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INTRODUCTION 

The concept of pointwise discontinuity is a fairly 

recent one in mathematics. Originally introduced as a conven­

ient term in the study 'of integration, it has quite outgrown 

its former sphere of usefulness and has had an ever-widening 

field of application in modern analysis. The appearance in 

1899 of the doctor's thesis of M.Baire, in which he investi­

gated the properties of a function approached by continuous 

functions and found that the neoessary and sufficient condition 

for such approach involves the idea of pointwise discont inuity t 

firmly grounded the conception in the fundam~ntals of mathe­

mati cal theory. 

The considerations of the present paper involve a 

number of investigations into certain phases of the subject of 

pointwise discontinuity; such as, the construction and classi­

fication of pointwise discontinuous functions; their properties, 

singly end in combinat ion, etc. We have just reme.rked that 

this subject 1s closely related to the question of approach of 

continuous functions, and this phase of the subjeot is treated 

in Chapter III. The final chapter is devoted to a short study 

of the oscillation function in the general case. 

The first chapter is devoted to an exposition of 

certain concepts and. facts which are of fundamental importance 

in the developments of succeeding chapters. The idea, throughout 

has been to make the treatment such that the thesis will be 

intelligible to one with an elementary knowledge of the theory 

of functions. In particular, an understanding of the elements 

of point set theory is presupposed. 
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As a matter o~ convenience for the reader, those 

portions of t he paper which are original are marked with the 

sign #. In a few cases, proofs of well-known facts are so 

marked, if the proofs differ enough from those ordinarily given 

to warrant it. In general, the sign is used to indicate the 

ps,rts of the work which involve something more than the mere 

adaptation of material found elsewhere, and it does not mean 

that the portions so designated are all radically new. 
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CHAPTER ~ GENERAL NOTIONS 

1. Funot ions. A very general definition of function is 

used in analysis. y is a function of x if for any given value 

of x there correspond one or more values of y. We shall re­

strict ourselves in this thesis to the case where a single value 

of y corresponds to each value of' x; y is then said to be a 

single valued funotion of x. 

2. Maximum of a function at a pOint. About any point 

A let an interval (A-h, A+h) be constructed. Let M(x,h) be 

the upper limit of the values of the function in the interval. 

If f(x) is not bounded above in the interval we say that M(xth)~+~ 

Let h approach 0; M(x,h) never inoreases and always remains 

greater than, or at least equal to t f( A); hence, it approaohes 

a finite limit except in the case where it remains infinite. 

This is called the maximum of the function at the point A. and 

is denoted by M( f ,A), or by ?:'f ( A) • In case M(x,h) remains in­

finite as h approeches O. M(A) =+00. 

Otherwise stated, the maximum of a function at a 

point is the lower limit of the maxima of all intervals enclos­

ing the point. 

~. Minimum of a function at a point. Let m(x,h) be the 

lower limit of f(x) in an interval constructed as above. If 

m(x.h) is not bounded below in the interval we say that m(x,h):-oO 

As h approe.ches 0, m(x,h) never deoreases and always remains 

less than or at most equal to f(Al; hence it approaches a 

finite limit, except in the case where m(x,h)::- 00 for all 

values of h. This limit is the minimum of the function at the 

pOint A, and is written m(f,A) or M(A). If ~(x,h)~-oo for 

all values of h, m(A)::: - 00 
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!Vhe minimum of the function is the upper limit of the 

minima of ell intervals enclosing the point. 

The accompe.nying figure will make clear the ideas of 

sections 2 and 3. ~everal intervals are drawn and the values of 

M(x,h) and m(x,h) are shown for each. 

Fi ,,- I. M.+--------I 
hI. 

A 

4. About any point A an interval can be found such that, 

for any given ~ > 0 I f (x) -<. M ( A)T L thr oug-hout the interval. 

For, since M(x,h) never increases and has the limit M(A) as h 

approFchee 0, an interval can be found such that M(x,h) < M(A)-tL 

But f(x) ~ M(x,h) throu~hout the interval. 

M(A) -\-2-. 

Therefore f(x)< 

In a similar way it can be shown thnt there exists an 

interval about A in which f(x) > m(A} -~. 

5. Oscillation at a point'- The oscillation at the point 

A) written UU~~tA) or vu(A), is defined by the following equation: 
( i ) 

w (A) M(A) m(A). 

If either r,;'1(A) or meA) is infinite, weAl = -+ 00 ~ince M(A) 7 f(A) 

and m( A) -< f( A}, it follows tha.t L\) (A) cannot be negative. 

6· Semicontinuity- A function is said to be semicontinu-

(1) Hobson uses the term oscillation somewhat differently, 
the value of the fun$ion at the point in question being left out 
of consideration. He usee the term ealtuB for oscillation as 
here defined. The definition above follows Baire and Borel. 
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oua above at a point A if M( A) = f( A). It is semioontinuouB 

below at the point if meA) =f(A). A function is said to be 

semi-continuous above if it is semi-continuous above at every 

point; it is semicontinuous below if it is semicontinuous below 

at every point. 

7. It was just shown that there exists an interval about 

A in which f(x) ~ M(A)~~. If the funotion is semioontinuoua 

above at the point A, M(A) f(A) and f(x) -< f(A)-tL throughout 

this interval. Conversely, if, for any preassigned ~lO,an 

interval can be found in which f(x) < f( A) -\- E the function is 

aemicontinuous above at A. For, the upper limit of the values 

of the funotion in that interval, M(x,h) ..( f( A) -t"f~ and, since E­

can be made arbitrarily small, the lower limit of the maxima 

in the intervals resulting is less than or equal to f fA); that 

is, M(A) -< f(A). But M(A) 7- f(A); therefore, M(A) == f(A), 

and the function is semicontinuous above at A. 

Similarly, if the function is semicontinuous below at 

A. there exists an interval about A in which f(x) /' f( A) -Z-. , 

and oonversely. 

a. Theorem. If w (A) :=: Q, ! ~ !: point .2! cont inui ty; .!!!2. 
conversely, if A is! point 21 continuity, w(Al:=.o. 

Given any preassigned ~~ 0, an interval enclosing A can 

be found in which f(x) < M(A);-~ , and another interval in whioh 

f(x) > m(A)-~. In every interval entirely within these two 

intervals, 

If ( x) - f ( A)\ < M ( A) - m ( A ) + £.. = w ( A) -t ~ ;: Z. , 

which is the well known condition for continuity. 

Conversely, let A be a point of oontinuity. For a given E­

o an interval can be found in whioh. 
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f ( A ) t ~ "/ f ( x ) /' f ( A) - ~:1-

In this interval, 

M(A) ;( M(x,h) .<: f(A)-1-~ , 

and meA) :> M(x,h) >- f(A) - ~. 

Then, M(A) .-m(A) ~ L . 

Since z.. may be made Sl'bitrarily small, W(A):=. o. 

Corollary. It follows from the theorem just proved that 

if weAl > O. A is a point of discontinuity, and conversely. 

9. At points of continuity weAl =. M(A) - m(A) -=- O. Then 

M(A} -;::: meA) ~ f(A). In other words, all the points of continuity 

of f(x) lie on the curves M(x) and m(x). 

12. Semicontinuity of M(x) and .m(x). It will now be shown 

that I.Hx) is semicontinuous above. About any point A we can find 

an interval for which, with a given ~ , 

M ( A ,h) < M (A) + f.-
I . 

For any point A within this interval, 

M(A) Z M(A,h) < M(A)-tt:.. , 

and .this 1s the condition for semicontinuity above of M(x). 

Similarly, it can be shovm that m(x) is semicont1nuous 

below. 

11. The sum of a finite number of functions which are semi-

continuous above is semicontinuous above. 

Let F ( x)= f 1 ( x) + f 2 ( x) -r ......... ...,. fn ( x ) , where 

the f's are semicontinuous above. About any point A we can find, 

for a given f- , an interval a,b, for which falx) -<f, (Al+o/",; 

within this an interval 8;1. b,2 for which f ~(x) L.. f (A) 1- ~, and so on. 

Let ab be an interval enclosed in all the preceding intervals. 

Then, throughout ab, 
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F(x) =- f, (x) -t f'1.(x) t .......... ~ f~(x) 

< f, (A) + f2.(A) + _ ......... ffk(A) -t"J1 ~ 

That is, F(x) -< J'(A) i-.t: , 

which is the condition for semicontinuity above-

In a similar way, it can be shown that the sum of a 

finite number of functions semicontinuous below is semicontinuouB 

below. 

];g. If f(x} is semicontinuous below at A. -£(xJ is semicon-
;t.. 

tinuous above at A. 

For a given £ there exists an interval in which 

fix) > f(A)-f., • Multiplying by -I, ~f(x) f(A) 

then f(x) is semicontinuous above at A. 

Since w(x) is the sum of M(x) and-m(x), two functions 

semicontinuous above, uu(x) ~ semicontinuous above. 

~. If a function, f(x), is semicontinuous above the set of 

points where f(x)~ k is closed. 

Let A be a limit point of points where f(x) ~ k. 

Then in any interval, ab, about A, M( A, ab) ~ k. Since M( A) is the 

lower limit of the maxima of all intervals like ab, it follows 

that M(A) ~ k. Since f(x) is semicontinuous above, M(A) == f(Al, 

and f( A) 7 k. ThuB A belongs to the set; in other words, the 

set is closed. 

In a similar way, it can be shown that if f(x) is 

semicontinuous below the set of point s where f (x) 2:. k is closed. 

From what we found of M(x), m (x ), and W (x ) in 

sections 10 and 12, it follows that: 

The set where M(x) 7 k is olosed. 

" " " m(xl <. k " " 
" " " Lo(x) '7 k n " 
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CHAPTER II. POIN~!ISE DISCONTINUOUS FUNCTIONS 

Part 1. Definition and Elementary Properties. 

14. Definition. A pOintwise discontinuous function is a 

function having a point of continuity in every interval. 

Otherwise stated, a pointwise discontinuous function 

is one in which the points where W::=O are everywhere dense. 

A function Which is not pointwise discontinuous is 

called totally discontinuous. 

15. Theorem. In a pointwise discontinuous function the 

points where w~ k, an arbitrary positive number, form a non 
> 

dense set; and conversely if the set where wzk, is 'non dense 

for any value of k STaater than 0, the function is pOintwise dis­

continuous. 

Let K be the set of points where w>k. Since the 

set is closed (13), it' cannot be dense in any interval without 

including all the points in the interval. There 1s then no 

point of continuity in that int~rval, for at points of continuity 

W -= (0). K, then, is non dense in any interval. 

To prove the converse, take a sequence of k's approDching 

0, k I "? k2. '/ k 3)- ••••••• /' k" > · · · · · · and let K I ' K ~ , • • • • .X)'\, • • • • 

be the non dense sets corresponding- In any interval ab there is 

an interval a,b, containing no points of K
" 

since K, is non dense. 

Similarly in a,b, there is an interval a~bzcontaining no points of 

K~, and so on. The intervals ab, a, b" at:b,t, •••• akbJe, _ ••••• 

have at least one point A in common. Given any k", A lies in ahb~, 

and w(A) L... k". Sinceykt\. may be made arbitrarily small, 

W (A):: 0; and A is a. point of continuity. There is thus a 

point of continuity in every interval, and the function is point­

wise discontinuous. 
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This property, viz-, that the points where 

form a non dense set, is used by Hobson ~s the definition of a 
(i) 

pointwise 8_ iscontinuous function. 

16.# Theorem. In a pointwise discontinuous function m( W ,x)=: 0 

at every point; conversely, if m(w,x) = 0 at every point the 

function is pointwise c_i scont inuous. 

The first pert of the pr opo si t ion is evident. (A) 

is never negative, and every interval contains points at which 

w=:O. Then m(W,x) == 0 at every pOint. 

To prove the second part, let K be the set of pOints 

for which w?-k. It will be shown that K is non dense. Suppose 

K to be dense in some interval; then, since K is closed (13), 

it includes all the points in thnt interval. Then w.>k and 

m( W ,x) ~ k throughout the interval. But this is contrary to the 

hypothesis that m( W ,x) ==- 0 everywhere. Then K is non dense, 

and we have just found that this is a sufficient cond~tion for 
(11) 

pOintwise discontinuity (15). 

17. He.rnack(iii) has defined a pointwise discontinuous 

function with the added restriction that the points of discontinuity 

shall be of content o. While this definition is important in 

the theory of integration, it narrows very much the application 

of these functions in other fields; and the work of Baire, done 

since Harnack's time, on the approach to discontinuous functions by 

(1) Hobson, Theory of Functions of a Real Variable, p.243. 

(i1) This prop.osition is not new; but I have not seen a proof 
along these lines. Baire, Lecona sur 1es fonctions dtxcont1nu8s, 
pp.74, 75, has a proof that establishes practically the same thing, 
but is quite extended. 

(iii) Math. Annalen, Vol.XIX., 1882, p.242, and Vo1.XXIV., 
1884, p.218. 
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oontinuous ones would require the coining of a new word for point­

wise discontinuity as we have defined it above. 

Part 2. , Sets of the First ~ Second Categories. 

18. ' Sets which are formed by the union of a countable num­

ber of non dense sets, like the K sets ,of the preceding para­

graphs, are of such fundamental importance in the theory of 

pOintwise discontinuous functions that we shall give here some 

of their properties. Such a set is called by Baire a set of the 

fi ~ st category. !!!! G 1! ~ the first category ~ if 1! 
consists of all ~ point's contained in any of the sets ~,.J!L, 

G ,. • ... • • •• Gn ••• ····., .!!.£!! srf. which.!! !!2.!! dense in any interval. 

A set which cannot be so ,constituted is of the second category.(i) 

19. .!! G ~ of the first category, then in any interval 

there is ! point not belonging to ~. For, in any interval, ab, 

there is an int~rval a,b,containing no points of G" since G, is 

non dense. In alb,there is an interval atbzcontaining no pOints 

of G~. and ,so on. The intervals ab, a,b" a~b~, ••••• 8"b" , ••• ", 

each of which is conteined in the ,preceding, have at least one 

pOint A in common. A does not belong to G tl for any value of 

n since it lies in anb~; hence it does not belong to G. 

Corollary. Since a set of the first category does not 

include all the points of the continuum, the continuum is of the 

(i) This is the definition of sets of the first and second 
categories as given by Baire who originated the ideas. Borel 
and W.H.Young follow him. Hobson inoludes the oondition that the 
oomponent sets shall be closed. His definition has certain ad­
vantages of a minor nature, but the definition originally given 
by Baire is in more general use. See: 

Batre, Lecons sur les fonations discontinues. p.'8. 
Borel, Lecons sur les fonations de variables reelles, p.21. 
Young, The Theory of Sets of POints, p.70. 
HobsoD,The Theory of Funotions of a Real Variable. p'.'l14. 
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second category. 

20. A countable set is of the first category, for it may -
be formecl by the combination of a countable number of sets each 

of which consists of an individual point. 

A set of the first category may be everywhere oense. 

A dense countable set, like the rationals, is an example-

Theorem: The sum of a finite number or of a countable 
,---.. -....-. - --- - - - -----

infinity of ~ of~ first category is ~ set of ~ first 

category. 

The resulting set, G, is formed by the union of all 

the non dense sets constituting the different sets of the 

first category. But these non dense sets ere countable, for it 

is a well known theorem that a countable infinity of countable 

sets is countable- Then G is for-med by the union of a oountable 

number of non dense sets, and is therefore of the first ca.tegory. 

~. The set that remains on a line after the removal , of a 

set of the first category---the complement of a. set of the first 

category---is a set of the second category. If this were not 

true, the sum of the two sets, by the theorem just proved, would 

be of the first category- But the sum of the two is the whole 

continuum, and this we found to be of the second category-

~. Theorem: The points ~f discontinuitl ~ ~ pOintwise 

discontinuous function constitute ~ !!! of the first categorz­

We have found (16) that the points where w,k ,for 

k ? 0, form a non dense set. Consider a sequence of k's ap­

,l'Qaohi:ng, O, k,~~>t~"> . ~,., ••• ,.': '~/k~:> ' ••••• . The poi~t' " wh.re ~?k, 

form a non dense set. The same is true of the points where 

The necessary and sufficient 

condition for a point of discontinuity is that w)'O ( 8). ' Henoe, 
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any point contained in any of the above sets is a point of dis­

conuity, and conversely any pOint of continuity will appear in 

one of the above sets. The set of all the points of discontin-

uity is the union of all these non dense aets, and is thus of 

the first category. 

86. The set of the points of continuity, which is the com--
plement of the above set, is a set of the second category. Since 

a countable set is of the first category, it follows that t he 

points of continuity of a pointwise discontinuous function are 

more than countable. It can be .proved that the points of con­

tinuity have the power of the continuum, but t o include the 

proof here would unnecessarily lengthen the treatment. (1) 

25. We Shall now investigate the question whether any 

set of the first category is the set of the points of discon­

tinuity of some function, while the complementa.ry set of the 

second category is the set of its points of continuity. This 

appears not t o be true in general. However, the following suf-

ficient, but not necessary, condition can be stated: 

# Theorem: 1!.!! ill G .£!!! E.! br oken .!!l! int 0 .!!2!! dense 

component sets, ~. ~ •••••.•• ~. • ••••• , which !:!:! olosed, .! 

function f(x) ..2!!! ~ ~ ~ having .lli points .2! discontinuity 

in G ~ ~ pOints ~ c~ntinuitY in ~ complement ~ ~.(i1) 
Let 0< " 0<:1...' q(.3' •••••••••••• 0{ ~' ••••••• be a 

sequence of decreasing positive numbers approaching o. 
f(x) as follows: 

Define 

(i) See Young, The Theory of Sets of POints. p.71, where 
the proposition is established by means of theorems on inner 
limiting sets. 

(11) Since Hobson's definition of sets of the first categor7 
requires that the oomponent s sets be closed, the proposition is 
true for all sets of the first category as he uses the term. 
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;lex) ::: 0< I , for points on G, ; 

f(x) ::::: ~" t for points on G.z, and not on G, ; 

• • • • • • • • • • 

f(x) ::. 0< 11 • for pOints on G~h and not on any preceding set; 

• • • • • • • 

:rex) - 0, for points not belonging to G. 

It will now. be shown that every point of G is a point ' of dis-

oontinuity, while every point not belonging to G is a point of 

oontinuity. Consider first a point P, belonging to G. P be-

longs to one or more of the component sets; suppose G~is the 

first set in which it appears. Then f(P) ;:; 0<"" and M(P} = 0( Jt\. 

Since the second category points on which f(x) = 0 are everywhere 

dense (19) t m(l') == O· 

discontinuity. 

The w(p}::: o(~Ot and P is a point of 

Secondly. let A be e. point not belonging to G. Since 

G I is closed A cannot be a limit paint of G, without belonging 

to the set. Then an interval Bib" including A in its interior 

and containing no paints of G, t can be constructed. Then 

M( A) <: M( At 8, b , ) -<.0<,. Within a, b, we can construct another inter­

val about A oontaining no paints of G~t and so on. In general, 

M(A) ~M(A,artb.,) <o(~ , where o<"may be made as small as desired. 

Then M(A) = 0, and weAl = M(A)- meA) = O. A is thus a point 

of continuity. 

26. # From this proposition it follows that any countable -
set can be made the set of the points of discontinuity of a 

pointwise discontinuous function. For, each of the component 

sets can be taken as composed of 8 Single paint or of a finite 

number of points. Since a finite number of points have no 

limit point the conditions of the above proof are satisfied. 
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The proposition of (25) gives us a ready means of 

constructing pointwise discontinuous funotions of considerable 

complexity. This method will be used in the following section 

to build up various types OT pointwise discontinuous fuhctions. 

~ 3. Examples of Pointwise Diascontinuous Funotions 

27. In this section will be given a few typical examples -
which will be useful for fixing the ideas and for reference in 

succeeding pages. Pointwise discontinuous functions may be 

classified into seven groups, the basis of the classification 

being the number and the distribution along the continuum of 

the points of discontinuity. 

28. - Class I. !2 points ~ discontinuity. The function 

is then everywhere continuous. 

an example is unnecessary. 

This type is so well known that 

29. Class II. Points ~ discontinuity finite ~ number. 

The discontinuous functions of elementary mathematics belong to 

this class. A familiar example is the function, f(x): sin l/x 

for x-#O, f(Ol=:o. It has a single point of discontiJluity; 

viz., at the origin. The graph of this function is shown in 

}!' igure 2. Its oscillation function is given in Figure 3; its 

value is 0 at every point except at the origin, where it is 

equal to 2. 

Another eXBlDple is shown in Figure 4, where f( 8) ::::; 

f(b) :::: f( c) = f (( d) = 1, and at other point s f(x)== x. Figure 5 ia 

its oscillation funotion. 

!Q. Class III. Points ~ discontinuity infinite 1B number. 

oountable, 2 not dense ..!.!! any interva.l. Figure 6 is suoh a 

function; f(x) = x~2 for x=( 3/~ In. f(x} = x otherwise. Its 





Fiq- 2. 

Fir- to. ---....:...---

1 
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oscillation function is given in Figure 7. 

f(x)::: " for x=p)\(p~1); f(x)::O everywhere else is 

another. Any set with a finite number of limit points can easily 

be made the set of points of discontinuity for a function of this 

class. Most of the disoontinuous functions of -elementary 

analysis belong to classes II and III. 

31. Class IV. -
~ ~ interval. 

Points of discontinuity countable ~ dense 

This includes the functions whose pOints of 

discont inui ty are countable and dense- in every interval. The 

method of (25) can be used to construct a function with points 

of discontinuity on any dense countable set. Figure 8 shows 

a function where the points of discontinuity are the rationals. 

f(m/n) = l/n, min being in its lowest terms; flO) = 1; f(x): 0 

on the irrat iona1s. heferring to (25) the following component 

sets were used: 

G. =. 0.1; o(,-=. 1; 

G 1. :::; 1/2, ~,.::: 1/2; 

G3= 1/3, 2/3, 1/3. 

• • • • • • 

G ,,= 1/ n , 2/............ ~ n -l)/ n ; 0( l\ -::. 1/ n • 

The figure shows the values of the functions on the sets G, to 

G I~ • w(f ,x) coincides with f(x). 

32. - Class! • Points ~ discontinuity ~ ~ oountab1e 

~ ~ dense in any interval. The c1assio example of such a 

function is the ODe shown in Figure 9. f(x)== 0 on the part 

of the line lying between x= 1/3 and x -::::. 2/3; aleo between 1/9 -

and 2/9, and between 7/9 and 8/9; between 1/27 and 2/27, 7/27 

and 8/27, 19/27 and 20/27, 25/27 and 26/27; and so on. f(x) == a 

at the remaining points. otherwise stated, the points where 





a 
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f(x)::a are the points that are left after removing from the 

line the middle third, exclusive of the end points; then re­

moving the middle third of eaoh portion that remains; and BO 

on. The points which are left form a perfeot set, which, SS 

is well known, has the power of the oontinuum. The points of 

the perfect set will be points of discontinuity, for any inter­

val about any point of the set will have m(f,x)=O, and W~a. 

Every other point is a point of continuity, for a finite inter­

val can be drawn about it exoluding all points of the perfect 

set. In this interval, M(x)==m(x)=O, and W(x) = O. 

This function can be simply defined in another way. 

If the x coijrdinates be expressed in triadic fractions, the points 

where f (x) :=. a are the following: 

The point 0.00; 

All terminating in the figure I preceded by only the figures 

o and 2; as, .01, .0221, eta. " 

All composed of 0 I S and 2 I S only; as, .202, .0202022 ••••••• 

(A number containing an infinite number of 2's and no l's or 

O's after a given point, like .012222 •••••• , is to be replaced 

by its simpler equivalent, .02). 

original function. 

uu(x) coincides with the 

M. Class .!!. Points of discontinuity not countable ~ 
(i) 

everywhere dense, ~ B£! condensed in any Whole interval. 

We can easily build such a function from the examples of Classes 

IV and V by the method of (25). 

G,= the non dense perfeot set of V; f(x):::::: 1 on G,; 

Gt, == 1/2, f(x) =.1/2 on G~:p 

G!> =: 1/3, 2/3, f(x) ~ 1/3 on ~; 

• • • • • • • • • 
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G't\-l/n, 2/n, ••••• ~n-J.J/n (fractions not in their 

lowest terms omitted) f(x)~l/n on Gn • It is understood that 

if min is also a point of G" f(x) is to have the value 1 on 

that point. 

f(x) := 0 everywhere else. 

C lass VII. Points of discontinuitz condensed ~ 

every point is ~ interval. Figure 10 is an example of such 

a function . G, is the non dense perfect set of (32); f(x)=l 

on G,. G ~ is the set of points gotten by constructing in each 

of the open intervals left by G, a set bearing the same relation 

to the interval that G" does to the interval 0-1; f(x)-==. 1/2 on 

Gte G3 is construoted in a similar way on the intervals left 

by Gt ; f(x)= (1/2)9.. on G3 ; and so on. Every point is a point 

of condensation of paints of discontinuity; yet, by (25) there 

is a point of continuity in every interval. 

put in terms of the triadic system of notation, G, is: 

The point 0 .00; 

All terminating in 1, preceded by 0'.8 and 2' s. 

All composed only of O's and 2'8e' 

Gis: 

All ending in 1, the numbers preceding containing a Bingle 

1 and the remaining figures being a's and 2 1 s; as, .10201, 

.0210201. 

All having a single 1, the last figure, if there is one, 

being a 2; as, .102, .021022, .21202202 ••••• 

• • • 

• 

(i) A Bet of paints is condensed at a point if every interval 
enclosin~ the ~ointtDontains a mo~e thani countab1e number of .­
p01nts OT tlie set; he set 1S condensed n a gIven interval if 
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All with n l's, the last number being 8 1. 

All with n-l l's, the last figure, if there is a last one, 

being a 2. 

35. With the pointwise (liscontinuous functions of Cla.ss 

VII, we have reached the ne plus ' ultra of discontinuity. start­

ing with a few scattered points of discontinuity and continuity 

by whole intervals, we have constructed functions which, while 

having pOints of continuity in every interval, have also in 

every little interval an infinity of points of discontinuity 

whose number has the power of the continuum. 

Part 4. -- The Pointwise Discontinuity of Semicontinuous 

Functions 

36. It will now be proved that ~ semicontinuous function 

is Eointwise discontinuous. Let f(x) be semicontinuous above. 

Consider meA): since m(x) is semicontinuous below, an interval 

enclosing A can be found fol' which m(x) > m(A) .... f( for any point 

within this interval. From the definition of the minimum we 

can find a particular point A' in the interval at which f(A'f) <m(A)+~ 

Subtracting the first inequality from the second, and remember-

ing that f( Af,) ;::: M( At), we get W( Ai) =M( Ai ) - m( A1 ) .( f.... Since 

the point A 1 exists however small ~ be taken, wat the point A 

has a minimum o. This we found (16) to be a sufficient condition 

for pointwise discontinuity. 

In a similar way, it can be shown from a consideration 

of M(A) that a function semicontinuous below is pOintwise dis-

continuous. 

it is condensed at every point of the interval. 
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We found (10, 12) that Id(x), m(x} t and ~x) are semi-

continuous. They are then pointwise discontinuous-

Part 5- Combinations ~ Pointwise Discontinuous Functions 

~. In this section will be developed some of the funda­

mental facts concerning the combine.tion of pointwise discontinu­

ous functions by addi tion-, subtraction, multiplication, and 

division. After treating a finite number of functions we shall 

take up the case of infinite sequences of functions. Attention 

will first be called to a faot, present mention of which will 

avoid repetition in the proofs. 

38. Theorem: If f,(x), ~:!:) •••••• f"'(:!:) •••••• is a finite 

or infinite sequence of pOintwise discontinuous functions, there 

exist points in every interval which are points of continuity 

of each and every function of the sequence. For, we found in 

(23) that the pOints of discontinuity of each function form a 

set of the first category. We also learned (21) that a finite 

number or a countable infinity of sets of the first category is 

a set of the first oategorl; ~ -then ·- ·tlie .. :set · .of all the points of 

discontinuity of the functions is of the first category. There 

are points in every interval not belonging to this first cate­

gory Bet (19); such points are pOints of continuity of each 

function~ 

39. Theorem: The sum (difference) of two pointwise dis-

continuous functions is a pointwise discontinuous funotion. For, 

if two functions are continuous at a point their sum, or differ­

ence, is continuous at the pOint.(i) Since every interval con­

tains oommon points of continuity, the sum (differenoe) has 

pOinte of con~inuity in every interval; hence it is pointwiee 
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discontinuous. 

It follows from this fact that the combination by 

80dition and subtraction of a finite number of pointwise discon­

tinuous functions gives a pointwise function. 

12- # The following theorem can be proved in a manner ana1-

ogous to the preceding: !h! product ~ !!2 pointwise discon-

tinnous functions is ~ pointwise discontinuous function. 

# It follows from this and the preceding article that 

any integral rational function of pointwise 8iscontinuous 

funotions is pointwise di.continuous. 

41. It can be shown similarly that the quotient of two 

pOintwise discontinuous functions is pointwise discontinuous, 

provided the function in the denominator is nowhere equal to O. 

This provision is not necessary, but it is su~ficient. 

42. Turning now to an infinite series of functions we 

Shall prove the following important theorem: 

~ ~ uniformly convergent series, any common point of oontinuity 

of all the i's is a point .21 continui tl of F (x) • 

Let A be a point of continuity of all the f's- But 

F (x) ::::; ¥)\(x) -t R "(x), where Ft\ (x) is the sum of the first n terms, 

and consequently has A as a point of continuity. and Ht1 (x) is 

the remainder term. Since the aerie s is uniformly co:nvergent. 

for a given f.,>O, we can find an m such that, for all values of 

Fixing n, and as a consequence 

F~(X). we can find an h>o such that \Frt(X') - FK(A) \ < 2../'1;. 
for \x'-A\~h. 

'F~(X') 1- Rl\(x') - FH(A)-RK(A)' <-E , for 'x' - A\'" h. 

That is, I F (x') - F (A) t .( E • for l:x' - A'.(. h; 

and A is a point of continuity. 
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43. - Corollary 1. A uniformly convergent series of con-

tinuous terms is everywhere continuous. This is well known. 

i!- # Corollarz~· ! uniformll convergent series of point­

~ discontinuous terms ~ Eointwise discontinuous-

45. A pointwise discontinuous funotion can be built from 

any sequence of pointwise discontinuous functions. If the sum of 

the functions is not a uniformly convergent series, the terms 

can be multiplied by convergence faotors. If all the functions 

have a least upper bound, any absolutely convergent series, 

0< I ' 0< ~ • _ •••••••••• 0(", • • · · will accomplish the result; 

and the series will assume the fo.rm, 

· · · ~ · · · · · · · · .. + oi 'If t\ (x) -t ..... . 
It is not necessary that the convergence factors be 

constants. The series may be constructed as follows: 

F ( x ) = 4:>1 (x ) f I (x) 1- 4',J:x ):1':2- (x) + ........ + <#>,,( x ) f" ( x )-t • • • • · • • 

where cf. (x) • 4>2. (x) , • • • • • • • • • 4'.. (x). •••• are cont muous or 

pointwise discontinuous functions so chosen that the series con-

verges uniformly. 

!§.. So far we have been attending to the preservation of 

the pOints of continuity; and we found that for integral rational 

functions and uniformly convergent series every pOint which is a 

point of continuity of each and every function is a point of 

continuity of the function resulting from their combination. 

We shall now investigate the question of the preservation of 

the pOints of discontinuity- In the general case we can say 

nothing. It is easy, for instance, to set up functions Whose 

points of continuity are very complicated, but Whose sum is 

(i) The proof of this and similar statements made later 
are well known, and can be found in many places. See Booher, 
Introluotion to Higher Algebra, pp. 14-16. 
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everywhere continuous. Thus. let f,ex) be any function what­

ever. pointwise discontinuous or totally discontinuous. and 

Then the sum of the two equals 0, and is 

continuous everyWhere. 

47. # As an aid to the further investigation of the pro--
blem we shall prove the following proposition: If F(x)=f,(x)-tUxl... 

then at any point A. 

U) (f •• A)tt.o(f,,~A) ~ Lv (F,Al;e IW(f, ,A)- LO(f:t.c,'A) , 

'rom the definitions of maximum and minimum at a point, 

we oan write the following very evident inequalities: 

1. 14 (F ,A) ~ M ( f I ,Al + M ( f ~ t A) ; m (P ,A ) ~ m ( fit A ) 1- m ( f~ • A) • 

2. M(F,A)5 M(f, ,A)-t-M(f~tA); m(F,A)~m(f'tA.) -+M(f,e,A). 

3. M(F,A)~m(', .A)tM(f~,A); m(F,A)~ M(f"A}tm(f~,A}. 

Fr om I, U> (F ,A ) = M (F , A ) -me F • A) 7.. W ( f, • A ) -\- W ( f 1. , A ) • 

ir om 2 , W (F ,A) 5-W( f, ,A) - to (f,., A) • 

From 3, 

The proposition follows at once from these inequalities. 

~. I We can extend this, under certain conditions. to the 

oaee of a converging infinite series of funotions. 'Let the 

series be. (F(x):f, (x)+ f:z.(x)t- ••••••• +f~(x)-t •••••••••• 

Suppose that at the points of discontinuity of fn(x) t to (f)\,x).=o(,.. 

a constant> 0, and suppose further that the series
J 
~I-t 't" +o(~+ -" 

is one in Which ~~.( 0<1'\' ~en all the points of dis-

continuity of the different functions persi.st as points of 
'(x)~ To show this, let A be a po~nt of discontinuity 

discontinuity of/.one or more of the functions, and let fy(x) 

be the first function in which A appears as a point of dis-

continuity. Then the least possible value ~(F,x) could 

have would be, 
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ot-y - 0( Y-t, - •.• -o<~ - " · · .... = ~y R r:> 0 

A would thus be 8 point of discontinuity. 

There are many series of the type mentioned; viz •• 

where R 1\ ~ ~~ • The geometrical series. 8. +ar -t-ar'--t •.•. -+ a:r 1f+ .. 
where 0 ~ r ~ 1/2, is an example. Here R')t -= ar It-tt( 1 + r + r~-t •••• ) :::: 

ar-n+' Al-r}::.ar~· rA'l-r)(ar'! Any other series in which 

o\"'-\-, /cA.~ ~ 1/2 is an example; for instance. the series. 

1 -t 1/2 + 1/~! + ............. -t 1/ n '. -t ...... .• 

or the series, 

. . . . . . . . . . . . . -t l/n't\ -t ........ . 
~. # Let f,(x). fg(x), ••••• fMJx), •••• be ~ sequence of 

functions, each being bounded and in each of which W
14
= a~, a 

constant, at the pOints of discontinuity; then a function, .. 

F ( x) ~ d, f , (x) -t dl- f ~ ( x ) -t- • • • · • • .+ d~ f" (x ) + ....... . 
can be set up. having as its pOints of continuity the points of 

continuity common to the different functions, and as its pOints 

of discontinuity every point of discontinuity of each of the 

functions. 

Let B)\ be an upper bound of \fl\(x) \. We can set up 

a uniformly convergent series, 

c:r(x) -= b,f,(x)+b:Lf:z.(x)-t •••••••••• -tbl\fl\(x)-t •••••••. 

by taking b 1\:::; C1t/Byt, where C I. oz. • ........ 0., • •••••••• is any 

absolutely converging series of positive terms. Then by (42) 

all the common pOints of continuity of the terms will be points 

of continuity of ~(x). These will still be points of con­

tinuity if each term is multiplied by a constant and the sequence 

of multipliers has an upper bound, for the series will still be 

uniformly oonvergent. 
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It is now neoessary to reconstruct the series, on the 

basis of the last remark, so that the points of discontinuity 

of the terms shall persist. The oscillation at each point of 

discontinuity of the term bllfV\(x) ~· bn&V\. Beginning with the 

second term multiply each term by such B. conste.nt that 

bn--t, lA\\-\""\ /b"" lA)\ <. 1/2, ancl let all the multipliers be bounded 

above (less than 1,for instance). I say that all the points 

of discontinuity of the seperate functions are points of discon­

tinuity of the resulting funotion, 

F (x ) = d, f, (x) + ~ f~J x ) + ............ + d)\f l'\ ( x) +. · · · · · · ; 
for we have thus a series of functions whose oscillations form 

a series of the type mentioned in (48), and in this case we found 

that the pOints of discontinuity are preserved. 

£Q. # ~e can go further and state that if the functions are 

boundecl and if w~x) 7 lA)\ at all the pOints of discontinuity of 

f~(x), we can set up a function in which the points of discontin­

uity of the separate functions persist. 

After setting up the uniformly convergent series, 

cp (x) == b J f I (x) -t b~ ~ (x) + ......... + b)\ f ~ (x) + ....... , 
as before, which provides for the preservation of the common 

pOints of continuity, we choose our constants (less than I, for 

example) so that b ll-t\B1\-\"\ /b Yt ().M. ~ 1/2. Then if A is a po int of 

discontinuity which appears first as a point of discontinuity in 

fr(x), the lea.st possible va.lue w(Al could_ have would be, 

bya..y-by-t,B y -\-\ - b y-t:1.B-y-t'-- ••••••••• -bKB)t- ••••••••• 

Since by\+\B"Jbt\(k\\..( 1/2, b1",·,BlIt,/b l1B" -<. 1/2. for ' G{l\-< B,,; and the 

series is of the type mentioned in (48). Then the pOints of dis-

continuity of the component functions persist in F(x). 
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51. It should be noted that the work of 47 - 50 applies 

to all kinds of functions, and not merely to pointwise discon-

tinuous functions. By making the component functions pOintwise 

discontinuous we have a new method of construoting a very compli­

oated pointwise discontinuous function, which has for its points 

of discontinuity all the pOints of discontinuity of each of the 

sequence of functions. Attention should be called to the fact 

that if the component functions are pointwise discont,inuous 

their points of discontinuity are non dense in any interval; 

for the requirement that W,,(x);> ~'" at the pOints 

of discontinuity would force Wl\(X) ~ alit at every point, 

in the whole interval if the points of discontinuity were dense, 

since the set where Wl\(X))- tA}\ is closed (13); and there would 

be no point of continuity in the interval. 

part 6. Pointwise Discontinuous Functions '--
in n Variables --

52. We shall now extend to space of n dimensions the ideas -
developed for one dimensional space. 

Limit Point. A point A is a limit point of a set of 

points in n dimensions if every sphere with A as center contains 

points of the set (A not considered). A point inside the sphere 

satisfied the inequality (Xi:X:~) 1-+ (x,.-i:))~ + ....... . 
+ (~- x~f).. -< R~. where R is the radius of the sphere. Since we 

can enclose a parallelopiped by a sphere or a sphere by a 

parallelopiped, enclosing the point in each case, we can,if it 

more convenient, use a parallelop1ped instead of a sphere. 

"'l IN (A) / 
TheD if ·there exists a point such tha.t x, - h, L.... x,,",x, ,...h" %2- h,. '-. 

\ , 'J\l lA' ' , 
X 1 <. i: + h~ •••••••• x" - h}t < X~ < x" + ht\ t however small' 'the 
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positive numbers, hi' ht, _ •••• h J1 be taken, A is a limit 

point of the set. 

Maximum of a funct.ion at -a point • Let f (x I t X ~ t ••• x,,) 

b-e the function, and let A be the point under consideration. 
_ (i) 

With A as center, describe a sphere with· radius ~. Let 

M(A, H) he the upper limit of the .values of the function within 

the sphere. Let R approach 0; M(A,R) never increases and re-

mains always greater than f(A); hence it approaches a limit, and 

this limit is called the maximum of the function at the point. 

It is denoted by M(f,A) or M(A) as before. 

54. Minimum of a function at a point. By taking the 

lower limit of the values of the function in the sphere we can 

define the minimum of the function at the point, in a manner 

analogous to its definit-ion in ~; likewise ,the oscillation.!! 1h.! 
pqint, U) (A) =-M(A) - m(A). Provision must be made for in-

, finite values of M(A), m(A), and w(Al, as in 2-4. 

55. Without going through the details of the proofs, which 

are similar to those in the case of a function of a single 

variable, I will merely state the results that may be arrived at: 

1. If weAl = 0, A is a point of continuity; and, 

oonversely, if A is a point of cOBtinuity, LO(A)== o. 
2. M(x",~, .~) and W (x.,,·xJ are semicontil1uous above; 

m(xl, ••• XK) is semicontinuous below. 

3. The sets where M(x, t •• • • .x~) > k, where 

m(~, , •• • .xl1 ) Z k. and where lJ) (x. , ' .- • • .X'1) ? k are each closed. 

~. Pointwise discontinuity. A pointwise discontinuous 

function in space of n dimensions is one having points of con-

(i) In two dimensions the sphere becomes a circle in the 
coordinate plane. 
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tiBuity in every sphere; that is, the points of continuity are 

everywhere dense. 

It can be sho,Yn, in the manner of 15, that in a point­

wise discontinuous function the set of points where w~k "70 is 

Don dense; and, conversely, if the set where L<.J?k is Don dense 

whatever value,greater than e,k be given the function is point-

wise discontinuous. 

57. Semicontinuous functions. Semicontinuous functions -
can be shown to be pointwise discontinuous. If in 36 we read 

the word "sphereTTfor interval" the proof holds throughout. 

58. Sets of the first and second categories. A Bet 

G is of the first category if it consists of all the points 

conta.ine d in the sets G" G.,t, •••• G#1f •••• - each of which is 

non dense. A Bet not so constituted is of the second category. 

All of the facts concerning sets of the first and 

second categories can be easily worke d out for the case of n­

dimensional space, certain obvious modific ations being necessary. 

As an example the following proposition, similar to thet of 

25 for a sin~le variable, will be established. 

£2- # If G is a set of pOints in n dimensional space which 

can be broken up into component eets. G I • Gz ••••• Gn •••••• 

which are closed l then a fup.ction f(x, I %21 

UEt havin~ its 120ints of discontinuitl on G 

continuitl on the com12lement of G. 

Let 0<" 0(2.,' ...... <'(~, -... be a 

deoreasing positive numbers approaching e. 

f(x I , • • • • .x", ) =0(,. for points of G I • 

. . . x~} can be set 

and its EOints of 

sentence of 

Define f as follows: 

f(x,. , •..•• x") -= o(~, for pOints in G~and not in G, • 

. ' • • • • . . • • 
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f(x" ••••• x") ~ 0, everywhere else. 

Oonsider a point P belonging to G. Suppose Lf ~ is 

the first set to which P belongs. Then f(P)::<YH(' and Mep) ~ f(P}. 

Now m(P)::O, since the points where f(x , ••••• x) 0 are 

everywhere dense. Then W (p) ~""" and P is e. point of dis-

continuity. 

Let A be a point not belonging to G. Since G- n is 

closed, A is not a limit point of G"; and a sphere S", having 

A as oenter and containing no points of G~, can be constructed. 

Then M(A)<M(S~)<O<}1,M(S,,) being the upper limit of the values 

of the function in the sphere. 

small 8S we please, M(A)== o. 

and A is a point of continuity. 

proved. 

Since o(l\ can be made as 

Then W (.1) :::= M( A) - m( A):=:. 0, 

The proposition is thus 

~. Classification of pointwise discontinuous funotions 

in n dimensions. The same division into seven classes that 

we made for pointwise discontinuous functions of a single 

variable (27-~4) can be made here, and the proposition just 

established fUl'nishes us a ready means of constructing examples 

of the various classeB. Two examples are shown in the 

figures. 

A funotion' of two variables having points of discon­

t 'inuity countable and everywhere dense (class IV) is shown in 

Figure ~I. G~~ all points with coordinates of the form (m/n, .~/n)t 

wi th the fractions in their lowest terms; 0(11 =: (1/2).-t • 

f(x.y) == 0 on the points not belonging to G. 8e before. The 

figure shows the points of discontinuity on the sets up to and 

including G7. 
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Figure 12 shows a funotion with points of discon­

tinuity everywhere condensed (61ass VII). G, is the set of 

pOints for which y.==1/2; C<,-1/2. G~ is the Bet for which 

x == 1/3, x=2/3; o(,.=:(1/2)~. G3 is the Bet y = 1/4, y==-3/4; 
..s 

o(~ == (1/2) ; eto. Each set contains all the points on a 

straight line; hence each is more than countable. 

Section 7. Pointwise Discontinuitl ~ Perfeot Sets 

61. The notion of pointwise discontinuity on a perfect 

set is of very great importance in a connection that will be 

discussed later; namely, the necessary and sufficient condition 

for the approach to discontinuous functions by continuous 

funotions. In this section will be given, as briefly as pos-

sible, a few faots necessary for an understanding of this phase 

of the subjeot, We shall treat only perfeot sets in one di-

mension, but the ideas can, in general. be extended without 

diff iculty to n-dimensional space. 

62. - Perfect sets and their construotion. A perfect 

set is a closed set every point of which is a limit pOint. 

Any closed interval (an interval including its end points) is 

a perfeot set. If a countable number of open intervals 

(intervals exclusive of their end points) be removed from a 

closed interval, the set remaining is a perfect Bet. In 

fact, any perfect Bet can be so constructed. A perfeot set 

was used in the example of 32. Mention was there made of 

the faot that a perfect set has the power of the continuum. 

The general notions in this case. If we construot 

an interval about any point A of the Bet it will contain an 
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infinite number of pOints of the set. We can then define 

M(A), m(A), and ~(A) 8S before, with the understanding that 

only the values of the function on the points of the perfeot 

set are taken into account. The various properties of M(x), 

m(x), and W(x) follow as before. 

64· - pointwise discontinuity- A function is pointwise 

discontinuous on a perfeot set if every interval containing 

points of the set contains points of the Bet where to(x)::::: O. 

As stated in 63, 6O(x) must be defined leaving entirely out 

of consideration the values of the function au pOints not be-

longing to the perfect set. Thus, in the example of 32 tOe x ) == a 

at points of the perfect set, if the values at other points 

of the line be cons idered; however, f (x) = a on the perfect 

set, a perfectly continuous function, and w(x) == o. 

65. - ~ets of the first and second categories. A set G 

is of the first category if it consists of all the points of 

a countable number of sets, G, t . G,t, • •• • .G~~ . •• • • • • • t each of 

which is non dense on the perfect set. In saying that G rt is 

non dens~ on the perfect set, we mean that in any interval con­

taining points of the perfect set, we can find another interval 

containing points of the perfect set but contain,ing no pOints 

of G·n. 

oategory. 

A set not constituted as above is of the second 

All the faots concerning points of the first and 

second category work out without difficulty for the oase of 

perfect sets • It is easily shown, for e~ample, that any set 

. of the first category whose component sets are closed can be 

made the set of points of discontinuity of a function pointwise 
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discontinuous on the perfect set t the points of the second 

category remaining on the perfect set being the points of con­

tinuity. Using this fact t we can build up funct.ioD8 corre8~ 

ponding to the seven classes found in the case of a function 

defined on the whole continuum. 

66. If a function is semicontinuous on a perfeot sett it 

can be shown to be pointwise discontinuous on the set, by 

the method used in proving the same fact for functions semi­

continuous on the whole continuum (36). 
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CHAPTER III. THE APPROACH TO DISCONTINUOUS FUNCTIONS --- . -- ------------- ---------
BY CONTINUOUS FUNCTIONS 

Part 1. Fundamental Ideas ~Approach 

67. A sequence of functions, f,(x), f2.,(x) , ••••• ft\(x), ..... 

is said to approach a function f(x) if, given any point x' and 

any positive number f , however small, a number m can be found 

such that \f(x') - f"(x'll<£. , for n';7m. 

If a value of m exists such that the inequality 

holds with the same m, for all values of x in the interval 

under consideration, the approach is said to be uniform. 

68. A little more than a decade ago Baire worked out the 

cond.i tions under which a function may be approached by a sequence 

of continuous functions. His results may be stated in a single 

sentence: 

Theorem: The necessary and sufficient condition that 

any function Whatever, finite or infinite, be the limit of con­

tinuous functions is that it be pointwise discontinuous on everr 
(i) 

perfect set. This is true for a function of any number of 

variables. 

69. It should be noted that it is not suff icient that the -
function be merely pointwise discontinuous on the continuum; 

it must also be pointwise discontinuous on every perfect set. 

All of the examples of pOintwise discontinuous functions that 

have been given so far have been pointwise discontinuous on 

every perfect set. An example of a function without this 

property is the one of 32 if f(x)=: 0 on the end pOints of 

the intervals. While the function would still be pointWise 

(1) Baire, Lecone sur lee fonations discontinues, p.124. 
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discontinuous on the continuum, it would be totally discontin­

UQUS on the perfeot set which remains after the removal of the 

given open intervals. For, any interval including a point of 

the perfeot set would contain pOints where f(x)=8 and also end 

point s of the intervals where f(x) = o. w (x) = a then at every 

point of the perfeot eet. 

70. Semicontinuous functions. It will now be shown 

that any semicontinuous function is the limit of continuous 

functions. Let f(x) be semincontnuous above. It will be 

Shown that f(x) is semicontinuouB above on every perfect set. 

f(x)= McJx), where M~ (x) is the maximum of the function de­

fined on the continuum. At any point A on a perfect set, 

M( A) <: M c.(A).:::: f( A), for in the case of the perfeot Bet certain 

values of the function may be left out of consideration. But 

in general M( A),. f( A) • Then on the perfeot set M(A)=f(A). 

and the function is semicontinuous above. Consequently it 

is pointwise discontinuous on the perfeot set (66), and it 

can be approached by continuous funotions. 

In 8 similar way. it can be shown that if a funotion 

is semicontinuous below, it can be approached by continuous 

funotions. It follows that M(x), .(xl. and uJ(x) can be ep-

»rQached by a sequence of continuous funotions. 

71~ - Sequences and seriee. Approach by a sequence of 

functions f I (x), f:z.. (x), ••••• ft\ (x), .; •••• can be put in the 

form of a series, thus. f(x) = f,(x)+ (f~(x)-f, (xJ'-t •••..•• 

t (fl\(x)-fll",(x»+ ••• The sum of the first n terms i8 

fW\(x) and the remainder term is f (x) - fr\(x). If the S8-
-

quence e approaches f(x) the series converges to the value '"f(z)'t 
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and oonversely. Also if there is uniform approach of the 

sequence there is uniform convergence of the series, and oon­

versely. 

~. This enables us to apply the proposftions of 

42-44 to the case of approach. If the approaoh is uniformly 

oontinuoussnd the approaching functions ere continuous, the 

function approached is continuous.- If the approach is uni-

formly continuous and the approaching functions are pOintwise 

disoontinuous, the function approached ie pointwise discon­

tinueus. 

It follows, then, that if a pointwise discontinuous 

funotion, which is not everywhere oontinuous, is approached 

by continuous functions, the approaoh is not uniform. 

M. In 1885 Weierstrass established the proposition 

that any function continuous in a closed interval can be ap­

proached uniformly by a series of POlynOmi8ls.(i) It will 

(1) Note on Taylor' 8 ser ies. If f(x) == a o-+ a, x + 8:z. x1.+ •••• 
+ &l\X" + -::-:-: ,where the polynomia.l is uniformly convergent in an 
interval. it can be shown by differentiation, since f'~) is 
also a ,uniformly convergent series about the origin, that 
80 = f (01, a, ~ f' (01. etc. It might appear, from the theorem 
of Weierstrass, that any continuous functio~ is developable 
in a Taylor's series about the origin. e-';.(~ is a familiar 
example of a funotion which cannot be so developed. The 
apparent contradiction lies in the fact that the Weierstrass 
polynomials are not in the form implied above; for in the 
Taylor's series P ~+\ (x) differs from P\I\(x) only in having an 
added term a\\-\-\x1i +' , while this is not true in general of 
the Weierstrass polynomials-

This matter is intimately connected with the use of 
approximation formulae in the sciences. It is customary to 
represent a function based upon experimental data in the form 
f(x) = a o -+ a, x -t • • • • • ., where a very few termsgenera11y 
suffice. According to Weierstrass' theorem, such an approxi­
mation can be made to fit the true curve with any desired de­
gree of accuracy, provided the curve is continuous. But this 
tmportant fact must be kept in mind: If the accuraoy of the 
apprOXimation is increased by the addition of new terms, it 
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now be shown that any function which is approached El ~ sequence 

of continuous functions, f, (x) ,f.:(x}, •••••• f.,(x), ••••• , ~ 

be approached by a sequence of polynomials. Take a se-

quence of decreasing positive numbers approaching 0, e
" 

~4' ••••• 

f l'\' • • • • • • 
Choose a polynomial P.,(x) such that lf lt (x)-

p)\(x)\<f~ • Then the sequence of polynomiale P,(X), P~(x), ••••• 

P~(X)t •••••• approaches the function f(x). For, given an ~ )- 0, 

we can choose an ~.,< ~; then \ f)\ (x' ) - p)\ (X" ) \ -< ~ for n / r, 

for any va·lue of x; and with a given x' we can find an s such 

Then if 16 is the greater 

of the two numbers rand St by adding the two inequalities 

we get 'f(x' ) - PH (x~ )\<~, for n,> m, whi~h is the condi tion 

for approach to f(x) by the sequence, P,(x), •••••• PJt(x), ••••• 

Part 2. Methods ~ Construction Continuous Functions 

Approaching Discontinuous Functions 

'4. This section will be devoted to the desoription, with 

the aid· of figures, of methods which may be conveniently used 

to construct a sequence of ,continuous functions approaching 

a given discontinuous function. fllhe f 1i hO ~ means 0 Rccomp s lng 

this result has been suggest~d by Baire. He says: 

"The investigat1onof a suite of continuous functions 

having for a limit a function f(x) defined on a segment AB is 

equivalent to that of a f~ction F(x,Y) which reduces to f(x) 

for y~ ° and is continuous with respect to the two variables 

x and y in a rectangle ABA1B1 except on AB and continuous 

is necessary to redetermine all the constants of the polynom­
ial and not merely to find the ,constants of the added terms, for 
these a dditional terms will, in general, change the polynomial thru-ou' 
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with respect to y on every point of AB. 

The problem is reduced to that of the construction 

of a surface whose sections by planes parallel to the yz­

plene are continuous curves and whose sections by planes par­

allel to the xs-plane are continuous curves, except in the 

cas~ of the plane y== 0, where the curve shall be ~.(x). The 

seotions of this surface by the suite of planes y=~, y=~ 

• • • • .y == k lt , •••••• , where k" k,., •••••• k", •.••• is a series 

of positive terms approaching 0, will be a sequence of con-

tinuous funotions approaching f(x). The examples which are 

given, with the acoompanying figures, will make this · clearer. 

12. Figure 1:3· shows the" approach by continuous funotions 

to th~ function f(1/2) =: a, f(x):::: 0 elsewhere. :Several 

sections of the surface by planes parallel to the xz-plane 

are shown, and each of . them is seen to be a continuous curve. 

It can readily be· shown that if a sequence of curves, f, (x), 

f2.(x), •• _ •• f~(xr ••• ,-. be c~t. from the surface by the planes, 

y:::=. k" y = k~, • - •• - y=- k~, •• - • • ., where the k' s approa.ch 0 

and are. for this f'igure all posi tive, these approach the 

curve f(x). It must be shown that for a given Xl and a 

number~70, we can find anm such that\fex')-fl«(x!)\<, ~ , 

for n> m. This is true for the point of discontinuity, 

x = 1/2" for f~ (1/2) ~ a for all values of ri, Then 

If(1/2)- f~(1/2)\= O<.f- , for all n. If x'=/=- 1/2, we can 

determine a str ip of width y' such that f)\ (x '» = f (x' ) = 0 if 

Sinoe the k'a approach O. we can find en m such 

that kl\< y' for n>m; then (f(x' )-f,.(x' II = o<~ for n:>m. 

Figure 14 Shows the function f(x) which is approached. It 
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is also GO(x), since the two are identical. 

76. Figure 15 shows the approach to the same function -
by functions which are not only continuous but also have 

continuous first derivatives. The straight lines of the 

preceding example are joined by arcs of circles which are 

tangent to the lines they connect· It is necessary that 

the radii of these circles a~proaoh 0 as the xz-plane is 

approached. This is accomplished by keeping the points of 

tangency of the circles between two lines on the surface which 

converge at the point x=1/2, '1= o. 

lines are in brown in the figure. 

These converging 

'1'1. figure 17 shows the approach to the function -
f(x)= 1/2, for x~ 1/2; f(x)-= 0 for x"7 1/2. It is discon-

tinuous at the point 1/2, where it is semicontinuous above. 

It is seen from the figure that f~(1/2) = f( 1/2) =-1/2 for all 

values of n; thet is, for every section of the surface by a 

plane of the form Y-= k~ • 

In ~!igure 19 is the same function, except that 

f(1/2)= o. It is semicontinuous below at the point 1/2. 

f't\(1/2)=::' f(1/2)= 0 for all values of n· 

ligure 21 shows the case where f(x) is neither 

eemioontinuous above nor below at the point 1/2, but takes 

on an intermediate value a-

for all values of n. This figure and the two just mentioned 

illustrate the methods employed to make the continuous 

functions approaoh any desired value at the point of dis­

(I) Baire, 1econs sur lee fonations discontinues, p.g. 
p La recherche d'une suite de fonctions continues 

ayant pour limite une fonction f (x) d'finie sur le segment AB 
eat abeo1ument 'quivalente ~ celIe dtune fonation F(x y) se • 
riduisant ~ f(x) pour y::..O. continue par rapport 8: l'~neemble 
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oontinuity. Figures 18, 20, and 22 show the oscillation 

functions in each of the three cases. The oscillation 

function is the same in each case • 

.!§.. Figure 23 illustrates the case of a function having 

an infinite number of points of discontinuity which have a 

single limit point. The function used is £(0)= 1, 

f(l)== -1, f(1---l/2~)= 1/2", f(x)=O elseWhere. It is seen 

from an inspection of the figure that for any paint x', a 

point either of continuity or of discontinuity, and a given 

f > 0 we can find a strip of width y' such that If(x' )-f .. (xf)l<f 

for values of n which throw the seotion y= kttwithin that 

strip. ' The figure below (Figure 24) is to(x). It . is equal 

to f(x) everywhere except at the point 1; U) (1 )=--£(1) ;:::: 1. 

In a manner entirely similar to · the one just 

shown, we can put in, in the intervals between the pOints of 

discontinuity of the last example, an infinite number of other 

pOints of discontinuity having these pOints as limit points. 

Between these points of discontinuity we .can place still' 

others having these as limit pOints, and so on. Let P be 

the set of all the points of discontinuity of a function 

f(x) • Let P' be the first derived set of P; that is, the 

set of the limit pOints of P. Let P" be the second derived 

set of P - the set of the limit points of P', and so on. 

If pl~'== 0 we can use the method just shown to construct the 

continuous functions approaching f(x). For, since 

) 1 rectangle ABA'B' at enfin 
des deux variables (x,1 dans te AB 
continue par rapport a y en tou point de • 
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pllt-"oonsists of a finite number of points; and, 

beginning with these, we oan prooeed in the way indicated 

back to the pOints of p. 

79 • 'igure 25 is a function equal to a exoept on the -
points of a perfeot set, where it is equal to o. Mention 

has been made of the fact that any perfeot set can be oon­

struoted by the removal of a countable number of open intervals 

(62). In the example shown, the intervals are finite in 

number. If the perfect set is non dense, the number of 

intervals will be infinite. The process can evidently be 
. ment 

oontinued, the only require/being that the lengths in the 

y direction of the rectangles on whioh the surface leaves the 

xy-plane shall approaoh 0; so that any section of the form 

y;: k ~> 0 shall out only a finite number of the se rectangles. 

Figure 26 is the oscillation for the function of Figure 25. 

80. In Figure 2~f(x) is oontinuous eTerywhere except -
at the point 1. As x approaches 1, f(x) imareas8s without 

limit; f(l) = O. The construotion is evident from the 

figure. In any section of the surface by- y=ktl • f~(x)= f(x) 

for points not contained in the triangle ABC. For points 

inside the triangle fn(x) is the straight line which passes 

through the point on the surface directly above the section 

of the plane with AB and is equal to 0 for x=-l. The oscil-

lation function is shown in Figure 28; W(x) = 0 for x4-1, 

LA' ( 1) =+ 00 • 

81. F:igures 29'-32 indicate the manner of approaching a 

disoontinuous function of two variables. This cannot be 

shown in a single figure, as WB,S the case of a function of 
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one variable, for it would involve 8 surface in space of four 

dimensions. 1'he functio'n to be approached is f(1/2,l/2)=1/2, 

f(x,Y)= 0 elsewhere. It is shown in Figure 29. The suc-

ceeding figures show f, (x,y), f~(XtY), and f)t(x,y). W(x,y) 

is equal to f(x,y), and is thus shown in Figure 29. 

~. Following the methods used in the case of functions 

of a single variable, we can without difficulty devise con­

tinuous functions appr oa,ching functions of two vax iable s wh ich 

have an infinite number of pOints of discontinuity, which are 

discontinuous on non dense perfect sets, or which are unlimited 

in certain regions. 

In the case of ' functions of more than two variables 

we have no geometrical means of finding 8 sequence of approach­

ing continuous functions. 
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CHAPTER IV. ----- THE UQ FUNCTION 

83. In the preceding sections only those functions have 
, 

been studied in whioh m(to,x)= ° at every point; that is, 

pointwis~ disoontinuous functions. We shall now investigate 

the properties of W for any function whatever. 

It has already been shown (6) that u)is always posi-

tive or 0 e It has also been pointed out that uJmay have no 

least upper bound; that is, that W(x) may equs,l-roO at some 

points. As a matter of fact, perfectly well defined funotions 

exist in whioh W(x)::: + 00 at every point, # The following 

is an example of such a function~-

f(x) = 0, for x irrational; 

f(x) = q, where x is the rational fraction p/q (in its 

lowest terms) • 

.At any pOint A, m(-A)= 0, M(A):::+oO, W(A)==+oO • 

.§i. # It has been proved that W(x) is semioontinuous 

above, and hence pointwise disconttnuouse The question now 

arises,--Is any function, which is semioontinuous above and 

everywhere positive or 0, the ~ of some function? The 

answer is in the affirmative, and it will now be shown how 

a function ·can be constructed having the given function as 

its osoillation. Let 4:>(.l be the given fun at ion. The 

pOints of continuity of .~ whioh is pointwise disoontin-

nous, are everywhere dense and have the power of the con-

tinuum (24). It is possible to choose from among these 

pointe of continuity an everywhere dense oountable set C, 

leaving the remaining points of oontinuity still everywhere 

dense, in fact everywhere condensed. Define 8 function F(x) 
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as follows: 

'(x) = 0 on the set C; 

F(x) = c::P (x), everywhere else. 

It will now be shown that ~\(x) has 4'(x) as its oscillation 

function. Since 4> (x) is semicont inuous above MC <f ,x )=4>(%) 

at all paints with the possible exception of the points of 

the set c. The pOints of C being pOints of continuity, 

M(CP,x)::. m(~.x}= + (x) • Then the removal of the countable 

number of points of C and pu~ting F(x) ~ 0 on those points 

still leaves a more than countable set in the region of any 

point of C, Which make M(F.x) == c::p (x) still. C being every-

where dense, m(F,x} == 0 everywhere. Then U>(F,x)-==M(F.x) 

- m(F.x) = c::p (x), which was to be shown. 

This countable dense set can be chosen in an in-

fthite number of ways; in fact. by shifting a single point 

of C we see that the number of sets like C that can be ohosen 

has the power of the continuum. Henoe,any function which is 

semicontinuous above and which has no negative values is the 

oscillation of an infinity of functions Whose number has the 

power of the "continuum. 

Jl§. # Theorem: In order that OO(x) be continuous, i 1; is 

necessary and sufficient that M(x) and m(x) each be continuous. 

It is evidently sufficient; for oo(x) =M(x) -m(x), 

and the difference of two continuous functions is oontinuous. 

It is necessary. W (x) being continuous, for a 

given tt.~O and a given Xl there exists en Yf. such that. 
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\ w ( x' ) - w ( x' + h)\ <. %" • for 1 ~ 1 < )f,. 
Th at is ,\M ( x' ) - m ( x' ) - (M ( x' -\"" h) - m ( x + h) ) I <. ~, 

or I( M ( x' ) - M ( x ' + h ) ) + (m Ix '-t h) - m ( x' ) ) \ -< ~ t I h 1 <. )(, • 

This can be written, 

I M (x' ) - M (x 1 -t h ) \ -t \ m ( X '+ h) - m (x' )1 < ~ , ( a) 

if the quantities M(x') - M(x' -t h) and m(x'-t h) - m(x') have 

the same algebraic sign (of if one or both are 0); or it can 

be written, 

I \ M ( X T ) - M ( x '-r h)' -I m ( x' -t h) - m ( x' ) 1\ <. ~ , (b ) 

if the quantities have different signs. 

we have directly, 

In the former case 

\ M(x') - M(x' -+ h)' < ~ , 

'm(x' + h) - m(x')' < ~ , " n • 

In the latter case we have since M(x) is semieontinuous above (7), 

M(x'+ h).(M(x')+f.~ ,)hl<J1t.. 

Then, M(x') - M(x' -t h) >-~ t II " • 

Similarly, m(x) being semicontinuQus, we have, 

and, 

m(x'+ h)~m(x')-~ 

m(x'+ h)-m(x'»)-~ 

, fhl< ~~ t 

" " , 

(0) 

(d) 

Let I hi < 11 ' where V1 is the smallest of the three numbers, 

f ~ 1 , Suppose in (b) above that m(x'+ h) 

- m(%t) is negative. From (d), 

\ m(x'+ h) - m(x")' -< ~ 

Then, I M(x')- M(X';- h)l < L 
t " " , f rom (b) and (d) 

If M(X')- M(x'+ h) is negative in (b), we have, from (c). 

I M (x' ) - M ( x' + h) I < £.~ ,I h J < rt ' 
and , \ m ( x' + h) - m ( x' ) \ < z-. f TJ " t fr om ( b ) and (c). 

In all cases, then,---when the two quantities mentioned have 
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the same sign and when they differ in sign---we are able to 

find, for a given ~?O, an ~ such that, 

\M(X'}-M(x'-t h)~ ~ t ,rh'<'~, 

and, \m(x'-+ h)-m(x')\<.l ,\h\<~. 

Since x' is any point, M(x) and m(x) are continuous everywhere. 

Their continuity is thuB neoessary for the continuity of 

w(x). 

86. # Successive oscillation functions. The oscillation 

of f(x), or W(f,x) will be called the oscillation of £(x) o£ 

the first order ~ The oscillation of ~(f.x) will be called 

the oscillation of f(x) of the second order and will be written 

ITe shall now establish a few theorems 

concerning these oscilla,tions. 

~. :# Given any function f (x); lOl)o\)£ ,x) - ,LJ1..\ (f ,x). for 

n equal to or greater than 2. 

We shall first show that if ,<p (x) is any function 

semicontinuous above and having a minimum 0 at every point, 

then «> (cp ,x) =4'(x) • ]'or t MC4=> ,x) =4> (x), and m( q, ,x) -= 0; 

thenW(CP ,x) -=M(4),x) -m(cp ,x) == c:p (x). 

Now, VO(f,x) is semicontinuous above. and hence 

pointwi se a iscont inuous • Then U) ( LO ,x), or uJ1J( f ,x) has a 

minimum 0 at every po int (16). , Being an oscillation function 

it is also semicontinuous above. 
(2,), , 

Then, GO\f,xJ has the pro-

pertt~s of 4> (x) above. 

for higher orders.(i) 

HenceuJ3l (f ,X) :::W~)( f ,x); and similarly 

(1) Attention should be called to the fact that the proof 
does not go through for the oase where ~(f,x) is infinite by 
who Ie 1nt erva 18, for utl.l( f ,x) cannot be defined. 
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~. # A necessary and sufficient condition for pointwise 

discontinuity of a function rex) is that the oscillation of 

f(x) of the second order be equal to its oscillation of the 

first order. 

It is necessary; For, f(x) being pointwise discon­

tinuous, w(f,x) has a minimmn 0 at every point. It thus has . 

the propertie s of 4> (x) in (87); then Ldl.J( f ,x) :::' W( f ,x) • 

It is also sufficient. Since u)(f,x) is pointwise 

discontinuous, vdu(f,x) has a minimum 0 at every point. Then, 

sinoe up·'( f ,x) = W (f ,:x) t w( f ,x) has a minimum 0 a:t- every 

point, and this is sufficient for pointwise discontinuity of 

f(x) (16). 












