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INTRODUCTION

The concept of pointwise discontinuity is a fairly
recent one in mathematics. Originelly introduced as a conven-
ient term in the study of integration, it has quite outgrown
its former sphere of usefulness and has had an ever-widening
field of application in modern snalysis. The appearance in
1899 of the doctor's thesis of M.Baire, in which he investi-
gated the properties of a function approached by continuous
functions and found that the necessary and sufficient condition
for such approech involves the idea of pointwise discontinuity,
firmly grounded the conception in the fundamentals of mathe-
matical theory.

The considerations of the present paper involve a
qumber of investigations into certain phases of the subject of
vointwise discontinuity; such as, the construction and classi-
ficetion of pointwise discontinuous functions; their properties,
singly and in combinetion, ete. We have just remerked that
this subject is closely related to the question of approach of
continuous functions, and this phase of the subject 1s treated
in Chapter III. The final chapter is devoted to a short study
of the osciilation function in the general case.

The first chapter is devoted to an exposition of
certain concepts and facts which are of fundamental importance
in the developments of succeeding chapters. The idea throughout

has been to make the treatment such thet the thesis will be
intelligible to one with an elementary kmowledge of the theory

of functions. 1In particular, en understanding of the elements

of point set theory is presupposed.
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As a matter of convenience for the reader, those
portions of the paper which are originel are marked with the
sign #. In a few cases, proofs of well-known facts are so
marked, if the proofs differ enough from those ordinarily given
to warrant it. In general, the sign is used‘to indicate the
perts of the work which involve something more than the mere
adaptation of material found elsewhere, and it does not mean

that the portions so designated are all radically new.






CHAPTER I. GENERAL NOTIONS

1l. Functions. A very general definition of function is
used in anslysis. ¥y is a function of x if for amy given value
of x there correspond one or more values of y. We shall re-
stricet ourselves in this thesis to the case where a single value
of y corresponds to each value of x; y is then said to be a

single valued function of x.

2. Maximum of a function at a point. About any point

A let an interval (A-h, A+h) be constructed. ILet M(x,h) be

the upper limit of the values of the function in the interval.

If £(x) is not bounded above in the interval we say that M(x,h)=+
Let h approach 0; M(x,h) never increases and always remains

greater than, or at least equal to, f(A); hence, it approaches

8 finite 1limit except in the case where it remains infinite.

This is called the maximum of the function at the point A, and

is denoted by M(f,A), or by “(A). In case M(x,h) remaine in-

finite as h approsches 0, M(A)=+<0.

Otherwise stated, the maximum of a function at a
point is the lower limit of the maxima of all intervals enclos-
ing the point.

3. Minimum of a function at & point. Let m(x,h) be the

lower 1limit of f(x) in an interval constructed as above. If
m(x,h) is not bounded below in the interval we say that m(x,h)=- 0
As h approaches O, m(x,h) never decreases and slways remains

less than or at most equal to f(A); hence it approaches a

finite 1limit, except in the case where m(x,h)=- 0 for all

values of h. This limit is the minimum of the function at the
voint A, and is written m(f,A) or M(A). If p(x,h)=-oc for

all values of h, m(A)= -
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The xhinimum of the function is the upper limit of the
minima of ell intervals enclosing the point.

The accompanying figure will make clear the ideas of
sections 2 and 3. VSeveral intervals are drawn and the values of

M(x,h) end m(x,h) are shown for each.

F-lq / M,

hl. ‘\3 ¥
h| m =

m
N

4. About any point A an interval can be found such that,
for any given &>0, f(x) < M(A)¥E throushout the interval.
For, since M(x,h) never increases and has the limit M(A) as h
approsches 0, an interval can be found such that M(x,h) < M(A)+&
But f(x) T M(x,h) throuchout the interval. Therefore f(x)<
M(A) +E.

In & similar way it can be shown that there exists an

interval about A in which f(x) > m(A)- &

6. Oscillation at a point. The oscillation at the point

Al written w(f£,A) or w (A), is defined by the following equation:
oo (A) = M(A) — m(A)-(i)

If either M(A) or m(A) is infinite, W(A) =+ 0 Since M(A)= f£(A)

and m(A) T f£(A), it follows that w(A) cannot be negative. |

6. Semicontinuity. A function is said to be semicontinu-

(1) Hobson uses the term oscillation somewhat differently,
the value of the funtion at the point in question being left out
of consideration. He uses the term saltus for oscillation as
here defined. The definition above follows Baire end Borel.
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ous above =t a point A if M(A) = £(A). It is semicontinuous
below at the point if m(A) = f(A). A function is said to be
semi-continuous gbove if it is semi-continuous above at every
point; it is semicontinuous below if it is semicontinuous below
at every point.

7. It waes just shown that there exists an interval about
A in which f(x) < M(A)~+&. If the function is semicontinuous
above at the point A, M(A) = £(A) and f(x) < f(A)+& throughout
this interval. Conversely, if, for any preassigned & >0,an
interval can be found in which f(x) < £f(A)¥& the function is
semicontinuous above at A. For, the upper limit of the values
of the function in that interval, M(x,h) < f(A)+s and, since &
can be made arbitrarily small, the lower limit of the maxime
in the intervals resulting is less than or equal to £ (A); that
is, M(A) 3 £(A). But M(A)3S f£(A); therefore, M(A) = £(4),
and the function is semicontinuous above at A.

Similarly, if the function is semicontinuous below at

A, there exists an interval about A in which f(x) > f(A)-= ,
and conversely.

8. Theorem. If (WL(A)=0, A is & point of continuity; and

conversely, if A is & point of continmity, _w(A)=0.

Given any preassigned € > 0, an interval enclosing A can
be found in which f(x) < M(A)+% , and snother interval in which
f(x) > m(A)-% . In every interval entirely within these two
intervals,
|£(x) — £(A) <H(A) - m(A)+£= w(A)+E=g,
which is the well known condition for continuity.
Conversely, let A be a point of continuity. For s given &

an interval can be found in which,
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2(A)+% > £(x) > £(A) -2
In this intervel,
M(A) = M(x,h) X £(A)+ %,
M(x,h) S £(A) ~% .
M(A) —m(A) Z & .

and m(A)

VI

Il

Then, w(A)
Since ¢ may be made arbitrerily small, w(A) = O.
Corollary. It follows from the theorem just proved that
if w(A) > 0, A is a point of discontinuity, and conversely.
9. At points of continmmity w(A) = M(A) — m(A) = 0. Then
M(A) = m(A) = £f(A). In other words, all the points of continuity

of f(x) lie on the curves M(x) and m(x).

10. Semicontinuity of M(x) and m(x). It will now be shown
that 11(x) is semicontinuous above. About any point A we cen find
an interval for which, with a given Z |,

M(A,h) < M(A) +2 .
For any point A/within this interval,
 M(4) 2 M(Ah) < M(A)+e
eand this is the condition for semicontinuity eabove of M(x).
3imilarly, it can be shown thet m(x) is semicontinuous
below. x

11. The sum of 8 finite number of functions which are semi-

continuous sbove is semicontinuous above.

Let F(x) = £9(x) + fo(x) + «.covvvv. 4of) (%), where
the f's are semicontinuous above. About any point A we can find,
for a given £ , an interval ap, for which £,(x) <f, (A)+ %
within this en interval a,b,for which f,(x) <f (A) +%, and so on.

Let ab be an interval enclosed in 81l the preceding intervals.

Then, throughout ab,
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F(x) = £,(x) + £,(x) A ceeeenecngfylx)

<E (A + £,(A)F ceveviiii B, (A) T 5
That is, F(lx) < FA) +& ,
which is the condition for semicontinuity above.
In & similar way, it cen be shown that the sum of &

finite number of functions semicontinuous below is semicontinuous
below.

12. If f(x) is semicontinuous below at A, —f(x] is semicon-

A
tinuous above at A.

For & given £ there exists an interval in which
fix) > f(A)-s . Nultiplying by -1, —f(x) f(A) :
then £(x) is semicontinuous sbove at A.
Since wi(x) is the sum of M(x) and-m(x), two functions

semicontinuous sbove, W (x) is semicontinuous above.

13. If & function, f(x), is semicontinuous sbove the set of

points where f(x) S k is closed.

Let A be 2 limit point of points where f(x)S k.
Then in any intérval, sb, sbout A, M(A,ab)S k. Since M(A) is the
lower 1limit of the maxima of all intervals like ab, it follows
that M(A)S k. Since f(x)‘ is semicontinuous above, M(A) = £(4),
end f(A)S k. Thus A belongs to the set; in other words, the
set i1s closed.

In & similar way, it can be shown thet if f(x) is
semicontinuous below the set of pointslwhere f(x)Z k is closed.

From what we found of M(x), m(x), and w(x) in

sections 10 and 12, it follows that:

The set where M(x)> k is closed.

" n " m(x) 2 k " "

" " "

w(x)sk n "






CHAPTER II. POINTWISE DISCONTINUOUS FUNCTIONS

Part 1. Definition and Elementary Properties.

14. Definition. A pointwise discontinuous funetion is a

function having a point of continuity in every interval.

Otherwise stated, a pointwise discontinuous function
is one in which the points where w-pare everywhere dense.
A function which is not pointwise discontinuous is

called totelly discontinuous.

15. Theorem. In & pointwise discontinuous function the

points where ws k, an arbitrary positive number, form a non

dense set; and conversely if the set where LSk, is non dense

for any value of k greaater than 0, the function is pointwise dis-

continuous.

Let K be the set of points where wsk. Since the
set is closed (13), it cannot be dense in any interval without
including 211 the points in the interval. There is then no
point of continuity in thet interval, for at points of continuity
w = 0. K, then, is non dense in any intervsal.

To prove the converse, take & sequence of k's approsching
0, ¥, 7 k, > k37 «eveeee 7 k> ovvcccand let K, K, ccce Ky, eeee
be the non dense sets corresponding. In any interval ab there is
an interval a,b, conteining no points of K,, since K, is non dense.
Similarly in a,b, there is an interval a,b,containing no points of
Xy, 8nd so on. The intervels ab, a,b,, 8,b,, «cco 8,by,eccc..
have at least one point A in common. Given any k,, A lies in a,by,
and w(A) £ kp. Since,kn may be made arbitrarily small,
W (A= 0; end A is 2 point of continuity. There is thus &
roint of continuity in every interval, and the function is point-

wise discontinuous.
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This property, viz., that the points where w;k
form a non dense set, is used by Hobson &s the definition of a
pointwise ?iscontinuous function. (1)

16.# Theorem: In a pointwise discontinuous function m(w ,x)= 0

at every point; conversely, if m(Ww,x) = 0 at every point the

function is pointwise ?iscontinuous.

The first part of the proposition is evident. w
is never negative, and every interval contains points at which
W=0. Then m(W,x)= 0 at every point.

To prove the second part, let K be the set of points
for which wsk. It will be shown that X is non dense. Suppose
K to be dense in some intervel; then, since K is closed (13),
it includes ell the points in that intervel. Then W3k and
m(w ,x) S k throughout the interval. But this is contrary to the
hypothesis thet m(w ,x) = 0 everywhere. Then K is non dense,
and we heve just found that this is a sufficient condition for
rointwise discontinuity (15). fa)

17.  Harnack(111) nas defined a pointwise aiscontinuous
function with the added restriction thet the points of discontinuity
shall be of content O. While this definition is important in
the theofy of integration, it narrows very much the application

of these functions in other fields; and the work of Baire, done

since Harnasck's time, on the approasch to discontinuous functions by

(1) Hobson, Theory of Functions of a Real Varisble, p.2453.

(i1) This proposition is not new; but I have not seen a proof
along these lines. Beaire, Lecons sur les fonctions dixcontinues,
Pr.74, 75, has a proof that establishes practically the same thing,
but is quite extended.

(114) Math. Annalen, Vol.XIX., 1882, p.242, and Vol. ,
1884, p.218. ' PrEEc, 1RV,
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continuous ones would require the coining of a new word for point-

wise discontinuity as we have defined it above.

Part 2. Sets of the First and Second Categories.

18. Sets which are formed by the union of a countable num-
ber of non dense sets, like fhe K sets of the preceding para-
graphs, are of such fundamental importance in the theory of
pointwise discontinuous functions that we shall give here some
of their properties. Such a set is called by Beire a set of the
fi: st category. A set G is of the first category then if it

consists of all the points contained in any of the sets G,, Gg,

Ggyeeceeee Gp,ee....0, each of which is non dense in any interval.

A set which cannot be so constituted is of the second categq;x.(i)

19. If G is of the first category, then in any interval

there is a point not belonging to G- For, in any intervael, ab,
there is an interval &,b,containing no points of G,, since G, is
non dense. In a,b there is an interval a,b,containing no points
of G,, and so on. The intervals ab, a,b,, a,bs, eccce 8Dy, 0000,
each of which is conteined in the preceding, have at least one
point A in common. A does not belong to Gn for any value of
n since it lies in a,bn; hence it does not belong to G.

Corollary. Since a set of the first category does not

include all the points of the continuum, the continuum is of the

(1) This is the definition of sets of the first and second

categories as given by Beire who originated the ideas. Borel
and W.H.Young follow him. Hobson includes the condition that the
component sets shall be closed. His definition has certein ad-
ventages of & minor nature, but the definition originally given
by Baire is in more generel use. See:
- Baire, Lecons sur les fonctions discontinues, p.78.

Borel, Lecons sur les fonctions de variables reelles, p.21.

Young, The Theory of Sets of Points, p.70.
Hobson, The Theory of Functions of a Real Varisble, p.1l14.
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second category.

20. A countable set is of the first category, for it may
be formed by the combination of & countable number of sets each
0of which consists of an individual point.

A set of the first category may be everywhere dense.
A dense countable set, like the retionals, is an example.

21l. Theorem: The sum of a finite number or of a countable

infinity of sets of the first category is & set of the first
category-.

The resulting set, G, is formed by the union of =all

the non dense sets constituting . the different sets of the
first category. But these non dense sets are countable, for it
is a well known theorem that a countable infinity of counteble
sets is counteble. Then G is formed by the union of & countable
number of non dense sete, and is therefore of the first category.

22. The set that remains on a line after the removal of a
set of the first cetegory--—the complement of a set of the first
category—is a set of the second category. If this were not
true, the sum of the two sets, by the theorem Just proved, would
- be of the first category. But the sum of the two is the whole
continuum, and this we found to be of the second category.

23. Theorem: The points of discontinuity of a pointwise

discontinuous function constitute a set of the first category.

We have found (15) thet the points where wsk,for
k > 0, form & non dense set. Consider a sequence of k's ap-
proaching 0, k,2k.>ky .f....._‘.'._.,?k,} ¢ee+ + The points where wsk,
to;m & non dense set. The same is true of the points where
E>ws Kk, ,k, >w s k;, an” so ons The necesssry and sufficient

condition for & point of discontinuity is that w>0 ( 8). Hence,
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any point contained in any of the sgbove sets is a point of dis-
conuity, and conversely any point of continuity will appear in
one of the above sets. The set of all the points of discontin-
uity is the union of all these non dense sets, and is thus of
the first category.

24. The set of the points of continuity, which is the com-
plement of the above set, is a set of the second category. Since
a countable set is of the first category, it follows that the
points of continuity of a pointwise discontinuous function are
more than countable. It can be proved that the points of con-
tinuity have the power of the continuum, but to include the
proof here would unnecesserily lengthen the treatment. (i)

25. We shall now investigate the question whether any
set of the first category is the set of the points of discon-
tinuity of some function, while the complementary set of the
second category is the set of its points of continuity. This
appears not (o be true in genersl. However, the following suf-

ficient, but not necessary, condition can be stated:

component sets, G, , Gz, ee+e+e Gy, ¢ec-.. , Which are closed, &

function f(x) can be set up having its points of discontinuity

in G and its points of continuity in the complement gz_g.(ii)

Let 0(" o<z' ds' 60 0000000000 .{\’ e 00 000 bea

sequence of decreasing positive numbers approaching O. Define

f(x) as follows:

(1) See Young, The Theory of Sets of Points, p.7d, where
the proposition is established by means of theorems on inner
limiting sets.

(11) Since Hobson's definition of sets of the first category
requires that the componentssets be closed, the proposition is
true for all sets of the first category as he uses the term.
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f(x) = <, , for points on G,;
f(x) = £, , for points on G,, and not on G,;
f(x) = X, , for points on G,, and not on any preceding set;
£(x) = | 0, for points not belonging to G.
It will now be shown that every point of G is & point of dis-
cont inuity, while every point not belonging to G is & point of
continuity. Consider first a point P, belonging to G+ P be-
longs to one or more of the component sets; suppose Gy,is the
first set in which it eppears. Then £(P) =<, and M(P)=%m.
Since the second category points on which f(x) = 0 are everywhere
dense (19), m(P)= 0. The Ww(P)= Xy>0, and P is & point of
discohtinnity.
Secondly, let A be & point not belonging to G. Since
G, is closed A cannot be & limit point of G, without belonging
to the set. Then an interval &,b,, including A in its interior
and contseining no points of G, , can be constructed. Then
M(A) S M(A,8,b,) <X;. Within a,b,we can construct another inter-
vel about A containing no points of G;, and so on. In general,
M(A) IM(A,anbn) < An , where Xnmay be made as small as desired.
Then M(A)= O, and W(A) = M(A)-m(A)= 0., A is thus a point
of continuity.
26. # From this proposition it follows that any countable
set can be made the set of the points of discontinuity of a
pointwise discontinuous function. For, each of the component
sets can be taken as'composed of a single point or of a finite
number of points. Since a finite number of points have no

limit point the conditions of the above proof are satisfied.
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The proposition of (25) gives us a ready means of

constructing pointwise discontinuous functions of considerable

complexity. This method will be used in the following section

to build up various types of pointwise discontinuous fuhetions.

Part 3. Zxamples of Pointwise Discontinuous Functions

27. In this section will be given a few typical examples
which will be useful for fixing the ideas and for reference in
succeeding pages. Pointwise discontinuous functions may be
classified into seven groups, the basis of the classification
being the number and the distribution along the continuum of
the points of discontinuity.

28.- Class I. No points of discontinuity. The function

is then everywhere continuous. This type is so well known that
an example is unnecessary.

29. Class II. Points of discontinuity finite in number.

The discontinuous functions of elementary mathematics belong to
this class. A femiliar example is the function, f(x)= sin 1/x
for x#0, f£(0)=o0. It has a single point of discontinuity;
viz., at the origin. The graph of this function is showm in
¥igure 2. 1Its oscilletion function is given in Figure 3; its
value is 0 at every point except at the origin, where it is
equal to 2.

Another example is shown in Figure 4, where f(a)=
f(b)=f(c)=£(d) = 1, and at other points f(x)=x. Figure 5 is
its oscillation function.

30. Class III. Points of discontinuity infinite in number,

countasble, and not dense in any interval. Figure 6 is such a

funetion; f(x) = x72 for x=(3/4 ), f(x) = x otherwise. Its
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oscillation function is given in Figure 7.
f(x)= |, for x=p"(p«£1l); £(x)=0 everywhere else is

snother. Any set with a finite number of 1limit points can easily
be made the set of points of discontinuity for a function of this
class. Most of the discontinuous functions of elementary
analysis belong to classes II and III. |

31. Cless IV. ©Points of discontinuit_;y counteble and dense

in some interval. This includes the functions vhose points of

discontinuity are countable and dense in every interval. The
method of (25) can be used to construct a function with points
of discontinuity on any dense countable set. Figure 8 shows
a function where the points of discontinuity are the rationals.
f(m/n) = 1/n, m/n being in its lowest terms; £(0) = 1; £(x)=0
on the irrationals. Keferring to (25) the following component
sets were used:

G,= 0,1; «,=1;

G,= 1/2, «,=1/e;

¢,= 1/3, 2/3, 1/3.

Gy= 1/n, 2/n,-...--.-..(n~1)/n; Ay=1/n.
The figure shows the values of the functions on the sets G, to
G,z » W(f,x) coincides with f(x).

32. Cless V. Points of discontinuity more than countable

and not dense in any intervael. The classic example of such a

function is the one shown in Figure 9. f£(x)= O on the part
of the line lying between x= 1/%2 and x =2/3; also between 1/9
and 2/9, and between 7/9 and 8/9; between 1/27 end 2/27, 7/27
and 8/27, 19/27 and 20/27, 25/27 end 26/27; end so on. f£(x)= a

at the remeining points. Otherwise stated, the points where
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f(x)=a are the points that are left after removing from the
line the middle third, exclusive of the end points; then re-
moving the middle third of each portion thet remeins; and so
on. The points which are left form a perfect set, which, as
is well known, has the power of the continuum. The points of
the perfect set will be points of discontinuity, for any inter-
val about any point of the set will have m(f,x)=0, and W=a.
Every other point is & point of continuity, for a finite inter-
val can be drawn about it excluding 211 points of the perfect
set. In this interval, M(x)=m(x)=0, and (LO(x) = 0.
This function can be simply defined in another way.
If the x codrdinates be expressed in triadic fractions, the points
where f(x)=a are the following:
The point 0.00;
A1l terminating in the figure 1 preceded by only the figures
0 and 2; as, .01, .0221, etec.
A11 composed of O's and 2's only; as, 202, +0202022¢cccse.
(A number containing an infinite number of 2's and no 1's or
0's after a given point, 1ike .012228......, is to be replaced
by its simpler equivalent,.02). (W(x) coincides with the
original function.
33. Class VI. DPoints of discontinuity not countable and

everywhere dense, but not condensed in any whole interval.(i)

We can easily build such a function from the examples of Classes

IV and V by the method of (25).

G,= the non dense perfect set of V; £(x)= 1 on G,;
G,= 1/2, £(x)=1/2 on G,p
Gy=1/3, 2/, £(x)=1/3 on Gy

[ ] L] L] [ . L g L] L] [
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Gw=1/n, 2/n, .....¢n-1)/n (fractions not in their
lowest terms omitted) f(x)=1/n on G,. It is understood that
if m/n is also & point of G,, f(x) is to have the value 1 on
that point.
f(x) = 0 everywhere else.

34. Class VII. Points of discontinuity condensed on

every point is some interval. Figure 10 is an example of such

a function. G, is the non dense perfect set of (32); f(x)=1
on Gy « G2~is the set of points gotten by constructing in each
of the open intervals left by G, & set bearing the same relation
to the interval that G, does to the interval 0-1; f(x)=1/2 on
Gl‘ Gg is constructed in a similar way on the intervals left
by Ggz; f(x)==(1/2)1 on q3; and so on. Every point is a point
of condensation of points of discontinuity; yet, by (25) there
is & point of continuity in every interval.
Put in terms of the triadic system of notation, G, is:

The point 0.00;

All terminating in 1, preceded by O's and 2's.

All composed only of O's and 2's.
G 1is:

A1l ending in 1, the numbers preceding containing a single
1 and the remaining figures being O's and 2's; as, .10201,
.0210201 .

All having a single 1, the last figure, if there is one,
being & 2; as, .102, .021022, .21202202.....

(1) A set of points is condensed :ﬁ a point if every interval
bR R R L BN g S R Y.
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Gnis:

A1l with n 1's, the last number being & 1.

A1l with n-1 1's, the last figure, if there is a last one,
being a 2.

35. With the pointwise discontinuous functions of Class
VI1I, we have reached the ne plus ultra of discontinuity. Start-
ing with a few scattered points of discontinuity and continuity
by whole intervals, we have constructed functions which, while
having points of continuity in every interval, have also in
every little interval an infinity of points of discontinuity

whose number has the power of the continuum.

Part 4. The Pointwise Discontinuity of Semicontinuous

com——

Functions

36. It will now be proved that a semicontinuous function

is pointwise discontinuous. TLet f(x) be semicontinuous above.

Consider m(A): since m(x) is semicontinuous below, an interval
enclosing A can be found for which m(x) > m(A)~’z for eny point
within this interval. From the definition of the minimum we
can find a particular point A' in the interval at which f(A?) <m(A)+%
Sﬁbtracting the first inequality from the second, and remember-
ing that f(Af)=1(Af), we get W(A!)=1(Af)-m(A%) <& . Since
the point A' exists however small £ be taken, wat the point A
hes a minimum 0. This we found (16) to be & sufficient condition
for pointwise discontinuity.

In & similar way, it can be shown from & consideration
of M(A) that a function semicontinuous below is pointwise dis-

continuous.

it is condensed at every point of the interval.
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We found (10, 12) that Hl(x), m(x), and wix) are semi-
continuous. They are then pointwise discontinuous.

Part 5. Combinations of Pointwise Discontinuous Functions

37. In this section will be developed some of the funda-

mental facts concerning the combinetion of pointwise discontinu-
ous functions by addition, subtraction, multiplication, and
division. After treating & finite number of functions we shall
take up the case of infinite sequences of functions. Attention
will first be called to a fact, present mention of which will
avoid repetition in the proofs.

38. Theorem: If £ (x), fix), eeoeef (x), ..... i & finite

or infinite sequence of pointwise discontinuous functions, there

exist points in every intervel which are points of continuity

of each and every function of the sequence. For, we found in

(23) that the points of discontinuity of each function form a
set of the first category. We also learned (21) that a finite
nnﬁber or a countable infinity of sets of the first category is
a set of the first category; then the set of all the points of
discontinuity of the functions is of the first category. There
are points in every interval not belonging to this first cate-
gory set (19); such points are points of continuity of each

function.
%9 . Theorem: The sum (difference) of two pointwise dis-

continuous functions is & pointwice discontinuous function. For,

if two functions are continuous at a point their sum, or differ-

(1)

ence, is continuous at the point. Since every interval con-

tains common points of continuity, the sum (difference) has

vointes of continuity in every interval; hence it is pointwise
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discontinuous.

It follows from this fact that the combination by
addition and subtraction of & finite number of pointwise discon-
tinuous functions gives a pointwise function.

40. # The following theorem can be proved in & menner anal-

ogous to the preceding: The product of two pointwise discon-

tinuous functions is & pointwise discontinuous function.

# It follows from this and the preceding article that

any integral rational function of pointwise Adiscontinuous

functions is pointwise discontinuous.

41. It cean be shown similarly that the quotient of two
pointwise discontinuous functions is pointwise discontinuous,
provided the funetion in the denominator is nowhere equsl to O.
This provision is not necessary, but it is sufficient.

42. Turning now to an infinite series of functions we

shall pr‘ove the following important theorem: If F‘(:x)--——f'L(:c)+...if"(x)1

is & vwniformly convergent series, eny common point of continuity

of 811 the f's is a point of continuity of F(x).

Let A be & po;nt of continuity of all the f's. But
F(x)=Fy(x)+ R,(x), vhere Pn(x) is the sum of the first n terms,
and consequently has A as & point of continuity, and iy(x) is
the remeinder term. Since the series is uniformly eenvergent,
for a given g» 0, we can find an m such that, for all values of
x, |Rn(x)| £ 2—/3,’ for ny>m. Fixing n, and as a consequence
Fy(x), we can find ea h>0 such that |Fu(x')—F,(4)\ < &/3,
for |x'— Al  h., low, |Ry (x)< £/3 and |Ry(A)| < </3; whence,

|F“(x') + Ry(x') — Fn(A)-Rn(A)\ <& , for |x'— Alan.
That is, IF (x')=F (A)]4& , for | x* - A)< n;
eand A is a point of continuity.






43. Corollary 1. A mniformly convergent series of con-
tinuous terms is everywhere continuous. This is well known.

44. # Corollary 2. 4 uniformly convergent series of point-

wise discontinuous terms is pointwise discontinuous.

45. A pointwise discontinuous funcetion can be built from
eny sequence of pointwise discontinuous functions. If the sum of
the functions is not a uniformly convergent séries, the terms
can be multiplied by convergence factors. If all the functions
have a least upper bound, any absolutely convergent series,

L, » C<1 g scerecceses oy, eeeo will accomplish the result;
end the series will assume the form,
P(x)= &2 (X) Ay Ea(X)F  eeeenennnnnnns ol ()t oennn
It is not necessary that the convergence factors be
constants. The series may be constructed as follows: _
F(x)= &, (x)£, (x)+ (x)E, (x) + ........+<h‘(x)f“(x)+.....’..
where <p (x), ch(X)"“"““ 4, (x), +... are continuous or
vointwise discontinuous functions so chosen that the series con-
verges uniformly.

46 So far we have been attending to the preservation of
the points of continuity; and we found that for integral rational
funetions and uniformly convergent series every point which is a
point of continuity of each and every function is a point of
continuity of the function resulting from their combination.

We shall now investigate the question of the preservation of
the points of discontinuity. In the genersal case we can say
nothing. It is easy, for instance, to set up functions whose

points of continuity are very compliceted, but whose sum is

(1) The proof of this and similer statements made later
are well known, and caen be found in many places. See Bocher,

Introftuction to Higher Algebra, pp. 14-16.






- 22 -
everywhere continuous. Thus, let f,(x) be any function what-
ever, pointwise discontinuous or totally discontinuous, and
let £,(x)= -:t"(x)- Then the sum of the two equals O, and is
continuous everywhere.
47. # As an aid to the further investigation of the pro-
blem we shall prove the following proposition: If F(x)=f+(x)+f'4x_)_,_

then at any point A, |
w(f, a)tew(f A3 w(E 3w A= w(f,,a)

From the definitions of maximum and minimum at a point,

we cen write the following very evident inequalities:
1. M(F,A)ZT M(£, ,A)+ M(£,,A); m(F,A)sm(£,,A)+m(f,,A).
2. M(F,A)SM(£, ,A)+M(£,,A); m(F,A)Im(f,,A) +M(£,,4).
3. M(F,A)Sm(®, ,4) Y M(£,,A); m(F,A)z M(£,,A)+m(f,,A).
From 1, W(F,A)=M(F,A)-m(F,A) ZW(Ef, A)+ wi(g,,A).
From 2, W(F,A) WL ,A)-w (£, ,4).
From 3, WI(FASW(E,,A)-W(L ,4).
The proposition follows at once from these inequalities.
48. # We cean extend this, under cerfain conditions, to the
case of a converging infinite series of fnnctions. ‘Let the
series be, (F(x)=f, (X)+£,(X)+ ceevveet P ()4 ceveennnn.
Suppose that at the points of discontinuity of £,(x), 1,0(:!?,‘,::):09l
& constent > 0, and suppose further that the series, o, '« + Kyt
is one in which Rwu< Xn- Then all the points of dis-
continuity of the different functions persist as points of
F(x). To show this, let A be a point of discontinuity
discontinuity of/one or more of the functions, and let fy(x)
be the first function in which A appears as a point of dis-
continuity. Then the least possible velue ((F,x) could

have would be,
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Ay =y =~y = eve = T Ry 0
A would thus be a point of discontinuity.

There are many series of the type mentioned; viz.,

where R, < 4 ¢ The geometricel series, 2 tartar?y «...4ar*y...
where 0L r < 1/2, is an example. Here Ry = ar"™1+r 4+r24....) =
ar ¥ fi-n=ar" rf1-r)<ar? Any other series in which
Awtr fd,, 4 1/2 is an example; for instance, the series,
1 Y 1/241/30 4 ciiiiiiinnnn, 41/t 4 oeennn,
or the series,
1 4+ 1/2%41/3%5 & ceveiinnnnnn o X LYK cavansana

49. # Let £,(x), f,(x), eeece £,(x), <... be a seguence of

functions, each being bounded and in each of which Wi 8y, &

congstent, at the points of discontinuity; then a function,

F(x) = &,2,(%) & QL0 (X) & ooeeeeot Aufag(X) A connnnn.

can be set up, heving as its points of continuity the points of

continuity common to the different functions, and as its points

of discontinuity every point of discontinuity of each of the

functions.

Let By be an upper bound of \f“(x)\. We cen set up
2 uniformly convergent series, |
<$ (x) =b,f,(x)+b2f7_(x)+ R A b (x)Feeenen..
by teking bw= cy/By, Where C,, C,, scseeecesC,, sscees.s is any
absolutely converging series of positive terms. Then by (42)
211 the common points of continuity of the terms will be points

of continuity of CP(x). These will still be points of con-
- tinuity if each term is multiplied by & constant and the sequence

of multipliers has an upper bomnd, for the series will still bde

uwniformly convergent.






- 24 -
It is now necessary to reconstruct the series, on the
basis of the last remark, so that the points of discontinuity
ot the terms shall persist. The oscillation at each point of
discontinuity of the term byfy(x) “ byeyn . Beginning with the
gsecond term multiply each term by such a constent that
Pusi Autt /by An < 1/2, and let 811 the multipliers be bounded
above (less then 1, for instance). I say that all the points
of discontinuity of the seperate functions are points of discon-
tinuity of the resuliing funetion,
F(x)= a,f, (x)+d1f1(x)+ ..............\-dy\f;.‘(x)+.......;
for we have thus a series of iunetions whose oscillations form
a series of the type mentioned in (48), and in this case we found
that the points of discontinuity are preserved.
50. # We can go further end state thet if the functions are

bounded and if W(x)3Z Gy 8t 811 the points of discontinuity of

fn(x)L we can set up a function in which the points of discontin-

uity of the separate functions persist.

After setting up the uniformly convergent series,
P(x)=b,f, (X)L (X)F+ eeceeeeeetbyfu(x)d eenennn,
as before, which provides for the preservation of the common
voints of continuity, we choose our constents (less than 1, for
exemple) S0 thet byBuwy /dDudu< 1/2. Then if A is a point of
discontinuity which appears first as & point of discontinuity in
fy(x), the least possible value (A) could have would be,

bYav_bY)f\B'Y“\'\ - bY‘ley%—‘-OO- e e 0 0 —-buB“‘— a6 00 e 0000
Since burBufbuduw<1/2, byyBuy/byBu < 1/2, for a,<B,; and the
gseries is of the type mentioned in (48). Then the points of dis-

continuity of the component functions persist in F(x).
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b1. It should be noted that the work of 47 - 50 applies
to 2ll kinds of functions, and not merely to pointwise discon-
tinuous functions. By meking the component functions pointwise
discontinuous we have & new method of constructing a very compli-
cated pointwise discontinuous funetion, which has for its points
of discontinuity all the points of discontinuity of each of the
sequence of functions. Attention should be called to the fact
that if the component functions are pointwise discontinuous
their points of discontinuity are non dense in any interval;
for the requirement that Wy(x) = &Awn at the points
of discontinuity would force Wy(x) S du 8t every point,
in the whole interval if the points of discontinuity were dense,
since the set where wW,(x)3 &y 1is closed (13); and there would

be no point of continuity in the interval.

Part 6+ DPointwise Discontinuous Functions

ot

in n Variables
52. We shall now extend to space of n dimensions the ideas
developed for one dimensional space.

Limit Point. A point A is a limit point of & set of

points in n dimensions if every sphere with A as center contains
points of the set (A not considered). A point inside the sphere
satisfied the inequality (xrx™%} (635 1) o SR

+ (x, x‘,f’)1 £ R*, where K is the radius of the sphere. Since we
can enclose & parallelopiped by & sphere or & sphere by s
parallelopiped, enclosing the point in each case, we can,if it

more convenient, use & parallelopiped instead of a sphere.

Then if there exists a point such that xy —h < x<x%h , xh,<

x, < 11;\\,\_ Ry eeoceens x\:‘—— h, < x,< x‘:“+ h,, however small the
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positive numbers, hy, hyy seeee h,1be taken, A is a limit
point of the set.
_53. Meximum of & function at & point. Let f(x,, x,, +..xy)

be the function, and let A be the point under consideration.
With 4 as center, deseribe & sphere with radius R.(i) Let
M(A,X) he the upper limit of the values of the funetion within
the sphere. Let R approach 0; M(A,R) never increases and re-
maeins always greatef than f£(A); hence it approaches a limit, and
this 1imit is called the maximum of the funetion at the point.
It is denoted by M(f;A) or M(A) as before.

54. Minimum of a function at a point. By taking the

lower limit of the values of the function in the sphere we can
define the minimum of the function at the point, in & manner

analogous to its definition in 3; likewise the oscillation at the

point, W (A)=M(A) — m(A). ©Provision must be made for in-
finite values of M(A), m(A), and wW(4A), as in 2-4.

‘§§. Without going through the details of the proofs, which
are similar to those in the case of & function of a single
variable, I will merely state the fesults that may be arrived at:

1. If w(A) =0, A is a point of continuity; and,
conversely, if A is a point of comtinuity, W(A)= 0.

2. M(x,. %) and w(x,.x) are semicontinuous sabove;
m(x,..+Xy) is semicontinuous below.

3. The sets where M(x,,.....x,) S k, where

7
56. Pointwise discontinuity. A pointwise discontinuous

m(x,,.--+Xy) T k, and where w(x ,.+...x,) S k are each closed.

function in space of n dimensions is one having points of con-

(1) In two dimensions the sphere becomes a circle in the
coordinate plane.
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tinuity in every sphere; that is, the points of continuity are
everywhere dense.

It can be shown, in the manner of 15, that in a point-
wise discontinuous function the set of points where w3k >0 1is
non dense; and, conversely, if the set where w3k is non dense
whatever value,greater then O,k be given the function is point-

wise discontinuous.

§Z° Semicontinuous functions. Semicontinuous functions
can be shown to be pointwise discontinuous. If in 36 we read

the word "sphere” for interval"” the proof holds throughout.

68. Sets of the first and second categories. A set

G is of the first category if it consists of a1l the points
contained in the sets &, Gy, ++ee Gy, +.... each of which is
non dense. A set not so constituted is of the second category.

All of the facts concerning sets of the first and
second categories can be easily worked out for the case of n-
dimensional space, certain obvious modifications being necessary.
As an example the following proposition, similar to thet of

25 for a single varieble, will be established.

59. # If G is a set of points in n dimensional space which

can be broken up into component sets, G,, Gg, eccece Gy, ocece,

which are closed, then & function f(x,, X,, ... X,) cen be set

‘up, having its points of discontinuity on G and its points of

continuity on the complement of G.

Tet «,, Xz, ¢¢e++e K, o+-. be a sentence of
decreasing positive numbers approaching O. Define f as follows:
P(x,,+++.+xy) =X,, for points of G,.
f(xy,+++Xy) =z, for points in G,and not in G,.

. . . . . . ] . . . .
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f(x,,.....xy) = 0, everywhere else.

Consider & point P belonging to G. Suppose u, is
the first set to which P belongs. Then f(P)=Y,, and M(P) S £(P).
Now m(P)=0, since the points where f(x ,+¢...x ) O are
everywhere dense. ThenWw(P)S«,, and P is a point of dis-
continuity.

Let A be & point not belonzing to G. Since G is
closed, A is not & limit point of Gn; end & sphere S,, having
A as center and containing no points of dn, can be constructed.
Then M(A)Z M(Sy)<%n,M(Sy) being the upper limit of the values
of the function in the sphere. Since &y can be made as
small as we please, M(A)= 0. Then w(A) = M(A)—m(A)= O,
end A is a point of continuity. The proposition is thus
proved.

60. Classification of pointwise discontinuous functions

in n dimensions. The same division into seven classes that

we made for pointwise discontinumous functions of e single
variasble (27-34) can be made here, and the proposition just
established furnishes us & ready means of constructing examples
of the various classes. Iwo examples are shown in the
figures.

A function of two variables having points of discon-
‘tinuity countable and everywhere dense (class IV) is shown in
Figure TI. Gy= &ll points with coordinates of the form (m/n, mz/n),
with the fractions in their lowest terms; 6<u::(1/2)n.
f(x,y) = 0 on the points not belonging to ¢, as before. The
figure shows the poiﬁts of discontinuity on the sets up to and

including G7.
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Figure 12 shows & function with points of discon-
tinuity everywhere condensed (@lass VII). G, is the set of
points for which y=1/2;%=1/2. G, is the set for which
x =1/2, x=2/3; =(1/2)". G is the set y =1/4, y=5/4;
< = (1/2T3; ete. Each set contains all the points on a

straight line; hence each is more than countsable.

Section 7. Pointwise Discontinuity on Perfect Sets

61. The notion of pointwise discontinuity on a perfect
set is of very great importance in a connection that will be
discussed later; namely, the necessary and sufficient condition
for the approach to discontinuous functions by continuous
functions. In this section will be given, as briefly as pos-
gsible, a few facts necessary for an understanding of this phase
of the subject. | We shall treat only perfect sets in one 4di-
mension, but the ideas can, in general, be extended without
difficulty to n-dimensional space.

62. Perfect sets and their construction. A perfect

gset is & closed set every point of which is a limit point.
Any closed interval (en interval including its end points) is
a perfect set. If & countable number of open intervals
(intervals exclusive of their end points) be removed from a
closed interval, the set remaining is a perfect set. In

fact, any perfect set can be so constructed. A perfect set

was used in the example of 32. lMention was there made of
the fact that 8 perfect set has the power of the continuum.

63. The general notions in this case. If we construct

an interval sbout any point A of the set it will contain en
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infinite number of points of the set. We can then define
M(A), m(A), and W(A) as before, with the understanding that
only the values of the function on the points of the perfect
set ere taken into account. The various properties of M(x),
m(x), and w(x) Ffollow as before.

64. Pointwise discontinuity. A4 function is pointwise

discontinuous on a perfect set if every interval containing
points of the set contains points of the set where w(x) = 0.
As stated in 63, W(x) must be defined leaving entirely out

of consideration the values of the function at points not be-
longing to the perfect set. Thus, in the example of 329 x)=a
at points of the perfect set, if the values at other points

of the line be considered; however, f(x) = a on the perfect
set, a perfectly continuous function, and w(x)= 0.

65. vets of the first and second categories. A set G

is of the first category if it consists of all the points of

a countable number of sets, G,, Gz ,ec0e:Gy,eeeec.., each of
which is non dense on the perfect set. In seying thet G, is
non dense on the perfect set, we mean thet in any interval con-
taining points of the perfeect set, we can find another interval
conteining points of the perfect set but containing no points
of Gn. A set not constituted as above is of the second
category.

A1l the facts concerning points of the first and
second category work out without difficulty for the case of
perfect sets. It is easily shown, for example, that any set
of the first category whose component sets'aré closed cen be

made the set of points of discontinuity of a function pointwise
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discontinuous on the perfect set, the points of the second
category remaining on the perfect set being the points of con-
tinuity. Using this fact, we can build up functions corres-
ponding to the seven classes found in the case of & function
defined on the whole continuum.

66- If a function is semicontinuous on a perfect set, it
can be shown to be pointwise discontinuous on the set, by
the method used in proving the same fact for functions semi-

continuous on the whole contipguum (326).
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CHAPTER III. THE APPROACH TO DISCONTINUOUS FUNCTIONS

BY CONTINUOUS FUNCTIONS

Part 1. Fundamental Ideas of Approach

67. A sequence of functions, f,(x), £5(x), eeeees fp(x), . een
is said to approasch a funetion f(x) if, given any point x’ and
eny positive number § , however smell, a number m can be found
such that |f(x') — £,(x')|<& , for n>m.
If a value of m exists such that the inequality

holds with the same m, for all values of x in the interval
under consideration, the approach is said to be uniform.

68. A little more then a decade ago Baire worked out the

conditions under which & function may be approached by & sequence

of continuous functions. His results may be stated in a single

sentence:

Theorem: The necessary snd sufficient condition that

any function whatever, finite or infinite, be the 1limit of con-

tinuous functions is that it be pointwise discontinuous on every

(1)
perfect set. This is true for & function of any number of

variebles.

69 It should be noted that it is not sufiicient thet the
funetion be merely pointwise discontinuous on the continuum;
it must also be pointwise discontinuous on every perfect set.
A1l of the examples of pointwise discontinuous functions that
have been given so far have been pointwise discontinuous on
every perfect set. An example of a function without this
property is the one of 22 if f(x)= 0 on the end points of
the intervals. While the function would sti1l be pointwise

(17 Beaire, Lecons sur les fonctions discontinues, p.124.
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discontinuous on the continuum, it would be totally discontin-
uous on the perfeoct set which remains after the removal of the
given open intervals. For, any interval including a point of
the perfect set would contain points where f(x)==a and also end
points of the intervals where f(x)= 0. W (x) = a then at every
point of the perfect set.

0. Semicontinuous funetions. It will now be shown

that any semicontinuous function is the limit of continuous
functions. et f(x) be semincontnuous sbove. It will be
showvn that f(x) is semicontinuous above on every perfect set.
f(x)=Mc(x), where Mo(x) is the meximum of the function de-
fined on the continuum. At sny point A on a perfect set,
M(A)3 Mc(A)=£(A), for in the case of the perfect set certain
values of the function may be left out of consideration. But
in general M(A)S £(A). Then on the perfect set M(A)=£(4),
and the function is semicontinuous sbove. Consequently it
is pointwise discontinuous on the perfect set (66), and it
cen be approached by continuous functions.

In a similar way, it can be shown that if a function
is semicontinuous below, it cam be appfoached by continuous
functions. It follows that M(x), m(x), and W(x) can be ep-
proached by a sequence of continuous functioms.

mn. Sequences and series. Approach by a sequence of

functions £, (x), £,(x), «.... £,4(x), vi...0an be put in the
form of & series, thus, f(x)= £, (x)+(£,(x)-£, (x))+.......
T (£a(x)-£,(x))t ... The sum of the first n terms is

fy(x) and the remeinder term is £ (x)— f£,(x). If the se-

gquences approaches f(x) the series convefges to the value f(x),
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and conversely. Also if there is uniform epproach of the
sequence there is uniform convergence of the series, and con-
versely. |

2. This enables us to apply the propositions of
42-44 to the case of approsch. If the eapproach is uniformly
continuous and the approaching functions sre continuous, the
function approached is continuous. If the epproach is uni-
formly continuous and the approaching functions are pointwise
discont inuous, the function approsched is pointwise discon-
tinueus.

It follows, then, that if & pointwise discontinuous
function, which is not everywhere continuous, is approaéhed
by continuous funetions, the approach is not uniform.

3. In 1885 VWelerstrass established the proposition
that any function continuous in a closed interval can be ap-

proachéd uniformly by a series of polynomials.(i) It will

(1) Note on Taylor's series. If £(x) = asta, X+8, X Yeees
+a,x"+ ..., where the polynomial is uniformly convergent in an
interval, it can be shown by differentiation, since f'x) is
also a uniformly convergent series about the origin, that
ao= 7t (0), a,= £'(0), ete. It might appear, from the theorem
of Weierstrass, thet any continuous functi%plis developable
in a Taylor's series about the origin. e~ “/*" is a familiar
exemple of & funoction which cannot be so developed. The
appaerent contradiction lies in the fact that the Welerstrass
polynomials are not in the form implied above; for in the
Taylor's series P w+ (x) differs from Pu(x) only in having an
added term &, x"", while this is not true in general of
the Weierstrass polynomials.

This matter is intimately conmnected with the use of

roximation formulae in the sciences. It is customer e}
:ggresent a function based upon experimental data in thg ¥orm

f(x) = a.+ a,x+ ee++++, Where 8 very few terms generally
suffice. According to Weierstrass' theorem, such an approxi-
mation can be made to fit the true curve with any desired de-
gree of accuracy, provided the curve is continuous. But this
important faoct must be kept in mind: If the accuraey of the
approximation is increased by the sddition of new terms, it
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now be shown that any function which is approached by & sequence

of continuous functions, £, (x) f,(x), eece.. £y(x), oc..., can

be approached by a sequence of polynomisls. Take a se-

quence of decreassing positive numbers approaching O, &,,5,, +-...
Car  eerees Choose a polynomial Pn(x) such that |f,(x)—
Pu(x) < £y . Then the sequence of polynomials P,(x), P,(x), secec.

Py(x), ......approaches the function f(x). For, given an > 0,

we can choose &an Zv<2ﬁ; then |£,(x')- By(x")\< % for n>r,

for any value of x; and with a given x' we cen find an & such

that |£(x')— £4(x")1 <% for n>s. Then if % is the greater

of the two numbers r and s, by adding the two inequalities

we get |f(x')— P, (x*)\<s, for n>m, which is the condition

for approach to f(x) by the sequence, P,(x), «cecee Py(x), ...

Part 2. Methods of Construction Continuous Functions

e

Approaching Discontinuous Functions

4. This section will be devoted to the description, with
the aid of figures, of methods which may be conveniently used
to construct a sequence of,éontinuous functions approaching
a given discontinuous function. The meens of accomplishing
this result has been suggested by Baire. He says:

"The investigation of a suite of continuous functions
having for a limit a function f(x) defined on a segment AB is
equivalent to thet of a function F(x,y) which reduces to f(x)
for y= O and is continuous with respect to the‘two veriables

x and y in a rectangle ABA'B' except on AB and continuous

is necessary to redetermine all the constants of the polynom-
ial and not merely to find the constants of the added terms, for
these additional terms will, in genersal, change the polynomisl thru-ou
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with respect to y on every point of AB'.'H)

The problem is reduced to that of the construction
of a surface whose sections by planes parallel to the yz-
plane are continuous curves and whose sections by planes par-
allel to the xz-plane are continuous curves, except in the
case of the plane y= 0, where the curve shall be f(x). The
sections of this surface by the suite of planes y=k, y=k,
veeeey =Ky, seeese, where k,, k;,ecceck,, ecc0s 18 a series
of positive terms approaching 0, will be & sequence of con-
tinuous funections spprosching f(x). The examples which are
given, with the acoompenying figures, will meke this clearer.

5. Pigure 12 shows the approach by continuous functions
to the function £(1/2)= a, £(x)=0 elsewhere.  Several
sections of the surfece by planes parellel to the xz-plane
are shown, and each of them is seen to be a continuous curve.
It cen readily be shown thet if e sequence of curves, f,(x),
£,(x), ..V...fn(x)'...... be égit. from the surface by the planes,
T=k, ¥=k;, ecce. yikﬁ-, ese.., where the k's approach O
and 'are, for this {figure &8ll positive, these aﬁproach the
curve f(x). It must be shown that for & given x' and a
number £ > 0, we can find an m such that\f(x')——fﬁxi)\( .
for n> m. This is true for the point of discontinuity,

x = 1/2, for £,(1/2) = a for all vslues of n, Then
11(1/2)-1?“(1/2)\: 0<& , for 211 n. If i':;‘. 1/2, we can
determine & strip of width y' such that f£,(x'P=f£(x')=0 if
. NP AR Since the k's approach O, we can find san m such
that ky<y' for n)>m; then If(x')—f,‘(x')\ =0<Z& for nym.
Figure 14 shows the function f(x) which is approached. 1t
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is 8lso wI(x), since the two are identicel.

76. Figure 15 shows the approach to the same function
by functions which are not only continuous but also have
continuous first derivatives. The streight lines of the
preceding example are Jjoined by arcs of cireles which are
tangent to the lines they connect. It is necessary that
the radii of these circles approach 0 as the xz-plane is
approached. This is accomplished by keeping the points of
tangency of the circles between two lines on the surface which
converge af; the point x=1/2, y= 0. These converging
lines are in brown in the figure.

7. Figure 17 shows the approach to the function
fizi= 1/2, for 121/2; f(x)=0 for x>1/2. It is discon-
tinuous at the point 1/2, where it is semicontinuous above.
It is seen from the figure that £4(1/2) =f£(1/2) =1/2 for all
values of n; thet is, for every section of the surface by &
plane of the form y=k,.

In rigure 19 is the same function, except that
£(1/2)=0. It is semicontinuous below at the point 1/2.
£.(1/2)=£(1/2)=0 for all values of n.

Pigure 21 shows the case where f(x) is neither
semicontinuous above nor helow at the point 1/2, but takes
on an intermediaste value a. Here, as before, f“(1/2)=i’(1/2)=a.
for a2ll values of n. This figure and the two Jjust mentioned
illustrate the methods employed to make the continuous

funetions approach eny desired value at the point of dis-

= (17 Baire, Lecons sur les fonctions discontinues, p.9.
P Le recherche d'une suite de fonctions continues
ayant pour limite une fonction f(x) d€finie sur le segment Ap
est absolument quivalente & celle d'une fonction F(x,y) se '
réduisant & f£(x) pour y=0, continue par rapport & 1'ensemble
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continuity. Figures 18, 20, and 22 show the oscillation
functions in each of the three cases. The oscillation
function is the same in each case.

78. Figure 23 illustrates the case of a function having
an infinite number of points of discontinuity which have &
single limit point. The function used is f(0)= 1,
£(1)= -1, f(1—1/2")=1/2", £(x)=0 elsewhere. It is seen
from an inspection of the figure that for any point x', a
point either of continuity or of discontinuity, and a given

€ > 0 we can find a strip of width y' such that |£(x/)—f,(x")|<¢
for values of n which throw the section y= k,within that

strip. The figure below (Figure 24) is w(x). It is equal
to f(x) everywhere except at the point 1; (W (1l)=-f(1) = 1.

| In a manner entirely similar to the one Jjust
showh, we can put in, in the intervals between the points of
discontinuity of the last example, an infinite number of other
points of discontinuity having these points as limit points.
Between these points of discontinuity we cen place still
others having these as limit points, and so on. Let P be
the set of 211 the points of discontinuity of a function
f(x). TLet P' be the first derived set of P; that is, the
set of the limit points of P. Let P'' be the second derived
set of P — the set of the limit points of P', and so on.

1f PP'= 0 we cen use the method Jjust shown to construct the

continuous functions approaching f(x). For, since

s 1le rectangle ABA'B' et enfin

dan
des deux verisbles (x,¥) Sovt point do AB.

continue par rapport g yen
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= o, P oonsists of a finite number of points; and,
beginning with these, we can proceed in the way indicated
back to the points of P.

79. Figure 25 is a function equal to & excepf on the
points of & perfect set, where it is equal to O. Mention
has been made of the fact that any perfect set can be con-
structed by the removal of a countable number of open intervals
(62). In the example shown, the intervals are finite in
number . If the perfect set is non dense, the number of
intervals will be infinite. The process can evidently be
continued, the only require?%ggng that the lengths in the
y direction of the rectangles on which the surface leavesthe
xy-plane shall espproach 0; so that any section of the form
¥y = k,>0 shall cut only a finite number of these rectangles.
Figure 26 is the oscillation for the function of Figure 25.

80. In Figure 27, £(x) is continuous everywhere except
at the point 1. As x approaches 1, f(x) inoreases without
1imit; £(1)= 0. The construction is evident from the
figure. In any section of the surface by y=k,, £,(x)= £(x)
for points not contained in the triangle ABC. TFor points
inside the triangle f,(x) is the straight line which passes
through the point on the surface directly above the section

of the plane with AB and is equel to O for x=1. The oscil-
lation function is shown in Figure 28; W(x) =0 for x+#1,

W (1) =+,
81. Pigures 29-32 indicate the manner of approeching a
discont inuous function of two varisbles. This cannot be

shown in & single figure, as was the case of a function of
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one variable, for it would involve & surface in space of four
dimensions. Yhe function to be approsched is £(1/2,1/2)=1/2,
f(x,y)=0 elsewhere. It is shown in Figure 29. The suc-
ceeding figures show f,(x,y), f,(x,y), and £,(x,y). w(x,y)
is equal to f(x,y), snd is thus shown in Figure 29.

82. Following the methods used in the case of functions
of a single variable, we can without difficulty devise con-
tinuous functions approesching functions of two var isbles which
have an infinite number of points of discontinuity, which are
discontinuous on non dense perfect sets, or which are unlimited
in certain regions.

In the case of functions of more than two variables
we have no geometricel means of finding a sequence of approach-

ing continuous funetions.
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CHAPTER IV. THE _(\) FUNCTION

gg. In the preceding sections only those functions have
been studied in which m(w,x)=0 at every point; that is,
pointwise discontinuous functions. We shall now investigate
the properties of W for any function whatever.

It has already been shown (5) that Wis always posi-
tive or O. It has 8lso been pointed out that wWmay have no
least upper bound; that is, that W(x) may equal + 0O at some
points. As a matter of faet, perfectly well defined functions
exist in which w(x)=+0 at every point. # The following
is an example of such a function:-

f(x) = 0, for x irrational;

f(x) = q, where X is the rational fraction p/q (in its
lowest terms).
At any point A, m(A)=0, M(A)=+00, W(A)=+cO,

84. # It has been proved that W(x) is semicontinuous
above, and hence pointwise discont inuous. The gquestion now
arises,—1Is any function, which is semicontinuous above and
everyvhere positive or 0, the W of some function? The
answer is in the affirmetive, and it will now be shown how
a function can be constructed having the given function as
its oscillation. Let <K be the given function. The
points of continuity of ‘49 , Which is pointwise discontin-
uous, are everywhere dense and have the power of the con-
tinuum (24). It is possible to choose from esmong these
points of continuity an everywhere dense countable set C,
leaving the remaining points of continuity still everywhere

dense, in fact everywhere condensed. Define a function F(x)
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as follows:
P(x) = 0 on the set C;
F(x)=<P(x), everywhere else.

It will now be shown that ¥(x) has p(x) as its oscillation
funetion. Since <p(x) is semicontinuous above M(4>,x)=4>(x)
at all points with the possible exception of the points of
the set C. The points of C being points of continuity,
M(¢,x)=m(d,x)=< (x). Then the removal of the countable
number of points of C and putting F(x) = O on those points
8till leaves a more than countable set in the region of any
point of C, which meke M(F,x) =<p(x) still. C being every-
where dense, m(F,x) = O everywhere. Then W(F,x)=MNM(F,x)
—m(F,x) = <P (x), which was to be shown.

This countable dense set can be chosen in an in-
finite number of ways; in fact, by shifting a single point
of C we see that the nuﬁlber of sets like C that can be chosen
has the power of the continuum. Hence, any function which is
semicontinuous above and which has no negative values is the
oscilletion of an infinity of functidns whose number has the
power of the continuum.

86- ¥ Theorem: In order that w)(x) be continuous, it is

necessary and sufficient that M(x) and m(x) each be continuous.

It is evidently sufficient; for w(x)=M(x)-—mnm(x),
and the difference of two continuous functions is continuous.

It is necessary. W (x) being continuwous, for a

given ¢¥0 and & given x' there exists an i, such that,
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\w(x')—w(x' 4+ n)} < 54 , for 4l < H, .
That isM(x') ~m(x') — (M(x'+ h)-m(x+hn))| < f{,
or [(a(x") - H(x'+ h)) + (mlx'+ h)-—m(x'))‘<'_§<’, [n|<H, -
This cen be written, |
lu(x) = m(x'+ WA \m(x'+ h) — m(x')) <§’z, (a)
if the quentities M(x') — M(x'+ h) and m(x't+ h) — m(x') have
the same slgebraic sign (of if one or both are 0); or it can
be written,
[\u(x) — (x'+ v —fm(x'+ n)-nx)I| <Z, (b)
if the quantities have different signs. In the former case
we have direetly,
lM(x') — u(x' + nl<% , Inl<¥Hy, ;
|m(x'+h)-m(x')\<£./2, o "o,
In the latter case we have since M(x) is semicontinuous above (7),

M(x'+Y h)<m(x')+i'/z , |n1<Hx ;

Them, M(x')— M(x'+ n)>~% , " v

Similerly, m(x) being semicontinuous, we have, bot
m(x'+ h)}m(::')—"’/Z , In1< Uy |

and , m(x'+ h)~m(x')7"eéz ;, T " " (a)

Let |h|< /N , where | is the smallest of the three numbers,
e » Y2 s and #, . Suppose in (b) above that m(x4+ h)

— m(x") is negative. From (d),

lm(x'+ h) —m(x'N< %, |RI<V .
Then, |M(x')-M(x'+ m) <& , » v crom (b) end(d)
If M(x')-M(x'4 h) is negative in (b), we have, from (ec),
|M(x')~u(x'+ n)l< £ﬁ . |h)<}'l '
and, lm(x'+ h)—m(x')\< g, ., v " , from (1) and (c).

In all cases, then,-—when the two quantities mentioned have
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the same sign and when they differ in sign-——we are able to
find, for a given &7 0, an Y such that,

| m(x')-u(x'+ n)l < &€ , Inly ,
and, |m(x'+ n)-m(x') 1< & ,\h\<yl.
Since x' is any point, M(x) and m(x) are continuous evez;ywhere.
Their continuity is thus necessary for the continuity of .
W (x).

86+ # Successive oscillation functions. The oscillation

of £(x), or w(f,x) will be called the oscillation of f(x) of
the first order. The oscillation of W(f,x) will be called
the oscillation of f(x) of the sefond order and will be written
U0@&,1{); and so on. e shall now establish a few theorems
concerning these oscilletions.

87. # Given any function f(x); u)wflx) = W (£,x), for

- n_equal to or greater than 2.

We shall first show that if <P(x) is eny function
semicont inuous above and having & minimum 0 at every point,
then w (cp,x) =¢p(x). For, N(¢ ,x) = (x), and mn(<P,x) = 0;
thenw (P ,x) =M(<P,x) —m(<P ,x) =P (x).

Now, (wW(f,x) is semicontinuous gbove, and hence
pointwise discontinuous. Then 0 (0 ,x}, orw(z’(f,x) has a
minimum O at every point (16). Being an oscillation function
it is &lso semicontinuous above. Then, a()’:f,x} has the pro-
perties of & (x) above. Hencew? (f,x)=«®(f,x); and similarly

for higher orders. (1)

(1) Attention should be called to the fact that the proof
does not go through for the case where w/(f,x) is infinite by
whole intervals, for w§’(f,x) cannot be defined.
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88. # A necessary and sufficient condition for pointwise

discontinuity of & function f(x) is thest the oscillation of

f(x) of the second order be equel to its oscillation of the

first order.

It is necessary; For, f(x) being pointwise discon-
tinuous, w (£,x) has & minimum 0 at every point. It thus has
the properties of ¢P(x) in (87); then bd”(f,x)'—‘w(f,x).

It is also sufficient. Since W(£,x) is pointwise
discontinuous, (A)m(f,x) has & minimum O at every point. Then,
" since wﬂ(f,x)rw(f,z), Ww(f,x) has a minimum 0 at every
point, and this is sufficient for pointwise discontinuity of
f£(x) (16).
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