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presented by Daŕıo O. Cersosimo,

a candidate for the degree of Doctor of Philosophy and hereby certify that, in their

opinion, it is worthy of acceptance.

Dr. Craig A. Kluever

Dr. Douglas Smith

Dr. Frank Feng

Dr. Roger Fales

Dr. Jan Segert



To my parents, Leonor and Juan Carlos.



ACKNOWLEDGMENTS

First and foremost I would like to thank to my advisor, Dr. Craig A. Kluever for

the assistance he provided to during the research process. I also would like to thank

Professor Douglas Smith, director of the GAANN fellowship, which provided the

financial support needed to make this work possible. I wish to express my gratitude

to Dr. Daniel J. Scheeres for sharing his views and opinions in the early stages of

this dissertation work. Finally I would like to thank my friends Weijun Huang, and

Melanie Carraher.

ii



Contents

ACKNOWLEDGMENTS ii

LIST OF TABLES v

LIST OF FIGURES vi

NOMENCLATURE viii

ABSTRACT xii

1 Introduction 1
1.1 Earth Impact Evidence . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Near-Earth Object Environment . . . . . . . . . . . . . . . . . . 2
1.3 Deflection and Mitigation Strategies . . . . . . . . . . . . . . . . . . . 6

1.3.1 Impulsive Strategies . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.2 Slow Push Strategies . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Contributions of this Dissertation . . . . . . . . . . . . . . . . . . . . 12

2 The Gravity Tractor 16
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Hovering Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Inertial Hovering . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Alternative Hovering Strategies . . . . . . . . . . . . . . . . . 19

3 Dynamical Model 27
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 NEO Physical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Shape Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.2 Potential Field Model . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Gravity Tractor Model . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.1 Solar Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.2 Propulsion System . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.3 Engine Canting Angle . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Radiation Pressure Model . . . . . . . . . . . . . . . . . . . . . . . . 47

iii



4 Results on the xGT Performance 49
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3 Ideal Ion Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.1 Engine Canting Angle . . . . . . . . . . . . . . . . . . . . . . 60
4.4 NSTAR Ion Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Hovering Control for the Extended Gravity Tractor 72
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2 Hovering Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.1 Inertial Hover . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2.2 Dynamic Hovering (xGT1 and xGT2) . . . . . . . . . . . . . . 75

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 Conclusions 89

Bibliography 101

VITA 102

iv



List of Tables

3.1 Propulsion system mass budget. . . . . . . . . . . . . . . . . . . . . . 35

3.2 Miscellaneous subsystems mass. . . . . . . . . . . . . . . . . . . . . . 36

3.3 Spacecraft gross mass. . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Throttle table of the NSTAR thruster. . . . . . . . . . . . . . . . . . 41

4.1 Asteroid Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1 Asteroid Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 Spacecraft Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3 Controller Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . 76

v



List of Figures

1.1 Orbit diagrams of the four families of near-Earth asteroids. . . . . . . 3

1.2 Distribution of the population in main asteroid belt. . . . . . . . . . . 4

1.3 Geometrical representation of the classical gravity tractor system. . . 12

2.1 Thrust required by the GT engines. . . . . . . . . . . . . . . . . . . . 19

2.2 One-dimensional harmonic hovering (xGT1). . . . . . . . . . . . . . . 21

2.3 Two-dimensional harmonic hovering (xGT2). . . . . . . . . . . . . . . 23

3.1 Roots of E(κ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Thrusters layout for the xGT spacecraft. . . . . . . . . . . . . . . . . 34

3.3 NSTAR Engine performance plots. . . . . . . . . . . . . . . . . . . . 40

3.4 Tangent vectors to the surface of the ellipsoid. . . . . . . . . . . . . . 47

3.5 Solar radiation pressure model. . . . . . . . . . . . . . . . . . . . . . 48

4.1 Towing ∆v exerted by a GT operating in inertial hovering. . . . . . . 53

4.2 Towing ∆v exerted by the (a) xGT1 and (b) xGT2. . . . . . . . . . . 54

4.3 Towing merits for the xGT modes. . . . . . . . . . . . . . . . . . . . 55

4.4 Propellant mass rate map for the xGT1 and xGT2. . . . . . . . . . . 56

4.5 Propellant penalties incurred by xGT modes. . . . . . . . . . . . . . . 58

4.6 Penalty difference between xGT1 and xGT2. . . . . . . . . . . . . . . 59

4.7 Plot of ∆v for a fixed propellant mass. . . . . . . . . . . . . . . . . . 61

4.8 Amplitude of the engine canting angle. . . . . . . . . . . . . . . . . . 62

vi



4.9 Engines mixing logic. . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.10 Propellant mass rate for the GT system with NSTAR thrusters. . . . 65

4.11 Propellant mass rate for the xGT1 system with NSTAR thrusters. . . 67

4.12 Propellant mass rate for the xGT2 system with NSTAR thrusters. . . 68

4.13 Percent penalty between the classical GT and the xGT1. . . . . . . . 69

4.14 Percent penalty between the classical GT and the xGT2. . . . . . . . 70

4.15 Percent penalty between the xGT1 and the xGT2. . . . . . . . . . . . 71

5.1 Phase plane logic diagramfor the DB controller. . . . . . . . . . . . . 74

5.2 Trajectory plots for the xGT1. . . . . . . . . . . . . . . . . . . . . . . 77

5.3 Response of the controllers for the xGT1. . . . . . . . . . . . . . . . . 78

5.4 Trajectory plots for the xGT2. . . . . . . . . . . . . . . . . . . . . . . 81

5.5 Response of the controllers for the xGT2. . . . . . . . . . . . . . . . . 82

5.6 Propellant and thrust histories for the xGT1 and xGT2. . . . . . . . 83

5.7 Propellant mass consumed by xGT1 and xGT2. . . . . . . . . . . . . 86

5.8 Operation of the xGT engines. . . . . . . . . . . . . . . . . . . . . . . 86

5.9 Propellant consumption map. . . . . . . . . . . . . . . . . . . . . . . 87

5.10 Comparative view of the xGT propellant consumption map. . . . . . 88

vii



Nomenclature

a Asteroid major semiaxes, [m].

ax Component of the GT acceleration along x [m/s2].

ay Component of the GT acceleration along y [m/s2].

az Component of the GT acceleration along z [m/s2].

anet Acceleration supplied by each thruster, [m/s2].

Asa Area of the solar array, [m2].

b Asteroid intermediate semiaxis, [m].

c Asteroid minor semiaxis, [m].

d Distance from the GT to the center of mass of the asteroid, [m].

eab Axial eccentricity between semiaxes a and b.

fmerit Figure of merit.

fpenalty Figure of penalty.

Fsp Force due to solar radiation pressure, [N].

F Solar flux [kW/m2].

viii



F0 Solar flux at 1 AU [kW/m2].

g0 Acceleration of gravity at sea level [m/s2].

G Gravitational constant [m3/kg/s2].

h Altitude from the surface of the asteroid [m].

Isp Specific impulse [s].

kd Derivative gain, [1/s].

kl Modulus of the elliptic integral.

kp Proportional gain, [1/s2].

m Mass of the spacecraft, [kg].

m0 Initial mass of the spacecraft, [kg].

mp Propellant mass, [kg].
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y Component of position along the ĵ-axis.
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ABSTRACT

The gravity-tractor (GT) consists of a spacecraft hovering inertially over a small

asteroid. This equilibrium state is achieved by the action of a pair of engines that bal-

ance the gravitational acceleration. Due to Newton’s law of gravitation the spacecraft

causes a small gravitational pull on the asteroid that after prolonged time intervals

causes a small change in its trajectory preventing it from impacting the Earth. This

dissertation introduces a novel concept in the implementation of the GT to augment

its deflection merits. Two novel guidance laws are designed to take advantage of the

asteroid shape and rotation rate forcing the GT spacecraft to move towards and away

the center of mass of the asteroid in synchronous motion with its rotation, resulting

in an increased gravitational pull. The asteroid model was generalized as a solid,

homogeneous triaxial ellipsoid. A small GT spacecraft was proposed and a detailed

model of the NSTAR ion thrusters was used to investigate the efficiency of the GT

operating under these novel guidance laws and the classical inertial hovering. The

performance of these hovering laws was examined over a wide range of asteroid shapes

and rotation rates. The results obtained suggest that it is possible to improve the

deflection merits by up to 60%. The propellant efficiency showed to be sensitive to

the spacecraft parameters; in particular, the engine model and the controller used to

sustain the desired hovering state play an important role in the propellant penalties

associated with these extended hovering modes. Furthermore, these results indicate

that previous works have overestimated the propellant efficiency of a typical GT by

using oversimplified models of solar electric engines.
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Chapter 1

Introduction

1.1 Earth Impact Evidence

The solar system is plagued with evidence of interplanetary collisions and the Earth is

not exempt. The cratered surface of Mercury, Venus, Mars and The Moon are a direct

proof of the dynamical interactions between minor solar system bodies and terrestrial

planets. The Earth is not exempt from these interactions, but its impact record is

less obvious due to erosion and geological activity [1]. In fact, the Earth impact

database list 178 confirmed impact structures on Earth.1 The Tunguska event is a

recent proof of these interplanetary catastrophes. In 1908 an object of approximately

60 m diameter exploded in the atmosphere at a height of 8 km in the middle of

an unpopulated area in Siberia. The energy released was estimated between 10 to

15 mega-tons of TNT devastating an area of about 2000 km2 of forest [2, 3]. The

Tunguska meteoroid disintegrated in the air before reaching the surface, but in many

occasions these meteoroids are able to survive the pressures of atmospheric entry

and reach the ground. The Barringer crater in Arizona presents direct evidence of

1The Earth Impact Database, http://www.passc.net/EarthImpactDatabase/index.html.

1



the survival of atmospheric entry. In the early ages of the solar system, during the

heavy bombardment (4.1-3.8 billion years ago), these collisions played an important

role in the delivery and distribution of exogenous matter, such as volatiles, organic

compounds and possible water to Earth [4]. At a lower rate, these minor celestial

bodies continued bombarding the Earth until present days. This sequence of impacts

has played an essential role in the formation of the Earth, but also shaped and shifted

the evolution path of Earth’s biosphere.

In 1980 Alvarez et al. [5], presented strong evidence supporting the hypothesis

that the mass extinction of the Cretaceous-Tertiary (65 million years ago), was due

to the impact of an asteroid of about 10 to 15 km diameter. The impact crater has

a diameter of 180 km in diameter and is located in the Yucatan peninsula. Their

findings triggered concerns about the hazards posed to our civilization by the popu-

lation of small bodies orbiting in the vicinity of the Earth. These objects are known

as near-Earth objects (NEO) include asteroids and certain comets.

1.2 The Near-Earth Object Environment

Near-Earth objects are those asteroids with perihelion distances q ≤ 1.3 AU and

aphelion distances Q ≥ 0.983AU [6]; and short-period comets with q < 1.3 AU

and orbital period, P < 200 years. The near-Earth asteroid (NEA) population is

divided into three subgroups based on their orbital semimajor axis a, perihelion q and

aphelion Q distances. These population subsets of NEAs are denominated Apollos,

Atens and Amors (see Fig. 1.1 for schematic of their orbits). Apollos and Atens have

Earth-crossing orbits with semimajor axes a ≥ 1.0AU. The Apollos have perihelion

q ≤ 1.0167 AU and the Atens have aphelion Q ≥ 0.983 AU. The Amors class consist

of those NEA with perihelion 1.0167 < q ≤ 1.3 AU. Orbital perturbations may cause

the Amors to become Earth-crossing NEOs. Another family of asteroids that does

2



(a) Apollo (b) Aten

(c) Amor (d) IEO

Figure 1.1: Orbit diagrams of the four families of near-Earth asteroids.

not fall in the official NEA classification are those objects whose orbits are bounded

inside the Earth’s orbit (Q < 0.983 AU). These objects are called inner-Earth Objects

(IEO) [7] or Atiras named after asteroid 163693 Atira.2

The current cataloged NEO population consists of more than 7000 objects where

less that 100 are near-Earth comets (NEC). Within the NEA population approxi-

mately 12% are larger than 1 km in diameter. Those NEA that have a minimum

orbit intersection distance (MOID)3 with Earth of 0.05 AU or less and a diameter of

110 m or larger are considered potentially hazardous asteroids (PHA) [8, 9, 10]. The

catalogued population of PHA contains 1125 asteroids where 147 (13%) are of the

order of a kilometer size.

The asteroids in the NEO population are supplied from the main asteroid belt,

2The Near-Earth Object database does not include aphelion limits for the classification of NEOs
and considers Atiras as part of the NEO, (http://neo.jpl.nasa.gov/neo/groups.html).

3MOID is the closest possible approach distance between the osculating orbits of two objects.
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Figure 1.2: Distribution of the population in main asteroid belt.

located between 2.1 to 3.3 AU, due to the action of resonant phenomena. Some

of the resonance regions can be identified by unpopulated regions in the main belt

called Kirkwood gaps (see Fig. 1.2). These gaps are a consequence of mean motion

orbital resonances with Jupiter that, due to gravitational perturbations, boost the

asteroids eccentricities causing them to reach the orbits of the inner planets. The

most prominent mean motion resonances are the ν6, 3:1, 5:2 and 2:1.

The ν6 resonance marks the inner boundary of the main belt. It is caused when

the precession frequency of the asteroid longitude of perihelion is equal to the sixth

secular frequency of the planetary system. The median lifetime of bodies in this region

is about 2 million years [11, 12, 7]. Once expelled from the ν6 region most of these

bodies can spend an average of 6.5 million years in the NEO region until they end

up colliding with the Sun. The 3:1 mean motion resonance is located at 2.5 AU with

typical mean lifetimes close to 2 million years. Bodies driven from this region into

NEO space have a mean lifetime of 2.2 million years. They often collide with the Sun

4



but sometimes are ejected from the solar system [7]. The second deep gap corresponds

to the 5:2 at about 2.8 AU. The orbital lifetimes in this region have timescales in the

order of 0.6 million years. The 2:1 mean motion resonance exist at 3.3 AU. This

resonance has the largest population time scale >100 million years. Once removed

from this region about 20% could become Earth-crossers [11]. Objects falling into

the 5:2 and 2:1 resonance regions are likely to be injected into Jupiter crossing or

hyperbolic orbits being not major contributors to the NEO population [7]. Diffusive

resonances are weaker than mean motion resonances but are spread across the main

belt driving most asteroid orbits to be slightly chaotic. The mean lifetime in these

resonance changes broadly, between 10 to 103 million years depending on the kind of

resonance and the initial eccentricity [7, 12].

Comets contributing to the NEO population are believed to come from two main

sources, the trans-Neptunian region and the Oort cloud. The trans-Neptunian region

has segments where orbits are dynamically unstable over the lifetime of the solar sys-

tem. Within the population of Earth-crossing comets two families are distinguished,

those belonging to the Jupiter family and those of the Halley family. Jupiter family

comets reach the inner solar system due to close encounters with Jupiter. Their in-

clination does not exceed 27 deg [13] and their periods are no longer than 20 years.

Halley family comets have periods between 20 and 200 years. These are believed

have originated from the Oort cloud. Their near-isotropic nature gives them a broad

inclination distribution, in some cases exceeding 90 deg.

In June 2004 R. Tucker and his coworkers discovered a NEO wandering in a

trajectory that six months later was determined to have 2.7% chance of coliding with

Earth in April 13, 2029 [14]. Upon astrometric corrections this probability decreased

to almost zero. Today this asteroid is known as 99942 Apophis and is under intense

watch since its 2029 flyby Earth could lead to a resonant return and subsequent

impact in 2039. The size of Apophis is estimated to be 270± 60 m in diameter. The
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mass of Apophis is estimated to be 2.7× 1010 kg assuming a uniform spherical body

with 2600 kg/m3 of density. The rotation period of Apophis is 30.4 hrs [15].

1.3 Deflection and Mitigation Strategies

When envisioning alternatives to deflect a potentially hazardous object (PHO)4 from

collision with Earth, imagination is the limit. While time, feasibility and reliability

are the constraints. Several system architectures have been proposed to mitigate the

treat an asteroid or comet could pose to the Earth in the case of a foreseen collision.

These mitigation strategies vary widely from simple but powerful detonations to very

complex and often high-precision systems that use all the physical principles on hand

to convert any source of external energy available into added kinetic energy to the

threatening object.

Given the need to deflect a PHO in collision course with Earth, the choice of a

deflection strategy is intimately related to a wide range of key factors determining

the success of the deflection. The most important factor is the warning time, that

is the time between the confirmation of the threat and the predicted collision epoch.

Warning times could range from decades to weeks or days. Long warning times

allow the community to evaluate and develop an optimal mitigation strategy for the

particular scenario. However, extremely short warning times would only allow to the

evacuation of the population in the predicted area of impact.

The deflection of an asteroid requires the physical interaction between the body

and the mitigation system [16]. In fact, several deflection strategies interact directly

or indirectly with different physical properties of the target. Therefore, a comprehen-

sive knowledge about the physical properties of the body (i.e., composition, external

structure, internal structure, dynamical configuration, number of orbital companions,

4An asteroid or a comet is considered a PHO when its MOID is 0.05 AU or less and has a diameter
of 150 meters or more.
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etc), would lead to a more efficient mitigation strategy. A summary of these architec-

tures is presented in the following paragraphs. Although the list is not comprehensive,

it is intended to underline the current line of thinking about the issue.

1.3.1 Impulsive Strategies

The nuclear alternative

Perhaps the most intuitive method to deflect an asteroid could be by means of a

nuclear device detonating in the vicinity of the asteroid surface. Nuclear explosives

are a viable alternative because they deliver the highest energy to mass ratio, in the

order of 4 × 106 MJ/kg. In contrast a non-nuclear explosive can supply an energy

ratio of 6 MJ/kg [17].

There are various alternatives for the implementation of the nuclear option. A

nuclear device can be detonated at an optimal altitude from the asteroid surface. The

neutrons and X-ray yield irradiating the surface will cause the blow-off of surface and

near-subsurface material. Material ejected in excess of the NEO escape velocity can

generates the needed impulse for the deflection. A nuclear detonation on the surface

the NEO can produce bigger crater consequently increasing the amount of ejected

material contributing to a higher impulse [18, 19, 20]. A third nuclear alternative

is to detonate the device beneath the surface of the asteroid. The later will require

mining hardware which could decrease the energy to mass ratio of the entire system.

Surface and subsurface detonations are likely to yield higher momentum change but

at an increased the risk of fragmenting the asteroid into large pieces that could threat

the Earth with multiple impacts. Asteroid fragmentation could easily occur in bodies

having weak cohesive strength held together by gravitational forces such as rubble

piles, contact binaries, or cometary nucleus.
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Kinetic energy impacts

A kinetic energy impact is the simplest way to change the orbital momentum of a

PHO. A massive projectile can be aimed to hit the NEO parallel or anti-parallel to

its orbital motion increasing or reducing its orbital energy, respectively during its

perihelion passage [21, 22]. The change in the orbital momentum is the sum of the

projectile momentum plus the momentum of the ejected particles with speeds greater

that the escape speed of the asteroid. The momentum added by the ejected mass

depends on the material and structural composition of the asteroid. Research has

shown the ejecta particles can contribute up to 10 times to the momentum transferred

by the impactor [23, 19, 20]. Thus, if the asteroid is highly porous, little or none ejecta

will occur [20]. In such case the momentum transfer is due only to the impacting

projectile.

The fundamental technical challenges of this strategy were tested successfully

during the Deep-Impact mission [24] to comet 9P/Tempel 1 where a 364-kg projectile

impacted its surface at a relative velocity 10.2 km/s. The predicted change in the

comet’s heliocentric velocity (∆v), due to the collision was 0.00005 mm/s [25]. Other

technical issues arise in the guidance of a deflector impactor towards an asteroid or

a comet. In such case, the direction of the impact needs to be precisely aligned with

the desired ∆v vector and aimed in the direction of the center of mass in order to

minimize torque losses, rising challenges in the design of terminal guidance stage.

1.3.2 Slow Push Strategies

A second family of mitigation alternatives, often referred as “slow push strategy”,

relies on changing the orbit of the target PHO by applying very small forces over

long periods of time. Some of these strategies require a spacecraft to rendezvous and

land on the PHO or to perform a sequence of maneuvers about the target. The slow

8



push alternatives can be divided into two groups: contact and non-contact methods.

Contact methods are those that require the deflection system to land and or attach

to the surface of the PHO. Non-contact methods are those systems able to operate

at a distance from the surface of the PHO. Surface operations will require detailed

knowledge of the surface and subsurface properties to permit a better design of the

anchoring or mining systems.

Mass drivers

From a planetary defense perspective the mass driver system consist on a device

anchored on the surface of the PHO that digs out material from its surface, accelerates

it and then ejects it at high speeds producing a momentum exchange between the

asteroid and the ejected mass, similar to a rocket engine. The thrust achieved is the

product between the mass flow rate and the velocity of the ejected material. Higher

ejection velocities will decrease the amount of mass needed to be excavated in order

to achieve the ∆v goal [23]. Melosh et al., [23] assume the use of solar energy to

supply power to the system in accordance to a non-nuclear alternative.

Olds et al. [26] analyzed a mission concept of multiple mass drivers systems, each

powered by a small nuclear reactor. The advantage of having multiple mass drivers is

that it provides system redundancy against individual system failures and the ability

to operate over extended times. The nuclear reactor allows continuous operation

during eclipse conditions.

Despite the relative technological advanced state of this system [17, 26], the mass-

driver concept suffers of several practical problems. The surface characteristics of

these bodies are poorly known driving to serious complications in the design of an

anchoring system and a mining strategy to maintain a continuous mass supply to

the ejector. The thermal gradient during the day and eclipse phases may adversely

affect the use of mining tools [17]. Other difficulties arise with this strategy, the non-
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spherical nature of these bodies, the roughness of the surface topology and rotation

state present a challenge when pointing the thrust vector in the correct direction. For

example, if the thrust vector does not point in the direction of the body center of

mass a torque component due to the ejected mass will cause the asteroid to change

its angular momentum rather than its orbital momentum.

Asteroid tug

The asteroid tug could be realized by landing and subsequently anchoring a spacecraft

to the surface of the NEO. Sufficiently powerful engines to re-orient or de-spin the

asteroid and then tug it in the desired direction [27, 28]. Alternatively, the engines

could be fired periodically every time the thrust vector is aligned with the desired

direction of push at the expense increased time to complete the deflection. The rocket

engine could consist of high efficiency propulsion system using solar electric or nuclear

electric propulsion. This method reduces the problem of mining into the surface of

uncertain properties. However, anchoring the system to the surface and re-orienting

the spin are challenging operations.

Solar concentrators

Solar concentrators were introduced by Melosh, et al. [29]. The idea behind the solar

concentrator is to evaporate the surface of the PHO by using a reflective mirror that

collects the solar photons concentrating them on a small spot on the surface of the

asteroid. The thrust results from the vaporized jet of surface material. A second

alternative could be the use of laser beams [30]. The laser system can be ground-

based or space-based. These methods are not sensitive to target rotation and they

might be very attractive in cases where the target rich in volatile materials such as

comets.
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Albedo change

Albedo is a measure of the reflectivity of a Lambertian surface. This strategy is

intended to change the reflective properties of the asteroid surface altering the amount

of radiation absorbed or reflected once the asteroid’s surface is exposed to the Sun.

As the asteroid rotates the side previously exposed to the Sun enters to the dusk

zone and the warm surface radiates more energy than the cooler dawn side. The

difference in energy radiated generates a force due to the momentum of the photons

which produces a very small acceleration on the asteroid. A mitigation method has

been proposed by attempting to change the reflection properties of the surface by

painting the asteroid with a dark or light coating depending in the direction in which

the force needs to be applied [31].

Gravity tractor

The gravity-tractor (GT) concept was first proposed by Lu and Love [32]. In their

article, the authors claim that a spacecraft can use its own mass to change the orbit

of a small body in a collision route with Earth. To achieve such a deflection, the

spacecraft is kept at a constant distance from the center of mass of the PHO by the

action of the engine thrusters. Due to Newton’s law of gravitation, the asteroid will

accelerate at a rate proportional to the spacecraft mass and the inverse of the squared

distance. The simplest GT scheme consist on a spacecraft with two main engines

continuously thrusting to balance the gravitational pull. These engines are tilted

away to prevent their exhaust plumes to hit the surface of the asteroid counteracting

the gravitational pull of the spacecraft (see Fig. 1.3).

The GT alternative allows precise orbit tracking of the threatening NEO due to

the on board transponder that periodically transmit its position to Earth, augmenting

the accuracy of the deflection maneuver [33]. The GT is not sensitive to uncertainties

regarding its surface characteristics and allows to perform scientific observations and
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Figure 1.3: Geometrical representation of the classical gravity tractor system as pro-
posed by Lu and Love [32].

object characterization. Another advantage, shared as well among other slow-push

deflection methods is that the slow-acting force due to the GT pull is unlikely to

cause fragmentation of weakly binded body.

1.4 Contributions of this Dissertation

The gravity tractor concept has evolved since its introduction by Lu and Love. Sev-

eral studies have been carried out proposing alternative dynamical configurations to

improve the gravity tractor efficiency. McInnes [34], studied the alternative of placing

a GT spacecraft in a displaced non-Keplerian orbit with the intention to alleviate the

problem of the canted engines that is a key issue for a gravity tractor operating in in-

ertial hovering. This configuration could reduce the thrust demanded by the engines.
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Wie [35], elaborates further on the work by McInnes by proposing a constellation with

multiple gravity tractors hovering in a pair of displaced non-Keplerian or halo orbits.

In the same article, Wie introduces a solar sail alternative for a gravity tractor. The

solar sail gravity tractor does not requires propellant because it is propelled by the

momentum exchange from solar photons reflected off from the sail. Fahnestock et

al. [36], investigated the coupled dynamics between the NEO and the GT spacecraft

using polyhedral models of a NEO to analyze the performance for two different GT

configurations: a pendulum-shaped and a novel bar-shaped spacecraft, both powered

by nuclear electric engines. In their work they point out the effects of the coupled

dynamics in the operational performance of the GT. However, none of these have pro-

posed an alternative to increase the amount of acceleration imparted on the asteroid

which is the prime characteristic of any asteroid deflection system.

The gravity tractor is the subject of this dissertation and our goal is to improve

the acceleration that a single gravity tractor can impart on an asteroid. This goal is

achieved by considering the generic ellipsoidal shape and spin state of a threatening

asteroid, and commanding the gravity tractor spacecraft to periodically adjust its

distance from the center of mass of the asteroid in synchronous motion with its

rotation period. The hypothesis of this work states that the periodic displacement of

the GT spacecraft reduces its mean distance from the asteroid consequently increasing

the mean gravitational acceleration over it. The secondary objective is to perform an

analysis on the implementation of a realistic ion engine model to support the hovering

operations in the vicinity of the asteroid. A third objective is to investigate how the

performance of the GT is affected by the implementation of proportional-derivative

and dead-band controllers to control the hovering motion of the spacecraft.

Chapter 2 introduces the dynamics involving the classical gravity tractor and two

novel guidance laws that allow the gravity tractor spacecraft to maneuver over the

asteroid. These guidance are inspired by the fact that most asteroids have prolate
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shapes and can be better represented by triaxial ellipsoids rather than simple spheres

as usually done in the earlier works by Lu and Lo [32], McInnes [34], and Wie [35].

Contrary to the classical inertial hover [32], we propose that the gravitational ac-

celeration on the asteroid can be increased by maneuvering the GT in the vicinity

of the asteroid. These hovering modes guide the spacecraft to move in synchrony

with the asteroid spin consequently decreasing the mean distance from the centers of

mass of the asteroid and the spacecraft. The amplitude of the translational motion is

defined by the difference between the two largest semiaxes of the asteroid. The first

guidance law to be proposed in this work restricts the spacecraft motion to a single

dimension corresponding to the direction in which the acceleration is applied. The

second guidance law allows the spacecraft to move in two dimensions.

The physical model of the system is introduced in Chapter 3. This chapter de-

scribes the physical models of the asteroid and the GT spacecraft with special empha-

sis on the the configuration and operation of the propulsion system. The spacecraft is

based on the gravity tractor model introduced in Ref. [33] and sized upon the charac-

teristics of the Dawn mission. The propulsion system is based on the NSTAR engine

as flown in two interplanetary missions: Deep Space 1 and Dawn [37, 38]. Earlier

works on the GT failed to consider a realistic model for the thrusters supporting hov-

ering. In fact, the GT problem addressed by Yeomans et al. [39, 33] did not consider

the performance variation of the thruster due to different throttle settings nor the

thrust thresholds that limit the minimum thrust these ion engines can provide. We

believe that including a detailed model of the thrusters has serious implications in

the propellant required to sustain a GT mission to deflect an asteroid.

Chapter 4 presents the results on the performance of these hovering laws and

the propellant penalties incurred due to their implementation. The first part of the

chapter evaluates the performance of these novel guidance laws assuming a GT with

ideal ion engines. The results are compared against the classical GT which is used
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as a base model to determine the relative merits and penalties due to the guidance

laws introduced in this work. The second part of Chapter 4 incorporates the detailed

engine system described in Chapter 3 and emphasizes on the implications it has on

the propellant efficiency of the GT. The study is performed over a wide range of

asteroid shapes ranging from quasi-spherical bodies to extremely eccentric ones with

rotation periods ranging from 2 hours to 1 day.

Chapter 5 describes the implementation of proportional-derivative and dead-band

controllers to control the translational dynamics of the spacecraft operating under

the guidance laws proposed in Chapter 2. The performance of dead-band controller

to maintain inertial hovering has been studied in the literature [40, 41, 42, 39] and it

was successfully implemented in the Hyabusa mission commanded by the Japanese

Aerospace Exploration Agency (JAXA) [43]. A proportional-derivative controller has

been suggested by Wie [35] but only in the context of the classical gravity tractor.

Therefore we are motivated to investigate the performance of these controllers to sus-

tain the guidance laws proposed in Chapter 2 and their implications on the propellant

demands.
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Chapter 2

The Gravity Tractor

2.1 Introduction

In this chapter we present the fundamental dynamics of the gravity tractor. The

chapter begins by explaining the concept of inertial hovering and its implementation

in the classical gravity tractor. In the second part of this chapter we present two

novel hovering laws designed to improve the performance of a gravity tractor mission.

2.2 Hovering Strategies

2.2.1 Inertial Hovering

The concept of a spacecraft hovering inertially over a small celestial body say, an aster-

oid or comet was first considered by Scheeres [44]. Inertial hovering is the foundation

for the classical gravity tractor. In general, inertial hovering consists of creating an

artificial equilibrium point by applying a thrust Tc through the spacecraft engines to

balance the gravitational pull of the asteroid maintaining a fixed position r, relative
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to an inertial coordinate frame usually placed at the center of mass of the asteroid.

Under the assumption of a gravitational potential V and a spacecraft of mass m, the

generalized vector equation of motion can be written as,

r̈+
∂V

∂r
=

Tc

m
. (2.1)

From a mechanical perspective, inertial hovering is the basis of the gravity-tractor

concept. The towing performance of the GT is driven by its hovering locus. According

to Newton’s law of gravitation, the gravitational pull between the GT and the asteroid

decreases with the inverse square of their relative distance. In addition, the thrusters

balancing the asteroid gravitational pull need to be slanted to prevent the exhaust

plumes to impinge on the asteroid surface. Such engine configuration incite losses due

to the non-zero sine component of the thrust vector degrading the efficiency of the

GT. The schematic of the gravity tractor system in Fig. 1.3 depicts the GT spacecraft

hovering at a distance d from the center of mass of a spherical asteroid. This is the

GT concept initially conceived by Lu and Love [32]. Each canted thruster supplies

a net thrust T0 directed away from the asteroid by an angle β from the spacecraft

centerline. Under this configuration, the thrust needed to support inertial hovering

is

2T0 cos β =
µm

d2
, (2.2)

where µ is the asteroid gravitational constant and m is the GT mass. The canting

angle β results from adding the plume-half-width φphw, and the angle between the

hovering distance d, and the inner edge of the plume flux tangent to the asteroid

surface. For a spherical body of radius a, the canting angle is

β = arcsin
a

d
+ φphw. (2.3)
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The results from Equations (2.2) and (2.3) motivates the search for an optimal hov-

ering location where the gravity pull can be achieved with the least degradation of

the cosine component of the hovering thrust vector. For the GT system presented in

Fig. 1.3, Lu and Love [32] found this distance to be about 1.5 asteroid radii, assuming

a plume-half-width φphw = 20 deg. Their results are reproduced in Fig. 2.1 from a

generalized perspective by mapping Eq. (2.2) as function of the hovering distance. As

an illustrative example, let Tx = µm/d2 be the thrust per unit mass imparted by the

GT engines along the radial direction from the asteroid, then the optimal hovering

distance corresponds to the point where Eq. (2.2) is satisfied. Figure 2.1 displays the

variation of the gravitational acceleration versus distance of a hypothetical spherical

NEO of unity radius and canonical gravitational constant µ = 1 (dashed line). The

solid line shows the cosine component of the thrust vector supplied by the two canted

engines and the dotted line is the total thrust supplied by the two canted thrusters.

The results in Fig. 2.1 imply that the optimum compromise between gravitational

pull and cosine losses exist at their intersection. In other words, the distance where

the towing effort is maximized and cosine losses are minimized. The engine canting

angle at the optimal distance d ≈ 1.5 asteroid radii results in β = 60 deg (consistent

with Refs. [32, 35]).

Analytical and numerical studies on the stability of inertial and body-fixed hov-

ering over small rotating celestial bodies were carried out by Scheeres [44], Sawai et

al., [40] and Broschart and Scheeres [41, 42]. These authors found, in general, that

close proximity inertial hovering is stable in the lateral direction in most regions away

from the resonance radius (i.e., the distance where the orbital period of the spacecraft

is equal to the rotation period of the asteroid) [41]. Inertial hovering was found to

be a feasible strategy that can be implemented using a simple dead-band controller

of one or two-dimensions to keep a spacecraft hovering within a prescribed region

above a small celestial body [42]. Results from these investigations were successfully

18



1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

10
0

10
1

Asteroid radii, DU

T
hr

us
t p

er
 G

T
 u

ni
t m

as
s

 

 
Asteroid gravity
2T

0
cosβ

2T
0

Optimal hovering distance

Figure 2.1: Thrust required by the GT engines to sustain inertial an inertial position
over a spherical asteroid.

implemented in the Hyabusa mission commanded by the Japanese Aerospace Explo-

ration Agency (JAXA) [43]. Recent studies carried out jointly by the Jet Propulsion

Laboratory and the B612 Foundation1 suggest that inertial hovering under a dead-

band controller can be efficiently employed in a GT spacecraft during its towing phase

[33, 39]. In this work, inertial hovering is used as the known baseline to measure and

compare the performance of the alternative hovering strategies to be introduced in

the following sections.

2.2.2 Alternative Hovering Strategies

Let’s consider the fact that most small bodies in the solar system differ from a spher-

ical shape and can be better approximated by an ellipsoidal figure with three distinct

axes. We can observe as well, that these bodies have a natural tendency to reach

steady-state rotation about their principal axis of inertia. On the other hand, we

1The B612 has been established on October 7, 2002. Their current objective is to significantly
alter the orbit of an asteroid in a controlled manner by 2015. http://www.b612foundation.org
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know that the gravitational pull of the GT on the asteroid is enhanced at close prox-

imities. Our goal is to find a way to place the spacecraft in a position where it

can maximize its gravitational pull over the asteroid but at the same time able to

maintain a safe distance from its surface. From the previous assumptions about the

asteroid, we could guide the GT spacecraft to adjust its distance from the asteroid in

synchrony with its rotation. This dynamical configuration allows the GT to increase

its gravitational effect over the asteroid, augmenting its towing performance. Assum-

ing that the gravitational acceleration caused by the asteroid on the GT is balanced

by the action of the engines, a supplementary thrust can be included to induce this

periodic trajectory. Such periodic motion of the GT can be described by a simple

harmonic oscillator in a generic coordinate q and angular rate ω0 i.e.,

q̈ + ω2
0q = 0. (2.4)

The solution to Eq. (2.4) is:

q (t) = C0 cos (ω0t+ ψ) , (2.5)

where C0 and ψ are respectively, the displacement amplitude and phase angle deter-

mined upon the initial conditions in Eq. (2.4).

Equation (2.4) represents the general guidance law for the GT to implement what

we refer to dynamic hovering. Dynamic hovering requires the engines to periodically

accelerate the GT to move it towards and away the asteroid center of mass. The

motion can be constrained along a single axis or in three-dimensional space. In the

following section we develop two hovering strategies to extend the operational modes

that could be implemented in the gravity tractor. We will refer to a GT operating

under this hovering modes as the extended gravity tractor (xGT), and the two new

hovering strategies as xGT1 and xGT2.
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Figure 2.2: One-dimensional harmonic hovering (xGT1).

One-dimensional harmonic hovering (xGT1)

This hovering mode maintains the GT moving towards and away from the asteroid

center of mass along the towing axis i.e., the direction in which the deflection ∆v is to

be applied (usually parallel to the asteroid velocity vector). Figure 2.2 illustrates the

concept of the one-dimensional harmonic hovering. As seen from an inertial reference

frame fixed at the center of mass of the NEO, the GT spacecraft moves towards and

away the NEO center of mass as it spins about its minor axis at an angular rate ωζ .

At a time t = t1 the GT spacecraft is at a distance d1 = a+h from the NEO’s center

of mass. At a later time t = t2, the NEO’s attitude changed by angle ωζt2 = π/2 and

the spacecraft had displaced to a distance d2 = h + b closer to the NEO’s center of

mass.

The equations of motion for a GT operating under this guidance law are obtained

by combining Eqs. (2.1) and (2.4), resulting in the control thrust Tc to be defined as:

Tc

m
= −∂V

∂r
− ω2

GT

a− b

2
cos (ωGT t) î. (2.6)

The first term on the right hand side of Eq. (2.6) balances the asteroid gravity, and
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the second term induces the harmonic motion of the GT along the î direction with

angular rate ωGT . It has been mentioned earlier that the motion of the GT needs to be

synchronized with the rotation of the asteroid. The symmetry of the ellipsoidal model

implies that a particular asteroid-GT configuration will repeat every half period P

of the asteroid. That is, the GT returns to its initial state every π rotation of the

asteroid or ωGT = 4π/P .

For the purpose of this investigation, the translation amplitude is arbitrary defined

by the difference between the semiaxes a and b of the asteroid and constrained to the

hovering latitude λ0 measured counterclockwise from the asteroid’s equator to its

north pole. The hovering latitude is a direct consequence of the elevation of the ∆v

vector with respect asteroid major axis. For example, if the asteroid spin vector is

parallel to the ∆v vector, the resulting hovering latitude would be 90 deg, which

results in a constant hovering distance d from the NEO center of mass. Conversely,

if the asteroid spin vector is constrained to the plane perpendicular to ∆v then the

hovering latitude is at the equator. In the later case d changes periodically according

with the difference between the semiaxes a and b. Another point to consider is that

the towing vector ∆v changes as the asteroid moves along its heliocentric path. For

simplicity, the spin vector is considered to be normal to the orbital plane. Under

these considerations the control thrust vector Tc can be written explicitly in terms of

the asteroid dimensions, rotation rate and hovering latitude. Substituting the second

term of the right-hand side of Eq. (2.6) with (2.5) and setting r = q yields,

Tc

m
= −∂V

∂r
− 4Cω2 cos (2ωt+ φ0) cosλ0̂i, (2.7)

where ωζ = 1

2
ωGT and C is the amplitude of the harmonic trajectory relative to a

central point along the displacement distance i.e., C = 1

2
(a− b). Finally the resulting

thrust vector Tc can be writen explicitly as,
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Figure 2.3: Two-dimensional harmonic hovering (xGT2).

Tc = m

[

−4ω2 (a− b)

2
cos(2ωt) cosλ0 −

∂V

∂x
,−∂V

∂y
,−∂V

∂z

]T

. (2.8)

Equation (2.8) forces the GT displacement about the î coordinate while at the same

time counteracts the asteroid gravitational pull along the three coordinates.

Two-dimensional harmonic hovering (xGT2)

The two-dimensional harmonic hovering frees the GT to move along the î and ĵ

coordinates while hovering, contrary to the one-dimensional hovering described in

the previous section. The objective in this section is to derive the geometry of the

reference trajectory of the GT spacecraft as seen from a reference frame fixed on the

asteroid. For this, we hold on the triaxial ellipsoid model the asteroid with semiaxes

a > b > c spinning about its principal axis of inertia with an angular rate ω.

Consider a coordinate system with origin at the center of mass of the asteroid

whose abscissas ξ, η and ζ are fixed along the primary axes of the asteroid as shown

in the diagram of Fig. 2.3. At an initial time t = t0 the spacecraft is placed at

r0 (t0) = [ξ0, η0, ζ0]
T . Also let rs = [ξs, ηs, ζs]

T be a vector directed towards a point

on the surface of the ellipsoid whose tangent plane is normal to the initial altitude
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vector h. From Fig. 2.3 the position of the GT spacecraft with respect to the center

of coordinates is:

r0 = rs + h. (2.9)

The initial altitude h is defined as the shortest distance from the spacecraft to the

asteroid surface. Assuming that at the initial time t0 the GT is in the ξζ-plane of the

asteroid, then the longitude φ0 = 0 and h is determined from:

min h =

√

(ξ0 − ξs)
2 + (ζ0 − ζs)

2, (2.10)

where,

ζs = c

√

1−
(

ξs
a

)2

. (2.11)

The point [ξs, 0, ζs] are the coordinates of the ellipse resulting from a cross sectional

cut of the ellipsoid along the ξζ-plane, a is the major axis and c the minor axis.

The direction n̂ in which the altitude is measured, is obtained from the normalized

direction of the altitude vector i.e.,

n̂ =
∇E (ξs, ηs, ζs)

‖∇E (ξs, ηs, ζs)‖
, (2.12)

where,

E (ξs, ηs, ζs) =
ξ2s
a2

+
η2s
b2

+
ζ2s
c2

− 1, (2.13)

is the equation of the ellipsoid. Then the altitude vector becomes ĥ = hn̂.

Once the altitude vector is obtained the next step is to obtain the semiaxes of the

GT trajectory. For this we let ζs to remain fixed. After a time t = t1 the attitude

of the asteroid has changed by π/2 radians. Now a slice of the ellipsoid is taken

along the ηζ-plane resulting in an ellipse whose major and minor axes are b and c
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respectively, allowing to the determination of ηs:

ηs = b

√

1−
(

ζs
c

)2

. (2.14)

Finally the semiaxes ap and bp of the reference trajectory are

ap = ξ0, (2.15)

bp = ηs + h cos θ, (2.16)

where,

θ = sin−1

(

ζ0 − ζs
h

)

. (2.17)

The general control thrust Tc as given in Eq. (2.1) is

Tc

m
=
∂V

∂r
−













(ap − bp)4ω
2 cos(2ω + φ0) cosλ0

(ap − bp)4ω
2 sin(2ω + φ0) cosλ0

0













, (2.18)

where,

sinλ0 =
ζ0

‖r0‖
(2.19a)

tanφ0 =
η0
ξ0
. (2.19b)

The latitude λ0 at which the GT hovers depends on the obliquity of the spin vector

relative to the towing axis î. If the spin axis ζ, is aligned with the tow direction,

then the GT will be hovering inertially over the body. On the contrary if ζ is normal
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to the tow vector, the trajectory of the GT in the body-fixed frame of the asteroid

will follow a concentric ellipse on the NEO equator with semiaxes a0 = a + h and

b0 = b+ h.
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Chapter 3

Dynamical Model

3.1 Introduction

This chapter presents the physical and dynamical models assumed for the asteroid

and the GT spacecraft. The asteroid shape and the gravity field formulation are

presented followed by the spacecraft configuration. The spacecraft configuration takes

into account the location of the thrusters necessary to support the hovering dynamics.

The spacecraft is sized based on historical information from the Dawn mission. A

detailed model of the NSTAR thruster is described based on the work by Brophy

[45]. The chapter closes with the description of a solar radiation model used for the

simulations presented in Chapter 5.

3.2 NEO Physical Model

This section introduces the physical model used to represent an idealized asteroid

on which the gravity tractor will hover. Several asteroid models are available in the

literature. These models are based on approximated geometric shapes, spherical or
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elliptical harmonic expansions, while others use multiple polyhedron approximations

derived from derived from ground-based radar observations [46, 47, 48, 49] or in-situ

spacecraft measurements [50, 51]. In this investigation the NEO is approximated as

a triaxial ellipsoid whose gravity field can be solve in closed form by integration of

elliptic functions.

3.2.1 Shape Model

Before proceeding with the discussion of the model, it is necessary to define the system

of coordinates being used from now on. Two coordinate frames are defined here whose

origin is at the asteroid center of mass. The first is coordinate system ξ̂, η̂, ζ̂ is fixed

with the asteroid principal axes. In this reference frame ξ̂ is aligned with the major

semiaxis, ζ̂ with the minor semiaxis and η̂ completes the orthogonal set following

the right-hand rule. The second coordinate frame î, ĵ, k̂ is assumed to be inertially

fixed. Its principal direction î, is along the desired towing direction. The unit vector

ĵ corresponds to the cross product of î and the asteroid polar axis ζ̂. Finally the k̂ is

obtained by the cross product between the î and k̂ vectors.

To test the effectiveness of the hovering strategies introduced in section 2.2.2 it

is convenient to define a set of ellipsoidal bodies to represent an idealized asteroid

whose gravitational parameter µ = GM remains constant for the entire range of body

ellipticities. The mass of a triaxial ellipsoid with semiaxes a > b > c and uniform

density distribution ρ is given by Eq. (3.1).

M =
4

3
πρabc (3.1)

The semiaxes a and b are mutually related by the eccentricity eab, such that,

b = a
√

1− e2ab . (3.2)
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The semiaxis c can be defined to be a fraction of b, say c = bǫ such that 0 < ε < 1.

In this way the asteroid mass M can be written in terms of a and eab by substituting

Eq. (3.2) into Eq. (3.1):

M =
4

3
πρa2

√

1− e2abc

=
4

3
πρa2

√

1− e2ab

(

aε
√

1− e2ab

)

=
4

3
πρa3(1− e2ab)ε. (3.3)

Solving for the major semiaxis a gives,

a =

(

3M

4πρε (1− e2ab)

)1/3

. (3.4)

Equation (3.4) allows to define the semimajor axis of the ellipsoid as a function of

the eccentricity eab between the major and intermediate semiaxis a and b respectively.

Consequently, the value of the intermediate semiaxis b is obtained from Eq. (3.2). The

values of M, ρ and ε are arbitrary constants. Varying the eccentricity eab allows to

generate different prolate bodies with the same gravitational parameter permitting to

study the efficiency of the hovering modes on bodies with different axial dimensions.

However, the shape of the gravitational field changes as the axial dimensions are

altered.

3.2.2 Potential Field Model

The shape of a small celestial body can be approximated by a triaxial ellipsoid with

semiaxes a, b and c. By changing the values of the semiaxes it is possible to change
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the shape of the body from a sphere, (a = b = c) to an oblate (a = b > c) or prolate

(a > b = c) spheroid. Thus a general triaxial ellipsoid can be defined by changing the

values of a, b and c such that a ≥ b ≥ c. If the mass density ρ is assumed to be

constant for a particular body, then its gravitational parameter µ can be determined

as:

µ =
4

3
πGρabc, (3.5)

where G = 6.6695× 10−11 m3kg-1s-2 is the universal gravitational constant.

The determination of the gravitational potential of a solid homogeneous triaxial el-

lipsoid at an exterior point P0 = (ξ0, η0, ζ0) is attributed to Sir James Ivory, 1809 [52].

The detailed derivation of this function is described by Danby, 1992 [53], MacMil-

lan, 1958 [54] and Moulton, 1914 [55]. The resulting expression for the gravitational

potential V is a function of elliptical integrals such that,

V (ξ, η, ζ) =
3

4
µ

∫ ∞

κ0

(

1− ξ2

a2 + κ
− η2

b2 + κ
− ζ2

c2 + κ

)

× dκ
√

(a2 + κ)(b2 + κ)(c2 + κ)
.

(3.6)

Equation (3.6) maps the gravitational potential V of a solid homogeneous ellipsoid

with semiaxes a, b and c to the exterior point P0. The lower limit of integration κ0

defines a confocal ellipsoid E (κ) that passes through the point P0. The equation of

the auxiliary ellipsoid is given by:

E(κ) =
ξ2

a2 + κ
+

η2

b2 + κ
+

ζ2

c2 + κ
− 1. (3.7)

Equation (3.7) has three real roots, two are negative and one is positive. The only

root that keeps the denominators of Eq. (3.7) positive is the largest root of E (κ) that
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Figure 3.1: Roots of E(κ): The only positive root κ = κ0 defines the auxiliary
concentric ellipsoid passing through the exterior point P0.

defines the lower limit of integration κ0 in Eq. (3.6). The graph of E(κ) is shown in

Fig. 3.1.

Upon integration of Eq. (3.6) the gravitational potential V (ξ, η, ζ) results in a

function of Legendre’s canonical elliptic integrals F (φl, kl) and E(φl, kl) of first and

second kind, respectively. The amplitude φl and modulus kl are of the elliptic integrals

are:

sinφl =

√

a2 − c2

κ+ a2
, (3.8)

kl =

√

a2 − b2

a2 − c2
. (3.9)
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The expression for the potential function V (ξ, η, ζ) becomes:

V (ξ, η, ζ) =
2πGρabc√
a2 − c2

[

(

1− ξ2

a2 − b2
+

η2

a2 − b2

)

F (φl, kl)

+

(

ξ2

a2 − b2
+

(c2 − a2) η2

(a2 − b2) (b2 − c2)
+

ζ2

b2 − c2

)

E (φl, kl)

+

(

c2 + κ

b2 − c2
η2 − b2 + κ

b2 − c2
ζ2
)(

a2 − c2

(a2 + κ) (b2 + κ) (c2 + κ)

)1/2
]

. (3.10)

The components of gravitational attraction of the triaxial ellipsoid are obtained from

the gradient of the potential. Taking the partial derivative of V with respect to ξ, η

and ζ yields:

∂V

∂ξ
=

Γ

(a2 − b2)
[E (φl, kl)− F (φl, kl)] ξ, (3.11a)

∂V

∂η
= Γ

[

(−a2 + c2)E (φl, kl)

(a2 − b2) (b2 − c2)
+
F (φl, kl)

a2 − b2
+ Λ

(c2 + λ)

b2 − c2

]

η, (3.11b)

∂V

∂ζ
=

Γ

(c2 − b2)

[

−E (φl, kl) +
(

b2 + λ
)

Λ
]

ζ, (3.11c)

where Γ and Λ are auxiliary defined as

Γ =
4πGρabc√
a2 − c2

, (3.12)

Λ =

√

a2 − c2

(a2 + λ) (b2 + λ) (c2 + λ)
. (3.13)

Mind that the semiaxes a, b and c need to be distinct in order to avoid numerical

singularities. The evaluation of the elliptic integrals are carried out using robust
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numerical procedures for example, see section 6.11 in Ref. [56].

3.3 Gravity Tractor Model

To provide a realistic framework in which we can make educated assumptions on

the mass budget of our GT spacecraft, we relied on historical information from two

spacecraft missions employing low-thrust propulsion: Deep Space 1 and Dawn. Deep

Space 1 (DS1) was a technology-validation mission launched on October 24, 1998

towards comet Borrelly [37]. The Dawn spacecraft was launched on September 27,

2007 and is expected to rendezvous with two major main belt asteroids: Vesta in July

2011 and with Ceres in February 2015.1

We consider the GT to be small spacecraft with a mass of about 1000 kg at

the beginning of the hovering stage powered by a set of ion engines similar to the

NSTAR thruster flown in DS1 and Dawn missions. Figure 3.2 shows a general layout

of the GT spacecraft inspired from the earlier works by Yeomans et al., [39, 33]. The

spacecraft bus is represented by the central box and the gray cones represent the

main thrusters. A set of five ion thruster are used to control the three-dimensional

translational dynamics. Thrusters labeled T1, T2 and T3 combine to control the

motion in the îk̂-plane whereas thrusters T4 and T5 control the dynamics along the ĵ-

axis. Thrusters T1 and T2 are slanted to prevent plume impingement on the asteroid.

The solar arrays extend along the k̂-axis and are sized in Sec. 3.3.1.

The mass budget for the GT system was estimated based on information avail-

able from the Dawn mission. The rationale behind this decision is a set of common

factors between the two spacecrafts. Among these factors we find both spacecrafts,

the GT and Dawn, have a box-shaped bus, large solar arrays and both spacecraft

are intended to operate under the gravitational field of an asteroid. Although their

1Dawn mission website, http://dawn.jpl.nasa.gov/mission/.
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Figure 3.2: Thrusters layout for the xGT spacecraft.

similar propulsion architecture, the GT uses its NSTAR thrusters to support hovering

instead of interplanetary cruise. We believe their similarities allow for relatively easy

extrapolation of the subsystem requirements and mass budget.

The mass of the NSTAR ion propulsion system (IPS) is disclosed into its major

components in Table 3.1. The table is divided in three column sections. The compo-

nents are indicated on the left column followed by their mass as found in Refs. [38, 57].

The center section indicates the number of units of each component for the GT space-

craft and its mass cost, respectively. The right column indicates the number of units

included in the Dawn spacecraft as found in Ref. [57]. The digital control interface

unit (DCIU) controls the the xenon feed system (XFS) and the power processing unit

(PPU), executing high level commands from the spacecraft computer. Two DCIU

are installed in the Dawn spacecraft to provide redundancy. The gimbals are used to

control the thrust direction, but in the GT are used to control the canting angle of T1

and T2. The XFS distributes the Xe propellant to the engines. A 10% contingency

was added to the total mass budget.

The mass contribution from the spacecraft subsystems is given in Table 3.2. The

bulk mass of the spacecraft bus and related mechanical components is indicated on

the first row. The electric power system (EPS) comprises the solar array structure
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Table 3.1: Propulsion system mass budget.

GT Dawn [57]

Component Mass, kg/unit Units Mass, kg Units Mass, kg

NSTAR ion engine 8.2 5 41.0 3 24.6

DCIU 5.85 2 11.7 2 11.7

PPU 13.9 5 69.5 2 27.8

Gimbals 4.6 2 9.2 3 13.8

XFS baseline 8.1 1 8.1 1 8.1

Additional per engine 3.3 5 16.5 3 9.9

Xe tank mass fraction % 4.5 6.8 4.5 20.3

Net IPS hardware mass 162.5 116.2

Mass contingency % 10 16.2 10 11.6

Total IPS mass 179 128

and auxiliary cabling and circuits. The total mass of the EPS was estimated from

the solar array mass by a factor of 4, resulting in good agreement with the data

obtained from Dawn. The attitude control system (ACS) controls the spacecraft

orientation by means of reaction wheels or by the reaction control system (RCS).

The RCS utilizes hydrazine mono propellant. The thermal control system (TCS)

regulates the spacecraft temperature. The command and data handling subsystem

(CDHS) processes and distributes commands to other subsystems and stores mission

data. The telecommunications subsystem provides communication link with Earth.

It is likely that an asteroid deflection mission will require to perform some scientific

characterization of the the target. Therefore we also allocated scientific payload

mass assuming a similar set of instruments as those carried in the Dawn spacecraft.

Table 3.3 indicates the amount of propellant mass and the spacecraft gross weight at

the beginning of the mission. It is important to remind the reader that the initial

mass of the GT is considered at the beginning of the hovering stage while the mass of

the Dawn spacecraft reflect the launch mass. Therefore, the mass budget presented
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Table 3.2: Miscellaneous subsystems mass.

GT Dawn [38]

Subsystem Mass, kg/unit Units Mass, kg Units Mass, kg

Mech/Struct/Harn/Balance 203 1.5 305 1 203

EPS 53 4 213 1 204

ACS 37 1 37 1 37

RCS 14 1 14 1 14

TCS 44 1 44 1 44

CDHS 21 1 21 1 21

Telecom 28 1 28 1 28

Science 45 1 45 1 45

Mass uncertainty 20 20

Total Miscellaneous 726 616

Table 3.3: Spacecraft gross mass.

GT Dawn [38]

Mass, kg Mass, kg

Xenon 100 450

Hydrazine 45 45

IPS 179 128

Misc. subsystem 726 616

Net spacecraft mass 1050 1239

here does not account for the total launch mass.

3.3.1 Solar Array

The roll of the solar array is to transform the energy from the solar photons into

electric current in order to supply power to the spacecraft subsystems. In the case

of a spacecraft equipped with solar-electric engines, most of the power produced by

the solar panels is fed into the propulsion system. In fact, the power budget of the
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Dawn spacecraft was around 3.1 kW of which 2.5 kW were used by the IPS [58].

The TCS consumed a maximum of 200 W at 3 AU and the telecoms system X-band

transponder required 100 W. The Dawn solar array panels comprised a net area of

36 m2 capable of generating 10.3 kW at 1 AU and 1.3 kW at 3 AU [38].

Similarly, the GT power load is driven by the five engines comprising the IPS.

The engines controlling the dynamics along the ĵ-direction (i.e. T4 and T5) thrust in

opposite directions and therefore only one engine may be needed to fire at maximum

power. On the other hand, thrusters T1, T2 and T3 may fire simultaneously at any

time although not all of them at full power. From this information, and under a

conservative stand point we could estimate the IPS power load to be equivalent to

four engines operating at full throttle plus an additional 10% for the remaining GT

subsystems resulting in a net power load of 11 kW. The size of the solar array is a

function of the power load, Pload and the heliocentric distance, R. The area of the

solar array A is,

Asa =
PloadR2

νcellF0

, (3.14)

where F0 = 1.36kW/m2 is the solar flux at 1 AU, R is the heliocentric distance

in AU and νcell is the efficiency of the solar cells. Fatemi et al., reported on the

efficiency of the triple-junction InGa/InGaAs/Ge to be νcell = 27.6% [59]. Each

NSTAR engine operating at full throttle requires 2.5 kW of power. If we assume

four engines operating simultaneously at their maximum capacity at a maximum

heliocentric range of 1.1 AU, then the total area of the solar array is 35.5 m2.

3.3.2 Propulsion System

Ion propulsion systems generate thrust by ionizing a gas, usually xenon (Xe), and ac-

celerating the ions through an electric potential. The accelerated Xe ions are expelled
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with velocities in the order of 102 km/s. The efficiency of ion thrusters range between

60% and 80% [60] p. 4. In practice, ion engines are often used for north-south sta-

tionkeeping of satellites on geosynchronous orbits and in the last decade they have

been used in interplanetary missions as the primary propulsion system. The NSTAR

ion engine was designed to be throttled up or down in order to adjust to the varying

solar power available at various heliocentric distances.

The mass-flow rate equation of the electric thruster is

ṁp =
T 2

2ηTPin

, (3.15)

where ηT is the thruster efficiency and Pin is the power supplied to the thruster. The

specific impulse can be written as,

Isp =
2ηTPin

g0T
. (3.16)

Substituting Eq. (3.16) into Eq. (3.15), results in the classical rocket equation,

ṁp =
Tnet
g0Isp

, (3.17)

where Tnet =
∑5

i=1
Ti is the net thrust supplied by the engines at a given time and

g0 = 9.81 m/s2 is the acceleration of Earth’s gravity at sea level. The Isp values

for each throttle setting are given in Table 3.42 , where the minimum and maximum

thrust settings are Tmin = 0.020 N and Tmax = 0.092 N, respectively. The Isp data

was fitted into a fourth-order polynomial to generate a continuous function of Isp vs.

thrust. Then, for each thruster the Isp is determined by

Isp = A0T
4 + B0T

3 + C0T
2 +D0T + E0, (3.18)

2The units of flow rate are given in standard cubic centimeter per minute (sccm). For xenon
ions, 1 sccm= 0.0983009 [mg/s] (see Ref. [60], page 464).
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where the coefficients of the polynomial are: A0 = −4.170×108 sec/N4, B0 = 1.046×

108 sec/N3, C0 = −9.628×106 sec/N2, D0 = 3.887×105 sec/N and E0 = −2.751×103

sec and T is the applied thrust in units of Newtons (N). Figure 3.3(a) shows the fit

along with the original data. The propellant mass rate follows a near linear relation

with respect to the applied thrust except near the lower limit Tmin (Fig. 3.3(b)).

The amount of thrust supplied by each engine is the vector sum of the required

acceleration in the î, ĵ and k̂ directions. The canted orientation of thrusters T1

and T2 requires the introduction of a mixing algorithm to command the engines to

provide the correct amount of thrust Ti (for i = 1, .., 5), along the desired coordinate.

Therefore, given the components of acceleration ax, ay and az, the mixing logic for

thrusters T1, T2 and T3 is defined as follows:

T1 =































m|ax|
2 cosβ

+ m|az |
sinβ

, if ax > 0 and az ≤ 0;

m|az |
sinβ|

, if ax = 0 and az ≤ 0;

0, otherwise.

(3.19a)

T2 =































m|ax|
2 cosβ

+ m|az |
sinβ

, if ax > 0 and az ≥ 0;

m|az |
sinβ|

, if ax = 0 and az ≥ 0;

0, otherwise.

(3.19b)

T3 =































m |ax|+ m|az | cosβ
sinβ

, if ax < 0 and az 6= 0;

m|az | cosβ
sinβ

, if ax = 0 and az 6= 0;

0, otherwise.

(3.19c)

The mixing logic for thrusters T4 and T5 is rather simple. These thrusters fire in op-
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Figure 3.3: NSTAR Engine performance plots.
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Table 3.4: Throttle table of the NSTAR thruster. [45]

Throttle
level

PPU input
power, kW

Engine
input

power, kW

Calculated
thrust, mN

Main flow
rate, sccm

Cathode
flow rate,
sccm

Neutralizer
flow rate,
sccm

Isp, s
Thruster
efficiency

15 2.567 2.325 92.67 23.43 3.70 3.59 3127 0.618

14 2.416 2.200 87.87 22.19 3.35 3.25 3164 0.624

13 2.272 2.077 83.08 20.95 3.06 2.97 3192 0.630

12 2.137 1.960 78.39 19.86 2.89 2.80 3181 0.628

11 2.006 1.845 73.60 18.51 2.72 2.64 3196 0.631

10 1.842 1.717 68.37 17.22 2.56 2.48 3184 0.626

9 1.712 1.579 63.17 15.98 2.47 2.39 3142 0.618

8 1.579 1.456 57.90 14.41 2.47 2.39 3115 0.611

7 1.458 1.344 52.67 12.90 2.47 2.39 3074 0.596

6 1.345 1.238 47.87 11.33 2.47 2.39 3065 0.590

5 1.222 1.123 42.61 9.82 2.47 2.39 3009 0.574

4 1.111 1.018 37.35 8.30 2.47 2.39 2942 0.554

3 0.994 0.908 32.12 6.85 2.47 2.39 2843 0.527

2 0.825 0.749 27.47 5.77 2.47 2.39 2678 0.487

1 0.729 0.659 24.55 5.82 2.47 2.39 2382 0.472

0 0.577 0.518 20.69 5.98 2.47 2.39 1979 0.420
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posite directions and their firing sequence is evaluated under the following conditions:

T4 =















m |ay| , if ay < 0;

0, otherwise.

(3.20a)

T5 =















m |ay| , if ay > 0;

0, otherwise.

(3.20b)

Differential thrust balance

Upon determination of the thruster firing mix, we need to evaluate whether the

resulting amount of thrust is inside the operational range of the engine. The data in

Table 3.4 indicates the operational range of the NSTAR engine is between 20 mN and

92 mN. If at a given time the thrust to be applied falls below the 20 mN threshold,

then the engine fires at its lower limit and engines in the opposite direction switch-on

to compensate for the excess thrust. For all engines the following condition must be

satisfied:

Ti + δa ≥ Tmin, (3.21)

where i = 1, 2, 3, 4, 5. For engines T1, T2 and T3 we have,

δa1 ≥ Tmin − T1, (3.22a)

δa2 ≥ Tmin − T2, (3.22b)

δa3 ≥
Tmin − T3
2 cos β

, (3.22c)
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where,

δa = max (δa1, δa2, δa3) . (3.23)

Equation (3.22) guarantees that Eq. (3.21) is satisfied for thrusters T1, T2 and T3.

For engines T4 and T5, Tmin is added to both thrusters in addition to the input

required to provide thrust in the commanded direction. The mixing logic is defined

as,

if T4 < Tmin ⇒















T4 = T4 + Tmin

T5 = Tmin

(3.24a)

if T5 < Tmin ⇒















T5 = T5 + Tmin

T4 = Tmin

(3.24b)

Otherwise, the logic given in Eqs. (3.20) applies.

3.3.3 Engine Canting Angle

In section 2.2.1 we found that the minimum engine can angle for the special case of

a GT hovering over an spherical body is,

β = arcsin
a

d
+ φphw.

In this section we solve the problem of the engine minimum slant angle for the general

case where the NEO is a triaxial ellipsoid of semiaxes a, b and c and the GT spacecraft

position is r0 = [x0, y0, z0] from the center of mass of the NEO. Our goal is achieved

by finding the point of tangency, Ps = [xs, ys, zs] on the surface of the ellipsoid
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that belongs to the vector intersecting the point P0 = [x0, y0, z0], (recall that P0

corresponds to the locus of the spacecraft). Finding the point Ps requires to solve a

system of three equations whose unknowns are xs, ys and zs.

The first equation is given by the algebraic form of a triaxial ellipsoid centered at

the origin of the coordinate system î, ĵ, k̂ defined earlier in Sec. 3.2.1:

f (x, y, z) = A0x
2 +B0y

2 + 2C0z
2 + 2D0xy + 2E0xz + 2F0yz +G0. (3.25)

where G0 = −abc and the coefficients, A0, B0, C0, D0, E0 and F0 are due to the

relative orientation of the ellipsoid axes with respect to the frame î, ĵ, k̂. To obtain

the remaining coefficients, let Q be the matrix representing the ellipsoid with its axes

of inertia aligned with the reference frame such that,

Q =













bc
a

0 0

0 ac
b

0

0 0 ab
c













. (3.26)

Following a coordinate transformation yields,

Q′ = RT
1R

T
2QR2R1, (3.27)

where,

R1 =













cosλ 0 sinλ

0 1 0

− sinλ 0 cosλ













, (3.28)
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is a rotation about the η-axis by a latitude λ and

R2 =













cos θ sin θ 0

− sin θ cos θ 0

1 0 1













, (3.29)

is rotation about the ζ-axis by the longitude θ. From Eq. (3.27), Q′ can be written

explicitly in terms of the coefficients in Eq. (3.25):

Q′ =













A0 D0 E0

D0 B0 F0

E0 F0 C0













. (3.30)

The second equation corresponds to the plane tangent to the ellipsoid that contains

Ps and P0 or,

ns · (rs − r0) = 0, (3.31)

where

ns = ∇f (xs, ys, zs) , (3.32)

and rs = [xs, ys, zs] is the vector from the origin to the surface of the ellipsoid. The

third equation corresponds to a plane defined by the points P0, Ps and Pk = [0, 0, 1]

which yields,

nk · (rs − r0) = 0, (3.33)

where,

nk =
−−→
P0O ×−−→

P0Pk. (3.34)

The intersection of the planes defined by Eqs. (3.31) and (3.33) is the line tangent to
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f(xs, ys, zs) = 0 that intersects P0. Equations (3.25), (3.31) and (3.33) conform an

algebraic system of three nonlinear algebraic equations with three unknowns i.e.,

A0x
2 + B0y

2 + Cz2 +D0xy + E0xz + F0yz +G = 0 (3.35a)

∇f (xs, ys, zs) · (rs − r0) = 0 (3.35b)

n2 · (rs − r0) = 0 (3.35c)

Finding an analytical solution of Eq. (3.35) is cumbersome therefore, a numerical

method such as the Gauss-Newton is desirable. A numerical routine of this kind can

be implemented by invoking the function fsolve.m in Matlab. However, an analytical

solution is easier to find under the assumption that P0 lies on the î̂j-plane. Such

assumption causes the ĵ-coordinate to be zero because the tangent lines containing

P0 and Ps are embedded in the î̂j-plane as well, reducing the system in Eq. (3.35)

into two equations and two unknowns,

A0x
2
s + C0z

2
s + 2E0xszs +G0 = 0, (3.36a)

zs +
A0xs + E0zs
C0zs + E0xs

(xs − x0) = 0. (3.36b)

The solution to the system in Eqs. (3.36) is,

xs =

−G0 ∓
E0

√

−G0(G0+A0x2

0)
√

(A0C0−E2

0)

A0x0
, (3.37a)

zs = ±
√

−G0 (G0 + A0x20)

x0
√

(A0C0 − E2
0)

. (3.37b)

The relevance of the analytical solution (3.37a) is that allows to use them as the
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initial guess when solving solving Eq. (3.35) numerically and reducing computational

time. Finally, the engine canting angle is the bisection of the angle formed between

r0 and the two solutions to Eqs. (3.35) i.e.,

β =
1

2

(

sin−1 zs1
‖r0 − rs1‖

+ sin−1 zs2
‖r0 − rs2‖

)

+ φphw. (3.38)

Figure 3.4: Tangent vectors connecting r0 to the points in the surface of the ellipsoid.

3.4 Radiation Pressure Model

The large area of the solar arrays, in combination with the prolonged operations in

the proximity of the asteroid, motivates the inclusion of the disturbing forces due to

solar radiation. Over extended periods of time, these small perturbations may cause

the GT spacecraft to drift away from its prescribed hovering position putting the
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mission at risk. The solar flux at 1 AU is approximately F0 = 1367 W/m2 [61] and

decreases with the inverse square of the heliocentric distance R,

F = F0

1

R2
. (3.39)

The acceleration due to solar radiation pressure can be estimated by modeling the

size of main reflective surfaces of the spacecraft and its orientation with the Sun’s

normal. In this case we consider the solar array to be flat Lambertian surfaces oriented

perpendicular to the photons flux as shown in Fig. 3.5. The force acting on the

spacecraft due to solar radiation pressure is calculated as,

Fsp = PAsa

[

(1 + ρs) +
2

3
ρd

]

n̂, (3.40)

where P = 3 × 10−8F is the pressure due to the solar photons and Asa is the area

of the solar array. The coefficients of specular reflection ρs, diffuse reflection ρd and

absorbed radiation ρa satisfy ρa + ρs + ρd = 1. Because solar panels are mostly

absorber surfaces we assume ρa = 0.7, ρs = 0.15 and ρd = 0.15 [62].

Figure 3.5: Solar radiation pressure model.
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Chapter 4

Results on the xGT Performance

4.1 Introduction

In this chapter we report on the results of a parametric study done in order to gather a

first-order insight regarding the performance of the GT spacecraft operating under the

dynamic hovering laws versus the classical inertial hovering. The analysis consisted

in determining the amount of towing ∆v and propellant consumption of the GT when

it has to operate over bodies of different rotation periods and shapes, as described

in 3.2.1. This chapter is divided in two major parts. First we perform a parametric

analysis using an ideal ion engine of constant specific impulse, Isp = 3000 sec. In the

second part of this chapter the same analysis is done but using the NSTAR engine

model described in section 3.3.2.

4.2 Simulation Parameters

The physical parameters of the asteroid are quantified in Table 4.1. The shape of the

asteroid is determined by Eqs. (3.2) and (3.4) for values of 0.05 ≥ eab ≤ 0.90. The
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spin rates are defined by rotation periods ranging from 2 hours to 1 revolution per

day. The spin vector is assumed to be along the principal axis of inertia c, orthogonal

to the desired ∆v vector, which is the vector pointing from the asteroid center of mass

towards the GT spacecraft, and perpendicular to the orbit plane. These conditions

allow to place the GT spacecraft in the equatorial plane of the asteroid at an arbitrary

initial altitude h = 80 m from the surface.

In practice, there is no defined upper bound for the rotation period. For example,

asteroid 99942 Apohis has a rotation period of 30 hours while others could have

periods lasting several days. The lower boundary of the rotation period has been

found to be near 0.1 days (≈ 2.4 hours) for asteroids with diameters greater that 200

meters. This spin limit is thought to be due to a purely gravitational regime that

hold these bodies together.[63, 64]

Table 4.1: Asteroid Parameters.

Density, kg/m3 Mass, kg eab ε Period, hs

2300 2.6× 1010 [0.05 - 0.9] 0.75 [2 - 24]

The equations of motion (Eq. (2.1)) were integrated in an inertial frame with

origin at the asteroid center of mass. The gravitational pull on the spacecraft was

obtained by transforming the position vector into body-fixed coordinates. The first

rotation Cη, is about the intermediate body axis η̂, by the respective latitude angle λ,

resulting in the new orientation of the polar axis ζ̂ with respect to î. Recall that the

î-axis corresponds to the direction of towing. The second rotation Cζ , is about the

ζ̂-axis by the longitude angle φ. Alternatively, the polar axis may not necessarily be

normal to the îj-axis. In such case, a rotation about the î-axis by an angle ψ precedes
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the former transformation resulting in the general sequence,













ξ0

η0

ζ0













= Cζ(φ)Cη(λ)Cî
(ψ)













x0

y0

z0













. (4.1)

The numerical simulation was done using the Matlab integrator ode113 with an abso-

lute tolerance 10−6 and a relative tolerance of 10−8. In order to obtain more accurate

results and to prevent numerical artifacts due to the different integration step-sizes

ode113 may use for the different simulation cases, we restricted the maximum integra-

tion step-size to 1/50 times the rotation period of the asteroid. The total simulation

time was 20 days and the results (i.e., ∆v and ∆m) are presented as the daily average.

4.3 Ideal Ion Engine

The gravitational action of the GT on the asteroid produces an acceleration

v̇ =
Gm(t)

r2
, (4.2)

where r is the distance from the asteroid center of mass and m(t) accounts for the

decreasing mass of the spacecraft. The change in mass is given by the ideal rocket

equation (i.e., Eq. (3.17)). Combining Eqs. (3.17) and (4.2) the net ∆v imparted on

the NEO over the towing period is estimated as,

∆v =
Gm0Ispg0
anetr2



1− exp
−
anet
Ispg0

∆t



 , (4.3)

where anet = Tnet/m. Recall that the second term on the right of Eq. (2.6),

Tc

m
= −∂V

∂r
− ω2

gt

a− b

2
cos (ωGT t) î,
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indicates that the distance between the centers of mass of the asteroid and spacecraft

changes periodically. Therefore, the ∆v on the asteroid due to the xGT is estimated

using the average hovering distance over the towing period ∆t.

Figure 4.1 shows the ∆v exerted by a GT with initial mass m0 = 1050 kg while

hovering inertially from the center of mass of a triaxial body of varying shapes,

constant gravitational parameter µ = GM and constant density distribution ρ. The

∆v imparted on the asteroid due the gravitational pull of the GT is mapped against

the eccentricity between semiaxes a and b, and the rotation period of the body. The

color scale indicates the averaged daily propellant consumption. The altitude h, in

addition to the extension of the semimajor axis, determine the hovering position with

respect to the center of mass of the asteroid. Therefore, larger axial eccentricities

eab, cause the GT to hover farther from the center of mass, decreasing the towing ∆v

imparted on the asteroid. This effect is shown in Fig. 4.1 where the ∆v decreases

as the axial eccentricity increases. The ∆v given in Eq. (4.3) is the component of

acceleration exerted by the GT on the NEO in the direction parallel to the desired

towing axis î. Note the towing performance for a GT operating in inertial hovering is

independent from the asteroid rotation rate. The propellant depletion is indicated by

the color scale of Fig. 4.1. As expected the propellant usage decreases as the bodies

become more eccentric as a consequence of increased distance from the asteroid center

of mass.

Figures 4.2(a) and 4.2(b) display the towing ∆v exerted on the asteroid by the

xGT operating in the one-dimensional dynamic hovering (xGT1) and in the two-

dimensional dynamic hovering (xGT2), respectively. Both strategies yield the same

∆v, an expected result since the average position along the î direction is the same for

the xGT1 and xGT2. The towing ∆v is mapped against the shape and rotation period

of the asteroid. The increase in ∆v for the xGT depends on the amplitude of the

spacecraft displacement along the towing axis. Such displacement has been defined
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Figure 4.1: Towing ∆v exerted by a GT operating in inertial hovering. The color
scale indicates the propellant mass used over a 24 hrs interval.

to be the difference between the major and intermediate semiaxes of the NEO (see

section 2.2.2).

The merits due to the xGT are quantified by calculating the percentage of ∆v

increment with respect to the classical GT as,

fmerit = 1− ∆vxGT

∆vGT

, (4.4)

where ∆vxGT and ∆vGT are the change in velocity imparted on the asteroid by the

xGT and the GT, respectively. The relative increment in towing ∆v due to the xGT

hovering modes is shown in Fig. 4.3. The increased ∆v is due to the decreased average

distance the xGT spacecraft has from the center of mass of the asteroid. The results

shown in Fig. 4.3 suggest that in the most optimistic scenario the xGT strategy could
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Figure 4.2: Towing ∆v exerted by the (a) xGT1 and (b) xGT2.The color scale indi-
cates the propellant mass used over a 24 hrs interval.
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Figure 4.3: Towing merits for the xGT modes.

yield ∆v improvements of up to a 60% with respect to the classical GT.

Even though both xGT strategies exhibit the same towing merits, their propel-

lant penalties present large differences. Figure 4.4(a) maps the dependence of propel-

lant consumption in the shape and rotation space of the NEO for the xGT1. From

Fig. 4.4(a), it is easy to observe that shorter rotation periods and higher axial eccen-

tricities induce a nonlinear increase in propellant usage. This increment in propellant

demands is a direct consequence of the guidance law given in Eq. (2.6), where the

xGT acceleration is proportional to the square of the asteroid rotational period and

to the displacement amplitude, defined by the difference between the semiaxes a and

b. In contrast, the xGT2 (Fig. 4.4(b)) shows a higher increase in propellant usage

towards the limit of high axial eccentricities and short rotation rates. The increased

propellant rate is a direct consequence of the combined action of the thrusters in the

î and ĵ coordinates as dictated by the guidance law of Eq. (2.18).

The propellant penalties are the loss in efficiency of the xGT relative to the clas-
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Figure 4.4: Map of the averaged propellant mass rate consumed by the (a) xGT1
and (b) xGT2.
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sical GT. We meassure these penalties as the relative percent of increased propellant

demands of the xGT hovering modes with respect to the inertial hovering,

fpenalty = 1− ∆mxGT

∆mGT

, (4.5)

where ∆mGT is the fuel mass depleted by the classical GT and ∆mxGT is the fuel

mass depleted that corresponds to the dynamic hovering modes.

Figure 4.5 shows the relative increase in propellant usage due to the dynamic

hovering modes. Figure 4.5(a) displays the penalty for the xGT1 strategy. For the

xGT1, the penalties increase monotonically along the axial eccentricity space reaching

up to 85%. Along the rotation space a sharp increase in propellant consumption

appears near the limit of high eccentricities and rotation periods shorter than 8 hours.

Figure 4.5(a) shows the penalty map for the xGT2. In this mode the penalty map

is richer in features than the former (Fig. 4.5(b)). The penalties near the limit of

high eccentricities appear to be less than those in the xGT1. There is also a penalty

decrease at rotation periods near 0.6 day (≈ 14 hours) followed by a spike in penalties

towards the limit of high eccentericities and short rotation period.

In general, these penalties are driven by three factors. First, as the spacecraft

moves closer to the asteroid its engines need to increase their thrust to balance the

local gravity field. Second, the cosine losses due to the canting of thrusters T1 and T2

increase as the xGT moves closer to the asteroid surface. The third contributor is the

synchronized periodic motion of the xGT. The second term in Eqs. (2.6) and (2.18)

is proportional to the displacement amplitude and to the square of the asteroid rota-

tion rate. Its effects are evident towards the limit where the asteroids have extreme

eccentric shapes and short rotation periods.

The remarked differences seen between Figs. 4.5(a) and 4.5(b) motivates to com-

pare these results against each other. We perform this comparison by subtracting the
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Figure 4.5: Propellant penalties incurred by xGT modes:(a) xGT1 and (b) xGT2.
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Figure 4.6: Penalty difference between xGT1 and xGT2.

values in Fig. 4.5(a) from those in Figs. 4.5(b). In this way we can get an insight on

which strategy is more efficient given an asteroid with certain axial shape and rotation

period. The results are presented in Fig 4.6 where positive values indicate the xGT2

carries less penalties than the xGT1, and negative values indicate that penalties are

relatively less for the xGT1 than for the xGT2. Note that the xGT2 perform with up

to a 20% less propellant penalty in a region at eab = 0.9 and T ≈ 14 hours while the

xGT1 incurs less penalties near the edge of the clear region. The clear region near

the limit of short rotation periods is close to the gap where the implementation of

the classical GT is more convenient than the advanced hovering strategies. That is,

the penalties are too high with respect to the merits.

As an illustrative example we consider a 1-ton xGT system loaded with 50 kg of

Xe propellant. We were interested in comparing its deflection ∆v capability against
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the classical GT. For this we assumed asteroids of different shapes with rotation pe-

riod of 12 hours. The mass and density of the asteroids are indicated in Table 4.1. A

simulation was performed until the xGT depleted its propellant and a similar simu-

lation was performed for the classical GT. The results are shown in Figure 4.7(a). As

expected, the xGT was able to exert a higher ∆v on the asteroid than the classical

GT during the same time interval. This effect is amplified when the target asteroid

possesses high axial eccentricities. A contrasting point lies over the fact that substan-

tial amounts of propellant remained in the tanks of the GT at the end of the towing

period. Figure 4.7(b) shows the residual propellant mass against the simulation time.

These results suggest that for certain deflection scenarios we could reduce towing time

for certain ∆v goal by employing the xGT concept.

4.3.1 Engine Canting Angle

The variation of the canting angle of engines T1 and T2 worth to be explored to deter-

mine whether the implementation of a gimbaled system is realistic for the scenarios

described above. The variation of the canting angle over a GT hovering cycle is a

function of the asteroid shape and orientation, as well as the spacecraft position. The

variation amplitude for each hovering mode is shown in Fig. 4.8. Figure 4.8 shows

that the amplitude variation of the engine canting angle does not present a criti-

cal issue. For axial eccentricities lower than 0.6 the amplitude of the canting angle

does not exceeds 5 degrees. Within this range the canting angle of the xGT is lower

than the GT for eab < 0.6. For eab > 0.6 the GT displays a maximum amplitude of

6.5 degrees, the xGT1 reaches a maximum amplitude of 10 degrees and the xGT2

reaches 13 degrees. This analysis aids in the determination whether the complexity

of a gimbaled system for the thrusters and the subsystems related to continuously

track and adjust their orientation, overcomes the cost associated with the increased

cosine losses incurred due to a fixed canting angle. A first look to these results leads
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Figure 4.7: (a)Towing ∆ achieved by the xGT upon propellant depletion. (b) Pro-
pellant mass remaining in the GT.
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Figure 4.8: Amplitude of the engine canting angle.

to the speculation that for eab < 0.6 a continuous adjustment of the engine canting

angle may not be a critical issue for any of the three hovering strategies. However, a

detailed system analysis of cost and risks is required to provide with a precise answer.

4.4 NSTAR Ion Engine

In this section we report on the performance of the GT and xGT using the NSTAR

engine model introduced section 3.3.2. The inclusion of a realistic thruster model

implies that the available thrust T is limited and bounded within certain operational

range Tmin ≤ T ≤ Tmax. From Table 3.1 these limits are: Tmin = 0.020 N and Tmax =

0.092 N. In addition, the specific impulse is variable and bounded between 1979 sec

and 3127 sec. Using this information, it is convenient to perform some analysis using

a simple model in order to obtain an insight about the general implications this

thruster model could have on the GT systems. For this, we assume a GT hovering

over a small spherical body and observe the effects on the thrusters operation as the
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radial distance is increased. From Eq. (2.2) the thrust to support inertial hovering is

given by

T =
µm

2d2 cos β
, (4.6)

where d is the hovering distance. From the data listed in Table 4.1 the radius of the

small asteroid is about 140 m. Hovering at an initial altitude h = 80 m results in

d = 220 m. The thrust supplied by the canted engines is T ≈ 0.023 N, just above

Tmin and satisfying the condition given in Eq. (3.21). Once the hovering distance is

increased to the value where the required thrust T falls bellow Tmin, Eq. (3.21) is be

enforced by satisfying Eqs. (3.22) and (3.23); resulting in the firing of an opposite

thruster (T3) in order to balance the excess thrust from by T1 and T2.

The action of the engines to support hovering over a range of distances is shown in

Fig. 4.9(a) and the resulting propellant mass rate is plotted in Fig. 4.9(b). The thrust

supplied by each canted engine T1 and T2 is indicated by the solid line. The dashed

line shows the operation of thruster T3. Thruster T3 provides thrust in the direction

of the gravitational pull. The local gravitational force is indicated by the dash-dotted

line. The thrust supplied by thrusters T1 and T3 is reduced as the distance from the

body increases. At about d = 230 m, the required thrust from T1 and T2 falls below

Tmin causing T3 to activate. Beyond d > 230 m, all three thrusters are operating.

Another interesting event occurs at d ≈ 325 meters where T3 operates at a higher

throttle level than T2 and T3. However, the resulting acceleration balances the local

gravity pull.

Figure 4.10 shows the averaged propellant mass depleted after one day by the

GT operating in inertial hovering as a function of the asteroid axial eccentricity and

rotation period. For the classical GT, the propellant rate depends only on the axial

eccentricity of the asteroid and is independent from its rotation rate. The propellant

depletion rate decreases from 0.38 kg/day on the region of a near spherical body

(eab = 0.05), to about 0.36 kg/day near axial eccentricities of eab = 0.6. This is a result
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Figure 4.9: Engines mixing logic: (a) applied thrust and (b) net propellant depletion
rate.

64



0.
38

0.
38

0.
38

0.4

0.
4

0.
4

0.
42

0.
42

0.
42

0.
44

0.
44

0.
44 0.46

0.46

0.
46

0.
46

0.46

Body axial eccentricity, e
ab

R
ot

at
io

n 
pe

rio
d,

 d
ay

s

∆m , kg

 

 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.36

0.37

0.38

0.39

0.4

0.41

0.42

0.43

0.44

0.45

0.46

Figure 4.10: Propellant mass rate for the GT system powered by five NSTAR
thrusters.

of the attenuation of the asteroid’s gravitational pull as the GT hovers farther from the

center of gravitational attraction. Beyond this point, the daily propellant mass rate

displays a sharp increase reaching a peak value of 0.46 kg/day at eab ≈ 0.8 followed

by a shallow decrement. This behavior can be explained using the analysis performed

at the beginning of this section. In short, the gravitational pull of the asteroid on the

spacecraft had decreased to a value bellow the lower thrust boundary of the engine.

The difference here is that that a different gravity field was used and we are adding

into account the action of the engines along the ĵ axis. In consequence, engines in

the opposite direction fire to compensate for the excess thrust. The gravitational pull

is then balanced by the difference between the thrust components acting in opposite

directions.

65



Figures 4.11 and 4.12 show the averaged propellant consumption rate for the

xGT1 and xGT2, respectively. As could be expected from the results discussed in

the previous section, the dynamic hovering modes display a strong dependence on the

rotation rate of the asteroid but the overall propellant rate had increased. Figure 4.11

shows a shallow decrease in propellant usage as the axial eccentricity increases to

about eab = 0.7 and rotation periods longer than 7 hours. For values of eab > 0.7

the propellant rate suddenly increases as the required thrust falls below the lower

boundary of the thruster operational limits. Consequently, a complementary thrust

is applied in the opposite direction, driving the thrusters to fire within its operational

margins. Recall that in this hovering mode the gravitational pull decrease as eab

increases but at the same time the displacement amplitude increases reducing the

margin in which the required thrust in the î direction falls below the operational

limit of the engine.

If we move in the direction of shorter rotational periods, we find the well of

minimum propellant consumption vanishes as periods become shorter than 7 hours

and the mass rate increases faster in the direction of increased axial eccentricities

and short rotational periods. This behavior can be explained as a consequence of the

dominance of the second right-hand term in Eq. (2.6) over the asteroid’s gravitational

pull. Equation (2.6) indicates the acceleration of the xGT is proportional to the

displacement amplitude and to the square of the asteroid rotation rate. The void

region in the lower corner of Fig. 4.11 indicates that the required thrust exceeded

the operational limit of the thruster (0.092 N). Evidently, the xGT1 cannot operate

under these conditions.

Figure 4.12 shows the propellant consumption rate for the xGT2. The features

found here share a close similarity to those found earlier in Fig. 4.11. However,

a prominent feature arises near the lower right corner of the map. A “valley” of

relatively minimum mass rate is isolating the void region from the region of increased
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Figure 4.11: Propellant mass rate for the xGT1 system powered by five NSTAR
thrusters.

mass rate. This valley suggest that the required thrust does not falls below the

minimum threshold and also the thrusters are operating in the thrust region where

Isp is highest.

Figure 4.13 maps the propellant penalties between the GT and the xGT1. Positive

values indicate the classical GT is favored in terms of propellant usage while negative

penalties favor the implementation of xGT1. These results show that penalties are

negligible in most of the space where eab < 0.6, except for a small isolated region where

T < 0.2 days (< 5 hours) and eab = 0.6. In this region the penalties due to the xGT1

increase to near 30% over the GT. Once the axial eccentricity becomes greater than

0.6 the penalties display negative values favoring the implementation of the xGT1

with up to 20% less fuel consumption than the classical GT. The explanation lays in
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Figure 4.12: Propellant mass rate for the xGT2 system powered by five NSTAR
thrusters.

the fact that the periodic translational motion of the xGT1 increase the level of thrust

needed, consequently decreasing the time where differential thrust balance needs to

be applied. The improvements in propellant efficiency of the xGT1 over the GT are

near 20% in a region where eab ≈ 0.7 and T > 0.5 days. These results have serious

implications in the previous assumption that the performance of a gravity tractor can

be modeled using a variable-thrust engine with constant Isp and a minimum thrust

level Tmin = 0 N.

Figure 4.14 maps the propellant penalties between the GT and the xGT2. As

previously done, positive values indicate the classical GT is favored in terms of pro-

pellant usage while negative penalties favor the implementation of xGT2. The results

presented in Fig. 4.14 show that for most of the region where eab < 0.6 no signifi-

68



−
15

−1
5

−
15

−15
−

10

−
10

−10

−
10

−
10

−10

−
5

−
5

−5 −5

−5
0

0
0

05
5

5
10

10

15
20 25

0

Body axial eccentricity, e
ab

R
ot

at
io

n 
pe

rio
d,

 d
ay

s

% penalty

 

 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−20

−15

−10

−5

0

5

10

15

20

25

30

Figure 4.13: Percent penalty between the classical GT and the xGT1.

cant differences in propellant performance between the GT and the xGT2 exist. The

region where eab > 0.6 and P > 0.3 displays a similar behavior to that observed in

Fig. 4.13. When the rotational period falls below 0.3 day, the valley described in

Fig. 4.11 translates into improved propellant efficiencies favoring the xGT2 over the

classical GT.

The results presented above indicate that a realistic engine model changes com-

pletely the performance of a GT strategy, and under certain scenarios, the novel hov-

ering strategies proposed in this investigation (xGT1 and xGT2) appear to be more

efficient than the classical GT. Furthermore, we have observed that there are marked

differences in the propellant performance between the xGT1 and xGT2. These dif-

ferences motivate a comparison between the two strategies by subtracting the results
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Figure 4.14: Percent penalty between the classical GT and the xGT2.

presented in Figs. 4.13 and 4.14. The results of this experiment are given in Fig. 4.15.

Positive values favor the performance of the xGT2 while negative values favor the

xGT1. The results in Fig. 4.15 show that differences in performance between the

xGT1 and xGT2 are not greater than 4% in favor of the xGT1. An exception occurs

within the area of the valley observed earlier in Fig. 4.12. The valley region sug-

gests that the xGT2 yields about 10% improvements in propellant efficiency than the

xGT1.
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Figure 4.15: Percent penalty between the xGT1 and the xGT2.

4.5 Summary

In this chapter we performed a first-order analysis to determine the effectiveness of

the proposed hovering strategies and compared them against the classical GT. The

effectiveness was measured in terms of ∆v imparted on the asteroid and the propellant

penalties incurred by operating in the xGT modes. The analysis consisted a variety

of body shapes and rotation rates. A second part of this chapter was dedicated to

find the implications that a realistic engine model could have on the performance of

the GT and xGT systems. The results found show the importance to consider certain

level of detail, in particular, the operational range of the engines. Such consideration

revealed that in some scenarios the xGT could perform more efficiently than the

classical GT by reducing the propellant penalties.
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Chapter 5

Hovering Control for the Extended
Gravity Tractor

5.1 Introduction

This chapter presents results on the implementation of set of basic strategies to control

the GT hovering modes. The control strategies considered are a dead-band (DB) and

proportional-derivative (PD) controllers. These control algorithms were implemented

independently for each axis, allowing to select the most convenient controller for each

coordinate.

5.2 Hovering Control

A typical controller is divided in two components, an open-loop and a closed-loop

term. The open-loop controller (OL) is employed to cancel the gravitational pull of

the asteroid. The closed-loop controller corrects for any trajectory deviations caused

by external perturbations such as solar radiation pressure or plant inaccuracies. For

each hovering strategy a different combination of DB and PD were used to control
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the spacecraft motion on each axis. The way these controllers were implemented is

described in the following subsections.

5.2.1 Inertial Hover

The simplest way to achieve inertial hovering is by means of a DB controller. The

performance of this type of hovering control has been studied in the literature [40,

41, 42, 39] and successfully implemented in the Hyabusa mission commanded by the

Japanese Aerospace Exploration Agency (JAXA) [43]. The DB controller can be

implemented alone or in combination with an open-loop component depending on

the desired performance level. In this work it is assumed that the local gravity field

is balanced by the action of an open-loop controller,

Tol
m

= −∂V
∂r

∣

∣

∣

∣

r=r0

. (5.1)

The closed-loop component is then analyzed in the phase plane of each coordinate.

Figure 5.1 shows the general phase-plane logic of a DB controller. The structure of

the controller consist of a coast (u = 0) and a firing zone (±1u). The error and error

rate boundaries (δr and δṙ) drive the GT into a limit cycle in the phase plane inside

the coast zone.

To determine the switching logic the described in Fig. 5.1 let,

C0 = u rn, (5.2)

C1 = u (rn + δr) , (5.3)

C2 = u (rn − δr) , (5.4)

C =
1

2
ṙ |ṙ|+ u r. (5.5)

The phase plane logic is then written as:
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Figure 5.1: Phase plane logic diagramfor the DB controller.

if C − C0 < 0 then,

u =















−Tc sgn (C − C0) , if C − C2 < 0

0 otherwise

(5.6)

else, if C − C0 > 0 then,

u =















−Tc sgn (C − C0) , if C − C1 > 0

0 otherwise

(5.7)

else, u = const.

In practice, it is common to include certain percent of hysteresis in order to avoid

jitter. The control of a spacecraft operating in inertial hovering was studied in the

literature [44, 40, 41, 42, 39] therefore the remaining sections discuss the results

regarding to the control of the dynamic hovering strategies.
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5.2.2 Dynamic Hovering (xGT1 and xGT2)

For the dynamic hovering modes a PD controller is implemented to control the trans-

lational motion. The controller acts over the îk̂-plane in the xGT1 while the DB

controller acts along the ĵ-axis. In the xGT2 the DB controller along the ĵ-axis was

replaced by a PD controller, allowing control of the translational motion with greater

accuracy.

The PD controller defined in Eq. (5.8) continuously tracks the position error (pro-

portional term), and the rate at which the error is changing (derivative term). The

proportional term, kp provides a restoring force proportional to the error driving the

system towards the reference point. At the same time, the derivative term kd adds

damping to prevent the system to oscillate about the operational state (rref , ṙref ).

u = −kp (r− rref )− kd (ṙ− ṙref ) . (5.8)

The following results illustrates the behavior of the combined controllers for xGT1

and xGT2. The parameters used in the simulations are shown in Tables 5.1 and 5.2.

The parameters used for the controllers are listed in Table 5.3.

Table 5.1: Asteroid Parameters.

Density, kg/m3 Mass, kg Axial dimensions, m Rotaion periond, hs

2300 2.6× 1010 215× 129× 97 12

Table 5.2: Spacecraft Parameters.

h, m r0, m rref , m m0, kg

80 [282, -5, 5] [272,0,0] 1000
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Table 5.3: Controller Parameters.

Method Proportional gain, kp Derivative gain, kd δr, m

xGT1 5× 10−6, 0, 10−6 3× 10−2, 0, 10−3 10

xGT2 5× 10−6, 0, 10−6 3× 10−2, 10−3, 10−3 NA

xGT1

To accurately drive the xGT1 the reference state were defined as,

rref =

[

a+ h− a− b

2
(1− cos(2ωt)) cos(λ), 0, 0

]T

, (5.9)

ṙref = [ω(a− b) sin(2ωt) cos(λ), 0, 0]T . (5.10)

The DB controller is implemented for a DB with a displacement tolerance of δr = ±10

meters from the nominal and 10% of hysteresis. Figure 5.2(a) plots the position of

the xGT in inertial coordinates and the projected trajectory in the fixed frame of the

asteroid is shown in Fig. 5.2(b). The initial response of the controller is plotted for

the x and z position and velocity components in Figs. 5.3(a) and 5.3(e) with their

respective phase plane trajectories. The PD controller gains were chosen to prevent

overshoot in the x direction and to avoid exceeding the thruster limits. However, it

is likely that these gains will have to be selected independently for each particular

scenario. The small overshot along the z direction does not present any risk and could

be tolerated in most scenarios. The dotted line marks the reference trajectory.

The DB controller is implemented along the y-coordinate. Figure 5.3(c) displays

position and velocity history along the y-coordinate for the xGT1. The phase space

plot is shown in Fig. 5.3(d) along with the switching boundaries and their hysteresis

markers. The solid lines indicate the ideal DB boundary while the broken inner
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Figure 5.2: Trajectory plots for the xGT1, (a) î ĵ k̂ coordinates, and (b) body frame.
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Figure 5.3: Response of the controllers for the xGT1: (a) and (b) show the state
history and phase plane plots for the x axis; (c) and (d) for the y axis; (e) and (f) for
the z axis.
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lines indicate the switch-off boundary and the outer broken lines mark the switch-on

boundaries. The chaotic nature of the trajectories is evident and the controller shows

stability and good response. Due to the highly nonlinear and discontinuous nature of

the DB controller, its trajectory is very sensitive to the tolerances of the integration

algorithm. Therefore, when this controller is implemented the integration is usually

longer.

xGT2

The reference state used to guide the xGT2 is,

rref =













a+ h+
ap − bp

2
(−1 + cos(2ωt) cos(λ)

(ap − bp) sin(2ωt) cos(λ)

0













, (5.11)

ṙref =













−(ap − bp)ω sin(2ωt) cos(λ)

2(ap − bp)ω cos(2ωt) cos(λ)

0













. (5.12)

Figure 5.4(a) displays the trajectory of the xGT2 as seen from the î ĵ k̂-frame.

The projection in the fixed frame of the asteroid is shown in Fig. 5.4(b). The cyclic

behavior about the î ĵ-plane is projected as two circles with a fraction of them is

merge together. As done previously with the xGT1, the initial position was offset

from the nominal by 10 m in x, -5 m in y and 5 m in z. The PD controller was

implemented in the three translational coordinates replacing the DB controller along

ĵ. The initial response of the controller is shown in Fig. 5.5 for each coordinate with

their respective phase plane trajectory. The response of the controller is smooth with

no signs overshoot in the x or y components. The response along the z axis has a
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moderate overshoot. The proportional and derivative gains for each coordinate are

given in Table 5.3. The gains were determined by trial and error with the objective

to prevent saturation, overshoot and undershoot during the initial response.

The net propellant mass depleted by the xGT1 and xGT2 are shown in Figs. 5.6(a)

and 5.6(b) respectively. The xGT1 consumed 0.3 kg of propellant while the xGT2

used 0.46 kg implying a 35% in propellant savings. The propellant rates are shown in

Figs. 5.6(c) and 5.6(d) and the thruster firing histories are displayed in Figs. 5.6(e)

and 5.6(f) for the xGT1 and xGT2, respectively.

These results can be compared with those presented in the previous chapter. The

asteroid shape and rotation period are derived from Table 5.1, where the semiaxes

dimensions correspond to an axial eccentricity eab = 0.8. From the results presented

in Figs. 4.11, 4.12 and 4.15 it should be expected that both hovering strategies lead to

the same propellant expenditures. However, the implementation of the DB controller

along the xGT1 improves propellant efficiency by preventing the simultaneous firing

of thrusters T4 and T5. Note that Figs. 5.6(e) and 5.6(f) show thrusters T1, T2

and T3 operating simultaneously due to the fact that required thrust to guide the

spacecraft is less than 0.020 N, but only the xGT2 has thrusters T4 and T5 firing

simultaneously. The effects of the solar radiation pressure are also appreciated by

looking at the thrust magnitudes of T4 and T5 in Fig. 5.6(f) where the amplitude of

T4 is always greater than the amplitude of T5. This is because the solar radiation

pressure applies force in the anti-solar direction and is balanced by T4 which fire in

the solar direction.

The improvements brought by the introduction of the DB controller in the xGT1

motivates to investigate its performance inside the valley region described in Fig. 4.12.

Reducing the rotation period listed in Table 5.1 to 6 hours, gives the asteroid proper-

ties in the valley region of Fig. 4.12. Figure 5.7(a) indicates that the total propellant

mass consumed by the xGT1 was 0.25 kg/day. The propellant rate for the xGT2
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Figure 5.4: Trajectory plots for the xGT2, (a) î ĵ k̂ coordinates, and (b) body frame.
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Figure 5.5: Response of the PD controller for the xGT2: (a) and (b) show the state
history and phase plane plots for the x axis; (c) and (d) for the y axis; (e) and (f) for
the z axis.
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Figure 5.6: Propellant and thrust history plots for the xGT1 and xGT2: (a) and (b)
show the propellant mass, (c) and (d) the propellant mass rate and, (e) and (f) show
the engine throttle history.
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(Fig 5.7(b)), was about 0.40 kg per day, in agreement with the findings shown in

Fig. 4.12. These results imply that xGT1 used 38% less propellant than the xGT2.

The DB controller showed to be able to improve the propellant efficiency by eliminat-

ing the implementation of the differential thrust balance along the y-axis. The firing

sequence of the thrusters is illustrated in Figs. 5.8.

The firing sequence of thrusters T1, T2 and T3 is shown in Fig. 5.8(a) for a period

of 6 hours. The plot clearly illustrates the mixing logic of the thrusters T1, T2 and

T3. At t = 0 the GT spacecraft is at its farthest location from the center of the

asteroid. At that time T3 switches-on to accelerate the GT spacecraft towards the

asteroid. Due to the low amount of thrust needed, T1 and T2 compensate for the

excess thrust supplied by T3. As soon as the demanded thrust changes signs, the

action of the thrusters is reversed causing T3 to compensate for the excessive thrust

supplied by T1 and T2. Engine T3 switches-off once the demanded thrust is within

the operational boundaries of T1 and T2 (t ≈ 1 hour). The peak of the smooth

curve segment of T1 and T2 occurs once the spacecraft has reached halfway of its

displacement path. The action of T4 and T5 is shown in Fig. 5.8(b). The action

of the DB controller reduces the firing cycles needed to keep the the GT within the

tolerances in the y-axis. Figure 5.8(c) plots the firing sequence of T1, T2 and T3 for

the xGT2 with features similar to those found for the xGT1 (Fig 5.8(a)). The firing

histories for engines T4 and T5 are plotted in Fig 5.8(d). Contrary to the cases shown

in Fig 5.8(b), these thrusters fire continuously increasing the propellant rates for the

xGT2.

The performance of the controller configurations proposed for the xGT1 and xGT2

is tested over the entire space of body shapes and rotation rates as done in the previous

chapter. Again the xGT1 implemented the combination of DB and PD controllers

described earlier, and the xGT2 used PD controllers on each translational coordinate.

The simulations were ran for 10 days and the results are presented as the daily average.
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The parameters for the controllers are listed in Table 5.3. Figure 5.9(a) maps the daily

average propellant mass by the xGT1. These results clearly indicate the improvements

in propellant efficiency as a consequence of the introduction of the DB controller, over

the entire spectrum of asteroid rotation rates and shape eccentricities. The void region

in the lower right corner indicates that the required thrust exceeded the maximum

available engine thrust Tmax = 0.092 N. The introduction of the PD controller in the

did not change the results in significant way for the xGT2. The qualitative differences

between the results presented in Fig. 5.9(b) and those exposed in the previous chapter

(i.e., Fig. 4.12) are a consequence of the coarser grid size used in the simulation (i.e.,

18 × 18 compared to a 36 × 36 in the previous chapter). A comparative view of the

magnitude of the differences is presented in Fig. 5.10 were the propellant mass cost

for the xGT1 and xGT2 are shown in a three-dimensional perspective.

5.3 Summary

A set of controllers were proposed to guide the translational motion of the space-

craft as dictated by the hovering laws. These controllers were based on a DB and

PD controller. Selected cases were studied based on the results found in Chapter 4

regarding to the relative propellant penalties between the xGT1 and xGT2 with the

detailed NSTAR model. The cases examined here presented strong evidence on the

improved performance of the xGT1 using a combination of PD and DB controllers

along the the x and y axes, respectively. This configuration showed that the xGT1

can improve propellant efficiency by more than 33% with respect to the xGT2. These

improvements are directly associated with reduced thrust supplied by T4 and T5 in

the xGT1 relative to the xGT2.
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Figure 5.7: Propellant mass consumed by (a) xGT1 and (b) xGT2.
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Figure 5.8: Operation of the xGT engines: (a) and (b) xGT1, (c) and (d) xGT2.
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Figure 5.9: Propellant consumption map: (a) xGT1 and (b) xGT2.
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Chapter 6

Conclusions

The extended gravity tractor, or xGT, has been the purpose of this dissertation

work. The xGT consist on a modification to the laws governing the dynamics of the

classical GT and were aimed to improve the deflection ∆v imparted on an asteroid

by the action of a GT. In general, these guidance laws were designed to take into

consideration the shape and rotation rate of the asteroid, allowing the GT spacecraft

to move towards and away the center of mass of the asteroid in synchronous motion

with the asteroid’s spin. The first guidance law restricted the spacecraft motion to a

single dimension along the desired towing direction. The second guidance law allows

the GT spacecraft to move in two-dimensional space. These guidance laws were

compared against each other and with respect to the classical inertial hovering.

The physical model assumed the asteroid to be a solid, homogeneous triaxial ellip-

soid of constant density rotating about its principal axis of inertia. The GT spacecraft

model considered five ion engines capable to control the translational dynamics in the

vicinity of the asteroid. Two of these engines needed to be canted to prevent plume

impingement over the surface of the asteroid. A realistic ion engine model based on

the NSTAR system was included in the model to obtain improved estimates on the

propellant costs associated with the implementation of these novel guidance laws.
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The experiment addressed the performance and efficiency of these guidance laws

over a range of asteroid shapes and rotation rates. The results obtained were com-

pared against the classical GT hovering strategy. These novel guidance laws resulted

in an improvement of nearly 60% in ∆v imparted to the asteroid. Such ∆v improve-

ments directly translate into shorter times required to achieve a deflection, augment-

ing the chances of success of a GT mission to mitigate the treat of a small asteroid.

The propellant penalties were evaluated as well for each hovering mode. The

first analysis consisted on an idealized thruster model as usually done in the litera-

ture [35, 39, 33]. Under these assumptions the proposed guidance laws resulted in

propellant penalties ranging between 10% to 80% depending on the shape eccentricity

of the asteroid. These penalties were also afected by the rotation rate of the asteroid

reaching values greater that 200% near the limit of highly eccentric bodies with ro-

tation periods shorter than 6 hours which increased the propellant requirement by a

factor of four or more. However, it is wise to mention that these extreme scenarions

are unlikely to occur in nature due to physical constraints related to the rotation rate

and the axial elongation of a body. That is, the axial radius of rubble-pile asteroids

is limited to the extent were the gravitational acceleration over the surface of the

equator is balanced by the centrifugal acceleration caused by the rotation rate of the

asteroid.

In a second experiment, the NSTAR engine model was included in the simulations

to obtain a more realistic system performance. Contrary to our expectations, it was

found that the propellant penalties due to the dynamic guidance laws introduced

in this work were favored against the classical GT. This turnaround was mainly

due to the lower bound in the thrust range of the engine that, once the required

acceleration dropped below the engines lower operational threshold, thrusters in the

opposite direction fire in order to balance the excess thrust. This effect was observed

in asteroids with axial eccentricities greater than 0.6. At this point it is important
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to mention that the spacecraft mass plays an important roll in these results. The

thrust needed to sustain hovering at any distance is proportional to the spacecraft

mass. The prescribed hovering distance needs to be defined based on the propulsion

system capabilities, spacecraft mass, asteroid shape, and the rate at which ∆v needs

to be imparted on the asteroid to obtain a successful deflection. Thus for a given

hovering strategy, a given propulsion system and total spacecraft mass, an optimal

hovering range could be found to allow the best performance of the GT spacecraft

and the propulsion system. A similar argument may be made for the xGT where its

translation amplitude could be optimized in order to avoid the engines to operate in

the differential thrust balance mode.

In Chapter 5 we tested a DB and a PD controller to control the motion along the

three translational axes of the spacecraft. The DB controller was implemented along

the y-axis of the xGT1 and the PD controller along the x and z-axis . On the xGT2

the PD controller was implemented independently along the three translational axes.

The DB controller was not considered for the xGT2 because it could cause imprecise

sluggish motion of the spacecraft. The performance of these controllers was tested

on selected scenarios based on the results found in Chapter 4. For the selected cases

we found that the DB controller contributed to improve the performance of the xGT

by more that 33% with respect to the xGT2, even in cases where in Chapter 4 the

xGT2 presented better performance over the xGT1.

The introduction of the xGT allows to approach the GT problem from a new per-

spective where the hovering strategies can be adjusted to optimize the performance

of a GT system for each individual scenario. For example, depending on the char-

acteristics of each target, the displacement amplitude can be defined to maintain a

constant altitude from the surface or to hover the spacecraft at a fixed equipotential

surface. It is likely that detailed system trade analysis may generate a more accurate

picture about the feasibility of these hovering modes. It is possible to imagine the
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combined implementation of any of these strategies together with other deflection

strategies. For example one could consider to change the albedo of the asteroid by

applying a coating on its surface [31]. In such case, it could be necessary to maintain

a roughly constant distance from the asteroid, which could be achieved in principle

by the implementation of the xGT guidance laws.
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