PSEUDOTUMOR CEREBRI

Background

- 1. Also known as idiopathic intracranial hypertension (IIH)
- 2. Unknown etiology
- 3. Diagnosis of exclusion
- 4. Primarily found in obese women of childbearing age¹
- 5. Chronically elevated intracranial pressure (ICP) and papilledema are primary issues¹
- 6. Can lead to blindness if not treated¹

Pathophysiology

- 1. Pathophysiology not clear, but current theories suggest increased resistance to cerebrospinal fluid (CSF) outflow, which may produce IIH^{2,3}
- 2. Incidence (in United States) 0.9 cases per 100,000⁴
- 3. Female-to-male ratio 8:1⁴
- 4. Risk Factors: Female sex, reproductive age group, obesity⁴
- 5. Morbidity: 5-30% of IIH patients will experience permanent vision loss from progressive visual field loss^{4,5}

Diagnostics

- 1. History⁴
 - Most common complaint is headache (usually generalized and worse in the a.m.)(94% of patients)
 - Visual symptoms (with and without papilledema)
 - Usually preceded by headache and occur in 40-70% of patients
 - Transient disturbances in visual clarity most common
 - o 6th nerve palsy only common focal neurological deficit
 - Less common symptoms:
 - pulsatile tinnitus (58%)
 - retrobulbar pain (44%)
 - neck/back/shoulder pain
 - nausea and vomiting
 - dizziness
- 2. Physical Examination
 - Fundoscopy looking for papilledema
 - Neurological exam
- 3. Laboratory evaluation⁴
 - o CSF studies
 - o CBC
 - o BUN/Cr
 - o TSH
 - o Serum iron and TIBC
 - o Thrombophilia screen
- 4. Diagnostic imaging (primary role is to exclude other conditions)^{2,6}
 - MRI (rule out meningeal infiltration and/or dural venous sinus thrombosis)
 - If present, flattening of posterior globe is the only sign that strongly suggests pseudotumor cerebri ⁶

- o MR Venography (rule out dural venous sinus thrombosis)
- o CT scan (rule out large tumors/brain lesions)
- Ultrasound (identify intracranial hypertension by measuring diameter of optic nerve sheath; >5mm correlated with intracranial pressure greater than 20 cm H₂O)⁷
- 5. Lumbar puncture⁴
 - o Performed in lateral decubitus position
 - o For diagnosis of IIH, CSF opening pressure must be >250mm of water
- 6. Diagnosis of IIH requires 3 components to be satisfied⁴
 - Normal brain imaging
 - o Raised CSF pressure with normal CSF constituents
 - o Exclusion of other causes of raised CSF pressure

Differential Diagnosis⁴

- 1. Key Differential Diagnoses:
 - o Dural venous sinus thrombosis
 - o Hydrocephalus
 - o Cerebral mass lesions
 - Hypertensive encephalopathy
 - Optic disc anomalies
 - Intracranial hypertension secondary to medications and/or systemic diseases
- 2. Systemic Diseases associated with intracranial hypertension:
 - o SLE
 - o Behcet's disease
 - o Uremia
 - o Iron deficiency anemia
 - o Addison's disease
 - Hypothyroidism
 - o Polycystic ovarian disease
- 3. Medications associated with intracranial hypertension:
 - o Tetracyclines
 - Nalidixic acid
 - o Fluoroquinolones
 - Oral contraceptive pills
 - o Danazol
 - o Progesterone
 - o Lithium
 - O Vitamin A, isotretinoin
 - o Sulfamethoxazole
 - Steroid withdrawal
 - Growth hormone

Therapeutics^{4,8,9,10}

- 1. Management focuses on preservation of visual function and symptom relief
- 2. Serial lumbar punctures (relieves increased ICP)⁴
 - o Temporary relief; not a chronic treatment plan

- 3. Mild or No Visual Loss⁴
 - Weight loss and sodium restriction
 - Resolution of papilledema and reduced ICP reported with as little as 6% weight loss
 - Consider dietician consult
 - Acetazolamide (reduces CSF production by decreasing sodium ion transport across choroidal epithelium)
 - Dosing: Start 250mg BID; increase slowly to maintenance dose of 1000-2000mg daily
 - o Furosemide (20mg BID to 40mg TID) or topiramate can be used as alternative
 - Corticosteroids no longer recommended due to side effects; may be used preoperatively prior to shunting
- 4. Moderate to Severe Visual Loss⁴
 - o Some recommend early surgery vs. medical trial
 - Maximum medical therapy
 - 1 gram acetazolamide/day with gradual increase to maximum tolerated dose
 - Can consider adding furosemide TID
 - o Proceed to surgical management
 - Optic nerve sheath fenestration (ONSF) to improve papilledema and headaches
 - Shunt (LP/VP) to drain excess CSF and decrease ICP
- 5. Persistent Headaches⁴
 - Only 50% relieved with surgery; analgesic and caffeine rebound may coexist
 - Trial of standard prophylactic vascular headache remedies
 - Avoid hypotensive causing agents (beta or calcium channel blockers)
 - Tricyclic antidepressants at low dose (may cause weight gain)
 - Topiramate
- 6. Children⁸
 - o Incidence same in boys and girls up to puberty
 - Obesity not a significant contributor to pathology or treatment
 - Repeat lumbar punctures discouraged
 - o Acetazolamide 15mg/kg divided BID or TID until headache, disc swelling and visual symptoms abate (usually 3-9 months)
 - o Furosemide, topiramate, zonisamide are alternatives
 - Acute vision loss intravenous acetazolamide and methylprednisolone can be used pending surgical evaluation
- 7. Pregnancy⁹
 - Same treatment as non-pregnant women with the exception of more modest weight loss recommendations
 - Acetazolamide in the first trimester potentially teratogenic (Category C); is used only after appropriate informed consent
 - Consider high-risk obstetrics consult prior to starting in first trimester

Follow-Up⁴

- 1. Best to be followed up by Neurology and Ophthalmology jointly
 - Newly diagnosed and those with significant visual impairment every 2-4 weeks until stabilized
 - o Stabilized patients every 3-6 months
 - Assessments should include:
 - Visual acuity
 - Color vision
 - Visual fields
 - Optic disc exam with photography
 - CSF opening pressure unreliable as measure (can use if symptomatic without visual field defects or papilledema)
- 2. Admit to Hospital
 - o Rarely necessary
 - Admissions usually due to intractable headache or for surgical interventions

Prognosis

- 1. Most important factor is vision loss
- 2. Risk factors associated with worse outcomes ¹⁰:
 - o Male gender
 - African American race
 - o Morbid obesity
 - o Anemia
 - Obstructive sleep apnea
 - o Acute onset of symptoms plus signs of raised intracranial hypertension
- 3. 5-30% of patients will have permanent significant visual field loss⁵
- 4. Small 10-year follow up study revealed 55% of patients with papilledema remained stable; 45% worsened¹¹
- 5. One study showed 96% of patients with IIH had some vision loss ¹²
 - o 60% improved with treatment, while 10% deteriorated, over an average of 12 months

Prevention

1. Weight loss if obese

Patient Education

1. http://www.ninds.nih.gov/disorders/pseudotumorcerebri/pseudotumorcerebri.htm

References

- 1. Jindal M, Hiam L, Raman A, Rejali D. Idiopathic intracranial hypertension in otolaryngology. *Eur Arch Otorhinolaryngol*. Jun 2009;266(6):803-6.
- 2. Farb RI, Vanek I, Scott JN, et al. Idiopathic intracranial hypertension: the prevalence and morphology of sinovenous stenosis. *Neurology*. May 13 2003;60(9):1418-24.
- 3. Bateman GA. Association between arterial inflow and venous outflow in idiopathic and secondary intracranial hypertension. *J Clin Neurosci*. Jun 2006;13(5):550-6; discussion 557.
- 4. Dhungana S, Sharrack B, Woodroofe N. Idiopathic intracranial hypertension. *Acta Neurol Scan* 2010;121:71-82.

- 5. Ney JJ, Volpe NJ, Liu GT, Balcer LJ, Moster ML, Galetta SL. Functional visual loss in idiopathic intracranial hypertension. *Ophthalmology*. Sep 2009;116(9):1808-1813.e1.
- 6. Agid R, Farb RI, Willinsky RA, et al. Idiopathic intracranial hypertension: the validity of cross-sectional neuroimaging signs. *Neuroradiology*. Aug 2006;48(8):521-7.
- 7. Stone MB. Ultrasound diagnosis of papilledema and increased intracranial pressure in pseudotumor cerebri. *Am J Emerg Med*. Mar 2009;27(3):376.e1-376.e2.
- 8. Ko MW, Grant LT. Pediatric Idiopathic Intracranial Hypertension (Pseudotumor Cerebri). *Hormone Research in Pediatrics* 2010;74:381-389
- 9. Wall M. Idiopathic Intracranial Hypertension. Neurol Clin 2010;28:593-617
- 10. Biousse V, Bruce B, Newman N. Update on the pathophysiology and management of idiopathic hypertension. *J Neurol Neurosurg Psychiatry* 2012;83:488-494
- 11. Shah VA, Kardon RH, Lee AG, Corbett JJ, Wall M. Long-term follow-up of idiopathic intracranial hypertension: the Iowa experience. *Neurology*. Feb 19 2008;70(8):634-40
- 12. Wall M, George D. Visual loss in pseudotumor cerebri. Incidence and defects related to visual field strategy. *Arch Neurol*. Feb 1987;44(2):170-5.

Author: Kim T. Henon, DO, & Stacie A. Cruz, MD, Kaiser Permanente Fontana FMRP, CA

Editor: James Haynes, MD, *University of TN COM*