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GEOMETRIC COMBINATORICS

IN DISCRETE SETTINGS

David Covert

Dr. Alex Iosevich, Dissertation Supervisor

ABSTRACT

This thesis is a compilation of work in which the author studies geometric config-

urations in finite fields and the integers modulo q. The results of this dissertation are

threefold. First, we prove a finite field analog of the Furstenberg-Katznelson-Weiss

theorem on triangles in R2. Second, we study volume sets in Fd

q
and discuss some

applications to sum-product problems. Finally, we study geometric combinatorics in

Z/qZ. We generalize a result of Hart and Iosevich [27] which has applications to

sum-product problems. Finally, we show that the Zd

q
analogue of a sphere with unital

radius is qd−1-dimensional.

v



Chapter 1

Introduction

1.1 Statement of Purpose

Geometric combinatorics ties together techniques from number theory, harmonic anal-

ysis, and combinatorics. A large subset of problems in geometric combinatorics asks

one to answer the following question:

Question 1.1. How “large” must a set be in order to ensure that it contains certain

geometric configurations?

Finite field models were originally studied as a “playground” of sorts for their Euclidean

analogues. Using finite field models allows one to gain insight into a problem without

having to worry about technical issues such as convergence. Often times, a thorough

understanding of a problem in finite fields can translate to a good understanding of

its Euclidean analogue. However, there are distinctions to be made between contin-

uous and finite problems. A highly regarded paper of Dvir ([12]), for example, was

able to establish the finite field analogue of the Kakeya conjecture, which, roughly

speaking, stated that a set in a finite field containing a line in every direction had

nearly full cardinality. The Euclidean version remains unsolved for d ≥ 3. Dvir was

able to use to his full advantage, the algebraic nature of finite fields, and he solved
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the problem by showing that the only low-degree polynomial which could vanish on a

Kakeya set was in fact the zero polynomial, which was enough to show that a Kakeya

set is sufficiently large. However, this method does not immediately yield a result in

the continuous setting. On the other hand, there are obstructions with which one

must contend in finite fields that do not appear in Euclidean problems. For example,

one must contend with nontrivial spheres with zero radius.

While finite field models have provided insight in how one might solve the analogue

in Euclidean space, some finite field problems are interesting in their own right. Fur-

thermore, once one is interested in finite field problems for their own sake, a natural

generalization for which one might hope is to replace the finite field with the inte-

gers modulo q. In this dissertation, the author will discuss some results in geometric

combinatorics arising in problems from finite fields and the integers modulo q.

A large portion of this thesis is based on methods of exponential sums combined

with Fourier analytic methods. In particular we use to our advantage the notion

of orthogonality. We typically want to find the size of certain algebraic varieties

At = {x ∈ Gd : f(x) = t}, where t ∈ G is a unit, and where G is a finite abelian

group. Utilizing orthogonality, we can then write

|At| = |G|−1
�

x∈Gd

�

s∈G

χ(s(f(x)− t)),

where χ is a nontrivial character on G. We hereby review the basics of Fourier analysis

over finite abelian groups for completeness.

1.1.1 Fourier analysis over finite abelian groups

To obtain our results, we relied heavily on Fourier analytic techniques, and we review

some properties here. Most of the Fourier analytic machinery can be stated for finite
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abelian groups or even locally compact abelian groups G (see, for example, [38]),

though we need only restrict ourselves to the cases of finite fields and the set of

integers modulo q. Here and throughout, G will denote a finite abelian group, and

we let |E| denote the cardinality of the set E ⊂ G.

Recall that a character on G is a homomorphism from G to the set T = {z ∈ C :

|z| = 1}. The set of characters G∧ has size |G∧| = |G|, and it is a group (called the

dual group) under the operation (χ1 · χ2)(g) = χ1(g)χ2(g), for χi ∈ G∧ and g ∈ G.

The inverse of a character χ ∈ G∧ is the character χ, which is the complex conjugate

of χ. The character χ ≡ 1 is typically called the trivial character on G, and we

refer to all other characters as nontrivial. One of the most basic, and yet most useful

properties of characters is their orthogonality:

Lemma 1.2. Let H be a subgroup of a finite abelian group G and χ a character on

G. Then,

1

|H|
�

h∈H

χ(h) =

�
1 χ|H is the trivial character
0 otherwise

In particular,
1

|G|
�

g∈G

χ(g) = 1 if χ is the trivial character, and zero otherwise.

We now consider separately the cases of finite fields and integers modulo q.

1.1.2 Finite Fields

Recall that a finite field Fq must have cardinality q = p�, where p is a prime. Viewing

Fq as a field extension of Fp, we recall that the trace function

Tr : Fq → Fp x �→ x+ xp + · · ·+ xp
�−1

is linear, and it satisfies Tr(xq) = Tr(x), for all x ∈ Fq. There are two types of

characters to consider when working with finite fields. First are the characters on the
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additive group (Fq,+) which are called additive characters. The additive characters of

Fq are all given by χc(x) = ep(cTr(x)), for some c ∈ Fq, where en(x) = exp(2πix/n).

When c = 1, we call χc = χ1 the canonical additive character of Fq. The second

type of characters are those on the multiplicative group F×
q
, which are simply called

multiplicative characters (here and throughout if R is a ring, then we denote the set

of units in R by R×). Let g be an primitive element of F×
q
. Then every multiplicative

character is of the form ψc(gj) = eq−1(cj), where c ∈ {0, . . . , q − 2}. Of particular

importance is the unique multiplicative character η which annihilates the squares of

elements in F×
q
. Using the notation as above, η(x) = ψ q−1

2
(x), and when q = p is

prime, η is called the Legendre symbol of Fp. We also note that all characters on Fd

q
,

the d-dimensional vector space over Fq, are of the form χv(x) = χ(v ·x), where v ∈ Fd

q

and χ is a nontrivial additive character of Fq. We use Lemma 1.2 as follows:

Lemma 1.3 (Orthogonality).

q−d
�

x∈Fd
q

χ(x ·m) =

�
1 m = (0, . . . , 0)
0 m �= (0, . . . , 0)

(1.1)

1.1.3 Fourier analysis in Fq

Let χ denote a nontrivial additive character of Fq. For a function f : Fd

q
→ C, put

�f(m) = q−d
�

x∈Fd
q

f(x)χ(−x ·m). (1.2)

In turn, Lemma 1.3 has the following consequences:

Lemma 1.4. Let f, g : Fd

q
→ C. Then,

f(x) =
�

m∈Fd
q

�f(m)χ(x ·m) (Inversion) (1.3)

q−d
�

x∈Fd
q

f(x)g(x) =
�

m∈Fd
q

�f(m)�g(m) (Parseval’s identity) (1.4)
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In particular, if f = g, then we get Plancherel’s identity:

q−d�f�22 = � �f�22.

Proof. We start with (1.3). We write

�

x∈Fd
q

�f(m)χ(x ·m) = q−d
�

m∈Fd
q

�

y∈Fd
q

f(y)χ(−y ·m)χ(x ·m)

= q−d
�

y∈Fd
q

f(y)
�

m∈Fd
q

χ(m · (x− y))

= f(x).

Similarly for (1.4), we have

�

m∈Fd
q

�f(m)�g(m) = q−2d
�

m∈Fd
q

�

x∈Fd
q

f(x)g(y)χ(−x ·m)χ(y ·m)

= q−2d
�

x,y∈Fd
q

f(x)g(y)
�

m∈Fd
q

χ(m · (x− y))

= q−d
�

x∈Fd
q

f(x)g(x)

1.1.4 Fourier analysis in Zq

It is customary to write the set of integers modulo q as Z/qZ, although we have found

the notation Zq more convenient. The characters on the additive cyclic group Zq are

all of the form χc(x) = eq(cx) for c ∈ Zq, and we henceforth refer to them as (additive)

characters mod q. We will work over the space Zd

q
, the d-fold Cartesian product of

the ring Zq. Since Zq is not in general a field, the set Zd

q
is not in general a vector

space. However, Zd

q
is a free module over Zq with rank d, and we will not worry too

much about the distinction. All characters on Zd

q
are of the form χz(x) = χ(x · z),

where z ∈ Zq and χ is a nontrivial character mod q. Let χ denote a character mod
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q, and let f : Zd

q
→ C. Then, in analogy with the finite field case,

�f(m) = q−d
�

x∈Zd
q

f(x)χ(−x ·m).

We also have the following analogies of Lemma 1.3, (1.3), and (1.4).

Lemma 1.5. Let χ denote a nontrivial character mod q and let f, g : Zd

q
→ C. Then,

q−d
�

x∈Zd
q

χ(x ·m) =

�
1 m = (0, . . . , 0)
0 otherwise

(orthogonality) (1.5)

f(x) = q−d
�

m∈Zd
q

�f(m)χ(x ·m) (inversion) (1.6)

q−d
�

x∈Zd
q

f(x)g(x) =
�

m∈Zd
q

�f(m)�g(m) (Parseval’s Identity) (1.7)

Proof. The proof follows line for line as in the finite field case.

We also note that characters on the multiplicative subgroup Z×
q
are called Dirichlet

characters (mod q), and they will be utilized in the auxiliary lemmas in Chapter 4.
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1.1.5 Notations

We will abuse notation and write E for the characteristic function of E. We write

X � Y to mean that there exists some positive constant c so that X ≤ cY . Similarly,

X � Y will mean that Y � X, and X ≈ Y will mean that both X � Y and

X � Y hold simultaneously. We will also write X � Y (respectively, X � Y ) to

emphasize that X ≤ cY (respectively, X ≥ cY ) for a sufficiently small (respectively,

large) constant c. Furthermore, we write X ∼ Y , to mean that with respect to some

parameter, we have limX/Y = 1. Given a ring R, we use R× to denote the set of

units in R. Finally, for a function f : Fd

q
→ C we write

�f�p =




�

x∈Fd
q

|f(x)|p




1
p

.
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Chapter 2

k-point Configurations

2.1 Background

Given a set E ⊂ Rd, define its distance set as ∆(E) = {|x − y| : x, y ∈ E}, where

| · | denotes the usual Euclidean distance. In 1946, Erdős ([15]) posed the following

question, now known as the Erdős distance problem.

Question 2.1. Let E ⊂ Rd, and let g(n) = min{|∆(E)| : |E| = n}. What is the best

lower bound one can achieve for g(n)?

Remark 2.2. Erdős showed that g(n) � n1/d for all d ≥ 2, and he conjectured

g(n) �






n√
logn

d = 2

n
2
d d ≥ 3

Very recently, Katz and Guth ([25]), were successful in showing that for d = 2, one

has g(n) � n

logn , a very near optimal bound. One can find a nearly complete history

of the Erdős distance problem in [22].

Later, Falconer considered a continuous version of the Erdős distance problem. He

showed ([17]) that if E ⊂ Rd has Hausdorff dimension dimH(E) > d+1
2 , then ∆(E),

the distance set determined by E, has positive Lebesgue measure. He also exhibited a

set F ⊂ Rd with Hausdorff dimension dimH(F ) = d

2 , whose distance set had measure
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zero. These two findings led to what is now called the Falconer distance conjecture:

Conjecture 2.3. Suppose that E ⊂ Rd has Hausdorff dimension dimH(E) > d

2 .

Then its distance set, ∆(E), has positive Lebesgue measure.

Remark 2.4. The best know results towards a resolution of the Falconer distance

conjecture belong to Wolff (d = 2, [47]) and Erdoğan (d ≥ 3, [14]) who have shown

that ∆(E) has positive Lebesgue measure so long as dimH(E) > d

2 +
1
3 .

After carefully considering these two problems concerning distances, one can be

led toward generalizations in many directions. For instance, one can study analogues

of these statements in finite fields (see, for example [8, 28, 32, 36]). Viewing distances

as “2-point configurations”, one can also ask what happens for k-point configurations.

For example, given a finite set E ⊂ Rd, what is the minimal number distinct triangles

determined by E? A result in a similar spirit is the following result of Furstenberg,

Katznelson, and Weiss ([18]).

Theorem 2.5. Let E ⊂ R2 be a set of positive upper Lebesgue measure:

D(E) = lim sup
R→∞

|E ∩ BR|
|BR|

> 0,

where | · | denotes Lebesgue measure, and BR is a ball of radius R centered at the

origin. Then, given δ > 0 and T = {�0, u, v} ⊂ R2, there exists a threshold �0 such

that for all � > �0, Eδ contains a congruent copy of �T = {�0, �u, �v}.

Remark 2.6. Bourgain ([1]) was able to show that if the given triangle is an arith-

metic progression {0, u, 2u}, then taking the δ-neighborhood of E is in fact necessary

to maintain the validity of Theorem 2.5. It is unknown whether the δ-neighborhood

of E can be replaced simply by E when the triangle is non-degenerate.
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2.2 Results

Many k-point configuration problems have been studied, notably in finite field ge-

ometries (see, for example, [8, 26, 37, 45, 48]). Throughout the remainder of this

chapter, however, we will explore a finite field analogue of Theorem 2.5. For ease and

clarity, we make the following definitions.

Definition 2.7. A k-simplex (which we just call a simplex, when the context is clear)

is a set of (k + 1)-points in Fd

q
spanning a k-dimensional subspace.

We will say that two k-simplices ∆ and ∆� are congruent if there exists an or-

thogonal map O ∈ Od(Fq) and a vector τ ∈ Fd

q
such that ∆ = O(∆�) + τ . Note that

this congruence is an equivalence relation, and we then consider the set of resulting

equivalence classes

Tk(E) = {∆ ∈ Ek+1}\ ∼ .

Note also that Tk(E) can be viewed as a natural subset of F(
k+1
2 )

q (see Lemma 2.10

below). Our main result of this section is the following theorem which appeared in

[10]:

Theorem 2.8. Let E ⊂ Fd

q
have size |E| ≥ ρqd, where q−

1
2 � ρ ≤ 1. Then, there

exists a constant c so that

|Td(E)| ≥ cρd−1q(
d+1
2 ).

In other words, when E ⊂ Fd

q
has density ρ as above, the set of d-simplices determined

by E has density ≥ cρd−1.

10



Remark 2.9. The assumption that |E| ≥ ρqdimplies that the number of (d+1)-point

configurations determined by E (up to congruence) is no less than

|E|d+1

ρqd · q(
d

2)
≥ ρdq(

d+1
2 ),

since the size of the subset of the translation group that maps points in E to a set of

size E is no larger than |E| = ρqd and the rotation group is of size ≈ q(
d

2). Our result

shaves off a power of ρ from the trivial estimate.

2.3 Proof of Results

2.3.1 Proof of Theorem 2.8

Here, we roughly state the argument. We prove Theorem 2.8 by first making a

reduction to a statistical statement about hinges (the term ”hinges” is defined below).

Having made this reduction, we next show, using a pigeon-holing argument, that for

some x ∈ E, the hinge is large. To finish the argument, we realize a dichotomy. If

the number of transformations mapping the hinge to itself is small, then a purely

probabilistic argument gives that the number of distinct (incongruent) (d+ 1)-point

configurations is what we claim. Otherwise, if the number of transformations mapping

the hinge to itself is large, then a purely combinatorial gives the result.

We start with the statistical reduction. We observe that if |E| ≥ ρqd, for ρ as in

Theorem 2.8, then it suffices to show that

����

�
(aij)1≤i<j≤d+1 ∈ F(

d+1
2 )

q : |Ra(E)| > 0

����� ≥ cρd−1q(
d+1
2 ), (2.1)

where

Ra(E) = {(y1, . . . , yd+1) ∈ E × · · · × E : �yi − yj� = ai,j},

11



and for x ∈ Fd

q
,

�x� = x2
1 + · · ·+ x2

d
.

This follows immediately from the following simple linear algebra lemma.

Lemma 2.10. Let V be a simplex with vertices Vi ∈ Fd

q
, where i = 0, . . . , k. Let V �

be another simplex with vertices V �
i
∈ Fd

q
also for i = 0, . . . , k. Suppose further that

�Vi − Vj� = �V �
i
− V �

j
� (2.2)

for all i, j. Then V and V � are congruent (i.e., they are members of the same equiv-

alence class of Tk(E)).

We will postpone the proof of Lemma 2.10. Our main estimate is the following:

Theorem 2.11. Suppose that αi ∈ F×
q
for i = 1, . . . , d, and let E ⊂ Fd

q
. Then,

���(x, x1, . . . , xd) ∈ E × · · · × E : �x− xi� = αi

��� = |E|d+1

qd
(1+o(1)) (q → ∞)

whenever |E| � qd−
1
2 .

We again postpone the proof of Theorem 2.11.

Remark 2.12. The threshold q−
1
2 � ρ ≤ 1 in Theorem 2.8 is a direct consequence of

Theorem 2.11. While the exponent qd−
1
2 is nontrivial, we believe the correct exponent

to be closer to q
d+1
2 , although we have been unsuccessful in showing this is true.

Theorem 2.11 then implies that there exists an element x ∈ E so that

���(x1, . . . , xd) ∈ E × · · · × E : �x− xi� = αi

��� ≥ |E|d

qd
(1 + o(1)). (2.3)

12



Fix a d-tuple α = (αi)1≤i≤d with αi ∈ F×
q
for i = 1, . . . , d. We define the hinge hx,α

to be the set {(x1, . . . , xd) ∈ E× · · · ×E : �x− xi� = αi}. Let Mx,α ⊂ Od(Fq) denote

the set of d× d orthogonal matrices which map the set hx,α to itself. That is, we set

Mx,α = {O ∈ Od(Fq) : O(hx,α) = hx,α}. Finally, put Ai = {xi ∈ E : �x − xi� = αi},

where the set is indexed in i according to the distance αi ∈ F×
q
.

Using the notation as above, we consider three cases: when |Mx,α| is small, when

at least one set Ai is small (which we will see forces |Mx,α| to be small), and when

each Ai and Mx,α are large.

In the first case, suppose that |Mx,α| � ρq(
d

2). Then, (2.3) immediately implies

that the number of distinct d-point configurations between the d sets Ai is

≥ |hx,α|
|Mx,α|

≥ |E|dq−d(1 + o(1))

ρq(
d

2)
≥ cρd−1q(

d

2). (2.4)

In the second case, suppose that one of the sets Ai has size |Ai| ≤ ρqd−1 for some

i. We then utilize the orbit-stabilizer theorem from elementary group theory:

Proposition 2.13 ([34]). Let a group G act on a set S. Let Gs = {gs : g ∈ G} be

the orbit of s ∈ S, and Gs = {g : gs = s} the isotropy group of s ∈ S. Then there is

a bijection between Gs and G/Gs. Consequently,

|Gs| = (G : Gs) = |G|/|Gs|.

We let the group Od(Fq) act on Fd

q
. Recalling that |Od(Fq)| ≈ q(

d

2), and since

orthogonal maps preserve the length of a certain vector, we get that the size of

the orbit of any point is exactly qd−1. Hence, picking some z from the previously

mentioned set Ai, we get that the size of the stabilizer group of this element z is

|Gz| =
|G|
|Gz| ≈

q(
d

2)

qd−1
.

13



The final element here is to notice that

|Mx,α| ≤ |Gz||Ai| �
q(

d

2)

qd−1
· ρqd−1 = ρq(

d

2),

since the number of hinge-preserving orthogonal matrices is no more than the number

of orthogonal transformations which fix a given vector z ∈ Ai, times the number of

choices for that vector z. Indeed, this forces |Mx,α| � ρq(
d

2), and we then proceed

as in the first case getting the correct amount of distinct d-point configurations by

pigeon-holing.

The final case follows by a result of Steven Senger ([10]).

Theorem 2.14. Let |Ai| > ρqd−1 and |Mx,α| � ρq(
d

2). Then, we can find at least

cρd−1q(
d

2) distinct d-point configurations among the sets Ai.

We see that in any case, there exist no less than cρd−1q(
d

2) many distinct d-point

configurations. Since this holds for any fixed vector α = (αi)di=1, and since there are

q − 1 choices for each αi ∈ Fq\{0}, then there are at least

cρd−1q(
d

2)(q − 1)d ≥ cρd−1q(
d+1
2 )

many distinct (d+1)-point configurations determined by E. This completes the proof

of Theorem 2.8 modulo the proofs of Theorem 2.11 and Lemma 2.10.

2.3.2 Proof of Theorem 2.11

To prove Theorem 2.11 we will actually prove the following more general result.

Theorem 2.15. Let r > 2 be an integer, and let Hr,α represent the set of r−hinges,

with distances α = {αi}r−1
i=1 , which are present in E. That is,

Hr,α = {(x, x1, . . . xr−1) ∈ E × · · · × E : �x− xi� = αi},
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where αi �= 0 for i = 1, . . . , r − 1. Then,

|Hr,α| =
|E|r

qr−1
(1 + o(1)),

whenever |E| � q
2r−5
2r−4d+

1
2r−4

Setting r = d + 1 in Theorem 2.15 gives Theorem 2.11. in order to complete the

proof, we will need the following estimates.

Lemma 2.16. Let St = {x ∈ Fd

q
: �x� = t}. Identify St with its characteristic

function. For t �= 0,

|St| = qd−1(1 + o(1)) (2.5)

and if also m �= (0, . . . , 0),

|�St(m)| ≤ 2q−
d+1
2 . (2.6)

As before, we will postpone the proof of Lemma 2.16. We will proceed with the

proof of Theorem 2.11, and we induct on r. Before we handle the case r = 3 we first

observe the following estimate which originally appeared in [32].

Lemma 2.17. Using the notation as above, we have |H2,α| = |E|2
q

+O(q
d−1
2 |E|).

To see this, write

|H2,α| =
�

x,y

E(x)E(y)S(x− y)

= q2d
�

m

��� �E(m)
���
2 �S(m)

= q−d|E|2|S|+ q2d
�

m �=0

��� �E(m)
���
2 �S(m)

15



and

q2d

�����
�

m �=0

��� �E(m)
���
2 �S(m)

����� ≤ 2q2dq−
d+1
2 q−d|E| = 2q

d−1
2 |E|.

We now illustrate the base step. First we write

|H3,α| =
�

x∈E

|E ∩ (x− S)|2.

Note that

|E ∩ (x− S)| =
�

y

E(y)S(x− y)

= qd
�

m

�E(m)�S(m)χ(m · x)

= |E||S|q−d + qd
�

m �=0

�E(m)�S(m)χ(m · x),

which gives

|H3,α| =
�

x∈E

|E ∩ (x− S)|2

= |E|3|S|2q−2d + 2|E||S|qd
�

m �=0

| �E(m)|2|�S(m)|+ q2d
�

x

�����
�

m �=0

�E(m)�S(m)χ(m · x)

�����

2

= |E|3|S|2q−2d +O

�
|E|2|S|q−dq(d−1)/2 + q3d

�

m �=0

| �E(m)|2|�S(m)|2
�

= |E|3|S|2q−2d +O
�
|E|2|S|q−dq(d−1)/2 + qd−1|E|

�
.

If |E| � q
d+1
2 then

|H3,α| = |E|3q−2(1 + o(1)).

For the inductive step, assume that we are in the case |Hr,α| = |E|r
qr−1 (1 + o(1)) for
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|E| � q
2r−5
2r−4d+

1
2r−4 . We begin by writing

|Hr+1,α| =
�

x,x1,...,xr

Hr,α(x, x
1, . . . , xr−1)E(xr)S(x− xr)

= q(r+1)d
�

m

�Hr,α(m, 0, . . . , 0)�S(m) �E(m)

= q−d|E||S||Hr,α|+ q(r+1)d
�

m �=0

�Hr,α(m, 0, . . . , 0)�S(m) �E(m)

= q−d|E||S||Hr,α|+R.

Applying Cauchy-Schwarz gives

R2 ≤ q2d(r+1)
�

m �=0

|�S(m)|2| �E(m)|2
�

m �=0

| �Hr,α(m, 0, . . . , 0)|2

� q2d(r+1)q−d−1q−d|E|
�

m �=0

| �Hr,α(m, 0, . . . , 0)|2

≤ q2dr−1|E|
�

m

| �Hr,α(m, 0, . . . , 0)|2

Also, we have that

�Hr,α(m, 0, . . . , 0)

= q−rd
�

x,x1,...,xr−1

χ(x ·m)E(x)E(x1) . . . E(xr−1)S(x− x1) . . . S(x− xr−1)

= q−rd+d �f(m)

where

f(x) = E(x)
�

E(x1) . . . , E(xr−1)S(x−x1) . . . S(x−xr−1) = E(x)|E∩(x−S)|r−1.

Since |E ∩ (x− S)| ≤ qd−1, it follows that

A =
�

m

| �Hr,α(m, 0, . . . , 0)|2 = q−2rd+2d
�

m

| �f(m)|2

= q−2rd+d
�

x

|f(x)|2

≤ q−2rd+d
�
qd−1

�2(r−2) |H3,α|,
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and therefore,

A � q−2rd+d
�
qd−1

�2(r−2) |E|3q−2(1 + o(1)).

Finally,

R2 � q−3qd
�
qd−1

�2(r−2) |E|4(1 + o(1)) ≤ q(2r−3)d−2r+1|E|4(1 + o(1)).

This implies that,

|Hr+1,α| = q−d|E||S||Hr,α|+O(qd
2r−3

2 −r+ 1
2 |E|2),

and we hence get

|Hr+1,α| =
|E|r+1

qr
(1 + o(1)),

whenever

|E| � q
2r−3
2r−2d+

1
2r−2 .

Finally, to finish the proof of Theorem 2.11, it remains to prove Lemma 2.16. We

first need the following well known result on Gauss sums.

Proposition 2.18 ([35]). Let χ denote a canonical additive character and ψ denote

the quadratic multiplicative character on Fq (or the Legendre symbol, when q is prime).

For a ∈ Fq, we have

�

x∈Fq

χ(ax2) = η(a)
�

x∈Fq

χ(x)η(x). (2.7)

Furthermore, one has

�

x∈Fq

χ(x)ψ(x) = λq ·
√
q,
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where q = p� and

λq =

�
(−1)�−1 p ≡ 1 mod 4
(−1)�−1i� p ≡ 3 mod 4

(2.8)

Proposition 2.19 ([31]). Let χ denote a nontrivial additive character on Fq, and η

the quadratic multiplicative character of Fq. Then,
������

�

x∈F×
q

χ(ax+ bx−1)

������
≤ 2

√
q, and (2.9)

������

�

x∈F×
q

χ(ax+ bx−1)η(x)

������
≤ 2

√
q (2.10)

Remark 2.20. The estimate (2.9) was originally due to A. Weil ([46]), and such

sums are called Kloosterman sums. The sums appearing in (2.10) were first treated

by Salié ([40]), and they are called Salié sums or twisted Kloosterman sums.

To prove Lemma 2.16, we apply orthogonality to see

|St| =
�

x∈Fq

St(x) = q−1
�

s∈Fq

�

x∈Fd
q

χ(sx2
1) . . . χ(sx

2
d
)χ(−st)

= qd−1 +R(t),

where

R(t) = q−1
�

s∈F×
q

�

x∈Fd
q

χ(sx2
1) . . . χ(sx

d

2)χ(−st).

From Proposition 2.18, we have

R(t) = q
d−2
2 λd

q

�

s∈F×
q

ηd(s)χ(−st),

where λq ∈ {±1,±i} is explicitly defined in Proposition 2.18 and depends only on q.

Now, if d is even, we have

R(t) = q
d−2
2 λd

q

�

s∈F×
q

χ(−st) = −q
d−2
2 λd

q

19



Furthermore, if d is odd, we have

R(t) = q
d−2
2 λd

q
η(−t−1)

�

s∈F×
q

η(s)χ(s)

= q
d−2
2 λd

q
η(−t−1)(λqq

1
2 − 1)

In either case, R(t) = o(qd−1), and (2.5) follows. For (2.6), write

�St(m) = q−d
�

x∈Fd
q

St(x)χ(−x ·m)

= q−d−1
�

s∈Fq

d�

i=1

�

xi∈Fq

χ(sx2
i
)χ(−ximi)χ(−st)

= q−d−1
�

s∈F×
q

d�

i=1

�

xi∈Fq

χ(sx2
i
− ximi)χ(−st)

= q−d−1
�

s∈F×
q

d�

i=1

�

xi∈Fq

χ

�
s
�
xi −

mi

2s

�2
�
χ
�
−mi

4s

�
χ(−st)

= q−d−1
�

s∈F×
q

d�

i=1

�

xi∈Fq

χ(sx2
i
)χ

�
−�m�

4s
− st

�

= q−d−1λd

q
q

d

2

�

s∈F×
q

ηd(s)χ

�
−�m�

4s
− st

�

Applying Proposition 2.19, we see that
��� �St(m)

��� ≤ q−
d+2
2 · 2√q = 2q−

d+1
2 , as claimed.

2.3.3 Proof of Lemma 2.10

Let πr(x) denote the r-th coordinate of x. By translating, we may assume that

V0 = �0. We may also assume that V1, . . . , Vk are contained in Fk

q
. The condition that

�Vi − Vj� = �V �
i
− V �

j
� for all i, j implies that

k�

r=1

πr(Vi)πr(Vj) =
k�

r=1

πr(V
�
i
)πr(V

�
j
). (2.11)

Let T be the transformation uniquely defined by T (Vi) = V �
i
. To show that T is

orthogonal it suffices to show that �Tx� = �x� for all x. By assumption, the Vi’s
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form a basis, so we have

x =
�

i

tiVi.

Thus, by (2.11), we have that

�Tx� =
�

r

�

i,j

titjπr(V
�
i
)πr(V

�
j
) =

�

r

�

i,j

titjπr(Vi)πr(Vj) = �x�,

giving the result.

21



Chapter 3

Volume Sets and Applications

3.1 Background

Given a subset A of a ring R, we define its sumset and productset to be

A+ A = {a1 + a2 : ai ∈ A}, and

A · A = {a1 · a2 : ai ∈ A},

respectively. A famous and still unresolved question posed by Erdős and Szemerédi

([16]) asks whether the sumset and productset of an arbitrary set of integers A can

both be small. Specifically, they conjectured:

Conjecture 3.1. Given any δ > 0, then there exists a constant Cδ so that

max{|A+ A|, |A · A|} ≥ Cδ|A|2−δ,

holds for all finite subsets A ⊂ Z.

In other words, they ask if one can find a nontrivial lower bound on |A·A|+|A+A|.

The sum-product problem has a very rich history (see, for example [43] or [44] for a

nice survey). It has been shown to have connections with geometric incidence theory,

first by Elekes ([13]) when he deduced a sum-product bound using the Szemerédi-

Trotter theorem on incidences in the plane. As the incidence theory is based in R2,

22



the results of Elekes and Solymosi, hold also for finite sets of real numbers, with the

integers as a special case. This sum-product problem has received much attention

over the last few years, and the best results towards a resolution of the Conjecture

3.1 are due to Solymosi ([42]) who showed that when A ⊂ R is finite, one has

max{|A+ A|, |A · A|} ≥ |A| 43
4�log |A|� .

It is also noteworthy to mention that when either the sumset or productset of a

set of integers is small, the other is large. See, for example, [7, 42, 43, 44], and

the references contained therein. Furthermore, sum-product problems have received

much attention in the setting of finite fields. There are, however, two new obstacles

with which one must contend in the finite field case. First, incidence theory is simply

not as well understood in finite fields, at least in comparison to the continuous case.

Since the best known results are based on incidence theory, this presents a rather

large problem. One therefore pursues sharper incidence results in hopes of obtaining

better sum-product estimates. Secondly, one must also contend with the existence of

subfields. For example, when q = p2, the field Fq contains Fp as a subfield. Therefore,

one usually works with sets satisfying either |A| � q
1
2+� or one works with A ⊂ Fp.

One of the first contributions to the understanding of the sum-product problem

in finite fields was a result of Bourgain, Katz, and Tao ([6]), where they showed the

following result holds for finite fields with a prime number of elements.

Theorem 3.2. Let A ⊂ Fp, where p ≡ 3 mod 4, and pδ < |A| < p1−δ, for some

δ > 0. Then, there exist constants c = c(δ) and � = �(δ) > 0, such that

max{|A+ A|, |A · A|} ≥ c(δ)|A|1+�,
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where � → 0 as δ → 0.

Remark 3.3. When p ≡ 1 mod 4, there is an element i ∈ Fp with i2 = −1. Therefore,

one can construct a set E = {(t, it) : t ∈ Fp} with ∆(E) = {0}. Furthermore, if one

does not restrict to the case |A| < p1−δ, then A = Fp can in fact be a subring, and

hence |A + A| = |A · A| = |A|. Interestingly, the restriction |A| > pδ has been found

to be unnecessary, and it was removed in [5]. The proof of Theorem 3.2 ultimately

relied on finding a suitably sharp incidence bound for Fp.

The first concrete relationship between δ and �(δ) in Theorem 3.2 was given by

Hart, Iosevich, and Solymosi ([29]) when they showed the following.

Theorem 3.4. Let A ⊂ Fq, where q is not necessarily prime. Then,

|A|3 � q−1|A+ A|2|A · A||A|+ q
1
2 |A+ A||A · A|.

In particular, when q
1
2 � |A| � q

7
10 , then one has

max{|A+ A|, |A · A|} � |A|3/2

q1/4
.

In a similar spirit, Garaev ([20]) was able to show that for A ⊂ Fp, one has

|A+ A||A · A| � min

�
p|A|, |A|

4

p

�
,

and in particular, when |A| > p
2
3 , this implies

max{|A+ A|, |A · A|} �
�

p|A|.

For small subsets of Fp, building upon work of M. Garaev ([19]), Katz and Shen [33],

and others, Rudnev has shown ([39]) that one has max{|A+A|, |A ·A|} ≥ |A|
12
11

(log |A|)4/11
,

whenever |A| < √
p. Other lines of attack to study the sum-product phenomenon have
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included studying the size of sets |dA2| ([27]), or more generally, studying |f(A)|,

where f is a polynomial in many variables (see, for example, [21, 33, 41] and the

references contain therein).

Matrices could also be of assistance to obtain a sum-product result. For example,

consider the determinant of a 3× 3 matrix with entries in A ⊂ Fq:
������

a b c
d e f
g h i

������
= aei+ bfg + cdh− ceg − bdi− afh ∈ 3A3 − 3A3.

It was was this hope of extracting information from the determinant of a d×d matrix

to get a result on the size of dAd that led to our embarkment on the following project

([9]).

3.2 Results

For xi ∈ Fd

q
, define vol(x1, . . . , xd) = x1 · (x2 ∧ · · · ∧ xd), where ∧ denotes the wedge

product

u2 ∧ · · · ∧ un = det(i u2 . . . un),

where i = (i1, . . . , id) is the set of coordinate directions in Fd

q
, and where x · y =

x1y1+ . . . xdyd is the usual dot product. For a set E ⊂ Fd

q
, we define its volume set as

vol(E) = {vol(x1, . . . , xd) : xi ∈ E, for i = 1, . . . , d}.

Definition 3.5. We say E ⊂ Fd

q
is Cartesian product-like if given any n-dimensional

subspace Hn ⊂ Fd

q
, we have |E ∩Hn| � |E|nd .

Our main results are the following:

Theorem 3.6. Let E ⊂ F3
q
be Cartesian product-like. If |E| � q

15
8 , then

vol(E) ⊃ F×
q
.
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Theorem 3.7. Suppose that A ⊂ Fq and |A| > √
q. If E = A× · · · × A ⊂ Fd

q
, then

i) vol(E) = Fq, for d ≥ 4.

ii) |vol(E)| > q

2 , for d = 3.

3.3 Proof of Results

Our main investigative tools is the following incidence theorem:

Lemma 3.8. Let B(x, y) be any non-degenerate bilinear form on F2
q
. Suppose that

f, g : Fd

q
→ C, and put

ν(t) =
�

B(x,y)=t

f(x)g(y).

Then, for t �= 0, we have

ν(t) = �f�1�g�1q−1 +O
�
�f�2�g�2q

d−1
2

�
. (3.1)

Moreover, if we set E = supp(f), then whenever �0 /∈ E, we have

�

t

ν(t)2 ≤ �f�22�g�21|E|q−1 + �f�22q2d−1
�

k �=�0

|�g(k)|2 |E ∩ �k|, (3.2)

where �k = {tk : t ∈ F×
q
}.

Remark 3.9. Lemma 3.8 has already appeared in [27] and [28], in the realm where

B(x, y) = x · y and f(x) = g(x) = E(x), the characteristic function of the set E.

Notice that in this scenario (3.1) and (3.2) take the form

ν(t) =
|E|2

q
+O

�
|E|q

d−1
2

�
, and (3.3)

�

t

ν(t)2 ≤ |E|4

q
+ |E|q2d−1

�

k

| �E(k)|2|E ∩ �k|, (3.4)

respectively.
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Proof. We let χ denote a nontrivial additive character on Fq. As it can be any

nontrivial additive character, we can replace B(x, y) by the dot-product x · y. We

write

ν(t) =
�

B(x,y)=t

f(x)g(y)

= q−1
�

x,y

�

s∈Fq

χ(s(x · y − t))f(x)g(y)

= �f�1�g�1q−1 + q−1
�

x,y

�

s∈F×
q

χ(s(x · y − t))f(x)g(y)

= �f�1�g�1q−1 +R(t).

Viewing the term R(t) as a sum in x, and applying Cauchy-Schwarz, we see that

R(t)2 ≤ �f�22q−2
�

x

�

y,y�

�

s,s�∈F×
q

g(y)g(y�)χ(x · (sy − s�y�))χ(t(s� − s))

= qd−2�f�22
�

sy=s�y�

s,s�∈F×
q

g(y)g(y�)χ(t(s� − s))

= qd−2�f�22
�

s∈F×
q

�

y

+qd−2�f�22
�

sy=s�y�

s,s�∈F×
q

s �=s�

g(y)g(y�)χ(t(s� − s))

= A+B.

Now,

A = qd−2�f�22�g�22(q − 1) ≤ qd−1�f�22�g�22.

Furthermore,

B = qd−2�f�22
�

sy=s�y�

s,s�∈F×
q

s �=s�

g(y)g(y�)χ(t(s� − s))

= qd−2�f�22
�

a∈F×
q \{1}

�

b∈F×
q

�

y

g(y)g(ay)χ(tb(1− a))

= −qd−2�f�22
�

a∈F×
q \{1}

�

y

g(y)g(ay)
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For the L2 estimate, we apply Cauchy-Schwarz once again to see that

ν(t)2 ≤ �f�22
�

B(x,y)=B(x,y�)=t

E(x)g(y)g(y�).

Thus,

�

t

ν(t)2 ≤ �f�22
�

B(x,y)=B(x,y�)

E(x)g(y)g(y�)

= q−1�f�22
�

x,y,y�

�

s

χ(s(x · y − x · y�))E(x)g(y)g(y�)

= A+B,

where A is the sum with s = 0, and B is the sum with s ∈ F×
q
. Thus,

A = q−1|E|�f�22�g�21

and

B = �f�22q2d−1
�

s∈F×
q

�

x

|�g(x)|2E(sx)

= �f�22q2d−1
�

x

|�g(x)|2|E ∩ �x|

= �f�22q2d−1
�

x �=�0

|�g(x)|2|E ∩ �x|,

as E does not contain the origin.

3.3.1 Proof of Theorem 3.6

Our plan is simply to apply Lemma 3.8 to particular functions f and g. Throughout,

we let E ⊂ F3
q
be Cartesian product-like. Put f(x) = E(x), and note that �f�1 =

�f�22 = |E|. Put g0(x) = |{(u, v) ∈ E × E : u ∧ v = x}|, and note that �g0�1 = |E|2.

Furthermore, we put ν0(t) = |{(x, y, z) ∈ E × E × E : vol(x, y, z) = t}|, and we

observe the equality

ν0(t) =
�

x·y=t

f(x)g0(y).

28



Our plan of attack, then, is to show that ν0(t) > 0 for all values of t �= 0.

Throughout the calculations, the value g0(0, 0, 0) is too difficult to handle directly.

For this reason, we define a new function g(x) where

g(x) =

�
g0(x) x �= (0, 0, 0)
0 x = (0, 0, 0)

and similarly, we set

ν(t) =
�

x·y=t

f(x)g(y).

To finish the proof of Theorem 3.6, we need the following technical results.

Lemma 3.10. Let ν0, ν, g0, and g be defined as above. Then,

�g0�1 ≈ �g�1 and �ν0�1 ≈ �ν�1

Lemma 3.11. For the function g(x) as above, we have

�g�2 �
�

|E| 76 q 1
2 q

3
2 � |E| � q2

|E| 53 q− 1
2 |E| � q2

Finally, applying Lemma 3.8 to the functions f(x) and g(x) constructed above yields

ν(t) = q−1�f�1�g�1 +O
�
q

d−1
2 �f�2�g�2

�

In the case |E| � q2, we see that

ν(t) = |E|3q−1 +O(q
3
2 |E| 53 ),

and it follows that ν(t) > 0, whenever |E| � q
15
8 . In the range |E| � q2, we see that

ν(t) = |E|3q−1 +O(q
1
2 |E| 136 ),

and ν(t) > 0 whenever |E| � q
9
5 , which is always the case. It then follows that

ν(t) > 0 for each t �= 0, and hence vol(E) ⊃ F×
q
, so long as |E| � q

15
8 . It remains,

however, to prove Lemma 3.10 Lemma 3.11.
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Proof of Lemma 3.10

The inequalities �ν0�1 ≈ �ν�1 follows from �g0�1 ≈ �g�1. We must therefore demon-

strate that there exists constants c1 and c2, such that

c1
�

x

g0(x) ≥
�

x

g(x) ≥ c2
�

x

g0(x).

We can clearly take c1 = 1, as g0(x) ≥ g(x) for every x. Since, �g0�1 = |E|2, it only

remains to show that

�

x

g(x) � |E|2,

and to do so, it simply suffices to show that g0(0, 0, 0) is not the dominant term, and

hence its removal does not affect the L1 bound for g. Therefore, it suffices to show

that,

g0(0, 0, 0) ≤ |E|α

for some α < 2. However, this follows easily from the fact that

g0(0, 0, 0) = |{(u, v) ∈ E × E : u ∧ v = (0, 0, 0)}|

≤ |E|max
�⊂F3

q

|E ∩ �| ≤ |E| 43 ,

since E is Cartesian product-like. Lemma 3.10 then follows.

Proof of Lemma 3.11

Recall we aim to show that function g(x) = |{(u, v) ∈ E × E : u ∧ v = x}| for

x �= (0, . . . , 0) and g(0) = 0 has the following L2 bound:

�g�2 �
�

|E| 76 q 1
2 q

3
2 � |E| � q2

|E| 53 q− 1
2 |E| � q2

Before we proceed, we require the following estimate:
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Lemma 3.12. Let G(2, 3) be the set of all 2-dimensional subspaces in F3
q
. Suppose

that E ⊂ F3
q
is Cartesian product-like. Then,

�

H∈G(2,3)

|E ∩H|2 � |E|2, (3.5)

whenever |E| � q
3
2 .

Proof. Note that the sum
�

|E ∩H|2 ranging through H ∈ G(2, 3) counts all pairs

of mutually orthogonal vectors exactly once, as each pair of orthogonal vectors de-

termines a unique plane H ∈ G(2, 3). If two vectors are not orthogonal, then they

both lie on the same line and hence are counted at most O(q) times. Since each line

contains at most c|E| 13 points of E, as E is Cartesian product-like, it follows that

�

H∈G(2,3)

|E ∩H|2 � |E|2 + q|E|1/3 · |E| � |E|2,

whenever |E| � q
3
2 , as claimed.

To finish the L2 bound for g, we first notice that

�g�22 �
�

j∈F×
q

�

H∈G(2,3)

ν2
H
(t),

where if H is determined by the equation x · y = 0, we have

νH(t) = |{(y, z) ∈ (E ∩H)× (E ∩H) : vol(x, y, z) = t}|.

Applying (3.2) with d = 2, we have

�g�22 �
�

H∈G(2,3)

�
|E ∩H|4q−1 + |E ∩H|q3

�

k

|�E ∩H|2|(E ∩H) ∩ �k|
�

�
�

H∈G(2,3)

�
|E ∩H|4

q
+max

�

|E ∩ �||E ∩H|q3
�

k

|�E ∩H|2
�

� q−1
�

H∈G(2,3)

|E ∩H|4 + qmax
�

|E ∩ �|
�

H∈G(2,3)

|E ∩H|2

= I + II
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Since E is Cartesian product-like, then |E ∩H| � |E| 23 . Applying Lemma 3.12 gives

I �
�

q−1|E| 43 |E|2 q
3
2 � |E| � q2

q−1|E| 103 |E| � q2

This is sufficient as q−1|E| 43 |E|2 � q|E| 73 , when |E| � q2. Similarly, Lemma 3.12 gives

II = qmax
�

|E ∩ �|
�

H∈G(2,3)

|E ∩H|2 � q|E| 13 |E|2,

as long as |E| � q
3
2 , and this completes the proof of Lemma 3.11.

3.3.2 Proof of Theorem 3.7

We require the following preliminary Lemmas (see [6, 23, 24]).

Lemma 3.13. Suppose that A ⊂ F×
q

is such that |A| >
√
q. Then, there exist

elements α, β ∈ A− A such that |αA± βA| > q

2 .

Lemma 3.14. If C ⊂ F×
q
is such that |C| > q

2 , then C ± C = Fq.

Lemma 3.15. Suppose that A ⊂ F×
q
, |A| > √

q and B = A−A. Then, B2−B2 = Fq.

To prove Lemma 3.15, we must show the set of determinants

D =

�����
x1 x2

x3 x4

���� : xi ∈ B

�

covers Fq. Set x1 = α, x2 = β as in Lemma 3.13. Since x3, x4 ∈ B, we can write

x3 = y1 − y2 and x4 = y3 − y4, where yi ∈ A. Let C = αA− βA. Then, D = C − C,

and the result now follows from Lemmas 3.13 and 3.14. To prove the first part of

Theorem 3.7, it is enough to prove the result for d = 4. Now, consider determinants

of the form
��������

x1 x2 x3 x4

y1 y2 y3 y4
u1 u2 x3 x4

v1 v2 y3 y4

��������
=

��������

x1 − u1 x2 − u2 0 0
y1 − v1 y2 − v2 0 0

u1 u2 x3 x4

v1 v2 y3 y4

��������
= (x3y4−y3x4)

����
x1 − u1 x2 − u2

y1 − v1 y2 − v2

���� .
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The first part of Theorem 3.7 follows from Lemma 3.15. Finally, when d = 3, we have
������

x1 x2 x3

y1 y2 y3
u1 u2 x3

������
= x3 ·

����
x1 − u1 x2 − u2

y1 y2

����− y3

����
x1 − u1 x2 − u2

u1 u2

���� .

Choosing α and β from Lemma 3.13 such that α = x1 − u1 and β = x2 − u2. Fix y3,

and fix x3 �= 0. The second half of Theorem 3.7 follows from Lemma 3.13.
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Chapter 4

Geometric Configurations in the

Integers Modulo q

In this chapter, we turn our attention to geometric combinatorics in the setting of

the integers mod q, denoted here by Zq.

4.1 Background

After studying geometric combinatorics in vector spaces over finite fields, one is nat-

urally led to replace finite fields with the integers modulo q. A few technical ob-

structions arise, however, in this new setting. First, Gauss sum estimates are much

more delicate. For example, when q ≡ 2 (mod 4), the quadratic Gauss sum vanishes

completely. To overcome this obstacle (along with many other such obstacles), we

typically only consider odd values q.

As discussed in detail in Chapter 3, the sum-product problem has received much

attention over the last few decades. We study variants of the sum-product problem

in Zq. In this setting, one is asked to show that when A ⊂ Zq is not a subring, then

either the sumset or productset of A is large. Recall that in finite fields, one was forced

to deal with the lack of incidence theorems (a rather substantial obstacle) and the

existence of subgroups. The situation in Zq is even more bleak, as one is forced to also
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contend with the existence of zero-divisors. The fact that Zq is not a field (and hence

for t ∈ Z×
q
, the equation x2 = t does not have at most 2 solutions) coupled with the

fact that Zq is not a unique factorization domain, causes significant technical obstacles

in the estimation of Gauss sums. Nonetheless, quite a bit is still known about the

sum-product problem in Zq. For example, Bourgain and Chang have shown ([3]) that

if q = p1 . . . pk, where pi > q�0 , and A ⊂ Zq satisfies |A + A| + |A · A| < |A|1+�, then

either |A| > q1−δ or else |πd(A)| < C�0q
δ. Here, d|q, πd : Zq → Zd is the natural

projection, and δ = δ(�0, �) → 0 as � → 0 (see also, [4] for a related result). This

result was extended to arbitrary q by Bourgain in [2]. Furthermore, an Elekes-type

bound was found by Garaev ([20]), in which he was able to show that if A ⊂ Zm

(with m > 1), then

|A+ A||A · A| �





m|A|, |A|

4

m




�

d|m
d<m

√
d





−2


.

The case when m is prime appeared in the same paper and was discussed in the

previous chapter. Our line of attack is to study the size of dA2 = A ·A+ · · ·+A ·A,

where A is sufficiently large.

4.2 Results

We now discuss our results. We first show a Zq analogue of the following theorem of

Hart and Iosevich.

Theorem 4.1 ([27]). Let E ⊂ Fd

q
, and define

�
(E) = {x · y : x, y ∈ E}. Then

�
(E) ⊂ F×

q
, whenever |E| > q

d+1
2 .

Given a subset E ⊂ Zd

q
, we define its dot-product set to be defined just as in the
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finite field case:
�
(E) = {x · y : x, y ∈ E}, where x · y = x1y1+ · · ·+xdyd is the usual

dot product. Then, we have the following generalization of Theorem 4.1.

Theorem 4.2. Suppose E ⊂ Zd

q
, where q = p�, is of size |E| > �q

(2�−1)d
2� + 1

2� . Then,

�
(E) ⊃ Z×

q
.

Remark 4.3. Theorem 4.2 is a generalization of Theorem 4.1 in the sense that when

� = 1, Zp = Fp is a field, and our exponents match exactly. The finite field case

has the advantage that even when the field has p� elements, the analysis goes through

unchanged. In the setting of integers mod q, this is not the case.

Corollary 4.4. Suppose that q = p� and A ⊂ Fq, and |A| > �
1
d q

2�−1
2� + 1

2�d . Then,

Z×
q
⊂ dA2 = A · A+ · · ·+ A · A.

In particular, when d = 2, q = p2, and A ⊂ Zq with |A| > q7/8, one has

Z×
q
⊂ A · A+ A · A.

Corollary 4.4 follows easily from Theorem 4.2 by setting E = A× · · · × A. Theorem

4.2 shows that there exists a constant B = B(p, �) > 0 so that |E| > Bq(
2�−1
2� )d implies

�
(E) ⊃ Z×

p�
. To contrast this result, in [11], we prove the following;

Theorem 4.5. For d ≥ 3, there exists a constant b = b(p) > 0, such that there exist

sets of size |E| = bq(
2�−1
2� )d and yet

�
(E) �⊃ Z×

p�

Remark 4.6. Theorem 4.5 shows that Theorem 4.2 is best possible up to the factor

of 1
2� . In particular, if we fix p and � and let the dimension d → ∞, then our results

are sharp asymptotically.
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The second of our results states that the Zd

q
analogue of a sphere with unital radius

is (d− 1)-dimensional, which again aligns with the finite field case (see (2.5)). More

precisely, for x ∈ Zd

q
, we put �x� = x2

1+· · ·+x2
d
. Clearly, �x� is not a metric, although

we note that this notion of ”length” is invariant under orthogonal transformations.

For t ∈ Zq, we set St(x) = {x ∈ Zd

q
: �x� = t} as d-dimensional sphere of radius t.

Theorem 4.7. Let d ≥ 2 and t ∈ Z×
q
, where q is odd. Then,

|St| = qd−1(1 + o(1)).

On the other hand, if n is even, t ∈ Z×
n
, d ≡ 0 (mod 4), and val2(n) = α, then

|St| = Oα

�
nd−1

�
.

4.3 Proof of Results

4.3.1 Proof of Theorem 4.2

To prove Theorem 4.2, we define the incidence function

ν(t) = {(x, y) ∈ E × E : x · y = t},

and we show that ν(t) > 0 for each unit t ∈ Z×
q
. We write

ν(t) = q−1
�

s∈Zq

�

x,y∈E

χ (s(x · y))χ(−st)

= ν∞(t) + ν0(t) + ν1(t) + . . . ν�−1(t),

where χ(z) = exp(2πiz/q) and

νi(t) = q−1
�

s∈Zq

valp(s)=i

�

x,y∈E

χ ((s(x · y))χ(−st).

37



Recall that valp(x) = i if pi|x, but pi+1 � | x, and valp(0) = ∞. It is then plain to see

that ν∞(t) = |E|2
q
. For the other values i = 0, . . . , �− 1, notice that s can be written

in the form s = pis, where s is determined uniquely in Z×
p�−i . Also, viewing the term

νi(t) as a sum in the x-variable, applying Cauchy-Schwarz, and extending the sum

over x ∈ E to a sum over x ∈ Zd

q
, we see that

|νi(t)|2 ≤ |E|q−2
�

x∈Zd
q

�

y,y�∈E

�

s,s�∈Z×
p�−i

χ
�
pi(sy − s�y�)

�
χ
�
pit(s� − s)

�

≤ |E|qd−2
�

y,y�∈E
pi(sy−s�y�)=�0

s,s�∈Z×
p�−i

χ
�
pit(s� − s)

�

We split the last sum into two parts, I and II, where I corresponds to the sum over

the terms where s = s�, and II is over the set (s, s�), where s �= s�. We claim that

term II is a nonpositive quantity. Accepting this for a moment, we see that

I = |E|qd−2
�

s∈Z×
p�−i

pis(y−y�)=0

E(y)E(y�)

= |E|qd−2p�−i

�
1− 1

p

� �

piy=piy�

E(y)E(y�)

≤ |E|qd−2p�−i
�

α∈Z
p�−i

|RE(α)|2,

where RE(α) = {y ∈ E : y ≡ α (mod p�−i)}. Since the Kernel K of the map

πp�,p�−i : Zd

p�
→ Zd

p�−i

has size pid, it follows that

�

α∈Z
p�−i

|RE(α)|2 ≤ |E|pid.

Putting everything together, since the term II is nonpositive, it follows that

|νi(t)|2 ≤ I ≤ |E|qd−2p�−i · |E|pid
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from which it immediately follows that

|νi(t)| ≤ |E|q
d−1
2 (1+ i

�
).

Therefore, for each t ∈ Z×
q
, we have

ν(t) =
|E|2

q
+ ν0(t) + . . . ν�−1(t)� �� �

:=R(t)

,

where |R(t)| ≤ �|E|q
d−1
2 (2− 1

�
). Therefore, ν(t) > 0 whenever |E| > �q(

2�−1
2� )d+ 1

2� , as

claimed. It remains, however, to show that the term II appearing in the bound for

|νi(t)|2 is indeed nonpositive. Recall that

II = |E|qd−2
�

y,y�∈E

�

s,s�∈Z×
p�−i

pi(sy−s�y�)=0

s �=s�

χ
�
pit(s� − s)

�

= |E|qd−2
�

y,y�∈E

�

pi(b(ay−y�))=0

a,b∈Z×
p�−i

a �=1

χ
�
pit(b(1− a))

�
.

Furthermore, we break up the sum II into two additional pieces according to whether

1− a ∈ Zp�−i \ {0} is a unit or not:

IIA = |E|qd−2
�

y,y�∈E

�

pi(b(ay−y�))=0

a,b∈Z×
p�−i

1−a∈Z×
p�−i

χ
�
pit(b(1− a))

�

IIB = |E|qd−2
�

y,y�∈E

�

pi(b(ay−y�))=0

a,b∈Z×
p�−i

1−a/∈Z×
p�−i

χ
�
pit(b(1− a))

�
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First, and foremost, note that by summing in b and applying orthogonality, we get

that

IIA = |E|qd−2
�

y,y�∈E

�

pi(b(ay−y�))=0

a,b∈Z×
p�−i

1−a∈Z×
p�−i

χ
�
pit(b(1− a))

�

= −|E|qd−2
�

y,y�∈E

�

a,1−a∈Z×
p�−i

1

which is negative real quantity. Also, note that if a ∈ Z×
p�−i , but 1 − a /∈ Z×

p�−i , then

1− a = pjs, for some 0 < j < �− i, where s ∈ Z×
p�−i−j . Thus, we can write

IIB = |E|qd−2
�

y,y�∈E
pib((1−pjs)y−y�)=0

b∈Z×
p�−i

�−i−1�

j=1

Lj,

where we set

Lj :=
�

s∈Z×
p�−i−j

χ(pi+jtbs) = −1,

and we applied orthogonality as we summed in the variable s, as tb is a unit. There-

fore, IIB is a negative term, and the claim, hence the proof, follows.

4.3.2 Proof of Theorem 4.7

We will say that a Dirichlet character ψ has conductor m if m is the smallest positive

divisor m|q such that ψ = ψ� ◦ πq,m for some Dirichlet character (mod m). Here

πq,m : Z×
q

→ Z×
m

is the natural projection. A Dirichlet character (mod q) will be

called primitive if it has conductor q. We need the following well known results.
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Proposition 4.8 ([31]). Let χ denote a nontrivial additive character of Zn. For

a ∈ Zn with (a, n) = 1, we have

G(a, n) :=
�

x∈Zn

χ(ax2) =






εn
�
a

n

�√
n n ≡ 1 mod 2

0 n ≡ 2 mod 4
(1 + i)ε−1

a

�
n

a

�√
n n ≡ 0 mod 4 & a ≡ 1 mod 2

where
� ·
c

�
denotes the Jacobi symbol and

εn =

�
1 n ≡ 1 mod 4
i n ≡ 3 mod 4

Furthermore, for general values of a ∈ Zn, we have

G(a, n) = (a, n)G

�
a

(a, n)
,

n

(a, n)

�
.

Definition 4.9 (Generalized Gauss Sum). Let ψ denote a Dirichlet character mod n

and χa(x) = e2πiax/n. Then, we set

τ(ψ, χa) =
�

x∈Zn

ψ(x)χa(x).

When a = 1, we simply write τ(ψ, χ1) = τ(ψ).

Proposition 4.10 ([31]). Suppose ψ is a Dirichlet character mod q and (a, q) = 1.

Then,

τ(ψ, χa) = ψ(a)τ(ψ).

Proof. Since ψ(a)ψ(a) = 1, and (a, q) = 1, we have

τ(ψ, χa) = ψ(a)
�

x∈Zq

ψ(ax)χ1(ax) = ψ(a)
�

y∈Zq

ψ(y)χ1(y) = ψ(a)τ(ψ).
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Proposition 4.11 ([31]). Let ψ denote a Dirichlet character mod n which is induced

by a primitive character ψ∗ modulo n∗. Then,

τ(ψ) = µ
� n

n∗

�
ψ∗

� n

n∗

�
τ(ψ∗). (4.1)

Here, µ is the Möbius function:

µ(n) =






1 n = 1
0 n is not squarefree

(−1)k n = p1 . . . pk

Furthermore, if ψ is a primitive Dirichlet character modulo n, then,

|τ(ψ)| ≤
√
n (4.2)

Corollary 4.12. Given any Dirichlet character ψ, and χa(x) = e2πiax/n, we have

|τ(ψ, χa)| ≤
√
n.

We first show Theorem 4.7 for powers of odd primes. Assume then, that q = p�,

and let χ denote a nontrivial character additive on Zq.

|St| =
�

x∈Zd
q

St(x) = q−1
�

s∈Zq

�

x∈Zd
q

χ(sx2
1) . . . χ(sx

2
d
)χ(−st)

= q−1 (T∞ + T0 + · · ·+ T�−1) ,

where

Ti =
�

s∈Zq

valp(s)=i

�

x∈Zd
q

χ(sx2
1) . . . χ(sx

2
d
)χ(−st)

=
�

s∈Zq

valp(s)=i




�

x∈Zq

χ(sx2)




d

χ(−st).

=
�

s∈Zq

valp(s)=i

(G(s, q))dχ(−st)

42



It is clear that T∞ = qd = p�d. For i = 0, . . . , �−1, note that if valp(s) = i, then s can

be written in the form s = pis�, where s� is determined uniquely mod Z×
p�−i . Using

this fact, along with the bound from Proposition 4.8, we see that

Ti = pid
�

s∈Z×
p�−i

(G(s, p�−i))dχ(−st)

= pidεd
p�−i

�
p�−i

� d

2
�

s∈Z×
p�−i

η (s)d(�−i) χ(−st)

where η(s) =
�

s

p

�
is the Legendre symbol. If d(�− i) is even, we see that

Ti = p�
d

2+i
d

2 εd
p�−i

�

s∈Z×
p�−i

χ(−st)

= −p�
d

2+i
d

2 εd
p�−i

�

s/∈Z×
p�−i

χ(−st),

and hence |Ti| ≤ p(�+i) d2 (p�−i−1) = p�(
d+2
2 )+i( d−2

2 )−1. If d(�− i) is odd, then,

Ti = p(�+i) d2 εd
p�−i

�

s∈Z×
p�−i

η(s)χ(−st)

= p(�+i) d2 εd
p�−i




�

s∈Z
p�−i

η(s)χ(−st)

� �� �
τ(η,χ−s)

−
�

s/∈Z
p�−i

η(s)χ(−st)





� �� �
R

.

By Corollary 4.12, |τ(η, χ−s)| ≤
�
p�−i. Using a crude bound for |R|, we see that

|Ti| ≤ p(�+i) d2

�
p(�−i) 12 + p�−i−1

�
.

Noting that �−i

2 ≤ � − i − 1 for i ≤ � − 2, we have shown that |Ti| ≤ 2p�
d+2
2 +i

d−2
2 −1

when i = 0, . . . , �− 2, and |T�−1| ≤ 2p�d−
d−1
2 . Altogether, our estimates show:

|Ti| ≤ |T�−1| ≤
�

p�d−
d

2 d(�− 1) is even

2p�d−
d−1
2 d(�− 1) is odd
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Thus, we have |St| = qd−1 + q−1(T0 + · · ·+ T�−1), where

|T0 + · · ·+ T�−1| ≤
�−1�

i=0

|Ti| ≤
�

�p�d−
d

2 d(�− 1) is even

2�p�d−
d−1
2 d(�− 1) is odd

(4.3)

Putting everything together, and recalling that we set q = p�, we have that

|St| = p�(d−1) +O

�
q−1

�−1�

i=0

|Ti|
�

(4.4)

= qd−1 +O

��
�p�(d−1)− d

2 d(�− 1) is even

�p�(d−1)− d−1
2 d(�− 1) is odd

��

= p�(d−1)(1 + o(1)). (4.5)

The full case follows from the Chinese Remainder Theorem. Recall for q = pα1
1 . . . pαk

k
,

then Zq,Z×
q
, and Zd

q
decompose as the following Cartesian products

Zq
∼= Z

p
α1
1

× · · · × Z
p
α
k

k

,

Z×
q
∼= Z×

p
α

1
× · · · × Z×

p
α
k

k

, (4.6)

Zd

q
∼= Zd

p
α1
1

× · · · × Zd

p
α
k

k

. (4.7)

To find |St| for q, one must find the number of solutions in Zd

q
to the equation

f(x) = x2
1 + · · ·+ x2

d
− t. (4.8)

However, (4.6) implies that each unit t ∈ Z×
q
can be written as t = (t1, . . . , tk), where

ti ∈ Z×
p
αi

i

is also a unit. Thus (4.7) shows that solving (4.8) in Zd

q
is equivalent to

solving (4.8) in each component Zd

p
αi

i

. It follows that for t = (t1, . . . , tk) we have:

|St| =
d�

i=1

|Sti
| =

d�

i=1

p�i(d−1)
i

(1 + o(1)) = qd−1(1 + o(1),

which proves the first part of Theorem 4.7. We now proceed with the case q = 2α,

for dimensions d ≡ 0 (mod 4). As before,

|St| = qd−1 + q−1(T∞ + T0 + · · ·+ Tα−1),
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where

Ti =
�

s∈Zq

val2(s)=i

(G(s, 2α))d χ(−st)

= 2id
�

s∈Z×
2α−i

G(s, 2α−i)dχ(−st).

Applying Proposition 4.8, we see that

Ti = 2id2(�−i) 12 (1 + i)d
�

s∈Z×
2α−i

ε−d

s

�
2α−i

s

�d

χ(−st)

= 2α
d

2+i
d

2 (1 + i)d
�

s∈Z×
sα−i

χ(−st)

= −2α
d

2+i
d

2 (1 + i)d
�

s/∈Z×
sα−i

χ(−st),

so long as d ≡ 0 (mod 4), and hence |Ti| ≤ 2α
d+2
2 +(i+1) d−2

2 , which gives

|St| = qd−1 + q−1
α−1�

i=0

|Ti| ≤ (α + 1)qd−1.

The conclusion to the second statement in Theorem 4.7 then follows from the same

reasoning as in the odd case. Write n = 2αm, where m is odd. Writing t = (t1, t2),

where t ∈ Z×
n
, t1 ∈ Z×

2α , and t2 ∈ Z×
m
, we see that

|St| = |St1 ||St2 | ≤ (α + 1)2α(d−1)md−1(1 + o(1)) = Oα(n
d−1),

as claimed.
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