content of horny starch were chosen as high protein ears, while those which showed a small content of homy starch were seleoted for low protein. The large and small gem samles wore made un in the gane namor. An advantage
in this case was that a cross-section would actually show whetherthe ferm was large or small. When several
kernels from an ear showed uniformiy large germs or small germs it was considered reasonably certain that such an ear possessed similar uniformity throughout. An examination of this point at several different times showed it to be generally true. The selection of the wrinkled, blistered, discolored, and smooth germ coats, long, short, and sharb pointed kernles simply consisted, as in all the previously mentioned cases, of making an examination of a number of kernels from the ear under consideration, and classifying that ear according as it came under of the types mentioned. A more rigid selectionof the several different samples would of course be possible, but the experimant was only intended to discover what diferences might exist in such samples as an average farmer could easily select for himself.

Each corn sample consisted of fifty ears, and duplicate samples of 500 kernels each were germinated from time to time. This part of the experiment may be said to consist of two parts in as much as about half of the duplicate samples set were allowed to grow for several weeks, at the end of which time the height and the green weight were taken. To get the green weight the corn was out at the level of the sand, in whioh it \notin was :
growing, and tied in a small bundle and weighed inmediately. The data obtained from this part of the experiment will be found classified in a table by itself. The other part, or thls problem consisted in only allowing the corn to grow Sive or six days after setting the kernels in the sand. .

Then the stlaks were pulled mp and classified as strong and weak, and also the ungerminated kernels were counted. The data seoured in this mamer will be found tabulated in the tables given below.

As to the matter of strong and weak germination the stalks that failed to grow fifty percent as high as the best stalks were called weak germinators, and have been classified as such in the tables. It is not desired however, that too much weight be given to the question of weak stalks. Notwithstanding the fact that conditions in the germinating room were very ideal and kept as nearly uniform as possible, yet it was somewhat difficult to select the woak stalks to a perfectly constant standard througout. A person's ideals would naturally vary a little from time to tine, and this with other influences as growing rather close together in the bow, and also conditions of temperature and nolsture, no doubt accounts for less unifomity in the column of figures devoted to the number of weak stalks than in the column that contains the number of ungeminated kernels. The results of the various trials are given in the following tables.

TABLES 1, 2, 3, 4, 5and 6.

TABLES 7, 8, 9, 10, 11 and 12 .

PLATE III.

This plate shows represontative kernels from seven of the twelve samples experimented with in the oonPomation and comosition problem. The types shows are:

1. Short kernels.
2. Blistered gern coat.
3. Sinooth gern coat.
4. Wrinkled germ coat.
5. Long kemel.
6. Discolored gem coat.
7. Rather long, sharp pointed kernel.

Average Totals.

The sample	Number strong stalks	Number weak stalks	Number ungerminated	$\begin{gathered} \% \\ \text { germi- } \\ \text { nated } \end{gathered}$	$\begin{aligned} & \text { \% } \\ & \text { ©trong } \\ & \text { germi- } \\ & \text { nation } \end{aligned}$	\% weak germination	\% ungerminated
1. High protein	382.1	99.5	18.4	96.4	76.4	19.9	3.6
2. Low protein	353.3	111.6	35.2	93	70.6	22.3	7
3. Large germ	368.5	117.5	14	97.2	73.7	23.5	2.8
4, Small germ	332.4	150.1	17.5	96.5	66.4	30	3.5
5. Short kernel	378.2	102. 6	19.2	96.2	75.6	20.5	3.8
6. Long kernel	371.2	104.6	24.2	95.2	74.2	20.9	4.8
7. Smooth germ coat	350	135	15	97	70	27	3
3. Lather long sharp pointed kernel	348.3	106.4	45.3	91	69.6	21.2	9
9. Wrinkled germ coa	t307	174	19	96.2	61.4	34.5	3.8
10.Blistered germcoa	t352.9	115.2	31.9	93.7	70.8	23	6.4
4l.Discolored germ coat	355	128.5	15.8	96.9	71	25.7	3.1
12.Miscellaneous sample	363.2	95.8	41	91.8	72.6	19.1	8.2

The numbers of the sampees above refer to the number of the proceding tables which contains the experimental results of the sample indicated.

Numerals proceding the sample in this table refer to the roceding table which shows the performance record or the individual male indjeated.

Numerals on plates correspond to the number of sample as given below.
$\left.\begin{array}{llll}\text { Rhe Sample. } & \begin{array}{c}\text { Avg. height } \\ \text { in inches }\end{array} & \begin{array}{l}\text { Green weight } \\ \text { in grams }\end{array} & \begin{array}{l}\text { Weight of } \\ \text { 500 kernels } \\ \text { in grams, as } \\ \text { taken from }\end{array} \\ \text { sample }\end{array}\right]$

TABLE 15.

The sampee	Average totals.				
	Difference in avg. total \% germination in favor OP	Avg. in inc	Green wt. in grams	$\begin{aligned} & \text { Height } \\ & \text { in } \\ & \text { inches } \\ & \text { in } \\ & \text { favor } \\ & \text { of } \end{aligned}$	Weight in grams in favor of
1. Hight protein	3.4	9.7	484	. 9	92
3 . Low protein		8.8	388		
3. Large germ	.7	9.4	334	. 6	41
4. Small germ		8.8	293		
5. Short kernel	1	9.2	403	. 5	63
6. Long domel		8.7	340		
7. Smooth germ coat	6	8.8	397	1	58
3. Sharp pointed kernels		7.8	339		
9. Wrinkles germ coat	2.6	9.1	433		13
10.Biistered germ coat		9.1	420		
1.Discolored germ coat	5.1	9	445	. 4	68
2.Miscellaneous sainple		8.6	377		

Sample. High protein.
The curves show variation in the average percent
strong germination, weak gemination and total gemination for the different number of xavxiz duplicate tests made.
Red line - of strong semination
Groan line - g weak gemination.
Black linnet of total germination.

Sarnie. Small germ.
The curves show variation in the vaorage percents strong gone nation, weak gemination and total gemination for the different number of duplicate tests made.

Red line. - of strong gerinimation,
Green line weak semination
Black line -

The Sample.

1. High protein.
2. Low protein.
3. Large germ.
4. Small germ.
5. Short kernel.
6. Long kernel.
7. Smooth germ coat.
8. Sharp pointed kernels.
9. Wrinkled germ coat.
10. Blistered germ coat.
11. Discolored germ coat.
12. Miscellaneous sample.

The Sample.

1. High protein.
2. Low.protein.
3. Large germ.
4. Small germ.
5. Short kernel.
6. Long kernel.
7. Smooth germ coat.
8. Sharp pointed kernel.
9. Wrinkled germ coat.
10. Blistered germ coat.
11. Discolored germ coat.
12. Miscellaneous sample.

The Sample.

1. High protein.
2. Low protein.
3. Large germ.
4. Small germ.
5. Short kernel.
6. Long kernel.
7. Smooth germ coat.
8. Sharp pointed kernels.
9. Wrinkles germ coat.
10. Blistered germ coat.
11. Discolored germ coat.
12. Miscellanwous sample.

The Sample.	Avg. height in inches	Green weight in grams	Weight of 500 kernels in grams. as taken from sample.
1. Warm room. (Base, ent)	7	222	175
2. Discolored germ caat	7.5	272	192
3. Blistered germ coat	7.25	247	190
4. Wrinkled germ coat	7.5	251	182
5. Smooth germ coat	7.5	317	195
6. Low protein	6.75	240	172
7. High protein	8.	328	177
8. Small germ.	7.	240	160
9. Large germ	7.5	267	180.7
10. Sharp pointed kernel	6.75	206	162.2
11. Short kernel	7.5	260	187.2
12.Long kernel	7.	211	184

A comparison of the high and low protein samples in tables 1 and 2 show a very distinct difference, favoring the high protein kernel. The evidence in this case is clear enough to allow the positive statement that high protein corn possesses superior geminative power over low protein, the results of the experiment showing an average difference of 3.4 percent in gemmination, 92 . grans in green weight, and . 9 inches in height or growth in favor of the high protein sample, Table 15. The explanation of all this dieference is unquestionably to be found in the fact that the high protein corn, as the name implies, contains a higher percentage of proteid material. An analysis of the representative samples from the high and low protein lots showed this to be true, giving for the high protein 9.54 perdent of nitrogenous material and for the low protein 8.85 percent. The better performing power of the high protein corn, then, is due to the greater amount of available nitrogen stored up in the kemel. Consequently the high protein corn is started off at a me rapid rate or growth and continues to grow bettor and stronger. This has boon confimmed by an actual rield test carried out at the Missouri Station. In the rield the difeerence in height could be easily observed between therows planted to high and low protein during early growth, and also the
high protein gave an average yield per acre, of , while the low only yielded bushels per acre.

In a consideration of the large and small germ we note again a similar diference in favor of the rlarge germ, but it is not so marked as in the high and low protein. This is probably due to the fact that a wholløy large gemed dample is rather difricult to select, as is also true of the small germ, and the method employed. in choosing the samples would only insure a predominance of large germs in the one case and small germs in the other. More carefully selected samples would doubtless show greater differences, though probably they would not then equal those of the high and low rotein, for reasors which will be given below. The results obtained by experiment show an advantage for the large germ of .7 percent in gomination, 41 grams in green weight and , . 6 inches in height, Table 15. These results are also afrimed by an actalal field test which showed a perceptible difference in the rows of young growing corn, and gave an average yield per acre of bushels for the large germ, and bushels for the small germ.

The reason E or the superiority or the large germ
is due primarily to a lerger amount of nitrogen in the kemel just as in the case of the high protein. Though a chemical detemmination for nitrogen was not nade fon the
large and small germ samples, it is sate to conclude that the high protein corn contained more nitrogen than the' sample selted for large germ. This is true for two reasons, viz. (l) There was unquestionably a.much larger amount of homy starch in the fomer sample, which is richer in proten than the white starch, and (2) generally an increase in gemm content is compelated with high protein content, thereby insuring good sized germs in the high protein sample as well as in the large gem sample. As stated above, therefore, the large germ would hardly be expected to make as good showing as the high protein, since no attertion was given to the amount of horny starch.

As to the influence of the size of the kernela and the amount of plant rood outside the proteid material upon vigor of gemination, the height of growth, and green weight, very Iittle can be said. The average dry Weight in grams of a number of 500 kemel samples gave for the high protein 137, low protein 174, large germ 180, small germ 156, short kernel 177, long kemel l66, snooth germ coat 199, sharp pointed kemel 153, wrinkled gem coat 179, blistered gem coat 186, discolored gem coat 192, and miscellaneous sample 177. A comparison of the figures given abdve with the perfomance record of the various samples with respect to percent gemaination, height of growth and greon weight will show with but one excoption (vrinkled and blistered germ coats) that where a sauple
showed up better than its mate it also had a greater dry weight of corn. By dry weight is meant the weight were of the 500 kernel samples just as they and baken from the cob. This does not tell us, however, how much influence over and above the nitrogen content that the extra weight might have, since it is the highor protein sample generally that is the heavier. More exact experiments need to be conducted in order to determine this point. If the corn was allowed to grow in sea sand that was perfectly free from food material until the food supply of the kemels had beon completely exhausted, and then the dry weight of the youn corn taken, it would. seem that more definite infomation could be obtained. Along with this should also be made a careful chemical analysis of duplicate samples, especially the nitrogen content.

Directing now our attention to the short and long kernel samples, we find the perfomance record of the long Kennel poorer than that of the short kernel in every trial. The difeerences obtaind from averages of experimental results in favor of the short kernel are 1 percent in gemination, . 5 inches in height of grwoth and 63 grams in green weight. To explain this defeerence the same reasons would be ofered as in the two previous cases. As a rule a short kernel ear shows considerable homy starch. Also the germ is
usually found to be good size. On the other hand a long kernel generally shows a preponderance of soft or white starch and the germ space is somewhat narrow and not necessarily any longer or deeper set than in the short kernel. Another very noticeable thing when the samples were cut and weighed was the difference in the size of the stalks, those from the long kernels being rather spindling and showing less vigor and witality in growth. Here again as in the other two cases an actual field test afeirms the results obtained above and gives the short kernel an increase in mature corn of bushels per acre.

An examination of the smooth gem coat in comparison with the sharp pointod kemels shows a difference or 6 percent in gommineting strength, 1 inch in height, and 58 grams in green weight. There was no special reason for comparing these two samples together so far as conformation and chemical composition was concerned. They were mated together for the purpose of bringing out the diperence between a good and poor sample of corn mone than anything else. The sharp pointed kernel sample was much inferior in general appearance than its companion sample. The kernels were practically all long, loosely set on the cob, and showed a very large amount of white starch. When kernels were removed from an ear the germs looked very poor in quality, having a sort oe dull
lifeless appearance. As regards confomation they were brought down to a sharp point at the tip of the kernel, were oftentimes mre or less distorted at the tip, and in general outline over the kernal possessed very little regularity. On the other hand the smooth germ coat was a pratty good sample of corn, the kernels on the whole having smooth and well shaped germs. The conclusion that stands out here is select good looking germs in seed corn.

The wrinkled germ coat shows a 2.5 percent stronger gemination than the blistered germ coat. In height of growth there is no difference and the yield in green weight favors the wrinkled gom coat only 13 grams. The tems wrinkled germ coat and blistered germ coat are to be understood as that portion of the seed coat which overlies the germ and which has in the first case wrinkles usually runing cross-wise the germ, and in the second case the coat is more or less blistered.

Just what conditions bring about wrinkled and blistered germ coats cannot be defintely stated. I t would appear that the wrinkled condition might be caused through lack of maturity, or perhaps from deficient food supply, either wanting in the soil or cut short by some seasonal condition. It does not seem probable that wrinkles would exist if the grm coat had been well filled out before growth
was retarded or ceased naturally.
It is reasonable to believe that if for some reason the growth of the corn should be cut short and the germ naterial be prevented from filling out the space allowed to it, that under such conditions as these wrinkles in the germ coat might easily appear as the kemels cured out. In as much as the wrinkles usually run cross-ways the kernel it woinld seem that a shortening process takes place. This would. uphold the view point of in-sufficient seasonal growth, thereby not allowing the kemnel to fill out lengthwise. The seed coat then in order to accomodate itsete to the shape and quantity of material within contracts. It is possible that the blistered germ coat could be caused by similar conditions, but it seems more probable that the blisters might be due to excessive absorption of water at some time bringing about a distortion of the coat, and in this manner giving rise to blisters as the corn dried out. If the blisters had been caused by the kemels becmming more or less water soaked at some tine this might easily for account 0 the apparent superior germinative power of the wrinkled type. It is perfectly possible, of course, for the difference to exist inherently in the samples and this sems rather plausible in the oase at hand from the fact that in practically every test made the minkled germ gave a higher percent germination. It is centainly
true that no duplicate samples of either kind in any test had the same degeee of wrinkles or blisters, and this being the case, since the difference in favor of the wrinkled is not very great, it would seem that the difierence might vary, sonetines Pavoring one sample and sometimes the other, unless as above stated there is an inherent direerence in the samples under question. The two samples seldom showed any noticeable direerences as they grew side by side in the germinating boxes. Whether the diference is due to circunstaces that induce the conditions, or whether as has been suggested in the caso at hand it is due to the selection or naturally weaker ears in the one sample than in the other remains to be proved by more extensive experinents.

Coming finally to the discolored germ coat and a sample picked miscellaneously it is in a measure surprising to find the discolored germ coat showing up much better. That a difference of 5.1 percent in gemination, 4 inches in h ight and 68 grams in greed weight should favor the discolored sample is hardly reasonable to expect. This is to be partially accounted for, at least, if not entirely, by the fact that the discolored germ coat sample was practically as good as the smooth germ coat sample. In selecting ears that were free from wrinkles and blisters it was hard to find a smooth germ coat with any great amount of discoloration. It may be said then for this sample
that on the whole there was not very much discoloration and the germ coat was smooth. In ract the discolored sample shows only a . 1 percent less geminative strength than the smooth gem coat. . The generally picked. sample contained a little of every typo, was quite irm regular in uniformity, and was not a good sample. Its performance record shows that it was a rather inferior sample. Just that influence discoloration might have vhen compared With a well chosen sample cannot be determined from this experiment. It is reasonable to believe that it might have a deteriorating effect.

Discoloration may be due to poor condttions in curing, such as premature gathering, excessive moisture, especially if left in husk and othor causes, some of which may be chemical in nature. If the discolor hapoens to be merely a htsk stain or something of that nature it might be supposed to cause no particularly injurious efrect.

As a sunnary on this division of the work it can be said that the chemical compostion of corn influences growth and vitality of gemuination, and also actmal yield in the field. The samples having the greatest percent of nitrogen show the best rocords. This fact is undoubtedly of great importande to the farmer. If corn high in protein has greater fecding valuo for stock
and yields higher per acre because of the protoin contont, these facts certainly medit the serious atterition of evory oarnest famer who dosires to make his farming mone profitable. It has also been shown beyond reasonable doubt that the shape and size of the kernel has considorable influence upon gemination. It camot be said just what chonical compostion may bo corrolated with size and shape of kemel, but the work thus far carried out indicates a lower protein contont for the long femel than for the short. It is also believed that thie disfiguration of gem coat, e. g. winkles and blisters, indicate a weakness in vitality and productng power. At any rato it may be assumed to be by far the bost policy to select wall shaved kemels having well shaped goms protected by smooth gom coats.

PROBLEM OF VARIATION WITH INDIVIDUAL EARS.

This experiment as mentioned in the introduction was conducted with a one hundred ear sample. The primary purpose was to ascertain whether an ear of corn would perform in the same mamer for a consecmetive number of rimes. The practical point at issue was to determine how much weight can be given to the theory that if an ear germinates weak at one time it will continue to do so and Is an inferior ear for planting pumposes. . It was belleved that a series of gertinations of single ears would thow some light on this matter about which much is said and little defintely known. The sample used was made up of ears varying in quality, some very good ears, and others not so good. Eleven geminations of the entire sample were made. A germinating box was checked off into little squares by stretching strong cord both ways across the box at unifmom distances, there being 100 squares in all. In each one of these little squares a ton kernel sample from an individual ear was planted In the sand in the maner described for the large samples. The ten kemels were taken regularly from five different places on the ear so as to be as nearly representative as possible. Special care was given to see that the sample from each ear was subjeoted to uniform conditions throughout. In this manner it was believed that a
fairly good criterion could be had on what an ear was able to do from time to time. The results are shown in the table which follows.
 No. tion $\mathbf{T} \quad \mathbf{T} \quad$ germi-

	S trong	6	4	5	5	6	7	7	6	5	7	6	
1.	W eak	4	6	5	4	4	3	3	3	5	3	4	
	Total	10	10	10	9	10	10	10	9	10	10	10	98.1
2.	Strong	8	10	6	7	8	9	7	4	5	8	6	
	Beak	2	0	4	3	2	1	2	6	5	1	4	
	Total	10	10	10	10	10	10	9	10	10	9	10	98.1
3.	Strong	7	70	4	9	9	8	8	6 4	6 3	7 3	7 3	
	Weak	3 10	10	3	10	1		10		9	10	10	96.3
4,			10	7	10	8	10	10	8	4	8	6	
	Strong	7	10	3	0	2	B	0	2	6	2	4	
	Total	10	10	10	10	10	10	10	10	10	10	10	100.
5.	Strong	1	8	2	5	2	4	7	4	3	5	3	
	Weak	7	1	2	2	4	5	3	6	6	5	7	
	Total	8.	9	4	7	6	9	10	10	9	10	10	83.6
6.	Strong	10	9	9	6	9	8	8	10	4	10	6	
	Weak	0	1	1	4	1	2	2	0	6	0	3	
	Total	10	10	10	10	10	10	10	10	10	10	9	99.
7.	Strong	8	8	7	7	9	8	9	8	6	9	5	
	Weak	2	2	3	2	10	2	10	120	3	10	10	98.1
	Total	10	10	10	9								98.1
8.	Strong	4	10	10	9	9	6	6	5	7	9	8	
	Weak	6	0	0	1	1	3	4	3	3	1	2	
	Total	10	10	10	10	10	9	10	8	10	10	10	97.2
9.		5	8	6	8	8	9	9	7	5	9	7	
	Weak	4	2	3	2	2	1	1	3	4	1	3	
	Total	9	10	9	10	10	10	10	10	9	10	10	97.2
10.	5 trong	5	5	2	6	5	3	10	7	4	9	6	
	Weak	5	5	7	3	4	7	0	3	6	1	3	
	Total	10	10	9	9	9	10	10	10	10	10	9	96.

Ear Dura- lst and 3rd 4 th 5 th 6 th 7 th 8 th 9 th 10 th 11 th $0 v g$. \% $\begin{array}{lccccccccccc}\text { No. tion } & T & T & T & T & T & T & T & T & T & T & T \\ & 5 d a & 5 d a & 5 d a & 6 d a & 6 d a & 5 & \text { da } & 5 d a & 6 \text { da } & 6 & \text { a } \\ & 6 d a & \text { nation }\end{array}$

	S trong	9	7	3	5	8	8	9	8	5	9	5	
11	Weak	1	3	5	5	2	1	1	1	5	1	5	
	Total	10	10	8	10	10	9	10	9	10	10	10	963
12	Strong	4	5	3	1	3	9	1	5	3	7	3	
	Wшak	6	5	5	7	7	1	9	5	7	3	7	
	Total	10	10	8	8	10	10	10	10	10	10	10	96.3
13	Strong	10	5	7	4	10	9	8	6	5	9	6	
	Weak	0	4	3	5	0	0	2	3	5	1	4	
	Total	-10	9	10	9	10	9	10	9	10	10	10	96.3
14	S trong	5	7	8	7	8	10	6	6	4	10	8	
	Weak	5	3	2	3	2	0	4	3	5	0	2	98.1
	Total	10	10	10	10	10	10	10	10	9	10	10	
15	Strong	8	6	5	8	7	6	8	8	8	7	7	
	Weak	2	4	4	2	3	3	2	8	2	3	3	
	Total	10	10	9	10	10	9	10	10	10	10	10	98.1
16	Strong	9	7	6	8	7	5	2	7	8	6	6	
	W eak	0	3	4	2	3	5	4	3	2	1	2	
	Total	9	10	10	10	10	10	6	10	10	7	8	90.9
17	Strong	6	4	5	4	8	4	7	7	9	8	6	
	Weak	4	5	4	5	3	6	3	3	0	2	4	
	Total	10	9	9	9	6	10	10	10	9	10	10	92.7
18	Strong	5	2	3	6	8	4	6	6	5	4	8	
	Weak	5	8	7	4	2	6	4	4	4	5	2	
	Total	10	10	10	10	10	10	10	10	9	9	10	98.1
19	Strong	9	8	9	10	10	6	9	5	6	7	8	
	Weak	1	1	1	0	0	3	1	5	3	7	2	
	Total	10	9	10	10	10	9	10	10	9	10	10	97.2
20	Strong	10	6	3	9	5	2	6	5	5	6	6	
	Weak	0	2	6	1	1	8	4	4	5	3	4	
	Total	10	8	9	10	6	10	10	9	10	9	10	91.8
21	Strong	9	7	10	10	10	8	9	9	5	10	8	
	Weak	1	3	0	0	0	2	1	0	5	0	2	
	Total	10	10	10	10	10	10	10	9	10	10	10	99

$\begin{aligned} & \text { Ear } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Dura- } \\ & \text { tion } \end{aligned}$	$\underset{T}{l s t}$	$\begin{gathered} \text { 2nd } \\ \mathbf{T} \end{gathered}$	$\underset{T}{3 r d}$	$\underset{T}{4 t h}$	$5 \operatorname{th}$	$\underset{\mathbf{T}}{6 \mathrm{th}}$	$\begin{gathered} 7 \text { th } \\ \mathbf{T} \end{gathered}$	$\underset{T}{8 t h}$	$\underset{\mathrm{T}}{9 \mathrm{th}}$	$\begin{aligned} & \text { loth } \\ & T \end{aligned}$	$\operatorname{ll}_{T} t h$	$\begin{aligned} & \text { Avg. } \\ & \% \\ & \text { ger- } \\ & \text { mina } \\ & \text { tion } \end{aligned}$
22	Stong	10	8	6	8	7	4	7	5	5	5	6	
	Weak	0	2	3	1	3	4	3	5	5	4	4	
	Total	10	10	9	9	10	8	10	10	10	9	10	95.4
23	Strong	6	5	5	8	7	5	8	9	5	4	8	
	Weak	4	5	5	2	2	4	2	1	5	5	2	
	Total	10	10	10	10	9	9	10	10	10	9	10	97.2
24	Strong	6	10	9	6	8	9	8	10	3	6	7	
	Weak	4	0	1	4	2	0	2	0	7	4	3	
	Total	10	10	10	10	10	9	10	10	10	10	10	99 •
25	Strong	7	8	9	9	10	10	8	10	5	9	6	
	Weak	3	2	0	1	0	0	2	0	5	1	3	
	Total	10	10	9	10	10	10	10	10	10	10	9	98.1
26	Strong	9	7	8	6	6	9	8	8	3	5	7	
	Weak	0	3	2	4	4	1	2	2	7	3	3	
	Total	9	10	10	10	10	10	10	10	10	8	10	97.2
27	Strong	7	3	7	7	5	9	4	9	2	8	7	
	Weak	3	6	3	2	3	1	5	1	8	2	2	
	Total	10	9	10	9	8	10	9	10	10	10	9	94.5
28	Strong	8	6	7	7	6	4	10	9	5	8	6	
	Weak	2	3	3	3	4	5	0	1	5	2	3	
	Total	10	9	10	10	10	9	10	10	10	10	9	97.2
29	Strong	9	10	8	8	7	10	9	8	4	8	4	
	Weak	1	0	2	2	3	0	1	1	6	2	6	
	Total	10	10	10	10	10	10	10	9	10	10	10	99.
30	Strong	6	8	10	8	10	10	10	9	6	7	10	
	Weak	3	2	0	2	0	0	0	0	2	2	0	
	Total	9	10	10	10	10	10	10	9	8	9	10	95.4
31	Strong	8	8	7	4	5	9	3	8	5	7	5	
	Beak	1	2	3	5	3	1	6	1	4	2	5	
	Total	9	10	10	9	8	10	9	9	9	9	10	92.7

	Strong	9	4	9	8	5	8	9	8	4	8	8	
45	Weak	1	6	1	2	5	2	1	0	6	2	2	
	Total	10	10	10	10	10	10	10	8	10	10	10	98.1
	Strong	1	9	6	10	9	5	8	9	2	9	10	
46	Weak	9	1	3	0	1	5	2	1	8	1	0	
	Total	10	10	9	10	10	10	10	10	10	10	10	99.
47	Strong	9	6	10	4	6	7	θ	8	6	9	8	
	Weak	1	3	0	6	3	3	0	1	3	0	1	
	Total	10	9	10	10	9	10	9	9	9	9	9	93.6
48	Strong	2	9	7	5	9	7	8	9	4	8	9	
	Weak	8	1	2	5	1	3	2	1	6	2	1	
	Total	10	10	9	10	10	10	10	10	10	10	10	99.
49	Strong	10	6	7	4	5	10	9	8	4	10	5	
	Weak	0	3	3	5	5	0	1	2	6	0	5	
		10	9	10,	9	10	10	10	10	10	10	10	98.1
50	Strong	0	3	10	6	4	3	7	9	3	8	10	
	Weak	10	7	0	2	5	7	2	1	7	2	0	
	Total	10	10	10	8	9	10	9	10	10	10	10	96.3
51	Strong	8	9	3	8	2	7	9	9	4	7	9	
	Weak	2	1	4	2	6	3	1	1	6	3	1	
	Total	10	10	7	10	8	10	10	10	10	10	10	95.4
52	Strong	0	1	5	5	9	0	6	5	4	3	8	
	Weak	9	9	2	4	1	10	4	4	6	7	2	
	Total	9	10	7	9	10	10	10	9	10	10	10	94.5
53	Strong	10	6	6	4	8	10	7	9	4	5	7	
	Weak	0	1	3	5	2	0	2	0	2	0	2	
	Total	10	7	9	9	10	10	9	9	6	5	9	84.5
34	Strong	7	5	9	3	8	10	8	9	7	8	8	
	Weak	2	4	1	3	1	0	2	1	3	2	2	
	Total	9	9	10	6	9	10	10	10	10	10	10	93.6
55	Strong	10	8	8	7	7	10	8	10	5	5	s	
	Weak	0	2	2	2	2	0	2	0	5	5	1	
	Total	10	10	10	9	9	10	10	10	10	10	10	98.1
56	Strong	10	8	3	4	6	10	9	8	5	10	9	
	Weal	0	1	5	6	4	0	1	2	5	0	0	
	Total	10	9	8	10	10	10	10	10	10	10	9	96.3
57		9	10	8	9	2	10	8	8	7	8	9	
	Heax	1	0	2	0	7	0	2	2	3	2	1	
	Total	10	10	10	9	9	10	10	10	10	10	10	98.1

	58	Strong	5	3	5	3	10	7	7	1	5	4	7
	Weak	5	6	4	6	0	3	3	8	3	3	2	
	Total	10	9	9	9	10	10	10	9	8	7	9	91.8

	Strong	$\mathbf{5}$	$\mathbf{5}$	$\mathbf{8}$	$\mathbf{6}$	$\mathbf{4}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{9}$	5	10	10	
	Weak	5	4	2	3	6	1	3	1	4	0	0	
	Total	10	9	10	9	10	9	10	10	9	10	10	96.3

60 Strong $8 \quad 7 \quad 8 \quad 5$ $\begin{array}{lrrr}\text { Strong } & 2 & 3 & 2 \\ \text { Total } & 10 & 10 & 10\end{array}$

$\begin{array}{llllllllllll}\text { Strong } & 8 & 9 & 3 & 6 & 1 & 4 & 5 & 7 & 5 & 2 & 8\end{array}$
61 Weak Total $8 \quad 10$

Strong 88
62 Weak Total 1010

9
1
10
$\begin{array}{lrr}\text { Strong } & 0 & 0 \\ \text { Weak } & 10 & 10\end{array}$
$\begin{array}{ll}7 & 3 \\ 2\end{array}$ Total 1010

Strong $10 \quad 5 \quad 10 \quad 10 \quad 3 \cdot 10$
$64 \begin{array}{lrrrr}\text { Weak } & 0 & 5 & 0 & 0 \\ \text { Total } & 10 & 10 & 10 & 10\end{array}$
$\begin{array}{lr}6 & 0 \\ 9 & 10\end{array}$
810
10
10
10
10
$10 \quad 93.6$ Weak 22 1
$\begin{array}{rrr}3 & 3 & 2 \\ 10 & 10 & 5\end{array}$
9
9
6 4
$\begin{array}{ll}4 & 7 \\ 0 & 3\end{array}$
$\begin{array}{lrrlrrrrrrrrr}\text { Strong } & 10 & 6 & 4 & 7 & 9 & 10 & 8 & 9 & 4 & 6 & 8 & \\ \text { Weak } & 0 & 4 & 6 & 3 & 1 & 0 & 2 & 0 & 6 & 2 & 2 & \\ \text { Total } & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 9 & 10 & 8 & 10 & 97.2\end{array}$
$\begin{array}{llrrrrrrrrrrrr} & \text { Dtrong } & 9 & 8 & 8 & 6 & 7 & 7 & 7 & 8 & 5 & 6 & 9 & \\ \text { Weak } & 1 & 2 & 2 & 1 & 2 & 2 & 2 & 2 & 4 & 3 & 1 & \\ & \text { Total } & 10 & 10 & 10 & 7 & 9 & 9 & 9 & 10 & 9 & 9 & 10 & 92.7\end{array}$
$\begin{array}{llrrrrrrrrrrrr}67 & \text { Strong } & \mathbf{8} & \mathbf{7} & \mathbf{8} & 3 & 4 & 9 & 6 & 10 & 7 & 5 & 10 & \\ \text { Weak } & 1 & 3 & 1 & 7 & 6 & 1 & 4 & 0 & 3 & 4 & 0 & \\ & \text { Total } & 9 & 10 & 9 & 10 & 10 & 10 & 10 & 10 & 10 & 9 & 10 & 97.2\end{array}$
68
$\begin{array}{lllll}\text { Strong } & 8 & 6 & 6 & 9\end{array}$
$\begin{array}{lrr}\text { Weak } & 2 & 4 \\ \text { Total } & 10 & 10\end{array}$
$\begin{array}{lr}6 & 9 \\ 3 & 1 \\ 9 & 10\end{array}$
$\begin{array}{ll}7 & 8 \\ 2 & 2 \\ 9 & 10\end{array}$
8
2
10
$\begin{array}{rr}9 & 9 \\ 1 & 1 \\ 10 & 10\end{array}$
$\begin{array}{ll}6 & 8 \\ 4 & 2\end{array}$
8
$\begin{array}{rr}9 & \\ 1 & \\ 10 & 98.1\end{array}$
$\begin{array}{lllllllllll}\text { Strong } & 9 & 10 & 0 & 6 & 10 & 4 & 10 & 10 & 6 & 10\end{array}$
$69 \begin{array}{lrr}\text { Weak } & 1 & 0 \\ \text { Total } & 10 & 10\end{array}$
$\begin{array}{rr}9 & 4 \\ 9 & 10\end{array}$
10
0
$\begin{array}{rrrrrr}4 & 10 & 10 & 6 & 10 & 9 \\ 5 & 0 & 0 & 4 & 0 & 1\end{array}$
10
1010
1
$\begin{array}{rlrr}70 & \text { Strong } & 4 & 6 \\ & \text { Weak } & 6 & 4 \\ & \text { Total } & 10 & 10\end{array}$
$\begin{array}{lr}7 & 6 \\ 0 & 4 \\ 7 & 10\end{array}$
5
5
10 3
7
10

8
2
10
$\begin{array}{rr}10 & 6 \\ 0 & 4 \\ 10 & 10\end{array}$
6
4
0
$\begin{array}{rr}8 & 8 \\ 2 & 2 \\ 10 & 10\end{array}$
97.2

	Strong	10	10	3	6	10	6	7	10	4	7	10	
71	Weak	0	0	6	4	0	4	3	0	6	2	0	
	Total	10	10	9	10	10	10	10	10	10	9	10	98.1
72	Strong	9	8	8	4	6	9	7	6	4	9	8	
	Weak	1	2	2	5	4	0	3	4	6	1	2	
	Total	10	10	10	9	10	9	10	10	10	10	10	98.1
73	Strong	8	8	6	5	5	10	8	8	5	8	7	
	Weak	2	1	4	5	5	0	2	2	5	2	3	
	Total	10	9	10	10	10	10	10	10	10	10	10	99.
74	Strong	7	5	0	6	5	6	8	7	6	7	9	
	Weak	2	5	10	3	5	2	2	3	4	3	1	
	Total	9	10	10	9	10	8	10	10	10	10	10	96.3
75	Strong	9	6	9	9	8	8	9	9	3	9	9	
	Weak	1	4	1	1	2	2	1	1	6	1	1	
	Total	10	10	10	10	10	10	10	10	9	10	10	99.
76	Strong	9	7	3	4	6	6	7	9	4	6	7	
	Weak	1	3	6	6	4	4	3	0	6	4	3	
	Total	10	10	9	10	10	10	10	9	10	10	10	98.1
77	Strong	8	5	6	10	8	9	7	10	6	9	7	
	Weak	1	5	4	0	2	1	2	0	3	1	2	
	Total	9	10	10	10	10	10	9	10	9	10	9	96.8
78	Strong	6	4	9	6	3	10	8	8	3	7		
	Weak	\%	6	1	2	4	0	1	2	5	2	1	
	Total	8	10	10	8	7	10	9	10	8	9	9	89.
79	Strong	10	5	7	8	7	10	10	10	4	8	9	
	Weak	0	5	2	2	3	0	0	0	5	2	1	
	Total	10	10	9	10	10	10	10	10	9	10	10	98.1
80	Strong	9	7	7	7	6	7	7	9	3	9	8	
	Weak	0	3	3	2	4	3	3	1	7	1	2	
	Total	9	10	10	9	10	10	10	10	10	10	10	98.1
81	Strong	9	5	7	10	2	8	7	9	3	0	5	
	Weak	0	5	2	0	7	2	2	0	7	10	2	
	Total	9	10	9	10	9	10	9	9	10	10	7	92.7
82	Streong	7	6	8	4	7	1	5	9				
	Weak	2	4	1	5	3	7	5	1	6	4	8	
	Total	9	10	9	9	10	8	10	10	10	10	10	95.4

	Strong	7	10	10	8	7	8	10	8	7	10	7	
83	Weak	8	0	0	2	3	2	0	2	3	0	3	
	Total	9	10	, 10	10	10	10	10	10	10	10	10	99
84	Strong	10	8	7	4	6	9	9	10	6	9	4	
	Weak	0	2	2	6	3	0	1	0	1	1	4	
	Total	10	10	9	10	9	9	10	10	7	10	9	92.7
85	Strong	9	5	6	2	6	4	9	9	5	8	3	
	Weak	1	5	2	7	3	6	1	1	5	2	7	
	Total	10	10	8	9	9	10	10	10	10	10	10	96.8
86	8trong	7	2	5	3	5	6	6	8	7	9	5	
	Weak	3	8	4	7	5	4	4	2	3	1	5	
	Total	10	10	9	10	10	10	10	10	10	10	10	99.
87	Strong	4	6	4	7	5	5	7	8	5	8	7	
	Weak	6	3	5	3	5	5	3	2	5	8	2	
	Total	10	9	9	10	10	10	10	10	10	10	9	97.2
88	Strong	7	9	3	6	8	4	9	9	5	8	6	
	Weak	2	0	4	4	2	6	1	0	3	2	3	
	Total	9	9	7	10	10	10	10	9	8	10	9	91.8
89	Strong	9	6	8	10	4	9	8	8	5	8	8	
	Weak	0	4	2	0	6	1	2	2	5	2	2	
	Total	9	10	10	10	10	10	10	10.	10	10	10	99.
90	Strong	3	5	4	3	2	4	7	4	1	3	8	
	Weak	4	4	4	3	7	3	0	8	6	4	1	
	Total	7	9	8	6	9	7	7	8	7	7	9	76.3
91	Strong	6	3	9	7	5	4	4	6	6	6		
	Weak	4	4	1	1	5	5	3	3	4	3	2	
	Total	10	7	10	8	10	9	7	9	10	9	10	90.
92	Strong	10	8	9	10	10	10	7	9	4	7	8	
	Beak	0	2	1	0	0	0	3	1	6	3	2	
	Total	10	10	10	10	10	10	10	10	10	10	10	100.00
93	Strong	8	5	10	8	7	10	9	10	5	10		
	Weak	2	4	0	1	3	0	1.	0	5	0	0	
	Total	10	9	10	9	10	10	10	10	10	10	10	98.1

	Strong	8	5	9	7	8	6	6	8	2	6	9	
94	Weak	1	2	1	1	1	4	3	2	8	3	1	
	Total	9	7	10	8	9	10	9	10	10	9	10	91.8
95	Strong	10	8	10	9	10	8	6	8	2	7	7	
	Weak	0	2	0	0	0	2	4	2	4	2	3	
	Total	10	10	10	9	10	10	10	10	6	9	10	94.5
96	Strong	6	1	5	5	0	7	4	4	1	3	1	
	Weak	0	1	0	2	4	2	1	0	2	1	3	
	Total	6	2	5	7	4	9	5	4	3	4	4	48.1
97	Strong	9	4	10	3	7	8	9	10	0	7	5	
	Weak	1	6	0	7	3	1	1	0	10	3	5	
	Total	10	10	10	10	10	9	10	10	10,	10	10	99.
98	Stroong	8	9	10	6	10	2	10	9	5	8	10	
	Weak	2	1	0	3	0	8	0	0	5	2	0	
	Total	10	10	10	9	10	10	10	9	10	10	10	98.1
99	Strong	9	7	7	8	4	6	7					
	Weak	1	3	2	1	5	4	1	0	4 5	8	7 3	
	Total	10	10	9	9	9	10	8	10	9	9	10	93.6
100	Strong	6	3	9	8	8	8	7	10				
	Weak	4	7	1	2	2	2	8	10	5	8 2	7 3	
	Total	10	10	10	10	10	10^{2}	10°	10	10	20	3 10	100.

 red- - an 75
 50
The avobe curves show variation in percent strong germination, percent weak germination, of different individual cars in the 100 ear sample.

The data given in the above table ofers interesting material for study. It is seen that an ear seldom performs the same way for any two consecutive tests as regards strong and weak stalks. The e are in fact some complete reversals as shown by ears No. 50, 52, 74, 31 and 97. In total germination there is not so much variation by any means, but even here, there is considerablc. This is not to be wondered at when we consider the mixture of individuals that an ear of corn represents. There must exist widely different inherent tendencies among the kernels on any one ear. Besides this there are physical and chemical difeerences such as thick and thin seed coat, and large and small germ. With this in mind then it camot be expected that an ear will perform the same way repeatedly. A thin seed coat may cause rapid absorption of water and in this way insure quick and vigorous germination, while on the other hand a thick seed coat would act slowly but yet might produce a stalk that would give a better yield or corn. The same thing could happen in the case of the large and small germ.

A semmon that has been preached to farmers time and again is found in the text "Test your seed corn, and. discard those ears that show weak gemination". This is a nice sounding text and one on which a great deal can be said but the doctrine is probably not as sound as the
majority believe it to be. At any rate no few ears in the sample refute the doctrine right along. Whether it is the fault of the ears or the fault of the doctrine remains to be decided by more extensive investigation, but so far as this single experiment goes, the proof is somewhat conclusive against the doctrine.

This is seen by the fact that an ear may geminate 100 percent in one test, but in the next one fall to 90 percent or lower. This is not a universal ocomonce, of course, but it happens quito fequontly, in fact only four ears out of the one hundred gave a uniform gomination of 100 percent. This does not speak very well for the belief in the continuity of the geminotivo pover of an ear of corn. Undoubtedily there is a great deal of morit in testing seed corn befone planting, but this probably is not so necessary for the Pamer who has good judgaent and can tell what an ear of corn is by a visual exanination of its physical characters.

SUMMARY.

The following conclusions may be drawn from the results presented in the foregoing pages:

1. Germinative power of com advances with maturity. 2. It appears that corn may have a susceptible stage or maturity corresponding to a resting period.
2. Corn will stand rather severe exposue without much apparent injury. The moisture content is the thing to look out for when the temperature is low.
3. Corn possesses a remarkable degree of vitality. This is show by the fact that corn alnost rotten Prom being buried under ground will, when dug up, geminate a fair percent.
4. Duplicate test samplos from any corn sample will, as
a rule, germinate close together.
5. Conformation and comosition of kernel show a decided influence unon germination, vigon of grwoth and yield per acre.
6. Individual ears will not show continuity of germinative capacity in consecutive germination tests.
7. There is doubtless not as much dependence to be placed upon tosting seod corn before planting as is ordinarily supposed by men who vigorously advocate the principle.

Form 104

