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INTRODUCTORY REMARKS
on the Thesis by Mr. W. S. Pemberton
| on

VECTORS IN FOUR DIMENSIONS.

The interest attaching to n-dimensional geometry
comes chiefly from two sources, first the light thrown
upon analysis by a geometric interpretation of 1ts
results when more than three variables are involved,
and second, the light thrown upon the geometries of
a smaller number of dimensions by fitting them into
their places in a more general theory, which bdrings
out much more clearly than is otkerwise possible their
characteristic properties.

The theory of vectors is a special aspect of
geometry, and one which takes its inspiration from,
and is highly useful to, the science of mechanics.

Mr. Pemberﬁon's work, therefore, is an attack upon

a problem of considerable interest, yet one apparent-
ly only very little developed. Just the extent to
which his results are new it is impossible to deter-
mine without access to libraries more extensive than

he has had at his disposal.

093231 59



The first troublesome points with which he nmet
were the proper extension of the notion of mouent,
and the proper convention as to the sense of orient-
ated magnitudes in four space. The generalization
of his definitions to n-dimensional space will be
immediate. Particular attention should be called
to the result that any system of vectors in four space
may be reduced to a system of two vectors except when
the system is equivalent to two couples in planes in-
tersecting in a point only, and that in this case the
reduction is iwmpossible.

This is a striking characteristic of four dinen-
sional space, which opens up a whole series of inter-
esting questions in the mecharics of hyperspace, which
it is to be hoped Mr. Pemberton will later have oppor-

tunity to investigate.

0. D. Kellogg.



Vectors in Four Dimensions.

Chapter I.

In this discussion, which is based on the
ordinary theory of vectors as applied to mechanics,
we shall extend the meaning so as to make application
to four dimensions, and in doing so we assume the
geometric properties of four dimensional space.

1. Definitions:- We shall define a vector
geometrically to mean a line segment Al Bl’ having
A. as the point of application and B1 as the extrem-

1
ity, its positive sense being from Al to B, .

1

We shall assuuie four perpendicular axes and
defire a vector analytically by the co-ordinates
XyYsZsWy and Xos Yos Zps Wy as referred to the four
a?es.

The vector may also be fixed by xiyfzf%, and
its projections X,Y,Z,W, on the four axes, X = Xo - X
Y = Yo = ¥p» Z = Zo - Zs and W = wo - Wy

The angle between two lines needs no new def-
inition here since the two lines that determine the
angle also determine the plane in which the angle lies

and so projection as here used is according to the

ordinary definiticn for projections.



2. Standard Set of Axes:- Given three
perpendicular axes through a point in four space,
which we take for the X, Y, Z axes, there is one
line through this point perpendicular to the three
space of the axes. We fix arbitrarily, and once
for all, a positive sense on this line and this
determines a standard 'right hand setvof X, Y, Z,

W axes.

If we are given any other set of axes O',
X'y, Y, 2', W, O'X', O0'Y', and O'Z' may be made
to coincide with OX, 0Y, and OZ respectively.

The O'W' axis either coincides with OW in a
positive or a negative sense. If it coincides
in a positive sense the set is to be called
a right hand set and if in a negative sense, a
left hand set.

3. Moments with Respect to a Point:- The
moment of a vector with respect to a point has a
magnitude and an orientation.

- The magnitude of the moment .is equal to two
times the area of the triangle formed by the vector
and the point of reference.

The orientation is that of the plane in which

the point and the vector lie. We shall call the
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above plane the plane of the moment.

The moment of a vector with respect to a point
is completely determined by the point and the pro-
jections of the triangle mentioned above on the six
co-ordinate planes. If we take the origin as the
point of reference, the projections of the vertices

are:

in xy plane, (o0,0,0,0), (Xl,ylso,O), (x .yz.o,O),

2
Xz " (0,0,0,0), (xlsoszlto)’ (xasoazggo)’
xw " (0,0,0,0), (xl,o,o,wi), (xz,o,o,wz),
yz " (0y0,0,50), (ogyl,zl,O). (Ooyaszzso)s

yw » (0y0,0,0), (onylsos'1)9 (Osyzsoswz)o

zZw " (0y0,0,0), (030321:'1)) (OQO:ZB:WB)o

The projections of the triangles in the six co-

ordinate planes, as designated by the subscripts

of P’ are:s
X,y X, z X, W
ny = 11 , Pxz 11 Pyw 1 1)
X2 yz Xz Z2 5 Wz
AR zZ, W
y, ¥ zZ W
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The magnitude of the moment with respect to the
origin is equal to the square root of the sum of the
squares of the six determinants given above. This
is a theorem of n-dimensional geometry. It may also

be verified as follows:

% //¢
d/”)w 2 : gxyavﬁij"

A

/Y'/&"/z'/wl

Take Xl y1 zl '1 and 12 yz . w2 as the two points

that determine the vector. Let /f/ equal the distance

of x from the origin, and i equal the distance

171%:1%
X,¥,2z,W, from the same point. Let 8 equal the angle
between the two lines.

Then we have the moment of the vector with

—
respect to the origin equal to i ﬁ sin®- - 1 i }/l 0032'6’

But / zm and / /;cé_-i-'y2+ zz—\—w

Then if we let cos R , cosﬁ, s CcO8 v , and cos 5 s be

. the direction cosines of K, and let cos 4, , cos/éz,

cos Y, » and cosgl s be the direction cosines of/i we



will have :

cos € - cos4 cosAct cos@, cos/ + cos¢ cos¥; 1

cos 9; cos 5. . Now if we take the values,

and substitute in the equation above for the moment

we get the moment equal to

////é?%f//f?f’f ] -

2

By substituting the values of //a.nd /{from above

we get for the magnitude of the moment

m 2 2 2 2 2

Xy X Z X W VA w Z W

1”1 11 11 1% W% 11
+ + - + +

Xy X 2z X W z w Z W

2o s 5 2 2 Yo2s Yo' 22
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If we use the notation as suggested on page 3 we get

for the magnitude of the moment

2 2 . 2 2 2 2
ny‘i‘sz+ wa +Pyz +wa + Pzw

We may extend the definition of the mouwent of a

vector with respsct to the origin to that of a vector
with respect to any point (f, 1, “f, L2, # " by the

matrix

. The projections of the triangle on the six co-ordinate
planes are found by dropping two rows at a time from
the above matrix, always retaining the last. In order
to verify this we take the wector P with the point of
application X1¥129% and its projections X,Y,Z,W.

The projections of the mowent with respect to the origin

are:
Xy X.W A
P - 1, p | 1M, P - %5 ,
v X, Y, W xw ¥ Y 2
yw zZ. W
P - , P - | 11,
Vo lvyw zw 7 W

If we take any other point as 0'(/);,7, ﬂw/a.nd
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translate the axes so that O' will be the origin, the
co-ordinates of the point of application as referred
to the new axes are,

Since the projections of the vector remain the
game the projections of the moment with respect to

0' are , , ,
IR

': P' =
XYI X Y

Xz

14 ’

X, -f z) - f /

9
X Z

p IR A p "1 77 z) -
xw ol w |0 Y2y z |7
P - y, -1 W - P |71 A
Wl oy S I w |
P'Xyz Y(x; =) - X(yy - ¥') =Xy -x'y - 13X+ y'X=
ny - (x'Y - Xy')
Pt = B(xy -7) - X(z) = ) = Py, =(T2 - X7)
Prlw s Wixy -1 - X(4 -07) - Py U
P'yw):l/l/(yl -7') -Y(M/..u)) :Py“; ~(7'l/{/" Y“))
Py 2y -7 - W3R - =By, -6z YT )

Z(W - R') = By (- xW)

d
N
=
oo
=
N
'
N
I
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The above results are the same as the ones we get from
the matrix which defines the moment with respect to
any point. They also show the relation between the
moment with respect to the origin and the moment with
respect to any point in space.

4., Moment with Respect to a Line:- The moment
of a vector with respect to a line is defined as a
vector whose magnitude is 3! times the volume of the
tetrahedron determined by the vector and tw6 points
in the 1line a unit's distance apart, and whose
direction is perpendicular to the three-space deter-
mined by the line and the vector, The sense on this
perpendicular is fixed by taking the X,Y,Z axes of a
standard fight hand set of axes in the three space of
the vector and the line of reference in such a way
that the vector tends to rotate about the line in a
right hand screw motion. The positive W axis then
gives the positive sense on the moment. This vector
is in a eense a free vector, inasmuch as its initial
point is not fixed. We shall nerely wmake the conven-
tion that it intersects the line of reference. Its
initial point thus lies ip a plane that is determined
by the line of reference and the vector.

The magnitude of the moment with respect to a

line is also equal to the magnitude of the moment with
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respect to a point in the line wultiplied by the sine
of the angle the line makes with the plane through

the vector and the point of relference. For if we
take any two points in the given line and the two end
points of the vector they will be sufficient to deter-
mine a three-space and for such the theorem is well
known. Sec Appell Traite de Mecanique Rationnelle,
Vol. I., p 6.

5. The Ten Co-ordinates of a Vectorz; Tre
magnitude, direction, and line of action of a vector
are determined by its four components and the projec-
tions of its moments with respect to a point, that is,

by X,Y,Z,W, nys szs P

o Pyz’ P and PZ . These

yw’ w
quantities are not arbitrary but satisfy five identical
relations which we proceed to obtain. If we write

down the matrix

we are able to produce four determinants, each of which
1s equal to zero since the difference between the last
two rows produce a row that is the same as the first. -

From the four determinants forued above we get four
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equations as follows:

Y PZw - Z wa + w Pyz - 0
XPZ'_ZPXW+'PXZ = 0
(1 - 4)
X wa - T Pew 1 w ny = 0
X Pyz - Y'sz + Z ny - 0
Then from the determinant
x Zz W
1 yl 1 1
X Z W
2 yz 2 2
= 0
SR AT T
o Vg 25 W
we get the relation ny Pz' - P, wa t Prw Pyz - 0 (5)

It is interesting to note that if (5) is satisfied
only two of the relations (1 - 4) are independent,

For, if we form the determinant of the coefficients of

X,Y,Z,W we get



o P P, Pyz
PO - P, P
wa—wa 0 ny
Pyz—sz ny ©

By the aid of the relation (—4)}—and (5) we are
able to show that all the determinants of third order
as forned from the above determinant are equal to zero.

The minor of O in the first row is

R sz
-P 0 P
xw Xy
-P P 0
l X7 Xy

which equals P (. P +P P )= 0O
Xy XW Xz XZ XW

The minor of Pzw in the first row is

‘P -P P
AT Xw XZ
Pw O P

Bus Py O

which equals, ny yw fxz vz XW Xy “zw =
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But by (5) the term in the parenthesis is equal to O

and thus the determinant is equal to O.

is,

which equals P, (

Pow 0 sz

P -P P
yWw XWXy

Pp_-P 0
yz Xz

The minor of the third element in the first row

P +P P + P P ), and we

Pyw Pxz ZW Xy W yz

see that this determinant is equal to O for the same

reason as just stated.

In the same way we could take the minor of the

last element in the first row and also the minors of

the elements in the other rows and show that they are

all equal to O.

If now we examine the minors of the second order

that we are able to get we find that we may have,

P -
Xz Y wa 0 Pyz
9 ’ ’
o) o -
PXW 0 Pyz sz
0 P
ZW
P 0
ZW
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and these determinants are not all equal to O unless

P = P - P =P - P =P - 0, which would

Xy T xz T T xXw Yz AL W
be a trivial case and the theorem would be evident.

As tre rank of the matrix is thus two there are
exactly two of the equations (1-4) that are independ-
ent.

We proceed now to show that unless X - Y = Z -
W - 0, the vector is determined by the ten guantities
above satisfying tae relations (1-4) and (5) and
otherwise arbitrary, and thus we shall justify our-
selves in calling the ten quantities the co-ordinates
of the vector.

Take X,y,z,W, as the co-ordinates of the initial
point of the vector and with these and the ten co-

ordinates as given above write out the six equations

Al

as follows,

xY - yX

n
-

Xy
XZ - ZX = PXZ
W - wX =P
Xw (1—5)
yZ - zY¥ = PYZ
- wY - P
W A
zZW - wZ - P
ZW

By writing out the determinant forued by the coeffic-
lents of the above six equations it is easily seen

that the minors of tke third order do not all vanish
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for we can pick out minors equal to -XS, —YS, —23,

and -W°, and thus three of the equations are independ-
end. By means of the equations (1-4) and (5) we are
able to deterwine that threec of the equations (1-6)
are consequences of the other three. The three
equations deteruine a line in four space and that
line is the line of the vector as determined by the
ten quéntities given.

Andlytically the magnitude of the moment with
respect to a line is given by its projections on the

axes,which are equal to the determinants of the matlrilx

i, 9 w /|| _
%J s fo wy ! C %(5' fz):‘(%' 7v) 2/‘({“ ft,}?:(‘@3~w7’)

71(7,‘2, A
Xl"[), Ry o |

-~

found by dropping one column at a time, always retaln-
ing the last. A plus or minus sign is attached to
each determinant according to whether It requires an
even or odd number of transpositions to bring the
column dropped to the position of the first column.
Here 3 ) /2 ﬁ', Wi and F3,773, ﬁ) Wy represent points
on the line and if we take the distance between these

points to be equal to one, the projections are
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Tﬁl f; L0y, / ~ ‘{i f; kj}l/
d)://ﬂ)?g ‘fj w; | ) 6) _ {3 fa W/
/?; Zl W, ( 7 B x, Z, M/
/% Z, W o] X, z, wW-l
LW, s fa
WZ: Eﬁy w_, / / &w:w E})_; fy "/
7(/ ép, W, / ’w‘l al ZI /
Ko s, | Fap, 2,1

If now we tuake f; )7L 11, U)L as the origin we have

as the projections

M; fj W3 {;f} LOs f; )//f L,
Z
Z

==tz w|. €=/

f*leﬂ} 7 KsZ, W, wazlﬁi
, f }/j; ¢
Fo=ly
Xy Z
* g; Z,

A relation exists between the given vector and its
moment with respect to a line, which shows that the

vector lies in a space at right angles to its moment,
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4]

For, XPX+YP+ZP+WP

y z w
w O
D)

1

SN N
Ay
b
Y SN N
< .5
(%
e

»

!4

N

]

N

which i1s seen to vanish becauss in subtracting the
next to the last row from the last, two rows become
identical.

It is interesting to add an analytic proof of
the relation stated on page 8 fur the magnitude cf the
moment with respect to a line, and with respect to a
point. We shall take5;757;‘ay as the origin, and
the XY plane as the plane determined by the vector
and the origin. Also take the point f, 7, fy @5 so
that the line 0,0,0,0 and {72 f; ©; is equal to one.
Then if we write out the matrix for the moment with

respect to the origin we get
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From that we see that double the area of the triangle
' x
1N
*o I

is equal to the absolute value of

If we now write dowr. the matrix for the moment with
respect to the line and observe the conditions as

imposed above we getl

o (o} 0 (o] l
73 7> r; Q5 1
1
1 o g
0
X, ¥ Y 1

which gives for the projections on the axes

L, s "y Ws {3 s ')’3
0 — M 7 1) Ix, 4, 0
/ ! !

() /TL ﬂt J )(l), Z;‘L 0

This gives for the moment with respect to the line

N

X

f %+ w

2 Y2

If we comstruct the figure
Z)VJ) f’)D-S

‘ Bl
4
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and project ‘ on the XY plane, the co-ordin-
ates of the projection are . If we
call the angle the line makes with the XY plane,

sin will equal the distance between
and , which is equal to .

Thus we have the result: the magnitude of the
moment with respect to a line is equal to the magni-
tude of the moment with respect to a point in the
line multiplied by the sin of the angle the line
makes with the plane of the moment.

6. The Moment with Respect to a Plane:- The
moment of a vector with respect to a plane is a
scalar and is defined as 4! times the content enclos-
ed by the five points as vertices divided by double
the area of the triangle formed by the three points

which determine the plane of reference.

{7l
7 171//{1/,(/')7»*

Xo o 22 We

N Y
N
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The positive or negative sign is attached to the
moment as follows: First a positive sense of rotation,
or a positive side 1s fixed in the plane. Then taking
three points of the plare in the positive order, in
the counter clock-wise order as viewed from the posi-
tive side of the plane, and adding the initial point of
the vector, These four points determine a sense in
their space, namely the senee of the vector of the
first two points about the vector about the last two.
Introducing into this space the X, Y, Z, axes of our
standard set so that the sense of their space is the
same, we attach to the moment the plus sign or the
minus sign according as the given vector makes an
acute or an obtuse angle with the standard positive
W axis.

Analytically the moment of a vector with respect

to a plane is determined by the determinant

{9 o W/
ﬁ,,V]‘—, {7-/ Lt);,/ /

z 74 {5 0y /
)[t 7’ 2‘ M /
X1 yb Qe Wy /

divided by double the area of the triangle formed by

the three points ({4 ) ), (§ 4, f, &, ), and



-20-

(7375 §. ¢«s3 ). In order to establish a relation
between the magnitude of the moment with respect to a
plane and with respect to a point in the plane we
select the point 5 9, f, W, as the origin, and take
f,4. §. Wo 5§ s £, 9% , such that the area of the
triangle formed equals %—, and rotate the axes so
that the vector may lie in the XY plane. Then we
have the magnitude of the moment with respect to the

Plane equal to

o 0 o) 0 1l
W
i s {s (’DJ L WL X
3 1 -
X ) 0 1 {5 Q& T2 T2
1 N1
xz yz o 0 1

Thus we see that we have the magnitude of the moment
with respect to a plane equal to the magnitude of the
moxent with respect to a point in the plane multiplied
by the projection of the area of a unit parallelogram
in the plane of reference on a plane perpendicular to
the plane of the moment with respect to a point. In
other words, the magnitude of the moment of & vector
with respect to & plane equals the magnitude of its
moment with respect to a point of the plane times the

sine of the angle between the plane of reference and
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the plane of the point of reference and the vector.

X‘;}?LJQ‘L)WL

Xy R0y W

If we take, as shown in the figure, { Y, 1, W, equal
(0,0,0,0) the length of the line between (0,0,0,0),
and 7”743} {, ©, equal one, and the area of the tri-
angle formed by (0,0,0,0), (73 Yy £, ¢Jy ) and (?L%{L‘JL)
equal one-half, we will have, according to the relation
‘stated on page 18, the moment of the vector with respect

to the line between (0,0,0,0) and (f; Vs 1, 0‘33) equal
X ¥y
X

—_—

v ‘ sin O , where ©- is the angle between the line
272

determined by (o0,0,0,0) and i/% }(,)LJS) and the plane
| determined by the vector and (o0,0,0,0).

Also we see that if we add the point (717, f,0,)
as shown in the figure, and take the moment with re-
spect to the plane determined by (o0,0,0,0), (Ts 7 () L‘)S)
and (i 1, '{‘ W, ) 1t will equal, as stated above,



5 onl f, W
x
o Yo ‘s W,
We
But we see tham_i'éub is the projection of the
3

area of the triengle determined by (o0,0,0,0), (gsz§&4)
and (i(% ﬁ 0, ) on to the plane perpendicular to the
plane determined by tre vector and (0,0,0,0). If we
represent this projection by Pp we see, from the value
found above for the woment with respect to a plane

and the moment with respect to a 1iné& in the plane,

that the morient with respect to the plane equals the
monent with respect to the line multiplied dy Pp and
divided by the gin & .

A relation between the moment of a vector with
respect to a plane and the wmoment with respect to a
line is this. If we take the line of reference in
the plene of refererce and of unit length and the area
of the triengle which determires the plene of reference
equal to one half, the mouent with respect to the plane
~is equal to the moment with respect to the line multi-
plied by the sine of the angle the plane of reference
Lakes with the space determined by the vector and the

line of reference.

We assume here that the five points taken determine

four dimensional space.
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In order to show that the above reiation holds let us

take Xp Ys Zp Wy and Xo¥oZoW, 88 the polints th%t fix

. (e
IR
the vector, and fix the line of reference withAK /247

the third point which is to be taken with the lirne of
reference to determine the plane of reference we shall
take (fl7]] f/ LDI j

The atove point3 we are assuumlng to satisfy the

conditions as stated iIn the relation.
7785w,

Th ent with S t to t line - -

€ moment w respec o the u)re - .

2 - ]
y w; 1 W; 1 Y, Wy 1

5 ﬁ 4 + 3 {; + f‘? < J +
V1 % ‘1 1 Xy 2g w1 1 X VM 1
Vo Zg We, b | .| Xe Zg Vg 1 Xy Yo Vo 1
Z

fi Yo £, 1
f s 4 1
Yl yl Zl 1
Xo Vo Zg 1
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which we shall designate as M/g. Tet d equal the

perpendicular distance from £, 7 1 (0, to the
space determined by X, 4 2 i/, X2 7r 2 )/1/7,]
AR 4 by, foms “Lf, 7s 3’: Wy, Then d has been found

tc bte equal to

. 2
f/ 71 ‘F, LD, 1 {;z/ 1(2‘ ,()}l
O
{L 73 f,z, s 1 {3 Nz e
f? 75 £ D 1 + % o7 oWy 1]+
X, ¥V 7y W 1 Xy 7o Vg 1
2 g %y V|
e
o z_.
1 g.‘L A2 ﬁ, 1
1 + /?3 13 {3 :
1l < yl Zy 1
4 Xo T3 Zg 1

The rumerator of the fraction we shall set equal to
D and we see that the denominator is equal to Ml‘ Thus

d - D . The moment with respect to the plane is
My,
equal to

$[ 71 fl (’DI
'{; (ER ) L0,
K]

"y

ﬁ 1z {3
X

1 N1 A

Xo Y5 Zp Wy
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But from the figure we see that d - sine of the angle

between the plane of reference and the space - sine B .

Substituting in the equation above we get

"
o

Sine &

MLsinQ“ -4D-u .



CHAPTER 1II.

Systems of Vectors.

1. Geometric sum, or resultant, of concurrent

vectors: - Take a systew of concurrent vectors Pl’ PB’
| P ?ff» havirg for the conmon point A
3 %on

they wmay be redﬁ@%? to a resultant AR as in three

dimensions.
L 4

o

[

For sirce two concurrent lines in four dimensions
determine a plane we may pass & plane through P1 and
P2 and find the resultant as in two dimensions. Then
by teking that resultant and combining it with another
vector, and by continuing the process we may be atle
tc find a firal resultant for the system.

The resultant moment of a system of concurrent
vectors we shall define as being such that the pro-
Jjections on the six codrdinaxe planes equals the sum
of the projections of the moments of the vectors
taken separately. The resultant moment of a system

of concurrent vectors is equal to the moment of the

resultant.



o

In order to verify this we take a system of vectors

P ooooocoo.P
Pl’ 2 n’

J 0
4>7\—/ y

and from this we take Pl and Pz and rotate the axes
so that P1 may lie in the XY plane and then translate
the axes so that the origin may correspond with the
point of reference. Then we have the moment of Py

equal to

(o}
(o]
—

o o
Xy yl“ o o 1

1Xo Vg o o 1

The moment of Pz is equal to



Xp Y5 © ) 1 .

w 1

Xz Yz Zz Vg3

The monent of R is equal to

0 0 0 o} 1
X. + X -X + - z w 1/ 4
R S Y1795 7Y, 3 3
X Yo o 0 ] }

If we add the third row of the matrix for R to the
gsecond to form a new row for the second we readily see
that the matrix formed is equal to the matrix for Pl
added to that for P8 by adding the second row of each.
We could take the resultant found and one other vector
ard the theorem would be true, since we have found it
true for two vectors, and by contiruing the procesds

we should find it true for a systex of any nuaber cf
vectors.

Since the laws for projections of points onto
lines and planes in four dimensions hold in the same
way as they do for three, and since in finding the
resultant we build up the poclygon with the resultant as

the closing line, we have the projections of the result-
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ant equal to the suw of the projections of the vectors,
and thus we see the resultant is independent of the
order in which the vectors are taken.

2. Vectors not Concurrent. General Resultant
ard Resultant Moment.- If we have a system that is
not concurrent, as P., P

1 2
An as points of applicamionlﬂy

K
/W
2
Vo P
X - Z
zr

o--occ.Pn haViI‘.g Al’ Az e o0 e

P d
l?

and if we take any arbitrary point in space as O then
the general resultant is defined as the resultant of
the vectors having O for a common point of application
and equal and parallel to the given wvectors.

The resultant moment with respect to O is defined
as the aggregate of six quantities, ny, sz, wa, Pyz,
P , P , which are the sums of the corresponding

yw ZW

quantities for the separate vectors. This reduces to
the moment of the resultant in the case of concurrent
vectors. Otherwise 1t cannot be considered the moment
of any single force, for the relation ny P -P_ P __ -+

ZW Xz Yyw

P - 0 will not in general be satisfied.
Xw " yz

It will be useful to notice how the resultant

moment varies with the point of reference.
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Let Poy, p° ’ p° ’ P?y, P;w’ P° W’ denote the components
Xz XW 7

of the monent with respect to the origin, and let va’

P ,P ,P , P , P , denote the components of the
X7 XW vz yw ZW

resultant mouent with respect to any point in space
N
as f’ﬁl'{cﬁ% . Then P2 x k P

(}\y)k = Y Y ’ (XZ)k -
k k
k% PO = Yk POy - "
s xw)k ~ ’ yz)k ~ y
Xk Zk Xk Wk Yk Zk
0 e Y o “k Yk
P(yW)k = Y w ] BZW\I‘. = 7 w
k k k k
o
Pyl X T 1| - X,,)k - Y+ X -
\X 0]
j k Yk
P = =" P = e
Xy < (xy)k xy) TY tX
In the same way we could find corresponding
values forP_ , P , P , P , and P . Thus we see
Xz’ xw yz’ yw ZW

that the resultant noment with respect to any poirt in
space is equal to the resultant mowent with respect to
the origin decreased by the moment of the general re-

sultant R thought of as applied at the origin and when

taken with respect to the point
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3. Elementary Operations:- Vie define element-
ary operations as in Appell, Traite de Mechanique
Rationnelle, Vol. I., page 19. They haye'the pProp-
erty of leaving unchanged the general resultant and
the resultant moment.

4, Equivalent Systems:- Two systems are
defired as being equivalent if one can be reduced to
the other by means of elementary operations.

Corollary: Two equivalent systems have the
same general resultant and resultant moment.¥

5. Reduction of a System of Two:- Any system

of vectors may in general be reduced to two, Suppose

we have a system and take out of it three vectors Pl’

# The converse of this corollary is important, although
it is not immediately necessary, namely, two systems
are equivalent if they have the same general result-
ant and resultant moment.
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If the three vectors are all in the sanme sﬁace it 1s
known that they way be reduced to two, but suppose

PS is in a different space from P_ and Pz and suppose

1
it meets the space of P1 and Pz in some point, say C.

We can pass a plane through P. and G and one through

1
P, and G. Now, since P, and P8 are in the same

2 1

space the two planes will pass through a common line,
say GH. Let us take some arbitrary point on GH and
call it M. We are able to resolve P, into two vectors

that lie in the lines A.C and A_M. Also we are able

1 1
to resolve Pz into two vectors that lie in the lines
A2G and Azu. Now let us move P, and the vectors

formed down to the two points G and M and we will have
two systews of concﬁrrent vectors which nay each be
resolved into one. Thus we will have the systemw
reduced to twc.,

This process fails only when each vector does
not intersect the space of the other two,

Tet us suppose we have tkree vectors Pl’ Pg, PS’
wkere each is parallel to the space determined by the
other two. We shall proceed to prove that in general

tbey may be reduced to two,



Since twc spaces in four dimensions meet ir a plane,
we shall designate the plane of intersection c¢f the

spaces determined by Pl’ P_ and Pz, PS by T

2
Since PP ls in each space and they intersect only in

T Pz must lie in 7, . In three space a

plane may be passed through a line parallel to a plane
which the line does not intersect; therefore we are
able to pass a plane 7  through P1 parallel to 7. ,

in the three space of P. and P_, and also one, which

1 2
we designate as 7y , through P:5 and parallel to 7-

in the three space of P_ and P3. We resolve P, into

2

two vectors P4 and P5 which are parallel respectively

to P, and P_.
1 3
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We can reduce Pl and P4 to a single vector unless they

form a couple, and similarly for‘P5 and P5. Thus we
have the following cases.

(1) When neither pair forms a couple. Then
the reduction of the system to two vectors is accom-
plished.

(2) One pair forms a couple and the other has
a single resultant. As a couple may be moved any-
where in its plane, énd its plane may be moved any-
where in space parallel to itself we move the couple
80 that one of its vectors meets the single resultant,
and thus again we may reduce the system to two vectors.

(3) Both pairs form couples. These couples
lie in planes which have a point in common, namely, a
point of the vector PB'

There are now two sub-cases.

(3') The planes have a line in common. Then
by turning the couples in their planes, one vector of
each may be made to lie along this line and we have
three vectors in parallel lines; therefore in three
space, and they may be reduced to a single resultant
or a couple. Thug the reduction is again accomplished.

(3'') If the planes determined by the couples
meet in a point only further reduction 1s impossible.
To show that this case is really irreducidble we show
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that for a pair of couples in planes intersecting only
in a point the general resultant is éqyal to 0 while
the expression

P P - P P P P = 0.
Xy zw Xz yw + XW yz ad

The above expression we shall designate by Q(p).
And for any system of two vectors which has the general

resultant equal to O the expression

P _P -P_ P _+ P P =~ O
Xy zw Xz yw Xw ' yz

To prove for the pair of couples that Qcp)‘;t 0, we
take the point of inters&ction of P4 P5 for the origin
and designate P1 by the points X1:¥ Zy % X, yé Zgp Wo,
.and P3 by Xz ¥z Zg Wz and'x4 Ty 24 Yy S8ince P4 and
Py pass through the origin the . moment of each with '
respect to that point is = 0. For the moments of

P1 and P3 with respect to the origin

¥ X,y
P = 1% 373 etc.

N L% 3 X434
Then Q _ Xl yl Z3 '3 Zl 'l Xs ys
(p) X, Yo |24 Wy 2y Wo| X, I,
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~I'wo similar expressions 4 two similar ones. For
the terms omitted are Q( and Q , which are both O,
Py) (pp)
It follows that

o o o o 1
X1 91 21 :1 i

Qupy = | X2 Y2 22 %2
X3 YS Z3 W3 1
Xq Yy Zg Wg 1

But the above determinant is the expression for the
content of the five point figure as determined by the
two vectors Pl P3 and the origin, and in order for the
content to be O the five points would have to lie in

the same three space, which contradicts the supposition
that the planes through the origin and Pz and P3 respect-
ively meet only in a point.

Thé general resultant for a couple is 0, and hence
also for a palr of couples. On the other hand any
aystem of two vectors with general resultant 0 leads to
a Q(p) = 0. For the resultant vanishing, the system
is a couple and one of the vectors of the couple may be

made to pass through the origin. The moment thus reduces

to the moment of the other vector, and for it Qp) =0.
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