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IITRODUCTORY REMARKS 

on the Thesis by Mr. W. S. Pemberton 

on 

VECTORS IN FOUR DIMENSIONS. 

The interest attaching to n-dimensional geometry 

conles chiefly from two sources, first the light thrown 

upon analysis by a geometric interpretation ·of its 

r9sul ts when more than three varia.bles are involved, 

and second, the light thrown upon the geometries of 

a smaller number ot dimensions by fitting them into 

their places in a more general theory, which brings 

out much more clearly than is otherwise possible their 

characteristic properties. 

The theory ot vectors is a special aspect at 

geometry, and one which takes its inspira.tion troID, 

and is highly useful to, the science of mechanics • 

. Mr. Pemberton's work, therefore, is an attack upon 

a probleDl of considerable interest, yet one apparent-

ly only very little developed. Just the extent to 

which his results are new it is i~possible to deter­

mine wit.hout access to libraries more extensive than 

he has had at his disposal. 





The first troublesome points with whicb he met 

were the proper extension of the notion of moment, 

and the proper convention as to the sense of orient­

uted magnitudes in four space. The generalization 

of his definitions to n-dimensional space will be 

imme di a.~e • Particular attention should be called 

to the result that any system of vectors in four space 

may be reduced to a system of two vectors except when 

the system is equivalent to two couples in p~anes in­

tersecting in a poin t only, and that in this case the 

reduction is impossible. 

This 1s a striking characteristic of four din~en­

sional space, which opens up a whole series of inter­

esting questions in t h.e mechanics of hyperspace, which 

it is to be hoped Mr. Pemberton will late r have oppor­

tuni ty to investiga.te. 

o. D. Kellogg. 





Vectors 1n Four D~en81onB. 

Chapter I. 

In this discu8sion, which is based on the 

ordinary theory of vectors as applied to mechanics, 

we shall extend the meaning so as to make application 

to four dimensions, and in dOing so we assume the 

geometric properties of four dimensional space. 

1. Definitions:- We shall define a vector 

geometrically to mean a line segment A B , having 
1 1 

Al as the pOint of application and Bl as the extrem-

ity, its positive sense being from Al to B1 . 

We shall assume tour perpendicular a.xes and 

define 'a vector analytically by the co-ordinates 

x,y,z,., and x2 , Y2' z2' -2 as referred to the four 
\ I 1 I 

axes. 

The vector may also be fixed by x"Yf z, w, and 
l: 1 JI 

its proJections X,Y,Z,W, on the four axes, X ~ x2 - Xl ' 

Y = Y 2 - Y 1 ~ Z = z 2 - zl' and W - -2 - wI· 

The angle between two lines needs no new def-

inition here since the two lines that dete~lne the 

angle aleo determine the plane in which the angle lies 

and so projection as here used is according to the 

ordinary definition for projections. 
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2. Standard Set ofAxes:- Given three 

perpendicular axes through a point in tour space, 

which we take tor the X, Y, Z axes, there is one 

line through this pOint perpendic~lar to the three 

space ot the axes. We fix arbitrarily, and once 

for all, a positive sense on this line and this 

determines a standard "right hand set" of X, Y, Z, 

Waxes .. 

It we are given any other set of axes 0', 

X', Y', Z', W' ~ 0 ' X', 0' Y', an dO' Z' may be made 

to coincide with OX, OY, and OZ respectively. 

The 0 'W' axis e1 ther coincides. wi th OW in a. 

posi t1 ve .or a negati ve sen se. If it c oincidea 

in a positive sense the set is to be called 

a right hand set and if in a negative sense, a 

lett hand set. 

3. Moments with Respect to a P01nt:- The 

moment of a. vector with respect to a. point has a 

magnitude and an orientation. 

Tbe magni tude of the momen t .is equal to two 

times the area of the triangle fonned by the vector 

and the poInt ot reference. 

The orienta.tion Is that of the plane in which 

the pOint and the vector lie. We shall call the 





-3-

above plane the plane ot the moment. 

The moment of a vector with respect to a point 

is cQnpletely detennined by the point and the pro­

Jections ot the triangle mentioned above on the six 

co-ordinate planes. It we take the origin as the 

pOint of reference, the projections at the vertices 

are: 

xz " 
xw . tt 

yz " 
yw " 

zw " 

(0,0,0,0), (x1,0,zl'o), (xS,o,z2'o), 

(0,0,0,0), 

(0,0,0,0), 

(0,0,0,0), 

(x ,0,0,. ' ), 
1 1 

(o,y ' , z , 0) , 
. 1 1 . 

(o,y ,0,. ), 
1 1 

(x
2

,o,0,w
2

), 

(o,y ,z ,0), 
2 2 

(O'Y2'o,w2 ) , 

The projections of the triangles in the six co­

ordinate planes, as design~ted by the subscripts 

ot P, area 

J 
XX21 YYe

1 P.xy = 

, 

, P.sz = 

~zw = 

• P xw = 

• 
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The magnitude of the moment with respect to the 

origin is equal to the square root of the sum of the 

squares of the six deter.winants given above. This 

is a theorem of n-dimensional geometry. 

be verified as follows: 

It may a lso 

Tak x.. Y • and x Y z w as the two poin ts 
e 1 " 1 zl 1 2 2 Z 2 

that detennlne the vector. Let i l equal the distance 

of xly1zlw1 from the origin, andi
2 

equal the distance 

x2YZz2w2 frOlu the same pOint. Let s.. equal the angle 

between the two lines. 

Then we have the moment of the vector with 

respect to the origin equal to £1 £ 2 sin @- =0 :£1 .t2Y~ 
But /: Yxi-rYi+ zi+wi and~= ~+Y~+ z~+w~ 
Then if we let cos ~( , cos~( , cos r, and <roe f , be 

t he direction cosines of /" and let cos tiL' COs;<fL,' 

cos Vi.. ' and cos ~ , be the direction cosines Of~ we 
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w11l have I 

C08 @-- = C09~. COS~Lt C08(3, cosA t cosT, cos~ -t 

cos J; cos ~ • Now i! we take the values, 

coso(, = 1, · cos fo/ = ~ , , 
.3't­

COS "1;= .e ' 

cos rt 

r LA/, 
cos or = I?' 

A , 

~ lit{ 
COS t1z. = - , 

Pi.... 

and 8ubstitute 1n the equation above for the moment 

we get the moment equal to 

By subati tuting the values ot ~ and 4{trom above 

we get tor the magnitude of the moment 

i\Yl( + /\\( x w r 
+ r1:1r Y1-1 

2 z w 
1 1 1 1 

+ + + 
x y x z x w 

Y2 2 Y2
w

2 
z w 

2 2 2 2 2 2 2 2 

2 
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If we use the notation as suggested on page 3 we get 

for the magnitude of the moment 

+ p2 + 
yw 

We may extend the definition of the moment of a 

The projections of the triangle on the six co-ordinate 

planes are found by dropping two rows at a time from 

the above matrix, alW~8 retaining the last. In order 

to verify this we take the Yector P with the point ot 

application xly1z1wl and its pro:jections X,y,Z,W. 

The proJections ot the moment with respect to the origin 

are: 

p I xl Y
I! p xl WI!. Pyz = YI\! xy ::; Xl Y
1 

' xw = , 
X W Y Z 

Pyw =1 ~ : /. p - j;I:Y zw -

If we take any other pOint as 0'( 1: r f, 'w) and 
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translate the axes so that 0' will be the origin, the 

co-ordinates of the point of application as referred 

to the new axes are, 

Since the proJections ot the vector remain the 

same the projections ot the moment with respect to 

0' are , 

P'­xy 

Xl 
P' -xw -

-1' 
x 

P' 
xz 

P zw -

= Zl ' - f I ' 
z . 

P'xy = Y(x1 -f) - X(YI - Y') = XIY - x'y - YIx + y'X = 
P - ( x' Y - Xy') 

xy 

- X( z - f ) 1 
- X(VJ, _W') 

_ y( u/ _ oJ ) 

- p -( f z - X 1 ) xz 

- p xw - ( f ,uI - X vJ' ) 

- Pyw -<1'1#- y vY ') 

- y( ~ - ft) -= Py~ - (','z -y -r ) 
- Z(W - :AJ') : ~LN -( //;1) - yw' ) 
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The above results are the same as the ones we get from 

the matrix which defines the moment wi th respect to 

any pOint. They also show the relation between the 

moment with respect to the origin and the moment with 

respect to any point in space. 

4. Moment with Respect to a Line:- The moment 

of a vector with respect to a line is defined as a 

vector whose magnitude is 3! times the volume of the 

tetrahedron determined by the vector and two points 

in the line a unit's distance apart, and whose 

direction is perpendicular to the three-space deter­

mined by the line and the vector. The sense on this 

perpendicular is fixed by taking the X,y,Z axes of a 

standard right hand set of ~~es in the three space of 

the vector and the line of reference in such a way 

that the vector tends to rotate about the line in a 

righ t hand screw motion. The posi ti ve W axis then 

gives the positive sense on the moment. This vector 

is in a sense a free vector, inasmuch as ita initial 

pOint is not fixed. We shall merely make the conven­

tion that it intersects the line of reference. Ita 

initial point thus lies in a plane that is detenmined 

by the line of reference and the vector. 

The magnitude of the moment with respect to a 

lIne is also equal to the mae;nl tude of the moment wi th 
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respect to a pOint in the line multiplied by the sine. 

of the angle the line makes with the plane through 

the vector and the point of re -~erence. For if we 

take any two pain ta in the gi ven line an-d the two end 

points of the vector they will be sufficient to deter-

mine a three-space and for such the theorem is well 

krio\m. See Appell Trai te de Meca.niq'.le Rationnelle, 

Vol. I., p 6. 

5. The Ten Co-ordinates of a Vectors- The 

magnitude, direction, and line of action of a vector 

are rletenuined by its four cOlnponents and the projec­

tions \)"t its moments with respect to a pOint, that 1s, 

by X,y,Z,W, PXY' Pxz' Pxw' Pyz, Pyw' and P zw• These 

quantities are not arbitrary but satiefy five identical 

relations which we proceed to obtain. If we write 

down the matrix 

X y Z W 

x Yl 
z w 

1 1 1 

x y z w 
2 2 2 2 

we are able to produce four detenninants, each of which 

Is equal to zero since the difference between the last 

two rows produce a row that is the same as the first. 

From the four detenuindll ts formed above we get tour 
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equatIons as follows: 

y P
zw 

- Z Pyw i W Pyz = 0 

X P zw - Z Pxw + W Pxz = 0 

(1 - 4) 
X Pyw - y Pxw + VI Pxy = 0 

XP - Y Pxz t z Pxy - 0 yz -

Then fram the deter.minant 

x 
1 Y1 

z • 1 1 

x 2 Y2 z .. 
2 2 - 0 -

Xl Y1 zl WI 

x2 Y2 z2 -2 

we get the relation p . P - P P + P p xy zw xz yw xw yz 
o 

It is interesting to note that if (5) is satisfied 

only two of the relations (1 - 4) a.re independent , 

'or, if we form the determinant of the coefficients of 

x , Y, Z , W we ge t 

(5 ) 
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0 -1' P P 
z\v yw yz 

p 0 Pxw P 
zw xz 

p -p 0 Pxy yw xw 

Pyz-Pxz Pxy 0 

By the aid of t he relation (1 4) &n& (5 ) we are 

able to ahow tha.t all the determinants of t h ird order 

as formed from the above determinant are equal to zero. 

The minor of 0 in the first row is 

0 - P:xw 
p 

x z 

-p 0 p 
xw xy 

-p p 0 
xz xy 

which equals P (-p P +p p ) = 0 
xy xw x z x z xw 

The minor of Pzw in t h e first row is 

p - p p 
zw xw xz 

POP yw xy 

which equa ls , Pxy (Pyw Pxz - Pyz Pxw - Pxy P zw ) = 0 
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Bu t by (5) the term in the parenthesis is equal to 0 

and thus the determinant i8 ~qual to O. 

The minor of the third element in the first row 

is, 

P . 0 P 
zw xz 

p -p p 
yw Xli xy 

P -p 0 
yz xz 

which equals Pxz (-P P + p p + p p ), and we 
yw xz zw xy xw yz 

see that this determinant is equa.l to 0 for the same 

reason as just stated. 

In the same way we could take the minor of the 

last element in the first row and also the minors of 

the elements in the other rows and show that they are 

all equal to O. 

If now we examine the minors of the second order 

that we are able to get we find tha.t we may have, 

0 

P 
xy 

p 
x 

0 

o 

, 
-p xw 

-Pxz 

p 
yw 

p -p 
yw xw 

, 

Pxz 0 

0 

J 

-p xw 

o 

P 0 
zw 

-p 
xw 

0 

0 p 
yz 

J , 

pyz -Pxz 
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and these determinants are not all equal to a unless 

P~y = p = p = p - p = p 
-~ xz xw yz - yw zw 

0, which would 

be a. trivial case and the theorem -.ould be evident. 

As the rank or the matrix is thus two there are 

exactly two of the equations (1-4) that are independ-

ent. 

We proceed now to show that unless X = Y = Z = 
W = 0, the vector is deter.mined by the ten quantities 

above satisfying the relations (1-4) and (5) and 

otherwise arbitrary, tlI.1d thus we shall justify our­

selves in calling the ten quantities the co-ordinates 

of the vector. 

Take x.y,z,w. as the co-ordina.tes of t!le initial 

pain t of the vee tor an d wi th these and the ten C 0-

ordinates as given above write out the el~ equations 

as follows, 

xY - yX - Pxy -
xZ - zJ{ = p 

xz 
xW - wX = Pxw 

(1-6) 
yZ - zy = p 

yz 
yW - wY - Pyw -
zW - wZ - Pzw -

By writing out the determinant fOr.llied by the coeffic­

ients of the above six equations it is easily seen 

that the minors of' the third order do not -all vanish 
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for we can p ick out Iuinors equal to _X3, -r, _ 7,3, 

and _=w3, and thus three of the equations are Independ-

end. By means of the equations (1-4) ar..d (5) we are 

able to determine that three of the equations (1-6) 

are consequences of the othe r three. The three 

equations dete~ine a line in four space and that 

line is the line of the vector as deter.m1ned by the 

ten quantities given. 

Analytically the magn1 tude of the morllent wi th 

respect to a -line Is given by its projections on the 

axes )Vlhich are e qual to t he dete rminan ts of the uiatr1 x 

f.. '1" f'" 
~"- I 

1) 1J fi w~ / -. 

-; (~, <r y1/, I 

X ~ ~~ ~1- f,A/-z., I 

found by dropp i ng one colum."1 at a time, ~l 7Jays r e tain-

ing t he last. A plus or minu s sign is attached to 

each determinant · according to whe t h er 1 t requires an 

even or odd number of tran spositions to bring the 

column dropped to t b e position of the first column. 

Here' .1-.., f.: I Wl- and rJ ,13, ~, LVj represent pOints 

on the line and it: we take the dl stance be t ween the se 

paints to be equal to one, the projections are 





I 

w~ 
W3 

~ !'1t ~ ,..= 's 1.1 /1, z, W, 
. if,., Z :L Wl-

f). 1 ~ uJv I 
~z::. ~ 1.1 tV} / 

1-1 V, W, J 

I-k d)- IJ/~ I 

I 
J 

/ 
) 

( 

/ 
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12 h ·Lv~ I 

~. f3 f J -vJ ~ I ---
X I 7-, 0/,/ 

X JJ 7-1- w~ / 

~ 1;, f:L / 
fw'::-- fs1J f3 ! 

,I:~ I ~ I Z I f 

f-;L ~~ :z J 

If now we take r~ 1.t. 1.z, uJ ~ as the origin we ha.ve 

as the projections 

!{u =/k:~ ~~ 
1---1 ~t ~,. 

A relation exists between the given vector and its 

moment with respect to a line, which showB that the 

vector lies in a space at righ t angles to its momen t. 
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For, XPx+ yp -+ ZP + wP = Y z w 

X y z · W 0 

~ ~J.- ~ W,t- 1 

1; 13 ,G Wj 1 

xl Yl 
z w 1 

1 1 
x

2 Yz z Wz 1 
2 

wh ich is seen to vanish bccau&~ in subtracting the 

next to the last row f'rOlu the last, two rows become 

identical. 

It is inte resting to a.dd an analytic proof of 

the reI ati on stated on page 8 for t he magnl tude of the 

moment wi th respect to a line, and wi th respect to a 

pOint. as th e origin, and 

the XY"plane as the pla.Yle detenllined by the vector 

and the origin. Also take the pOint 11;1 /'L, 1~ cJ~ so 

that the line 0,0,0,0 and f!>{~ ~ {J3 is equa l to one. 

Then if we write out the matrix for the moment with 

respect to the origin we get 

0 0 0 0 I 

Xl Yl 
0 0 1 

x2 YZ 0 0 1 
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From that we see that double the area ot the triangle 

IXI Yl\ 
x2 Y2 • 

19 equal to the absolute value ot 

It we now write dowr. the matrix tor the moment with 

respect to the line and observe the conditions as 

imposed above we get 

0 0 0 0 1 

~ 1> >: tJ.s 1 

x Yl 1 0 0 1 

x2 Y2 
() cJ 1 

whi'ch gives tor the projections on the axes 

This gives for the moment with respect to the line 

It we construct the figure 
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and proJect on the XY plane, the co-ordin-

ates ot the projection are • It we 

call the angle the line makes with the XY plane, 

sin will equal the distance between 

and , which is equal to • 

Thus we have the result: the magnitude of the 

moment with respect to 8. line is equal to the magni­

tude ot the moment with respect to a point in the 

line multiplied by the sin -of the angle the line 

makes with the plane at the moment. 

S. The Moment wi th Res,Pect to a Plane-: - The 

moment ot a vector with respect to a plane is a 

scalar and is defined as 4! times the content enclos-

ed by the five points as vertices divided by double 

the area ot the triangle formed by the three points 

which deter.mine the plane of reference • 

., % ",v'J2:, 
~) J 
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The positive or negative sign is attached to the 

moment as follows: First a positive sense of rotation, 

or a positive side is fixed in the plane. Then taking 

three points of the pl&le in the positive order, in 

the counter clock-wise order as viewed from the posl-

tive side of the plane, and adding the initial point of 

the vector. These four points determine 8,' senee 1n 

their apace, namely the senae of the vector of the 

first two points about the vector about the last two. 

Introducing into this space the X, Y, z,~ a...~es of our 

standard set so that the senee of their space is the 

same, we attach to the moment the plus sign or the 

minus sign according as the given vector makes an 

acute or an obtuse angle with the standard positive 

W axis. 

Analytically the moment of a vector with respect 

to a plane is determined by the determinant 

divided by double the area of the triangle formed by 

the three pOints (1, i, {LJ, ), (1t.- 1 ~ 1'l w'L ), and 
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) . In order to establish a relation 

between the magnitude of the moment with respect to a 

plane and with respect to a point in the plane we 

se lec t th.e p oin ti, I, f. w, as the origin, and take 

flo "1"1- ~1- 01.. ,1l "1-3 ~ tUl , such that the a.rea of the 

triangle formed equals t-, and rotate the a.~es so 
hi 

that the vector m~ lie in the XY plane. Tben we 

have the magnitude of the moment with respect to the 

plane equal to 

0 0 0 0 1 

11- 'tJ-v 11/ w ......... 
I -( I X 

x 1 Y1 
\, ""'~ {~ Wj W~ 

1 -
.~ - W1 x.., Y2 

xl Yl 0 0 1 J : oJ 

X Y2 0 0 1 
2 

ThuB we see that we have the a:..agni tude of th e lliOOlen t 

with respect to a plane equal to the magnitude of the 

moment with respect to a pOint in the plane multiplied 

by the projection of the area of a uni t parallelogram 

in the plane of reference on a plqpe perpendicular to 

the plane of the moment with respect to a pOint. In 

other words, the magnitude of the moment of a vector 

with respect to a plane equals the magnitude of ita 

moment with respect to a point of the plane times the 

sine of the angle between the plane of reference and 
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the plane of the point of reference and the vector. 

If we take, as shown in the figure, 1,..'1 1 11.. W,\- equal 

(0,0,0,0) the length of the line between (0,0,0,0), 

and ( 1A ..; W e:1ual one, and t he area of the tri-11)-(~)}) j "l. 

angle formed by (0, 0, 0, 0), (1J 71 ~ ~ .J3 ) and (~L 11... 1t tJL ) 

equal one-half, we will ha.ve, according to the relation 

. stated on page 18, the momen t o-r the veetor wi th respect 

to the line between (0,0,0,0) and (G 7~ G WJ ) equal 

xl Yll 
Bin <g.- f where tf)- is the angle between the line 

X z YZ 

determined by (0,0,0,0) and ~J t~ )~)LJ~) and the plane 

determined by the vector and (0,0,0,0). 

Also we see that if we add the pOint (f, J, 1, W, ) 

as shown in the figure, an d take the moment wi th re­

spect to the plane detennlned by (0,0,0,0), (f:~ 7, () wJ ) 

and (l( ~t ~, W, ) it will equal, as stated above, 





"" -'-.J "-. ; -

{ Wt, 
But w'e see tha.t g'L LJ is the projection of the 

1~ ~ 

area of the triangle determined by (0,0,0, 0), (~'bh ~ cJj ) 

and (~ll' ~ W, ) on to the plane perpendicular to the 

plane determined by t:be vector and (0,0,0 1 0). If we 

represent this projection by Pp we see, from tbe value 

found above for the moment with respect to a plane 

ruld the moment with respect to a line in the plane, 

tbat the moment witb respect to the plfille equti.ls the 

mornent with respect to the line mul tiplled by Pp ann 

divided by the sin, ~ • 

A relation between tbe momen t of a vector wi th 

respect to a plane and the moment wi th respec t to a 

line Is this. If we take the li'Yle of reference in 

the plane of referer!ce and of uni t length and the area. 

of the triarlgle which detenliines tr.l.e plane of reference 

equal to one half, tbe monient wi th respect to the plane 

is equal to the mowen t wi th respect to the line n!ul ti­

plied by the aine of the angle the plane of reference 

u.l.akes wi th the space detennlned by the vector and the 

line of reference. 

We assunle here tha.t the five pOints taken determine a 

four dtmenslonal space. 
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In order to show th at the above relation ho] de let us 

as the poin ts tha;t fix 
1 ... "'1~ { .... w ... take x;, y" z" w" and x 2y 2z2w2 

the vectot;; and fix the line 
1, 'i1 t, W.J 

of reference wi th" ;4'" 

the tb.1rd pOint which is to be tak'en wi tb the line of 

reference to determine the plane of reference we shall 

take (1, ~, 11 LV, ). 
The above pOint3 '.Vf:! are aS6um.ing to satisfy the 

conditions as relation. 

The moment with respect to the line 

Y2 f~ WL 1 2 ~ 4 w." 1 2 (.z., Y2 vJ~ 

Y3 £ v)J 1 1j ~ t»3 1 f.r Y3 W" 
+ + 

Y1 zl wI 1 xl zl w 1 xl Y1 wI 1 

Y2 z2 w
2 

1 x 2 z2 w2 1 x2 Y2 w2 

.- ~- .------ - ----

fJ. Ye ~ 1 ~ 

f; Y3 L I 

xl YI zl 1 

x2 Y2 z2 1 

1 2 

1 

+ 1 

1 
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wbich we shall designate tiS M);. I,e t d e qual the 

perpendicular d.1 stance from r, 7, 1, W. to the 

space detennined by ,A, rJ· -<. t -';' j X-z. (1.- ~"l- Wz-- J 

f .. /L <z. tv,,) ~ ~ f, 73 ~ w:}, Then d has been found 

to be equal to 

~l f, 
1.:, foL 
13 ~ 

z VI 
2 2 

1 

x y w 1 1 . 1 1 

I 

+ 
'{ Y1 1 

X Tr 
':) ~ .. '~ .. ..,; -

w 
1 

The llUlrlerator of the fraction we shall set equal to 

1 

I 

1 

1 

D and we see that the denominator Is equal to Mi,- Thus 

d =. D The momen t wi th respect to the plane 1s 
llJ; 

equal to 

~, ~l II WJ 

'1.t ~2 (~ Wi, 

i )3 13 LV~ - D = Mp 

xl Yl zl w
l 

x
2 Y2 z2 w

2 

+ 
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Bu t t'rOn"l the figure we see th at d :: aine of the angle 

between the plane of reference and the space = aine @- • 

SubstItutIng "in the equation above we get 

Sine ~ - D - -
Mt 

M,t sin ~ - 4 D = M - P 
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Systems of Vectors. 

1. Geometric sum, or resultant, of concurrent 

vectors:- Take a sy8te~ of concurrent vectors PI' P2' 

.I, P •••••.•••• . 1' . navir .. g for the common paint A 
3 ~)l . 

they m~ be red~ to a resul tant AR as in three 

dimensi ons. 

/~ /oJ 
J 

For since two concurrent linea in four dimensions 

detennine a plane we ma:s pass a. plane through PI and 

P2 and find the resultant as in two dimensions. Then 

by taking that resultant and combining it with another 

vector, and by continuing the process we m~ be able 

to find a final resultant for the system. 

Th.e resul tant moment of a system of concurrent 

vectors we shall define as being such that the pro­

jections on the six coordinate planes equals the sum 

of the proJections of the moments of the vectors 

taken separately. The resultant n!oment of a system 

of concurren t vectors is e qual to the moment of the 

reaul tanto 
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In order to verify this we take a system of vectors 

P 2 ••••••••• 

tJ 0, d I () 
I 

p , 
n 

and from this we take PI and P 2 and rotate the axes 

so that P may lie in the XY plane and then translate 
1 

the axes so tlJat the origin may correspond wi ttl the 

point of reference. Then we have the moment of P l 

equal to 

0 0 0 0 I 

xl Yl 0 0 1 

x2 Y2 _ 0 0 -I 
r. 

The mOfllent of P 2 is equal to 
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o 0 0 0 

X 2 YZ 0 0 

x3 Y3 z3 w3 

I 

1 

I 

The moment of R Ie equal to 

0 0 a 0 

~ j. x + x - x Y1 + Y3 - Y2 z3 w3 I 3 2 
1 I x

2 Yt;) 0 0 
..... f 

If Vie add the third row of the raatrix for R to the 

second to fonn a. new row for the second we readily see 

that tbe matrix fornled is equal to the matrix for PI 

added to that for P 2 by adding the second row of each. 

We could take the resultw1t found and one other vector 

a.nd the theoreUl would be true, sir:ce we have found It 

true for two vectors, and by conti~uing the process 

we should find it true for a system. of t:J:ny nUllibcr cf 

vectors. 

Since the laws for projectIons of paints onto 

lines and planes in four dimensions hold in the srun.e 

way as they do for three, and since in firlding the 

resultant we build up the polygon wi th the resul tant as 

the closing line, we have the projections of the result-
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ant equal to the SUlli of the projections of the vectors, 

and thus we see the resultant is independent of the 

order in which the vectors are taken. 

2. Vectors not Concurrent. General Besultant 

aLd Resultant Voment.- If we have a system. that i8 

not concurrent, 

1\ as poin ts ot 

as PI' P2 ...•••• Pn having AI' A2 

application ~ 

. . . . . 

~z 
and if we take any arb1 trary poin t in space as 0 then 

the general resultant is defined as the resultant of 

the vectors having 0 for a common point of application 

and equal and parallel to the given vectors. 

The resultant moment with respect to 0 i8 defined 

as the aggregate ot six quanti ties, P xy' Pxz ' P xw' Pyz ' 

P ,P ,which are the surua of the corresponding 
yw zw 

quantities for the separate vectors. This reduces to 

the moment ot the resultant in the case of concurrent 

vectors. Otherwise it cannot be considered the moment 

of any single force, for the relation P P 
xy zw 

p P :: 0 xw yz will not in general be satisfied. 

- p p + xz yw 

It will be useful to notice how the resultant 

mOlL.ent varies with the pOint of reference. 
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Let po , po , po , po , po , po , denote the componerlts 
xy xz xw yz yw zw 

of the mOI!1ent with respect to the origin, and let Pxy' 

p , p ,P , P ,P ,denote the components of the 
xz xw yz yw zw 

resultant mouent with respect to any pOint in apace 

I?.-, ..fJ ,) T·h po ~ Y k po 
as I, I' -}, {/i/, en (Ky) k = = 

X
k 

Y
k 

(xz)k 

y~ 

::\ po 
x

k ::\ po -
Yk ::1 = (xw)k , (yz)k -

Xk 
, 

~ Yk 

Yk 
w zk w 

po k p,0 k 
Cytl) k · = (zw) k = 

Yk W
k 

, 
7.k W

k 

\f y 1 

P(j{y)k Yk 
1 po - f Y +7 X • = \x k - (xy)k k k 

IXk 
Y

k 
0 

Pxy = P~Xy) - 1 Y + t X • 

In the same way we could find corresponding 

values for P , P , P , P , and P • Thus we see 
xz xw yz yw zw 

that the resultant n~oment with respect to any point lr~ 

space is equal to the re~ul tant mOllJent wi tb respect to 

the origin decreased by the moment of the general re­

sultant R thought of as applied at the origin and when 

taken with respect to the pOint 
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3. Elementary Operations:- 11e d&:fine element.-

ary operations as in Appell, Traite de Uechanlque 

Rationnelle, Vol. I., page 19. They have the prop-

erty of leaving unchanged the general resultant and 

the resultant ~oment. 

4. Equivalent Systeffis:- Two systems are 

defined as being equtvalent if one can be reduced to 

the other by means of elementary operations. 

Corollaryt Two equivalent systems have the 

same general resultWlt and resultant moment.*' 

5. Reduction of a System of Two: - Any system 

of vectors may in general be reduced to two. Suppose 

we have a system and take out of it three vectors PI' 

P2' andP3• 

* The converse of this coro ary is important, although 
it 1s not In~ediately neces8ary, namely, two systems 
are equivalent 1f' they have the same general reaul t­
ant and reaul tant moment. 
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It the three vectors are all in the same space it is 

known that they mfq be reduced to two, but suppose 

P:3 is in a different space fronl 'PI and P 2 and suppose 

it meets the space of P and P in some point, say G. 
1 2 

We can pass a plane through PI and G and one through 

P2 and G. Now, since PI and P2 are in the same 

space the two planas w111 pass through a common line, 

say GR. Let us take some arb 1 trary pOint on GH 8lld 

call it II. We are able to resolve PI into two v~ctor8 

Also we are able 

to resolve Pe into two vectors that 11e in the lines 

A
2
G alld A

2
11.. Wow let us move P3 and the vectors 

tormed down to the two pOinte G and U and we wl1l have 

two systems of concurrent vectors which may each be 

resolved into one. Thus we will ha.ve the system 

reduced to two. 

This process fails only when each vector does 

not intersect the space of the other two. 

Let us suppose we have three vectors PI' P2' P3' 

where each 1s parallel to the space determined by the 

other two. We shall proceed to prove that in general 

they rnay be reduce d tot wo • 
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~l ~ 

;f:S~ ~~7 I! 2-
fo 

I- ~ '1t. , 
Since twa spaces in faur dimensions ICleet in a plane, 

we shall designate th.e plane of in te raecti on of the 

spaces determined by PI' P 2 and P 2' P 3 by 'rT1... 

Since P 1s in each space and they intersect only in 
2 

'11',t. , P 2 must lie in 711- • In three space a 

plana m~ be passed through a lIne parallel to a plane 

which the line does not intersectj therefore 'we are 

able to pass a plane ~ through P
l 

parallel to '1J-r.-- , 

in the three space ot PI and P 2' and aleo one , which 

we designate as trr~ , through P and parallel to 7!'-...-
3 

in the three space of P2 and P3. We resolve P2 into 

two vectors P4 and P5 which are parallel respectively 

to PI and P • . 3 
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We can reduce PI and P4 to a single vector unless they 

torm a couple, and similarly tor P3 and P5. Thus we 

have the following cases. 

(1) Wllen neither pair torms a couple. Then 

the reduction ot the system to two vectors 1s accom-

pllshelt. 

(2) One pair torms a couple and the other .has 

a single resultant. As a couple m~ be moved any-

whe're in 1 ts plane J and its plane ID83' be moved any­

where in space parallel to itselt we move the couple 

so tha tone ot its vectors meets the single resul tent, 

and thus again we may reduce the system to two vectors. 

(3) Both pairs torm couples. These couples 

l1e in planes wh.ich have a point in common, namely, a 

point ot the vector P • 
2 

There are now two sub-cases. 

(3') The planes have a line in common. Then 

by turning the couples in their planes, one vector ot 
each may be made to lie along this l1ne and we have ' 

three vectors in parallel lines; therefore in three 

space, and they may be reduced to a single resultant 

or a couple. Thu~ the reduction Is again accomplished. 

(3") It the planes determined by the couples 

meet in a point onl~ further reduction 18 impossible. 

To show that this case 1s really irreducible we show 
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that for a pair ot couples in planes intersecting only 

in a pOint the general resultant 1s .~l to 0 while 

the expression 

Pxy P zw - P P + p p =; o. 
xz yw xw yz 

The above expression •• shall designate by Q(p). 

And for any system of two vectors which has the general 

resultant equal to O. the expression 

p p -p p+ P P .,. 0 
xy zw xz yw JeW yz-

To prove for the pair ot couples that Q(:pl #- 0, we 

take the pOint of intersection ot P4 P5 tor the origin 

and. designate PI by the pOints xI -Yl zl wI x2 Y2 z2 w2' 

. and P3 QY x3 Y3 z3 -3 and ' x4 "34 z4 w4 • 8inceP4 and 

P5 pass through the origin tha i. (" moment ot each with 

respect to that pOint Is = O. lor the moments of 

PI and P3 with respect to the origin 

p _ x. Yl \' 
XY-;y . 
. 2,, 2 

etc. 
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-.!(.wo similar Qxpr8seions..... two similar ones. For 

the " terms omitted are Q(Pl) and Q(P2)' which are both O. 

It tollows tha.t 

0 0 0 0 1 
xl YI zl wI 1 

Q{p) x 2 Y2 z2 -2 1 

x3 Y3 z3 w3 I 
x4 Y4 z4 w4 1 

But the above deter.minant is the expression for the 

content of the five pOint figure as detemined by the 

two vectors PI P3 and the origin, and in order for the 

cont~nt to be 0 the five points would have to lie in 

the same three space, which contradicts the supposition 

that the planes through the origin and P2 and P3 respect­

ively meet only in a pOint. 

The gen e ral resultant for a couple is 0, and hence 

also for a pair or couples. On the other hand any 

system of two vectors wi th general resu1 tant 0 leads to 

Por the resultant vanishing, the system 

is a couple and one of the vectors of the couple may be 

made to pass through the origin. The moment thuB reduces 

to the moment of the other vector, " and for it Q(p) =0. 








