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 ABSTRACT 
 
 
 

This study characterizes how a cohort of 33 middle and secondary mathematics 

preservice teachers’ inferential reasoning changed while enrolled in a statistics course 

designed for future teachers.  Changes in inferential reasoning from pre- to post-

assessments are analyzed and further elucidated by midcourse clinical interviews 

conducted with a stratified random sample of 12 participants.  Using a modified SOLO 

taxonomy (Biggs & Collis, 1982, 1989), the average dominant level of inferential 

reasoning for the cohort shifted from Unistructural to Multistructural over the course.  

However, considerable variation was evident at the cohort-level within specific tasks, and 

at the preservice teacher-level across tasks.  While 58% of all participants increased their 

level of inferential reasoning, growth was more pronounced for secondary teachers with 

75% increasing one or more levels compared with 50% for the middle school teacher 

population.  A relationship between informal and formal approaches to inferential tasks 

was determined as 80% of levels assigned to formal inferential task responses were 

concordant with the dominant informal inferential reasoning level.  Classification of 375 

course tasks by mathematical strands of proficiency (Kilpatrick et al., 2001) revealed an 

increased demand for adaptive reasoning occurs simultaneously with the introduction of 

formal inferential methods.  Prior to the topic of statistical inference, the primary 

proficiency strands emphasized by tasks are conceptual understanding (56%) and 

procedural fluency (75%).  The concepts of center, variability and sample were heavily 

emphasized in the course while sampling variability was given little attention.  

Implications for research and the statistical preparation of teachers are offered.  



 1

CHAPTER 1:  STATEMENT OF THE PROBLEM AND BACKGROUND 
 

 

During the past quarter century, the ability to collect and analyze large quantities 

of data has been facilitated through rapid technology innovations.  Statistical information, 

findings and claims are presented to the public regularly whether the context is choosing 

medical treatments, reading about economic trends in multimedia, watching an athletic 

event, or interpreting public opinion polls.  People increasingly rely on statistical 

information and interpretations when making decisions as consumers, citizens and 

professionals.   In response to these growing societal demands, statistics has become a 

key topic of the mathematics curriculum over the past 25 years (Franklin et al., 2007; 

Jones & Tarr, 2010). 

The Purpose of the Study 

Recently, national standards have placed a greater emphasis on statistics for 

middle and secondary school students (College Board, 2006; National Council of 

Teachers of Mathematics [NCTM], 1989; National Governors Association Center for 

Best Practices [NGA Center] & Council of Chief State School Officers [CCSSO], 2010).  

Until recently, many middle and secondary school mathematics teachers have not had an 

opportunity to learn statistics content during their college coursework.  Therefore, many 

teachers are less prepared to teach statistics in comparison to other mathematics content 

strands (Conference Board of the Mathematical Sciences [CBMS], 2001).  As a result, 

teachers have difficulties in both understanding and teaching the core ideas of statistics 

(Garfield & Ben-Zvi, 2008). 
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In a comprehensive review of the literature in statistics education, Shaughnessy 

(2007) argues there has been limited research regarding the preparation of middle and 

secondary mathematics teachers specific to statistics.  Therefore, a need exists to study 

how well prepared middle and secondary preservice teachers are in terms of knowledge 

needed for teaching statistics.  Currently, researchers and teacher educators claim little is 

known about the knowledge needed to effectively teach statistics in middle and 

secondary school settings.  However, the ability to apply the statistical content and 

processes to be taught is clearly a minimum requirement.  This study focuses on 

characterizing how a cohort of preservice middle and secondary mathematics teachers’ 

statistical reasoning changes during a semester long statistics content course.  More 

specifically, I focus on changes in preservice teachers’ inferential reasoning as they 

progress through a statistics course designed exclusively for teachers.   

In order to define inferential reasoning for purposes of this study, two broader 

concepts must also be described. First, statistical inference refers to moving beyond the 

data at hand in order to make decisions about some wider universe, taking into account 

that variation is everywhere and that conclusions are therefore uncertain (Moore, 2004).  

Second, statistical reasoning is defined “as the way people reason with statistical ideas 

and make sense of statistical information” (Garfield & Ben-Zvi, 2004, p. 7). Hence, 

inferential reasoning is the way that people make sense of statistical ideas and 

information in order to generate a conclusion that extends beyond the data at hand.  

Given the wide application of inferential reasoning techniques, teaching students 

to generate and evaluate inferences based on realistic data has become a key goal of 

middle and high school statistics education (Franklin et al., 2007; NCTM, 2009; NGA 
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Center & CCSSO, 2010).   During middle school, students are taught to coordinate 

statistical information informally to create inferences and make predictions.  Informal 

inferential reasoning is accomplished by comparing two or more aspects of data when 

generating an inference without the assistance of a formal algorithm.  In secondary 

school, students transition to formal inferential reasoning which necessitates the use of 

formulas, calculations and statistical tables to yield formal statistical inferences.  In both 

approaches to inferential reasoning, students must attend to the context in which the data 

resides and the ever-present existence of variation. 

The purpose of this study is to characterize how a cohort of middle and secondary 

preservice mathematics teachers’ inferential reasoning changes while enrolled in a 

statistics content course.  In order to provide a context for the changes, the cohort’s 

opportunity to learn inferential reasoning is carefully documented through a task analysis 

and a description of both the statistical content taught and the emphasis placed on 

statistical reasoning.  Specifically, the statistics content taught is classified into the 

following categories: measures of center, skewness, spread, variance, distribution, 

probability, sampling, variability, sampling variability, and inference.  In addition, the 

emphasis placed on statistical reasoning is portrayed through a classification of tasks onto 

the five strands of mathematical proficiency: conceptual understanding, procedural 

fluency, strategic competence, adaptive reasoning, and productive disposition (Kilpatrick, 

Swafford & Findell, 2001).   

In summary, Shaughnessy (2007) notes that very little research has been 

conducted with preservice mathematics teachers who have had an opportunity to learn 

statistical content and processes during college coursework.  From the few research 
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studies conducted in this vein, initial indications are that teachers still lack confidence in 

their statistical content knowledge and teaching of statistics despite an increased 

opportunity to learn (Groth & Bergner, 2005; Leavy, 2006).  “The studies [that] focused 

on preservice and in-service K-12 teachers suggest that both have difficulties 

understanding and teaching core ideas of probability and statistics” (Garfield & Ben-Zvi, 

2008, p. 28).  If teacher educators are unable to develop the statistical reasoning of 

preservice teachers, then teachers certainly will be ill prepared to provide effective 

statistics instruction once inside the classroom.  The present study provides a needed 

assessment of preservice teachers’ ability to inferentially reason before and after 

participating in a statistics course designed specifically for them.  The findings inform 

teacher educators and curriculum developers of middle and secondary mathematics 

teachers. 

Research Questions 

The study addresses the following three research questions: 

1. How can the change in middle and secondary preservice teachers’ inferential 

reasoning abilities be characterized during a statistics course? 

2. Does a relationship between preservice teachers’ change in informal and formal 

inferential reasoning exist?  If so, how can it be characterized? 

3. What opportunities to learn inferential reasoning are afforded middle and secondary 

preservice teachers during a semester-long statistics course?  

Teachers’ Statistical Reasoning  

Given that statistics has only recently been considered a core content area in the 

K-12 curriculum, most teacher preparation programs have historically dedicated scant 
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attention to this domain.  In 2001, Watson developed a tool to assess teachers’ statistical 

content knowledge, pedagogical content knowledge, knowledge of teaching and 

confidence for teaching statistics.  Teachers, ranging from kindergarten to grade 10 

expertise, reported that they lacked confidence in their knowledge of statistics and also 

that they received few if any opportunities for professional development related to data 

and chance.  According to the College Board of Mathematical Sciences (2001), “Of all 

the mathematical topics now appearing in the middle grade curricula, teachers are least 

prepared to teach statistics and probability” (p. 114).  In response to this situation, a 

number of programs and materials have been created to address professional 

development needs of mathematics teachers.  Recently, several studies assessed how 

teachers’ statistical reasoning evolved during the course of professional development 

(Heaton & Mickelson, 2002; Makar & Confrey, 2004; Rubin & Rosebery, 1998).  

Shaughnessy (2007) states: 

Most K-12 mathematics teachers in the United States have very little background 

in statistics.  The exceptions are those teachers who may have had a concentration 

in statistics during their masters program for secondary teachers, or middle school 

teachers who completed one of the few special programs that exist in the United 

States for middle school mathematics teachers. (p. 995) 

While work is clearly underway to provide opportunities for preservice and 

inservice teachers to increase their statistical content and pedagogical knowledge, the 

learning goals associated with statistics education are shifting from learning formal 

procedures toward reasoning and sense making.  According to Moore (1997), “[A] grasp 

of the reasoning of inference is more important than how many individual procedures” 
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are learned in a given statistics course (p. 127).  Based on findings from research with 

tertiary students, Garfield and Ben-Zvi (2007) report that students who successfully 

complete statistics courses are able to apply inferential statistical methods, but often do 

not understand why the methods are appropriate.  In addition, these students also lack a 

solid understanding of core statistical concepts such as measures of center, variation and 

distribution.  From the few research studies involving K-12 teachers, teachers have 

difficulty generating inferences and applying formal statistical knowledge to real-world 

scenarios (Heid, Perkinson, Peters & Fratto, 2005; Liu & Thompson, 2005).  Therefore, 

teachers’ statistical reasoning is often inconsistent from test-item to test-item and from 

topic-to-topic.  Garfield and Ben-Zvi (2007) attribute a portion of the problem to the 

historically procedural approach to teaching statistics but emphasize the difficulty and 

complexity of developing reasoning skills. 

Inferential Reasoning 

Inferential reasoning has served as a unifying theme of introductory statistics 

courses at the tertiary level for a number of years (Konold & Pollatsek, 2002).  With the 

recent emphasis of statistical reasoning in middle and secondary schooling, the unifying 

role of inferential reasoning is gaining in prominence (NGA Center & CCSSO, 2010).  

Current recommendations for middle and secondary statistics education outlined in the 

Guidelines for Assessment and Instruction in Statistics Education [GAISE] report support 

the introduction of inferential reasoning during middle school informally and then 

formalization of inferential reasoning in secondary years (Franklin et al., 2007).  

Generally, two types of problems fall under the broad definition of inferential reasoning:  

(a) generalizing from samples to populations, and (b) comparison and determination of 
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cause from randomized comparative experiments (Garfield & Ben-Zvi, 2008).  These two 

problem types can employ formal statistical methods or be accomplished through 

informal approaches.  Informal approaches allow students to engage in inferential 

learning at an earlier age, and studies have shown that upper-elementary age students can 

successfully draw inferences (Stohl & Tarr, 2002; Watson, 2002; Watson & Moritz, 

1999). 

Developing Inferential Reasoning Abilities 

Researchers believe that introducing inferential reasoning informally assists 

students in developing argumentation structures necessary for understanding formal 

methods (Wild & Pfannkuch, 1999).  More generally, researchers have found that 

students who practice informal reasoning throughout schooling develop rich mental 

schemas that aid in problem solving and also enhance future learning (Means & Voss, 

1996).  Means and Voss propose introducing argumentation early in schooling to scaffold 

students’ learning.  Informal reasoning is a global skill that increases learning across 

content domains.  Through the process of informal reasoning, students construct situation 

models in their minds that help them connect knowledge in meaningful ways and 

generate inferences.  Situation models are especially relevant to the domain of statistics 

as context plays a critical role in defining the problem to be solved and how to interpret 

results.  Students who create situation models will frame the problem statement using the 

context of the task and connect relevant pieces of information together in a logical 

manner to formulate an inference.  Students who lack the ability or experience in 

developing situation models are less likely to develop robust arguments and may only be 

able to retrieve bits of disconnected facts.  On the other hand, students with more highly 
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developed situational models are better than peers at learning, generating inferences, and 

problem solving. 

Reasoning Summary 

The importance of developing students’ reasoning abilities has been 

acknowledged with the recent secondary mathematics recommendations endorsed by 

NCTM (2009).  In statistics education, inferential reasoning plays a crucial role in 

uncovering how well students understand core statistical concepts, develop relationships 

between these concepts, and draw inferences based on data analyses.  Students can reason 

inferentially at a young age, and current standards endorse reasoning inferentially with 

informal methods during middle school and progressing to formal strategies in secondary 

schooling (Franklin et al., 2007).  The developmental model reflected in these 

recommendations aligns well with both researchers’ conjecture that informal methods are 

needed to develop argumentation structures to support formal methods and findings from 

educational psychology that emphasize the critical role argumentation plays in enhancing 

future learning and drawing inferences (Means & Voss, 1996; Wild & Pfannkuch, 1999). 

Conceptual Framework 

The conceptual framework for this study examines the key knowledge 

components and processes needed to reason inferentially.  The conceptual framework 

consists of two developmental stages.  As depicted in Figure 1.1, Stage 1 relates to the 

development of informal inferential reasoning, while Stage 2 relates to formal inferential 

reasoning.  The stages of development imply that preservice teachers are able to both 

apply informal and formal methods to generate inferences and explain why the 

procedures are appropriate.   
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Figure 1.1.  Conceptual framework for inferential reasoning development  
Stage 1:  Informal Inferential Reasoning Components  

Statistics educators advocate that a focus on developing informal inferential 

reasoning skills precede instruction of formal methods for inference.  Informal inference 

is theorized as a bridge between exploratory data analysis (an unstructured activity) and 

formal methods that consist of prescribed steps and conditions for application (Wild & 

Pfannkuch, 1999).  In order to engage in productive informal approaches to statistical 

inference, students need to have experiences in argumentation or informal reasoning 

(Means & Voss, 1996), adequately developed core statistical conceptions, and adequately 

developed aggregate statistical conceptions.  

Core statistical concepts are measures of center, spread, density, skewness and 

outliers (Reading & Read, 2006).  Ideally, core statistical concepts are introduced and 

explored through the overarching idea of data distribution in the form of dot plots.  Well-

developed notions of core concepts and how they relate are needed to describe data 

distributions (Bakker, 2004).  Once this foundation has been developed, aggregate 

statistical concepts are introduced and consist of distribution, sample, variability, and 

sampling variability (Zieffler, delMas, Garfield & Gould, 2007).  These aggregate 
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conceptions are essential for inferential reasoning, and are commonly introduced and 

explored in the beginning phases of generating an inference.  Typically, a three-step 

transition occurs from first comparing two complete populations using core statistical 

concepts, then inferring population characteristics based on sample data utilizing 

sampling techniques and accounting for sampling variation, and finally creating 

inferences about two unknown populations from random samples by way of formal 

hypothesis tests or confidence intervals.  

Unfortunately, core and aggregate statistical concepts are often taught only 

through the use of procedures, which hinders conceptual understanding (Garfield, delMas 

& Chance, 2007).  Preservice teachers who possess only a procedural understanding of 

statistics concepts are not able to apply knowledge appropriately or populate their 

argumentation schema to generate a prediction that extends beyond the data at hand.  

Similarly, preservice teachers who do not have experience with informal reasoning may 

have difficulty in coordinating the demands of the problem statement with existing 

knowledge to produce a logical argument.  Evidence of such a case would consist of a 

preservice teacher who demonstrates conceptual understanding of core and aggregate 

concepts but is unable to provide a logical prediction to an inferential task (Means & 

Voss, 1996). 

Stage 2:  Formal Inferential Reasoning Components 

Once preservice teachers are able to demonstrate the ability to inferentially reason 

with informal methods, ideally their learning progresses to the next stage of development 

with a goal of productive formal inferential reasoning.  The additional component 

required for generating formal inferences beyond those of informal approaches is a sound 
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understanding of formal methods and procedures.  Typically, the second half of an 

introductory to statistics course commonly entails statistical methods and procedures to 

support either generalizing from samples to a larger universe or drawing inferences 

related to the comparison of two data sets.  At this stage, preservice teachers’ require the 

addition not only of knowledge of formal statistical methods but also an understanding of 

when to use the methods, why they work, and what the results do and do not mean.    

In summary, the conceptual framework documents a compilation of current 

statistic educators’ and researchers’ recommendations for learning how to reason 

inferentially.  The progression begins with the development of core statistical conceptions 

and terminates with the selection and application of formal inferential methods.  The goal 

of the progression is to ensure that preservice teachers are able to inferentially reason 

with formal methods in a meaningful way and answer questions about why the processes 

are effective, how they work, and what the results do and do not imply.  In addition, the 

preservice teachers should also be able to informally reason and draw inferences in 

situations where the specificity of formal reasoning is unnecessary. 

Theoretical Framework 

The selection of a theoretical framework is critical because it informs the research 

design, including data collection, data analysis, and interpretation of findings.  In this 

study, I have selected a cognitive framework to characterize the developmental stages of 

statistical reasoning. 

The Structure of Observed Learning Outcomes (SOLO) Taxonomy  

The development of statistical reasoning has been characterized from cognitive 

perspectives in the past, and general agreement exists that students’ learning progresses 
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through a number of hierarchical levels and cycles (e.g. Jones, Langrall, Mooney & 

Thornton, 2004; Mooney, 2002; Watson, Collis, Callingham, & Moritz, 1995).  Cognitive 

models of development have evolved from maturation-only perspectives to models that 

account for both maturation and interactions experienced by the learner.  In addition, neo-

Piagetian, cognitive development theorists have refined stage-theory models of learning 

to characterize domain-specific learning rather than Piaget’s universal stage model (Jones 

et al.).  The most widely used cognitive model of students’ development of statistical 

reasoning is the Structure of Observed Learning Outcomes (SOLO) taxonomy developed 

by Biggs and Collis in 1982.  Refinements to the initial taxonomy acknowledge the 

existence and importance of multimodal learning, which positions earlier learning as 

foundational to later learning rather being replaced.  The developmental model also 

acknowledges that learning can occur in a top down manner in addition to the typical 

bottom up approach as shown in Figure 1.2. 
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Figure 1.2 The SOLO model.  From “A Model for Assessing Higher Order Thinking in Statistics,” 
by J. M. Watson, K. F. Collis, R. A. Callingham and J. B. Moritz, 1995, Educational Research and 
Evaluation, 1(3), p. 249.  Reprinted with permission. 
 

According to Biggs and Collis (1982), within each mode or stage of learning, a 

cycle of five hierarchical levels of learning exists:  (a) Prestructural, (b) Unistructural, (c) 

Multistructural, (d) Relational, and (e) Extended Abstract.  The first level, Prestructural 

(P), marks the last level of development in the prior mode or stage of learning.  Similarly, 

the final level, Extended Abstract (EA) is thought to be the first level at the next stage of 

development.  Hence, the middle three levels characterize the growth of students’ 

reasoning across a stage of development and will be the main focus for this research 

study.  A cycle within each stage is called a U-M-R cycle to correspond with the first 
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letter in each level.  A Unistructural (U) response to a task uses one relevant aspect of the 

mode.  A Multistructural (M) response incorporates several relevant aspects of the mode 

in a disjointed and often sequential manner.  Finally, a Relational (R) response is denoted 

by the productive coordination of relevant aspects and demonstrates an integrated 

understanding.  Perturbations assist in advancing learning within a U-M-R cycle and also 

to new modes of reasoning.  Without schooling or another method for challenging 

thinking, learning will generally remain at the concrete symbolic mode.  

Characterization of Informal Inferential Reasoning Responses 

In a pivotal study with middle school students, Mooney (2002) reported that 

students provide P, U, M and R responses to informal inferential reasoning tasks 

corresponding in the concrete symbolic mode.  In addition to identifying these four levels 

of responses, Mooney described three underlying subprocesses associated with students’ 

informal inferential reasoning:  (a) making comparisons within data sets or data displays, 

(b) making comparisons between data sets or data displays, and (c) making inferences 

from a given data set or data display.  By describing these three subprocesses in relation 

to the P, U, M and R levels of the SOLO taxonomy, Mooney augmented the cognitive 

framework with descriptions of informal inferential reasoning at the first four levels.  In 

this study, changes in preservice teachers’ inferential reasoning are assessed at three time 

points during the semester.  The characterization of the cohort’s informal reasoning 

responses is completed utilizing the original SOLO taxonomy augmented by Mooney’s 

informal inferential reasoning descriptors.   
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Characterization of Formal Inferential Reasoning Responses 

The SOLO taxonomy identifies a formal mode of learning immediately following 

the concrete symbolic mode (Biggs & Collis, 1982).  However, no research studies have 

utilized the SOLO taxonomy for characterizing formal inferential reasoning responses in 

a manner similar to the research conducted by Mooney in the concrete symbolic mode 

(2002).  Therefore, the cohort’s formal responses to inferential reasoning tasks are coded 

to the general categories of P, U, M and R based on the original definitions developed by 

Biggs and Collis (1989). 

Response Classification 

 In addition to categorizing each response to assessment tasks as either P, U, M or 

R, the responses are also classified by core and aggregate statistical concepts.  For 

example, if a response consists of an argument comparing the means of two data displays, 

then the response is classified as focused on the concept of center.  If the response makes 

reference to one display that has data “spread out” while the other display has data 

“clustered” together, variance is assigned as well.  The purpose of this additional layer of 

coding is to understand what concepts participants were drawing upon during informal 

inferential reasoning throughout the semester. 

Reasoning Progression 

Specific to the topic of inferential reasoning, Reading (2007) was the first to 

recommend that students’ cognitive development be characterized using a two-stage 

SOLO taxonomy with informal reasoning at the first stage and formal at the second.  

Rather than assume this progression and dependency between informal and formal 

inferential reasoning, the cohort’s responses are characterized by a one-cycle SOLO 
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taxonomy in the concrete symbolic learning mode for informal responses and by a one-

cycle SOLO taxonomy in the formal mode of learning for formal responses.  In order to 

justify or refute a two-cycle progression, the existence of a relationship between informal 

and formal changes in reasoning was sought once all responses had been characterized.    

Significance of the Study 

 The study contributes to the statistics education community in several ways.  

First, the cohort of preservice teachers in the study experienced an ideal situation in terms 

of tertiary opportunities to learn statistics.  More specifically, the cohort participated in a 

statistics content course that was designed specifically for middle and secondary 

preservice teachers rather than an introductory statistics course for a general student 

population.  In this manner, the study analyzes the learning of preservice teachers in a 

potentially ideal context.  As stated previously, research on the development of preservice 

teachers’ statistical content knowledge is lacking.  After reviewing research literature, 

Garfield and Ben-Zvi (2008) state that, “The studies suggest further explorations are 

needed in the issues of developing teacher knowledge of statistics as well as methods of 

helping teachers to understand the big ideas of statistics” (p. 28).  Therefore, the findings 

in terms of these preservice teachers’ statistical reasoning abilities serve as a barometer 

for how adequately or inadequately prepared future teachers will be to fulfill the 

recommendations put for in the GAISE recommendations (Franklin et al., 2007).  

Secondly, the study provides further evidence supporting or refuting the need for 

informal inferential reasoning as a necessary predecessor to formal inferential reasoning.  

While a causal link between the two learning milestones is beyond the scope of this 

study, the relationship between the two types of reasoning is examined in detail and 
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provides guidance to future statistics education efforts.  Prior research studies geared 

toward developing inferential statistical reasoning produced disappointing results with 

students unable to articulate how to generate inferences or conduct hypothesis tests 

(Zieffler et al., 2007).  In addition, college students have been unable to consistently 

describe core and aggregate statistical concepts (Garfield, delMas & Chance, 2007).  

Statistics education researchers advocate that informal inferential reasoning serves as a 

needed cognitive milestone between exploratory data analysis and formal inferential 

methods (Zieffler et al., 2007).  Accordingly, some statistics educators are beginning to 

revise introductory statistics courses to include informal inferential reasoning. However, 

an examination of a student’s ability for informal inferential reasoning and then the 

corresponding capacity for formal inferential reasoning has yet to be conducted (Garfield 

& Ben-Zvi, 2008).  

More importantly, the findings of this study assist instructional efforts for both 

middle and secondary students and preservice teachers.  As Shaughnessy (2007) notes, 

students and teachers often experience the same challenges when learning statistics.  The 

cognitive models of change in statistics are especially valuable because they provide 

needed guidance about student learning that can inform curricular design, sequencing of 

topics, task creation, and assessment design.  “Because these models incorporate domain-

specific knowledge of students’ statistical reasoning across key statistical concepts and 

processes, they arm teachers with the kind of knowledge that can be used in the design, 

implementation, and assessment of instruction in statistics and data exploration” (Jones et 

al., 2004, p.112).  Specific to use of the SOLO framework, Shaughnessy states, “The 

SOLO model has been genuinely useful in helping to describe student reasoning on a 
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number of concepts in statistics like average, variability, comparison of data sets, and so 

on” (p. 1001).  In addition, the SOLO framework supports multiple modes of thinking 

and levels of progression within each mode.  This structure provides versatility in 

characterizing thinking and reasoning at a variety of levels and accommodates multiple 

approaches to tasks.  

Summary 

 This study characterizes how a cohort of middle and secondary preservice 

teachers’ inferential reasoning changes during a statistical content course.  Leaders in 

statistics education and educational psychologists advocate the need to introduce 

statistical inference through informal methods first in order for formal approaches to 

make sense and be understood.  Thus, a SOLO framework consisting of two learning 

modes, informal and formal, is employed to characterize the change of the preservice 

teachers’ inferential reasoning.  The first mode focuses on the development of core and 

aggregate concepts and processes related to inferential reasoning using informal 

approaches.  The second mode again requires an understanding of core and aggregate 

statistical concepts but utilizes formal approaches to generate inferences.  The findings of 

this study establish a needed characterization of preservice teacher knowledge specific to 

inferential reasoning consistent with the goals of the GAISE report (Franklin et al., 2007).  

In addition, the importance of developing informal approaches as a foundation for the 

learning of formal methods is explored.  Finally, the opportunity to learn inferential 

reasoning afforded by this statistics course specifically designed for preservice 

mathematics teachers is carefully analyzed and provides a rich description of the learning 

context.   
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 The following four chapters are organized to provide a comprehensive account of 

the research study.  First, I provide a review of relevant literature in chapter 2, identifying 

the need and importance of addressing the research questions posed.  Next, I describe the 

data collection processes and analysis methods in order to create transparency and 

enhance the validity of results in chapter 3.  Then, I provide detailed research findings in 

chapter 4.  Lastly, I discuss the results and offer implications for teacher education and 

future research in chapter 5. 
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CHAPTER 2:  LITERATURE REVIEW 

 

 The conceptual framework outlined in the previous chapter underscores the 

complexity of reasoning about statistical inference and the usefulness of addressing the 

research questions.  In this chapter, a detailed review of research related to reasoning 

about statistical inference is presented.  The literature review is organized into five 

sections:  (1) the rise of inferential reasoning in the mathematics curriculum, (2) students’ 

understandings of inferential reasoning, (3) teachers’ understandings of inferential 

reasoning, (4) characteristics of tasks used to assess inferential reasoning, and (5) a 

summary of key findings that inform the research design of this study. 

The Rise of Inferential Reasoning in the Mathematics Curriculum 

The Evolution of Statistics Standards  

The history of statistics as a content strand in the school mathematics curriculum 

has differed from other content areas such as algebra and geometry.  The first 

recommendations to include statistics in the school mathematics curriculum occurred in a 

report named The Reorganization of Mathematics in Secondary Education in 1923 and 

advocated that middle school students learn how to create and interpret of graphs, and 

that secondary students be offered the opportunity to learn about measures of central 

tendency as an optional topic (Tarr & Jones, 2010).  The progression of recommendations 

regarding the inclusion of statistics as a content strand for all grades in the school 

mathematics curriculum is shown in Figure 2.1. 

 

 



 21

1923: The Reorganization of Mathematics in 
Secondary Education gives the first recommendation 
that students learn statistics (grades 7-12)  

 1959: Description of a course in probability for 
12th grade students in Program for College 
Preparatory Mathematics


1940: The Place of Mathematics in Secondary 
Education gives the first recommendation that 
students learn probability (grade 12) 

1977: Statistics and probability included as “basic 
mathematical skills” in the NCSM Position Paper on 
Basic Mathematical Skills 



1975: Overview and Analysis of School Mathematics 
Grades K-12 gives first recommendation that 
statistics should be taught at all grade levels 
 

1989: Curriculum and Evaluations Standards 
for School Mathematics gives the first 
recommendation that all students learn 
statistics and probability 



2007: Guidelines for Assessment and 
Instruction in Statistics Education published 



1920      1930      1940      1950      1960      1970      1980      1990      2000      2010

 

 

 

 

 

 

 
 

 
 
 
Figure 2.1.  Timeline of shifting emphases on statistics and probability in the K-12 school 
curriculum.  From “Recommendations for Statistics and Probability in School Mathematics Over 
the Past Century,” by J. E. Tarr and D. L. Jones, 2010, In B. J. Reys, R. E. Reys, and R. 
Rubenstein (Eds.), Mathematics Curriculum: Issues, Trends, and Future Direction:  Seventy-
second Yearbook  (pp. 65-76).  Reston, VA:  National Council of Teachers of Mathematics. 
Reprinted with permission. 
 

The evolution of statistics in the school mathematics curriculum broadly occurred 

across three eras (Tarr & Jones, 2010).  The first era, from 1923 to 1959, emphasized 

creating and interpreting data displays primarily in the form of tables and graphs.  

Measures of central tendency were viewed as advanced topics and targeted for only the 

most mathematically able students in secondary school.  Hence, statistical content was 

relatively limited.  During the second era of 1960 through 1979, statistical content 

previously reserved for secondary school was now recommended for either late 

elementary or middle school grades.  In addition, the view that statistics content was only 

for the most mathematically able students was altered in the 1970s, allowing all students 

to partake in learning statistics during middle school years.  More advanced statistics 

topics emerged as well and were offered during secondary school years.  The final era 

spans the 1980s through current times with statistics emerging as a prominent content 
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strand in the school mathematic curriculum across grades K through 12.  Coupled with a 

focus on problem solving and the availability of technology tools, statistics content is 

often taught by answering real-world questions with the use of calculators or other 

technology tools.   

In the 1970s and 1980s, advancements in technology, data availability, and more 

sophisticated statistical approaches created momentum to alter the type of statistics 

content available in K-12 curricular materials.  In 1984, the Quantitative Literacy Project 

was funded by the National Science Foundation (ASA-NCTM, 1984).  The project was 

initially launched by the Joint Committee on the Curriculum in Statistics and Probability, 

which was comprised of members from the American Statistical Society and the National 

Council of Teachers of Mathematics.  The members of the Quantitative Literacy Project 

attempted to accelerate integration of up-to-date statistical content in the K-12 

mathematics curriculum through new curricular materials and teacher professional 

development activities.  Four books were developed by a team of statisticians and 

teachers, Exploring Data, Exploring Probability, The Art and Techniques of Simulation, 

and Exploring Surveys – Information from Samples.  This curriculum development 

project focused on investigative approaches to learning statistics rather than application 

of formal methods and algorithms. 

In 1989, the National Council of Teachers of Mathematics (NCTM) released the 

Curriculum and Evaluation Standards for School Mathematics, which included statistics 

and probability among the mathematics content strands for the K-12 curriculum.  The 

authors of this pivotal document stated that statistics and probability are used to make 

decisions about marketing, defense, business and research.  Hence, all students should 
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have the opportunity to learn probability and statistics content to increase their career 

opportunities and to become informed citizens.  In 2000, NCTM updated content and 

process recommendations in Principles and Standards for School Mathematics, and again 

emphasized the importance of data analysis and probability for all students.  In addition 

to NCTM’s endorsements, in 2006 the College Board released, College Board Standards 

for College Success:  Mathematics and Statistics, advocating that data, variation, chance, 

fairness and risk be included as core content for middle and secondary mathematics 

students. 

 Despite strong commitments and guidance from NCTM and the College Board 

for greater emphasis on statistical content in the K-12 curriculum, more detailed 

recommendations were needed.  In an effort to support classroom teachers and inform the 

development of curricular materials, a joint committee of the American Statistical 

Association and NCTM funded the development of the GAISE recommendations 

(Franklin et al., 2007).  Specifically, the GAISE recommendations complement NCTM’s 

Data Analysis and Probability standards of Principles and Standards for School 

Mathematics by providing a framework for statistical problem solving and an articulation 

of the progression of statistical concepts and processes for preK-12 students.  

Franklin et al. (2007) realized that the key to implementing statistics content 

standards resides with not only providing a detailed curricular framework, but also with 

providing educational support for teachers.  Researchers have observed that although 

standards place significance on teaching statistics, changes in actual classrooms lagged 

recommendations (Jones et al., 2004).  One possible explanation proposed is that teachers 

have not experienced learning statistics content and processes in alignment with current 
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standards.  Franklin et al. (2007) state, “Statistics […] is a relatively new subject for 

many teachers, who have not had an opportunity to develop sound knowledge of the 

principles and concepts underlying the practices of data analysis that they are now called 

upon to teach” (p. 5).  Hence, many teachers do not understand how statistics differs from 

traditional mathematics or how to organize statistical topics into a coherent and cohesive 

curricular strand.   

Endorsing Reasoning and Sense-Making 

Specific to secondary school, NCTM recently released Focus in High School 

Mathematics:  Reasoning and Sense Making, a series of professional development 

materials.  A key principle of these documents is to shift focus away from covering 

specific topics in high school mathematics to unifying teaching, curriculum and research 

efforts around the development of students’ reasoning and sense-making abilities.  With 

enhanced reasoning abilities, it is expected that students will be able to solve real-world 

problems in a variety of contexts, compete in a global workplace, succeed in future 

learning and become productive citizens (NCTM, 2009).  A similar shift in philosophy 

and priorities has emerged in statistics education as well, as NCTM (2009) argues, “The 

development of statistical reasoning must be a high priority for school mathematics” 

(viii). 

In addition to changes in the composition of curriculum standards and the 

development of curriculum materials, the focus of statistics education research has 

likewise changed in recent years.  According to Garfield and Ben-Zvi (2004), past 

[research] efforts primarily entailed improving instruction and learning related to 

statistical techniques, formulas, and procedures.  However, more recent studies 



 25

emphasize the development of students’ statistical reasoning and thinking as the primary 

educational goal.  According to Garfield and Ben-Zvi (2008):  

The topics of these research studies conducted by members of this community 

[the International Statistical Reasoning, Thinking and Literacy Research Forums] 

reflect the shift in emphasis in statistics instruction, from developing procedural 

understanding, i.e., statistical techniques, formulas, computations and procedures, 

to developing conceptual understanding and statistical literacy, reasoning, and 

thinking. (p. 35) 

The recent change in emphasizing reasoning and sense-making coupled with a heavier 

emphasis on statistics content in the middle and secondary grades creates a gap between 

teacher experiences as learners and what they will teach in the future.  

Inferential Reasoning 

 Recently, the NGA Center and CCSSO placed explicit attention on the 

development of inferential reasoning in the mathematics school curriculum by requiring 

that middle school students learn how to informally reason about inference and secondary 

students learn how to formally reason about inference in the Common Core State 

Standards (2010).  As more states pledge adoption, the Common Core State Standards for 

Mathematics are anticipated to become the de facto national mathematics school 

curriculum.  Since preservice teachers’ learning of statistics most likely did not progress 

from informal to formal approaches, their conceptual knowledge may be lacking to 

support these new standards.  Informal approaches to generating inferences are relatively 

new, and require the coordination of core and aggregate statistical concepts (Figure 1.1).  

Therefore, knowledge of these concepts and how they are related is required.  Ideally, 
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these concepts are also developed and understood when learning about formal approaches 

to inferences.  However, formal inference has traditionally been taught in a procedural 

manner without a focus on conceptual understanding or reasoning (Garfield & Ben-Zvi, 

2007).  Hence, statistics education as experienced by preservice teachers may have very 

different connotations than the learning expectations supported by the Common Core 

State Standards and similar standards documents.   

The Process of Inferential Reasoning 

 Because so few research studies have been conducted specifically with preservice 

and inservice teachers, most of what is known about the process of learning how to 

inferentially reason is based upon student populations.  Therefore, the studies and 

findings presented in this section relate to research studies with students.  A synthesis of 

the few research study findings specific to teachers will follow the inferential reasoning 

summary.  

Inferential reasoning is a complex and challenging endeavor.  As mentioned 

previously, two types of inferential tasks exist:  (a) generalizing from samples, and (b) 

comparison and determination of cause from randomized comparative experiments 

(Garfield & Ben-Zvi, 2008).  Historically, statistical inference has been relegated as a 

topic for college-level statistics courses.  In such courses, students are taught how to 

generate inferences by means of formal approaches and procedures, such as hypothesis 

testing during college coursework.  Such approaches have failed to yield sound statistical 

reasoning capabilities.  In particular, numerous studies indicate that upon completion of 

introductory college statistics courses, many students:  (a) continued to struggle with 

every aspect of formal approaches of generating inferences (Aquilonius, 2005), (b) could 
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not explain basic statistical concepts (Garfield et al., 2007), and (c) were unable to 

identify the relationships between statistical concepts (Williams, 1999).  In addition, 

researchers have not found a relationship between college students’ academic 

performance in statistics courses and their understanding of statistics (Tempelaar, Van 

der Loeff & Gijselaers, 2007).  Hence, a reform movement is currently underway to 

improve how statistics is taught at the college level, and researchers and college 

instructors are exploring alternative instruction methods that encourage a rich, integrated 

understanding of core statistical concepts and processes (Garfield et al., 2007).  

Data Distributions 

Researchers have sought to identify the origins of inferential reasoning.  In a 

synthesis of research studies, Reading (2007) identified a set of statistical concepts 

(variation, distribution, mean, spread, and graphs) and actions (focus on proportions, 

sample variation, and randomness) that needed to be understood prior to engaging in 

informal inferential reasoning.  These concepts and actions align well with the conceptual 

framework provided in Figure 1.1.  Reading’s analysis supports that well-developed core 

statistical concepts are a prerequisite to engaging in inferential reasoning.  In addition, an 

understanding of one aggregate concept, data distribution, is also a prerequisite.  The 

following section discusses the unique role of data distribution in connecting and relating 

core statistical concepts in the early stages of inferential reasoning. 

The authors of the GAISE recommendations introduce statistical inference 

through the comparison of two complete populations that are represented graphically as 

data distributions; in doing so, students are well positioned to compare important 

characteristics of the data sets such as center, spread and shape visually (Franklin et al., 
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2007).  Data distributions build upon students’ knowledge of core statistical concepts and 

serve as a unifying structure for exploring the relationships between them.  Although 

distribution is an aggregate concept that normally is not discussed by name until middle 

or secondary schooling, students are afforded experiences in creating data displays (i.e., 

graphical distributions), typically in elementary school years (Watson, 2009).  By 

describing the range, spread and shape of data distributions, elementary students begin to 

develop a sense of variation and a notion of center.  Therefore, data distributions foster a 

shift in students’ views from single data points or outcomes to global characteristics.   

Given that relatively few students in middle and secondary school have been 

exposed to the ways of thinking needed for data analysis and interpretation, researchers 

have explored various ways to build inferential thinking while also developing necessary 

conceptions such as center, spread, shape and sample.  Most researchers have focused on 

middle school students because they have been taught how to create displays of data 

distributions (e.g., bar charts, histograms) and calculate measures of center such as mean 

and median. In order to informally generate inferences about data sets, students must 

attend to global characteristics and trends, such as the shape of a data distribution or how 

data is condensed about an interval (Cobb, McClain & Gravemeier, 2003).  However, 

because core statistical concepts such as measures of center are often introduced in a rigid 

and procedural manner, this can impede a student’s ability to view distributions globally 

and therefore, impair inferential reasoning.  Cobb et al. (2003) found that the operational 

view of median held by many middle school students impedes their ability to coordinate 

the concept of center with other aspects of a data distribution and inferentially reason.  

However, Bakker (2004) reported success in developing the concept of distribution with 
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middle school students as a result of a guided reinvention classroom design experiment.  

Students contributed their own ideas, strategies, and language when solving statistical 

problems and defined data distribution and other core statistical concepts together as a 

class.  The instructor, Bakker, led the process to ensure that the activities and discussions 

reinvented or aligned with accepted statistics practices.  Through this sense-making 

process, Bakker was able to foster students’ understanding of core concepts from their 

intuitive notions by applying these ideas to more complex scenarios involving data 

distributions. 

In a research study with students in grade 3, 5, 6, 7, and 9, Watson and Moritz 

(1999) found that students who employ averaging strategies, including calculating the 

arithmetic mean, visualizing the mean, or finding a balance point, are more successful in 

comparing two populations of unequal size than their peers.  In addition, Watson and 

Moritz determined that students who do not proportionally reason are typically 

unsuccessful in comparing data sets of unequal size.  Therefore, in order to be successful 

in this first step towards informal inference, comparison of two populations, students 

must possess: the ability to reason proportionally, a basic understanding of core statistical 

concepts, and knowledge of how they relate to form a data distribution.  However, other 

researchers dispute the notion that proportional reasoning is a prerequisite to inferential 

reasoning.  For example, Stohl and Tarr (2002) found that grade 6 students were able to 

generate inferences through the use of technology tools and multiple views of data 

representations.   
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Sample and Sampling Variability 

Two other key aggregate concepts (Figure 1.1) required for inferential reasoning 

are sample and sample variability.  While students may generally possess experiential 

knowledge related to distribution from elementary school, often sampling is a topic 

relatively unexplored prior to middle school.  The idea of selecting a random sample 

from a population necessitates the need to understand probability distributions and the 

associated likelihood of selecting various elements of the data set in relation to that 

distribution.  Similar to the notion of distribution, students often struggle in viewing a 

sample globally, but rather focus on each individual data point.  Saldanha and Thompson 

(2003) studied the development of secondary “students’ thinking as they participate[d] in 

instruction designed to support conceiving sampling as a scheme of interrelated ideas 

including repeated random selection, variability among sample statistics, and 

distribution” (p. 259).  Saldanha and Thompson determined that students tend to focus on 

individual samples and statistical summaries of samples instead of how collections of 

samples are distributed.   

Similarly, Pratt, Johnston-Wilder, Ainley and Mason (2008) studied how students 

shift attention from immediate sampling results at the local level to global trends or 

aggregations of multiple sampling trials.  Unfortunately, most students tended to focus on 

local changes between samples, which resulted in small shifts in aggregated results, 

rather than seeking global trends in the data.  Pratt et al. hypothesized that student 

expectations of invariance were never fully met, causing students to distrust results.  

Consequently, they advocate the need to discuss the concept of sampling variation from 

the onset of instruction to assist students in global comparisons versus attending to 
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changes in local characteristics.  In a related study involving sampling with the use of 

simulations, Stohl and Tarr (2002) found that students were able to effectively generate 

informal inferences with the assistance of multiple representations.  Therefore, the 

representations and tools associated with the sampling process can impact students’ 

ability to attend to global characteristics and generate inferences.   

Research in cognitive psychology determined that intuitive or naïve 

misconceptions regarding the probabilistic elements of sampling can grow over time if 

left unattended.  Considered one of the classics in statistics education, Tversky and 

Kahneman (1982) identified a pervasive network of misconceptions that they refer to as 

“the law of small numbers.”  The law of small numbers is similar to the law of large 

numbers, but also contains an extra element of self-correction, which occurs in steady-

state systems but not in random processes.  The law of small numbers is composed of two 

aspects:  (a) the belief that small samples randomly selected from a population will 

embody characteristics of the population to such a degree that the sample is highly 

representative of the overall population, and (b) the gambler’s fallacy, which assumes 

that laws of chance include an element of self-correction or fairness.  For example, if a 

sequence of events has strayed away from a theoretically expected result, future 

outcomes will self-correct this discrepancy.  In terms of sampling, the law of large 

numbers supports the notion that samples can be highly representative of the overall 

population, especially when the sample selected is large in comparison to the entire 

group.   

Fischbein and Schnarch (1987) determined that the belief in the law of small 

numbers solidifies and grows for many students over time, and therefore, recommend 
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intervention by middle school years. The researchers argue that if a student’s general 

schema is adequate to reason about a particular task, then misconceptions diminish over 

time.  However, if a student’s general schema is inadequate to deal with the constraints of 

a particular task, then the frequency of misconceptions increases as the student ages.n 

order to introduce cognitive conflict, researchers have employed the use of student-

student interactions, prerecorded student comments, the careful sequencing of tasks, and 

the use of computer simulations to test and refute student conjectures about the law of 

small numbers.  Collectively, these strategies for fostering more sound reasoning about 

sampling have achieved varying degrees of success.  

Research indicates that working with middle school students through the use of 

simulation tools and cognitive conflict is successful (Stohl & Tarr, 2002; Watson, 2002), 

whereas researchers working with high school students in similar interventions are less 

successful (Pratt et al., 2008; Saldanha & Thompson, 2002).  In addition, Saldanha and 

Thompson found that many students confused the number of samples with the number of 

people in the population.  This misconception caused students to believe that sampling 

distributions were equivalent to the actual population.  Lastly, Pratt et al. found that many 

[high school] students believed large samples produced unreliable results.  One student 

voiced his concern with large sample sizes:  “Because the 280 was just getting too stupid, 

I think, and had too much in” (pp.187-188).  Other students felt that sample sizes of 100 

were sufficient, since they perceived 100 to be a large number. 

Variance 

 The remaining aggregate statistical concept (Figure 1.1) yet to be discussed 

explicitly is variance.  Variation is the hallmark of statistics.  According to Cobb and 
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Moore (1997), “the need for [statistics] arises from the omnipresence of variability” (p. 

801).  In a synthesis of research findings, Shaughnessy states that variation occurs in 

eight different forms:  (i) variation in particular values such as outliers, (ii) variation over 

time, (iii) variation over an entire range, (iv) variation within a likely range, (v) variation 

from a fixed value such as a mean, (vi) variation in sums of residuals, (vii) variation in 

co-variation or association, and (viii) variation as a distribution (2007).  Many of these 

types of variation can be observed graphically through data distributions and are 

introduced through the comparison of two samples or occur during the sampling process.  

Therefore, to some extent variance is embedded in aggregate statistical concepts.  Watson 

(2008) found that students’ perception of “reasonable” variation is closely tied to their 

knowledge and experiences with the context of a given statistical task.  According to 

Watson, the more relevant the task context is to the student, the more reasonable the 

expectations for variation.  Similarly, Pratt et al. (2008) found that students’ tolerance for 

variance was much lower than expected due to their lack of experience in comparing 

empirical results to theoretical probability distributions.  These studies suggest that 

students require multiple experiences embedded in different contexts with chance events 

in order to develop of sense of how much variance to expect.  

Inferential Reasoning Summary 

In summary, generating inferences requires students to possess robust statistical 

conceptions, to coordinate these conceptions, and to formulate a data-based argument 

situated in the context of the task.  The process of inferential reasoning is a complex 

activity and at times counter-intuitive due to students’ natural tendencies to possess naïve 

conceptions of probabilistic processes and focus on local phenomena.  Therefore, 
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students need experiences throughout their schooling to develop an understanding of core 

statistical concepts, challenge intuitive misconceptions, explore relationships between 

concepts, experience chance events, develop inferences, and justify their arguments.  

Without such opportunities in middle and secondary schooling, research suggests that 

efforts to teach inference meaningfully at the college level are likely to be unsuccessful. 

While the middle and high school experiences of the cohort who participated in this study 

are not reported, they did experience a college level course designed to specifically meet 

their needs as future teachers who will be play a fundamental role in the implementation 

of both the Common Core State Standards and the GAISE recommendations.   

Teachers’ Understanding of Inferential Reasoning 

Inferential reasoning is a complex process, which requires both conceptual 

knowledge of statistics and reasoning abilities.  However, empirical studies investigating 

the knowledge needed for teaching statistics to middle and secondary school students are 

almost nonexistent (Groth, 2007; Shaughnessy, 2007).  Leavy (2010) conducted a study 

specific to elementary preservice teachers, and found that most preservice teachers view 

mathematics and statistics deterministically, which means that tasks ostensibly have 

specific answers that are correct. However, in statistics, solutions account for variability 

contained in data sets.  Therefore, all solutions also contain a degree of uncertainty.  

Given the disposition of elementary preservice teachers towards deterministic views of 

statistics, many are uncomfortable conducting classroom activities such as rolling dice in 

order to create an empirical data distribution that will not conform to theoretical 

expectations.   

Research studies focused on preservice middle and secondary mathematics 
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teachers’ knowledge of statistical inference are also limited.  In a study of two preservice 

high school teachers with extensive mathematical backgrounds, Liu and Thompson 

(2005) found that transferring formal statistical knowledge regarding sampling 

distribution and confidence intervals to analyzing public opinion polls is nontrivial and 

problematic.  Similarly, Heid, Perkinson, Peters and Fratto (2005) found that preservice 

secondary mathematics teachers have difficulty applying sampling distributions to real 

data and tend to reason deterministically rather than probabilistically when comparing 

sampling distributions to populations.  In both studies, researchers assert that teacher 

preparation programs are not adequately preparing future teachers in terms of being able 

to generate inferences with real-world contexts and data, and more specifically, to 

understand the complex relationships of sampling distribution in comparison to 

populations. 

Although several studies have explored preservice teachers’ statistical knowledge, 

few investigations have examined inservice teachers’ statistical thinking.  In regard to 

inservice middle and secondary mathematics teachers, Nicholson and Darton (2003) 

reported that high school mathematics teachers with limited knowledge of statistical 

inference are especially uncomfortable in reasoning about statistical concepts and 

explaining the relationship between random process and inference. Given the complexity 

involved with learning about statistical ideas and the process of inference, these findings 

are not surprising. 

Makar and Confrey (2004) led a professional development effort designed to 

build inservice secondary mathematics teacher knowledge specific to formal inference 

through analyzing students’ performance on state mandated assessments.  While the 
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teachers were generally comfortable comparing distributions informally and with 

descriptive statistical measures such as mean, they struggled to reason about multiple 

types of variation both within and between data distributions.  Furthermore, teachers were 

unable to effectively draw inferences when provided with sampling distributions via 

computer simulations.  Makar and Confrey highlight that overuse of computer simulation 

activities might, in fact, promote the development of some misconceptions specific to 

sampling distribution, such as the notion that a sampling distribution is representative of 

the larger population.  

In a study that found teachers’ reasoning to be more advanced than students’, 

McClain (2002) designed a professional development course for middle school 

mathematics teachers based on grade 7 student learning trajectories.  McClain found that 

teachers offered more sophisticated responses than typical grade 7 students by employing 

multiplicative and proportional reasoning strategies.  Grade 7 students often reason 

additively and compare data in terms of frequency.  For example, a student may add two 

samples together to arrive at an estimation of the population and generalize 

characteristics of the population based on the total number of data points at each value.  

Multiplicative reasoning involves visualizing how samples might compare if the process 

of sampling were repeated many times in order to generalize to population 

characteristics.  Proportional reasoning involves thinking about the values of a data 

distribution in comparison to each other rather than the number of data points on any 

particular value.  Hence, although commonalities exist between student and teacher 

learning, learning trajectories for teachers will be different than student learning 

trajectories.   
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In a related study, Watson (2008) reported on a classroom design experiment 

conducted with a grade 7 teacher over the duration of three lessons.  Watson designed 

classroom activities with the teacher to introduce the concepts of hypothesis testing, 

shape, skewness, center, spread, outlier, sampling and justification through the use of 

data sets in TinkerPlots.  Watson found that the teacher was comfortable leading all 

activities with the exception of those related to inference and justification.  

In summary, middle and secondary school teachers are least prepared to teach 

statistics and probability (CBMS, 2001).  From the few empirically-based studies 

involving K-12 teachers, middle and secondary preservice and inservice mathematics 

teachers demonstrate knowledge of proportional reasoning, sampling, and core statistical 

concepts.  However, challenges arise related to sampling distribution and comparison of 

sample mean to populations, with and without the assistance of computer simulation.  In 

addition, applying formal knowledge and procedures to real-world scenarios is difficult 

for teachers and underscores the problems teachers experience in coordinating 

conceptions and generating data-based arguments.  More broadly, both inservice and 

preservice teachers struggle to effectively generate inferences and tend to reason 

deterministically.  



 38

Characteristics of Tasks Used to Assess Inferential Reasoning 

A synthesis of research studies focused on either assessing or developing 

students’ inferential reasoning abilities informed the selection of inferential reasoning 

tasks to be included in this study (e.g. Bakker, 2004; Cobb, 1999; Garfield et al., 2007; 

Watson, 2002).  Because preservice teacher participants did not have experience with 

formal approaches to inference prior to beginning of the statistics course, tasks were 

selected that could be solved with both informal and formal approaches.  Statistics 

education researchers and educational psychologists advocate the need for tasks to be: ill-

structured, open-ended, represented visually, and embedded within a relevant context.  

Ill-Structured 

Reasoning effectively to generate inferences requires prior knowledge of core 

statistical ideas and an understanding of the relationships between them (Garfield et al., 

2007).  Informal approaches to reasoning are needed when problems either do not align 

with known solution methods or are presented before students possess the knowledge of 

such methods.  As Means and Voss (1996) state, “Informal reasoning assumes 

importance when information is less accessible, or when the problems are more open-

ended, debatable, complex, or ill-structured, and especially when the issue requires that 

the individual build an argument to support a claim” (p. 140).  Therefore, the tasks found 

in these studies tend to ill-structured and open-ended in nature.  

Tasks that are ill-structured share four common traits according to Goel (2009):  

(a) require more than a single cycle to generate a response, (b) place few if any logical 

constraints on the solution, (c) are open-ended in nature with multiple potential solutions, 
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and (d) encourage an incremental solution that is refined in cycles with a low level of 

commitment during the beginning cycles.   

 Watson and Moritz (1999) asked students across grade 3 to 9 to compare the 

performance of two classes on a mathematics quiz given the scores of each in a line plot 

format.  The class sizes were unequal, making proportional reasoning a requirement.  In 

addition, the task meets the specifications provided by Goel (2009) by placing limited 

constraints on the problem solver, encouraging multiple approaches and solutions, and 

requiring more than a one-step process.  The question posed by Watson and Moritz 

requires a data-based justification embedded in a context.  Therefore, the problem is not 

only ill-structured in nature, but also demands that the students provided an inferential 

argument based on the data provided.   

Watson and Moritz report that a group of students, who reasoned in multiple 

steps, tended to choose one of two solutions paths.  One solution path consisted of visual 

comparisons of the distributions, while the other relied upon numerical approaches, such 

as calculating the mean.  When student approach ill-structured problems, they generally 

progress through four phases: “problem structuring, preliminary design, refinement, and 

detailing.  These phases differ with respect to the type of information dealt with, the 

degree of commitment to generated ideas, the level of detail attended to, and a large 

number of vertical transformations” (Goel, 2009, p. 3).  Vertical transformation 

represents the deepening of an idea related to the problem or task posed.  As ideas are 

fleshed out in more detail, students also become more committed to their solution 

strategy.  The omission of one correct answer or lack of problem constraints is the key 

factor for encouraging inferential reasoning.  Watson and Moritz describe an iterative 
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process that some students embarked upon to first compare measures of center, then to 

consider other characteristics of the data distribution such as skew or range, and finally to 

coordinate all possible data comparisons together to produce a detailed response.  These 

steps and the associated deepening of detail regarding the final solution provide a view 

into students’ reasoning beyond tasks that are highly structured, which seek a 

predetermined solution.  The use of ill-structured tasks in statistics education research 

studies is fairly common (Bakker, 2004; Brase et al., 1998; Pratt et al., 2008; Saldanha & 

Thompson, 2002; Stohl & Tarr, 2002; Watson & Moritz, 1999).  Since a goal of this 

research study is to assess the preservice teachers’ reasoning, ill-structured tasks were 

selected for the assessments.  

Open-Ended   

The appearance of open-ended tasks in statistics education research is driven by 

the desire to require informal approaches to tasks (Bakker, 2004; Cobb, 1999; Cobb et al, 

2003b, Garfield et al., 2007; Watson, 2002; Watson & Moritz, 1999).  According to 

Leathman, Lawrence, and Mewborn (2005) open-ended problems “elicit reasoning, 

problem solving, and communication” (p.  413).  Characteristics of high quality open-

ended tasks include the involvement of significant mathematics, the potential to solicit 

basic to sophisticated and abstract responses, and a balance between too much and too 

little information.  Clearly, the bounds of ill-structured tasks and open-ended tasks 

overlap to some degree as the descriptions of both include common characteristics. 

Many teacher-researchers initially introduce open-ended tasks to hone students’ 

thinking and reasoning about a situation.  Through whole class discussion, the open-

ended tasks become closed as taken-as-shared meanings develop.  In one study, students 



 41

were asked to determine which of two ambulance service providers was better and 

provide justification for their reasoning (Cobb, McClain & Gravemeier, 2003).  Through 

a whole class discussion, students determined that viewing the data in two equal 

groupings provided the needed information to make a decision.  Hence, the initially open-

ended task became closed through the instructional process of establishing norms for 

acceptable justification.   

In another study, students were asked to list their daily activities and rank them in 

terms of most to least variable and again provide justification (Garfield et al., 2007).  In 

this case, the teacher-researchers used the students’ initial responses to again build 

classroom-level consensus around the concept of variability.  Given that the assessments 

were completed individually, a taken-as-shared meaning was not developed at the whole-

class level or at the teacher-student level initially.  Therefore, the students were required 

to decide in many instance what the relevant aspects of each task were and what 

constituted acceptable justification.  This decision making process parallels the 

requirements placed upon the preservice teachers as they completed tasks used in this 

study.  

Visual Representations 

 The use of visual representations of data related to inferential reasoning tasks is 

common.  Tasks involving small sets of data (n < 30) generally provide dot plots and bar 

graphs to depict the distribution (Garfield et al., 2007; Watson 2002; 2008; Watson & 

Moritz, 1999).  In contrast, tasks utilized by Bakker (2004) require students to sketch dot 

plots on paper.  Other researchers provide more elaborate visual representations and 

display options to students during studies with either larger sample sizes or that requested 
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students to determine characteristics of an underlying population distribution from 

sampling (Cobb, 1999; Cobb et al., 2003; Pratt et al., 2008; Stohl & Tarr, 2002).  A few 

researchers asked students to create mental representations rather than use technology 

tools or sketches (Brase et al., 1998; Saldanha & Thompson, 2002).  In all of these cases, 

by providing visual representations, the students’ were encouraged to attend to global 

characteristics and relationships rather than focus on any one statistic.  

Context 

According to the authors of the GAISE (2007) recommendations, “In 

mathematics, context obscures structure. In data analysis, context provides meaning” (p. 

7).  Hence the use of context is the norm in statistics education and instructors commonly 

introduce data sets in relation to some real-world phenomena or situation.  However, the 

way researchers use context in their tasks varies substantially.  On one hand, several 

researchers have created problem scenarios familiar to students in an effort to increase 

accessibility and leverage prior knowledge and experiences (Bakker, 2004; Garfield et 

al., 2007; Watson & Moritz, 1999; Watson, 2002; Watson, 2008).  For example, Bakker 

developed a context of children’s weight with children of similar age to those involved in 

reasoning about the tasks.  Bakker noted that many researchers avoid this potentially 

sensitive topic, but reported that students were able to generate distributions that aligned 

closely with actual data.  Similarly, Watson created a sequence of tasks that were based 

on measures of actual students’ heart rates and arm-span lengths.  Finally, Garfield et al. 

asked students to create data sets based on their own daily activities.  By creating data 

sets that are close to the knowledge and experiences of the students, the focus of the tasks 

is on the reasoning process and possibly avoids confusion from lack of prior experiences 
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and knowledge.  On the other hand, some researchers formulate tasks based on real-world 

contexts.  Cobb (1999) and Cobb et al. (2003) created a variety of real-world contexts 

such as ambulance response times, success of speed traps, effectiveness of AIDS 

treatments, battery life spans, SAT scores, response time versus alcohol intake, and 

carbon dioxide production over time.  Cobb et al. explain that prior research findings 

required that students find the context both plausible and of importance before they will 

engage in reasoning about the data.  Therefore, the context of a given task should be 

discussed thoroughly prior to students embarking on any exploratory data analysis or 

inferential reasoning.   

Finally, several researchers couch tasks in more traditional contexts based on 

probabilistic situations (Pratt et al., 2008; Stohl & Tarr, 2002).  Stohl and Tarr (2002) 

posed problems in contexts involving dice, coins, marbles, and fish populations.  The 

tasks offer a game-like feature and pose challenges to the inquisitive student.  However, 

the contexts are not necessarily familiar to the students or realistic in nature.   

The contexts for generating inferences abound that are both familiar to students 

and potentially relevant such as differences in bedtimes, allotted television viewing time, 

and distances from homes to school.  Finding contexts that are familiar to students have 

the potential to stimulate rich and productive classroom discussions.  Problems that are 

relevant and of interest to students may promote authentic engagement in data analysis 

activities through drawing inferences (Cobb et al., 2003).  Garfield, delMas and Chance 

(2007) report that while they conscientiously selected contexts that would be familiar to 

students when designing tasks for a particular lesson, students were not interested in 

addressing the question posed by the tasks.  Therefore, the context and question being 
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addressed must be both relevant and of interest to the student.  In selecting tasks with 

these attributes, students will begin activities with some level of experiential knowledge 

and interest, which will increase the likelihood of building structural conceptions and 

mental models needed for inferential reasoning (Means & Voss, 1996).   

The researchers who created the informal inferential reasoning tasks used within 

this study have charted new territory.  The review of research strongly suggests that 

investigations into teachers’ inferential reasoning should utilize tasks with several key 

characteristics:  ill-structured, open-ended, represented visually, and embedded within a 

relevant context.  

Summary 

 Inferential reasoning has recently become a prominent component of the grade 6-

12 mathematics curriculum as determined by the Common Core State Standards (NGA 

Center & CCSSO, 2010).  Research related to the process of inferential reasoning 

highlights the complexity in generating an inference due to the need for prior knowledge 

of statistical conceptions, an understanding of how the conceptions are related, and an 

ability to develop an argument that is supported by data and reasonable for the task 

context.  In addition, misconceptions related to probabilistic reasoning pose additional 

challenges that must be overcome by many students and teachers alike.  Therefore, 

statistics educators and researchers recommend that students begin learning how to 

informally generate inferences in middle grades and progress to formal approaches in 

secondary schooling.   

Research related to the knowledge needed to teach inferential reasoning is indeed 

scarce (Shaughnessy, 2007).  From the few studies that have been conducted, teachers 
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tend to be confident in their knowledge and teaching of many core statistical concepts.  

However, the process of generating inferences poses challenges for middle and secondary 

mathematics teachers, and they are uncomfortable teaching statistical content beyond 

core conceptions.  This finding is unsurprising given the lack of teacher preparation 

related to probability and statistics.   

The present study examines how a cohort of preservice middle and secondary 

mathematics teachers’ inferential reasoning changes as they progress through a statistics 

content course designed specifically for future teachers.  Recently, researchers have 

embarked upon studies related to how students’ can be taught to reasoning inferentially 

and also how to characterize their inferential reasoning.  In these studies, students’ 

inferential reasoning is both assessed and fostered through the use of tasks that are 

designed to be:  ill-structured, open-ended, visually represented and embedded in a 

context.  Therefore, the tasks within this study embody these attributes.   

In summation, teaching inferential reasoning to both preservice teachers and 

grade 6-12 students is a daunting challenge given the lack of curricular materials, 

unsuccessfulness of prior initiatives at the college level, deterministic dispositions of 

teachers and students, and inherent misconceptions related to probability.  However, by 

reviewing the extant research related to inference, insights for understanding the 

underpinnings of inferential reasoning have been identified, including tasks for assessing 

inferential reasoning.  

In the next chapter the research design and methodology for addressing the three 

research questions posed are discussed.  First, I provide an overview of the context of the 

study and five data sources.  Next, data collection processes are detailed for each source 
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including the timing and frequency of data collected for each source.  I then describe how 

the data are analyzed, including how codes were assigned and aggregated to identify 

changes in the preservice teachers inferential reasoning and the opportunity to learn 

inferential reasoning.  Finally, I offer limitations of the research design and methodology 

followed by a summary of the chapter.  
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CHAPTER 3:  RESEARCH DESIGN AND METHODOLOGY 

 

The review of theoretical and empirical literature suggests additional studies are 

needed in order to better understand changes in inferential reasoning and preservice 

teachers’ opportunities to learn key statistics content.  Accordingly, the goal of this study 

is to characterize how middle and secondary preservice teachers’ inferential reasoning 

changes during a statistics content course and analyze the associated opportunity to learn 

inferential reasoning the course affords.  To achieve the desired objectives, the study 

employs both quantitative and qualitative research methods and leverages existing 

cognitive frameworks for data analysis.  

In this chapter, I address the research methodology in three sections.  In the first 

section, I present the research design of the study and include a description of the 

research setting, the participants, data sources and data collection processes.  In the 

second section, I focus on data analysis, which contains information related to the:  (a) 

cognitive framework used to characterize the cohort’s inferential reasoning, (b) 

framework used to determine the cohort’s opportunity to learn, (c) procedures used to tier 

task-level characterizations into broader categories, (d) reliability of the coding schemes, 

and (e) limitations of the study.  In the final section, I provide a summary of the research 

methodology. 

Research Methodology 

Research Context 

 The setting for this research is the campus of a large, public, research university 

located in the Midwestern portion of the United States.  Enrollment at the university 
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consists of approximately 31,000 students with 24,000 in undergraduate studies and 

7,000 in graduate programs.  Enrollment in the College of Education is approximately 

3,000 students with nearly 800 certified teachers graduating in a given year, 

approximately two to three dozen of which are licensed to teach middle and/or secondary 

mathematics.  

 In order to fulfill requirements of the teacher development programs, preservice 

middle and secondary mathematics teachers must pass either the statistics course that is 

the focus of this study or a calculus-based version of the statistics course; however, few 

students opt for the calculus-based option.  Typically, middle school mathematics 

preservice teachers are also required to take a prerequisite elementary statistics course 

that introduces core statistical concepts and teaches basic statistical reasoning processes; 

this beginning statistics course is also required of preservice elementary teachers.  

Exactly 75% of the preservice middle school mathematics teachers completed the 

prerequisite elementary statistics course prior to participating in this study.   

The content of the statistics course under study reflects a structure typical of many 

introductory statistics courses, and includes topics such as descriptive statistics, 

permutations and combinations, probability, probability distributions, sampling, 

estimation, confidence intervals and hypothesis testing.  The statistics class met one day 

per week for three hours in the evening.  The format of the class sessions tended to be 

similar in nature each week with a short period of time allotted to answering students’ 

questions regarding homework assignments followed by a more lengthy teacher-directed 

lecture of new content.  The final third of the class time was generally dedicated to a 

small group activity or reserved for in-class assessments.  The primary textbook for the 
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course was Introduction to Probability and Statistics (Mendenhall, Beaver & Beaver, 

2005).  The textbook contained a CD-ROM with data sets, applets and simulations to 

supplement the paper and pencil activities.  MINITAB software was used to complete 

several small projects that were assigned as part of weekly homework sets.  The in-class 

group activities were often assigned from the Quantitative Literacy Series  (Mrdulla et 

al., 1995) with an emphasis placed on how the preservice teachers would modify the 

tasks for use in their own classrooms.  These group projects were normally completed in 

class followed by a short discussion of findings.  Course grades were based on 

homework, attendance, group projects, assessments and a culminating paper.  

It is worth noting that the instructor of the statistics course held a Master’s degree 

in statistics, a doctoral degree in an education field, and had experience in teaching 

secondary school mathematics, including teaching statistics.  The instructor had taught 

this particular course several times, and therefore anticipated which aspects of the course 

content would pose challenges for the preservice teachers.  Initially, 34 students were 

enrolled in the course, but 1 preservice teacher withdrew during the first few weeks of the 

semester.  The course was held in a small auditorium with three writing boards.  

Preservice teachers sat in rows of tables, in chairs that were mounted to the tables.  The 

secondary school preservice teachers tended to sit on one side of the auditorium with the 

middle school preservice teachers on the other and seldom interacted or worked together. 

Participants 

Subject selection.  The subjects of this research study were selected based on their 

status as preservice middle and secondary school teachers enrolled during the spring 

semester of 2010 in the statistics course required for both populations.  Of the 33 
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preservice teachers enrolled in the course, all agreed to participate in the study.  Sixteen 

intended to teach middle school mathematics and 17 sought teaching licensure in 

secondary mathematics.  The selection of this cohort of preservice teachers potentially 

affords unique insight into mathematics teacher learning, as few colleges or universities 

currently offer content-specific courses designed specifically for the needs of future 

teachers (Shaughnessy, 2007).  A summary of the cohort’s demographic profile data is 

provided in Table 3.1. 

Table 3.1 

Participants’ Academic Standing and Gender Profile 
________________________________________________________________________ 
 
Participants   Total Sophomore   Junior    Senior   Female  Male      
________________________________________________________________________ 
 
Preservice Middle School    
Mathematics Teachers   16  1   8   7    15       1 


Preservice Secondary  
Mathematics Teachers   17  1   8   8    13       4 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

 
The cohort of preservice teachers was almost evenly split between middle and 

secondary school certification areas.  In addition, most preservice teachers were either 

juniors or seniors and had completed at least four collegiate mathematics courses prior to 

this study.  The cohort consisted mainly of females (85%) with males comprising a 

minority (15%) of the sample.  Ethnicity data were not collected from the cohort due to 

the noticeable lack of diversity within the cohort. 

  Background coursework.  Table 3.2 summarizes the cohorts’ statistics 

coursework completed prior to the study. The cohort of preservice teachers had differing 

amounts of statistics coursework prior to participating in this study.  All but one of the 
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middle school preservice teachers had completed a college-level statistics course 

previously.  In comparison, only six of the secondary preservice teachers had completed 

similar coursework. 

Table 3.2 

Prior Tertiary Statistics Coursework Completed  
________________________________________________________________________ 
 
Participants   Total AP Statistics   Prerequisite  Other Statistics Course 
________________________________________________________________________ 
 
Preservice Middle School   16  1  12  2 
Mathematics Teachers 

 
Preservice Secondary     17  2    3  1 
Mathematics Teachers 
________________________________________________________________________ 
 
However, the mathematics coursework completed by the secondary preservice teachers 

was considerably more rigorous in nature.  The secondary program requires preservice 

secondary mathematics teachers to successfully complete a three-course sequence in 

calculus, whereas the middle school program requires merely one course in calculus.  

With the exception of AP statistics, the cohort’s experiences with statistics during middle 

and secondary school mathematics coursework (e.g. linear regression during Algebra 2) 

was not collected as part of this study.  

Accessing participants.  During the first week of class, all preservice teachers 

enrolled in the statistics course provided written consent to participate in the research 

study.  In particular, participants were informed that the research study would have no 

direct bearing on grades earned in the course.   
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Data Sources  

Five data sources were used to characterize how the preservice teachers’ 

inferential reasoning changes during a statistics course, explore the relationship between 

the changes in informal and formal approaches to drawing inference, and describe the 

cohort’s opportunity to learn inferential reasoning:  (1) pre-assessments, (2) midcourse 

clinical interviews, (3) post-assessments, (4) artifacts: written tasks used in the course, 

and (5) field notes of tasks written on the board during lectures and audio recordings of 

questions posed by the instructor.  Each data source is listed in Table 3.3, including a 

description of the instrument, when data were collected, the frequency of collection, and 

the associated purpose.  

Table 3.3 

Data Sources:  Timeline, Frequency and Purpose 
 
Data Sources Data Collection 

Timeline 
Number Purpose of the Data Source 

 
Pre-assessments 
 

 
Week 1 of class 

 
33 

 
To create a baseline of inferential 
reasoning ability for the cohort 
prior to further statistics instruction. 

 
Midcourse clinical 
interviews 

 

 
Weeks 6-8 of 
class  

 
12 

 
To provide information regarding 
the change in inferential reasoning 
midway through the course.  

 
Post-assessments 

 
 

 
Week15 of 
class  
 

 
33 

 
To provide information regarding 
the change in the cohort’s informal 
and formal inferential reasoing. 

 
Artifacts 

 
 

 
During each 
class session 

 
315 tasks 

 
To describe the statistics covered 
and the emphasis placed on 
reasoning during the course. 

 
Field Notes and 
Audio Recordings 

 
During each 
class session 

 
60 tasks 

 
To describe the statistics covered 
and the emphasis placed on 
reasoning during the course. 



 53

 

I now describe the process I used to create written assessments and then offer a 

brief discussion of each assessment.  Next, I describe the collection of artifacts, 

classroom audio recordings and field notes.   

Designing the assessments.  The primary sources of data for characterizing the 

change in participants’ inferential reasoning are three written assessments.  The 

assessments were administered at the beginning, middle, and end of the semester, and 

each consisted of seven to eight parallel tasks1.  The administration of parallel tasks 

multiple times throughout a course, is advocated by Zieffler et al. (2008), who conducted 

a teaching experiment designed to develop college students’ inferential reasoning during 

an introductory statistics course:  

These tasks (or parallel versions of the tasks) could be given to students at 
multiple times throughout a course or unit of instruction to examine how students’ 
reasoning develops. This would allow instructors to examine how students use 
their informal knowledge and informal reasoning to draw conclusions and make 
inferences as they experience instruction related to informal or formal methods of 
statistical inference. (p. 52) 
 
In this study, all tasks were purposefully selected from published research studies 

and statistics education materials and contain a balance of the two main categories of 

inferential reasoning:  (a) comparison and determination of cause from randomized 

comparative experiments, and (b) generalizing from samples to a population.  The 

demands of the tasks aligned with the process and content goals outlined in the GAISE 


1 The tasks on each assessment are parallel in terms of several factors.  The contexts of 
tasks are balanced between real-world scenarios and settings specific to college students.  
In addition, the ratio of types of inferential reasoning tasks, reasoning from a sample to 
an unknown population and comparison and determination of cause from randomized 
comparative experiment, are common across assessments.  Finally, the types of data 
representation formats are common across each assessment.  

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report for middle and secondary students (Franklin et al., 1997) and embody 

characteristics thought to promote inferential reasoning.   

In addition to inferential reasoning tasks, two prerequisite knowledge tasks are 

included in the pre- and midcourse assessments.  As noted previously, 20 of the 33 

preservice teachers had completed a college-level statistics course focused on statistical 

concepts and reasoning prior to this research study.  Therefore, many of the preservice 

teachers potentially possessed a portion of the needed knowledge and skills to 

successfully engage in informal inferential reasoning prior to participation in this study.  

In order test this assumption of prerequisite knowledge and reasoning ability, two tasks 

specific to statistical concepts and reasoning were included in the pre- and midcourse 

assessments.  The prerequisite tasks assessed knowledge of measures of center, measures 

of variance, skewness, range, outliers, data distributions, and comparison of two complete 

populations. 

The selection of inferential reasoning tasks to be included in the three assessments 

was informed by a synthesis of research studies focused on either assessing or developing 

students’ inferential reasoning abilities (e.g. Bakker, 2004; Cobb, 1999; Garfield et al., 

2007; Watson, 2002).  Researchers advocate the need for tasks to be ill-structured, open-

ended, represented visually and embedded within a real-world context. 

In order to encourage informal reasoning versus procedural fluency, tasks are 

purposefully ill-structured and open-ended.  Given the sequencing of statistics content in 

the course, the procedures for generating formal inferences were not taught until the final 

two weeks of class.  Therefore, the cohort needed to employ informal methods, with the 

possible exception of three students who had completed an advance placement course in 
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statistics, to generate inferences during the pre-assessment and midcourse clinical 

interviews.  According to Means and Voss (1996), “Informal reasoning assumes 

importance when information is less accessible, or when the problems are more open-

ended, debatable, complex, or ill structured, and especially when the issue requires that 

the individual build an argument to support a claim” (p. 140).  For example, one ill-

structured task required participants to choose the best ambulance service based on 

sample dot plots of ambulance response times for two different companies (Figure 3.1).   

 

Figure 3.1.  Sample item, Ambulance Service task.  From “Learning about Statistical Covariation” 
by P. Cobb, K. McClain, and K. Gravemeijer, 2003, Cognition and Learning, 21(1), p. 26. 
 

The decision of what it means to be the “best ambulance service” is left to the individual.  

Perhaps the provider who is most reliable will be selected or the one that is the fastest on 

average or a combination of factors will be considered.  Therefore, the participant must 

interpret the problem statement of the task.   

Once the problem has been defined more concretely in the mind of the participant, 

a determination of solution must also be made to bring closure to the open-ended nature 

of the task.  In the case of the Ambulance Service selection task, the problem solver may 
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decide to base the decision solely on the average response time.  At this point, a 

determination regarding the degree of difference must be made.  For instance, if the 

average response times differed by only 1 minute, then can the services be judged 

comparable?  Hence, the problem solver must reason yet again on the practical 

significance of findings and the appropriateness of the data to justify a particular stance.  

To encourage reasoning that considers multiple factors, most of the assessment 

tasks used in this study employ visual representations of data versus tables or summary 

statistics. The purpose of visual representations is to draw the problem solver’s attention 

to global characteristics and relationships rather than focus on any one statistic, such as 

the median or average (Bakker, 2004).  For example, in the case of the Ambulance 

Service task, one provider may have a few outliers that are simply unacceptably high 

response times.  Given the choice between slightly higher average response times or 

lower response times with greater variability, individuals may choose reliability over the 

possibility of receiving extremely slow ambulance response times.  These high response 

times or outliers become invisible through the computation of average, but are readily 

apparent through a visual representation of response times.  In addition to reasoning with 

given visual representations, several tasks ask for visual representations to be created 

from mental images or through the use of simulations.  

Lastly, the use of a real-world context is common in all tasks and is generally the 

norm in statistics education. Approximately half of the assessment tasks are set in real-

world scenarios similar to problems found within the preservice teachers’ textbook or in a 

current events magazine.  The remaining half of the tasks are set in contexts intended to 

be familiar to the preservice teachers and specific to college students.  The familiar 
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contexts ideally increase accessibility and leverage prior knowledge and experiences 

(Bakker, 2004; Garfield et al., 2007; Watson & Moritz, 1999; Watson, 2002; Watson, 

2008).  By creating data sets that are close to the knowledge and experiences of the 

cohort, the focus of the tasks can be on reasoning processes and possibly avoid confusion 

from lack of prior experiences and knowledge.  The context of these tasks may also be 

real-world in nature but are specific to the participants in this study.  Table 3.4 provides a 

summary of the tasks used in the three written assessments. 
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Table 3.4 

Task Summary for the Assessments 

       Statistical Generalization    Comparative   
Task and Context     Concepts from Samples    Experiments        Source 

Pre-assessment 

1.  Bedtimes   √        Author 
2.  Class scores  √        Watson, 1999 
3.  Weight      √      Bakker, 2004 
4.  Migraine treatments     √    Bright et al., 2003 
5.  Training programs      √    Zieffler et al., 2008 
6.  Diet and cholesterol     √    Cobb et al., 2003 
7.  Review session    √         Zieffler et al., 2008 
 
Midcourse Assessment 

1.  Class scores  √        Watson, 1999 
2.  Speed trap       √    Cobb, 1999 
3.  Ambulance service    √      Cobb, 1999 
4.  Cuckoo’s Eggs  √      Reading & Reid,  

   2006 
5.  Diet and cholesterol     √    Cobb et al., 2003 
6.  Pennies and mints    √      Fong et al., 1986 
7.  Discrimination case   √      Burrill et al., 2003 
 
Post-assessment 

1.  Migraine treatments     √    Bright et al., 2003 
2.  Weight     √      Bakker, 2004 
3.  Training programs      √    Zieffler et al., 2008 
4.  Diet and cholesterol     √    Cobb et al., 2003 
5.  Review session    √      Zieffler et al., 2008 
6.  Speed trap       √    Cobb, 1999 
7.  Discrimination case   √      Burrill et al., 2003 
8.  Ambulance service    √      Cobb et al., 2003 

 
Pre-assessment.  Consisting of seven tasks, the pre-assessment serves as the 

initial data collection point regarding preservice teachers’ inferential reasoning abilities 

prior to receiving formal instruction during the statistics content course.  As previously 

mentioned, the first two tasks serve to validate prerequisite statistical knowledge and 

reasoning ability of the cohort.  The first task was written by the author and trialed in a 
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pilot study with grade 5 students.  The second task was administered to a larger number 

of students from grades 3 to 9 in a research study (Watson, 1999). Tasks 3 through 7 

focus on inferential reasoning and either originate from research studies or reside in the 

book Navigating through Data Analysis in Grades 9-12 by Burrill, Franklin, Godbold 

and Young (2003).  See Appendix A for the entire pre-assessment document. 

Midcourse clinical interviews. The midcourse clinical interviews serve to 

characterize how a subset of preservice teachers’ reasoning changed midway through the 

statistics class.  The midcourse clinical interviews are different than the pre-assessment in 

several ways.  Rather than conducting the assessment in class, the interviews were 

conducted individually outside of class to a subset of the cohort.  Twelve preservice 

teachers were selected to represent the cohort: a group of four participants who 

performed at the lowest, middle and highest tiers of inferential reasoning on the pre-

assessment were selected to represent a wide range of statistical thinking and essentially 

comprise a stratified, random sample.  In addition, within each stratum of inferential 

reasoning, the subset contained a balance of middle school and secondary mathematics 

education majors.  The process for analyzing the preservice teachers’ performance on 

assessments is discussed more fully in the data analysis section.  

By conducting the interviews outside of class, an opportunity existed to ask the 

preservice teachers clarifying questions regarding their inferential reasoning.  In order to 

accommodate this additional discussion component, midcourse clinical interviews lasted 

approximately 10-15 minutes longer than in-class assessments.  After preservice teachers 

completed each task in writing, they were solicited to explain their reasoning and clarify 

written responses.  All midcourse interviews were audio recorded and transcribed to 
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capture the preservice teachers’ explanations.  Lastly, each participant received a $15 gift 

card as modest compensation for the additional time spent outside of class.  

The midcourse clinical interviews contain tasks parallel in nature to the pre-

assessment and also originate either from research studies specific to students’ inferential 

reasoning or reside in the books Navigating through Data Analysis in Grades 9-12 by 

Burrill, Franklin, Godbold and Young (2003) and Navigating through Data Analysis in 

Grades 6-8 by Bright, Brewer, McClain and Mooney (2003).  The midcourse clinical 

interview tasks were administered prior to formal instruction on formal methods for 

generating inferences but after descriptive statistics, probability, probability distributions 

and sampling.  See Appendix B for the entire midcourse clinical interview document. 

 Post-assessment.  The post-assessment serves as the final data point used to 

characterize the preservice teachers’ change in inferential reasoning.  The post-

assessment contains tasks parallel in nature to the pre-assessment and midcourse clinical 

interviews, and focuses solely on inferential reasoning.  Because the preservice teachers 

had been taught formal methods associated with drawing inferences prior to completing 

this assessment, summary statistics were provided on 4 of the 8 tasks in the event formal 

methods were employed.  However, visual representations and other aspects of the tasks 

remained in tact.  Therefore, the preservice teachers’ were given the opportunity to solve 

the tasks with multiple approaches similar to the previous assessments.  The cohort was 

permitted to use a formula sheet and a calculator to complete this assessment similar to 

the process specified by the professor for course assessments.  The preservice teachers’ 

completed the collection of tasks within 50 minutes.  See Appendix C for the full post-

assessment document. 
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 Artifacts, audio recordings and field notes.  The tasks included in homework 

sets, class projects, lecture and in-class assessments serve as another data source. 

Throughout the semester, a total of 375 tasks were gathered through course resources, 

field notes and audio recordings.  Collectively, these tasks represent the preservice 

teachers’ opportunity to learn statistical reasoning.  Consistent with the conceptual 

framework, opportunity to learn is examined through two lenses: the statistical content 

covered in the course and the emphasis placed on reasoning.  The statistical content 

contained within the tasks characterizes the content covered in the course, and the 

questions posed by the tasks determines the emphasis on reasoning.  

Data Collection  

Once the preservice teacher cohort provided consent to participate in the study, a 

pre-assessment was administered during the first week of class.  The purpose of the initial 

assessment was to formulate a baseline characterization of the cohort’s inferential 

reasoning prior to instruction.  During the middle of the course, clinical interviews were 

conducted with 12 preservice teachers, selected to represent a wide range in levels of 

performance on the pre-assessment as well as a balance of middle and secondary 

mathematics emphases.  The purpose of the mid-course assessment was to capture 

changes in informal inferential reasoning prior to the introduction of formal inferential 

methods.  In addition to completing tasks in writing, participants verbally explained their 

reasoning before proceeding to the next item.  Finally, a post-assessment was 

administered to the entire cohort at the end of the semester.  The purpose of the post-

assessment was to establish a characterization of inferential reasoning after all the 

statistics content had been taught in the course.  
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I attended every class meeting to collect data regarding the statistical content 

covered and the emphasis placed on reasoning. In order to capture the questions posed by 

the professor, I audio recorded all lectures.  Moreover, during each class session, I took 

field notes with particular attention on the tasks used during the instruction.  

Additionally, I collected all homework assignments, small group projects, and 

assessments for subsequent analysis.  

Data Analysis 

The first step in data analysis was to categorize the preservice teachers’ responses 

to tasks included in the pre-assessment, midcourse clinical interview, and post-

assessment.  The cohort’s informal responses to inferential tasks were characterized with 

the aid of a modified SOLO taxonomy based on the work Biggs and Collis (1982) and 

augmented by the research results of Mooney (2002).  Formal responses were 

characterized through the application of the general SOLO taxonomy developed by Biggs 

and Collis.  After completing the SOLO taxonomy characterization, each response was 

also coded for core and aggregate concepts used during reasoning.  The second step was 

to aggregate the results into broader categories both at an individual and cohort level.  In 

order to address the second research question, an investigation for relationships between 

the change in informal and formal reasoning was conducted using correlation techniques 

to measure the association.  Finally, the preservice teachers’ opportunity to learn was 

described through an analyses of the content covered in the course mapped against the 

components of the conceptual framework, and the extent to which reasoning was 

emphasized as determined by the intertwined mathematical strands of proficiency 

(Kilpatrick, Swafford & Findell, 2001). 
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Characterization of Informal Inferential Reasoning Responses 

The augmented SOLO taxonomy described previously consists of a one-cycle 

SOLO taxonomy with informal inferential reasoning descriptors for each response type. 

Given Shaughnessy’s (2007) statement that students and teachers often experience the 

same challenges when learning statistics, the descriptions of middle school students’ 

informal inferential reasoning are applicable and align with the concrete symbolic mode 

of reasoning within the SOLO taxonomy.  Details of the cognitive framework for 

characterizing informal inferential reasoning responses to tasks are provided in Table 3.5.   

Table 3.5 

Informal Inference Characterization Framework 

       
Characterization of Responses 

 
Prestructural (P) General description:  The task is engaged, but the learner is 

distracted or misled by an irrelevant aspect. 
 

Inferential reasoning description:  Makes inferences that are not 
based on the data or context. 

  
Unistructural (U) General description:  The learner focuses on the relevant domain, 

and picks up one aspect to work with. 
 

Inferential reasoning description:  Makes inferences that are 
primarily based on the data through a single correct comparison or 
a set of partially correct comparisons within or between data 
displays or sets.  Some inferences may be only partially 
reasonable. 

 
Multistructural (M) General description:  The learner picks up more and more relevant  

or correct features, but does not integrate them. 
 
Inferential reasoning description:  Makes partially reasonable 
inferences that are primarily based on the data and context through 
multiple correct comparisons within or between data displays and 
sets. 
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Relational (R)  General description:  The learner now integrates the parts with 
each other, so that the whole has a coherent structure and meaning. 

 
Inferential reasoning description:  Makes reasonable inferences 
based on data and the context through multiple correct 
comparisons within and between data displays and sets. 
 

Extended   General description:  The learner now generalizes the structure to 
Abstract (EA)  take in new and more abstract features, representing a higher mode 

of operation. 
________________________________________________________________________ 
Note:  Adapted from “A Framework for Characterizing Middle School Students’ Statistical Thinking,” by 
E. S. Mooney, 2002, Mathematical Thinking and Learning, 4(1), p. 37 and “Toward a Model of School-
based Curriculum Development and Assessment Using the SOLO Taxonomy” by J. B. Biggs and K. F. 
Collis, 1989, Australian Journal of Education, 33(2), p. 152. 
 

Application of the informal inference framework.  Since formal approaches were 

not taught in the statistics course until after the midcourse interviews, the majority of 

preservice teacher responses to inferential reasoning tasks on assessments were informal 

in nature.  Before a response was characterized, a determination was first made on the 

appropriate mode of learning according to the SOLO taxonomy (Biggs & Collis, 1982).  

For purposes of this study, response types consisted of informal approaches aligning with 

the concrete symbolic mode of learning or formal methods associated with the formal 

mode of learning.  Occasionally, a preservice teacher mixed both approaches in a 

response to a task.  In those cases, a dominant mode of response was sought prior to 

coding.  

The four level descriptors for inferential reasoning within the cognitive 

framework relate to the preservice teachers’ ability to generate and defend statistical 

inferences.  The levels represent a cognitive progression through the concrete symbolic 

mode in a hierarchical fashion (Mooney, 2002).  The first level, Prestructural, assumes 

that the inference generated in not based on the data.  The remaining three levels assume 

that the preservice teachers offer a reasonable conjecture justified through data-based 
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argumentation appropriate for the context of the task.  At the Unistructural level, 

reasoning will consist of a single idea or aspect of the data.  At the Multistructural level, 

reasoning will consist of multiple ideas or aspects, but not in an integrated fashion.  

Finally, at the Relational level, the argument provided will relate conceptions in an 

integrated whole to provide a well-reasoned inference.  The Extended Abstract level of 

response is equivalent to the Prestructural response level in the next mode.  For this 

study, no responses were coded as Extended Abstract.  For illustrative purposes, the Diet 

and Cholesterol task, which appeared on both the pre-assessment and post-assessment 

and hypothetical responses at each level of reasoning are provided in Figure 3.2. 

High cholesterol is a contributor to heart disease.  A study was conducted to investigate 
the effect of dietary change on cholesterol levels.  Participants in the study voluntarily 
switched from a “standard American diet” to a vegetarian diet for one month.  The data 
shown below are the participants’ cholesterol levels before and after the dietary change, 
in milligrams of cholesterol per deciliter of blood (mg/dL).  

 
 
Assuming that lower levels of cholesterol are the goal, would you say that the change in 
diet is effective for lowering cholesterol or could similar results have been achieved by 
chance?  Provide a detailed explanation below.  
 

Sample preservice teacher responses provided at each level of informal reasoning to the 
cholesterol and diet task contained within this study. 

 
(P) Prestructural:   No, lowering your cholesterol is not a happening of chance.  This 
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occurred by eating more healthier foods that are less greasy. 
 
(U) Unistructural:   It definitely shows a shift in the clumping of the dots.  Before the 

majority was between 220 & 280, but after it was clustered around 
180 to 220.   
[Core statistical concepts and aggregate statistical concepts: 
center] 

 
 (M)  Multistructural: The two graphs show about the same range, so it possible that the  

program doesn’t lower cholesterol.  But for the most part I would  
say the program is effective.  Before the program, most 
participants had a level of approx. 260.  After the program, that 
number dropped to about 200.  I think the program helps some, but 
not all participants. 
[Core statistical concepts and aggregate statistical concepts:  
spread, center] 

 
(R) Relational   The majority of participants decreased their cholesterol levels.  I  

suspect those participants who did not change much may have  
been affected by an outside factors, such as stress, failure to follow  
[the] program, etc.  The mean dropped significantly, as did the  
median which went from 240ish to about 200.   

   [Core statistical concepts and aggregate statistical concepts:  
   variability, distribution, center].  
 
Figure 3.2.  Sample informal responses to the diet and cholesterol task. From “Learning  
about Statistical Covariation” by P. Cobb, K. McClain, and K. Gravemeijer, 2003, Cognition and 
Learning, 21(1), p. 21. 

 
Characterization of Formal Inferential Reasoning Responses 

As mentioned previously, research specific to characterizing formal approaches to 

inference have not utilized the SOLO taxonomy.  However, the SOLO taxonomy does 

accommodate a formal mode of learning, and researchers have identified the need to 

study how the SOLO taxonomy applies to more sophisticated learners and formal 

approaches in statistics (Watson et al., 1995).  The initial coding of formal responses to 

inferential tasks followed the general SOLO taxonomy descriptions with the anticipated 

inferential reasoning descriptions provided in Table 3.6.   
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Table 3.6 

Formal Inference Characterization Framework  

Characterization of Responses        

Prestructural (P) General description:  The task is engaged, but the learner is 
distracted or misled by an irrelevant aspect. 

 
Inferential reasoning description:  Makes inferences that are not 
based on the data or context. 

  
Unistructural (U) General description:  The learner focuses on the relevant domain, 

and picks up one aspect to work with. 
 

Inferential reasoning description:  Determines a formal approach 
for generating an inference, but applies the approach ineffectively 
with multiple errors.  Inferences may be only partially reasonable 
or complete. 

 
Multistructural (M) General description:  The learner picks up more and more relevant  

or correct features, but does not integrate them. 
 
Inferential reasoning description:  Determines a formal approach 
for generating an inference, and applies the approach generally 
effectively with only minor errors.  Inferences may be only 
partially reasonable or complete.  
 

Relational (R)  General description:  The learner now integrates the parts with  
each other, so that the whole has a coherent structure and meaning. 

 
Inferential reasoning description:  Determines a formal approach 
for generating and inference, and applies the approach effectively 
without errors.  Makes reasonable inferences based on data and the 
context. 
 

Extended   General description:  The learner now generalizes the structure to  
Abstract (EA)  take in new and more abstract features, representing a higher mode  

of operation. 
________________________________________________________________________ 

 

Application of the formal inference framework.  As data were analyzed, the 

framework descriptions were refined to reflect the preservice teachers’ actual reasoning 

progression.  Recall that formal approaches necessitate the use of formulas, calculations 
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and tables in order to generate inferences.  Therefore, responses that rely upon hypothesis 

tests, confidence interval computations, and similar methods were identified as formal.   

Once again, the four level descriptors for inferential reasoning within the 

cognitive framework relate to the preservice teachers’ ability to generate and defend 

statistical inferences.  The levels represent cognitive progression through the formal 

mode in a hierarchical fashion (Biggs & Collis, 1989).  The first level, Prestructural, 

assumes that the inference generated in not based on the data.  Responses that identify the 

need for a statistical test, but progress no further were determined to be in the formal 

mode and Prestructural.  Similarly, if a response identifies an inappropriate statistical 

test, the response was categorized as Prestructural.  The remaining three levels assume 

that the preservice teachers choose appropriate types of formal approaches and generate 

inferences.  At the Unistructural level, the application of the approach contains multiple 

errors and prohibits generating a reasonable inference.  The focus of errors is not related 

to computational mistakes, but rather on entering wrong values for key variables such as 

the average, standard deviation or population parameters.  Other noteworthy errors relate 

to incorrect p-values or confidence intervals.  In addition, errors in interpreting the results 

of the formal methods may be present.  Therefore, the focus is on understanding how the 

formal approaches apply to a task and what they mean once executed.  At the 

Multistructural level, an appropriate method is selected and applied with only minimal 

errors.  Finally, at the Relational level, the argument provided consists of an appropriate 

method, applied correctly, and an inference interpreted in relation to the task context.  In 

addition to these SOLO taxonomy categorizations, all responses were coded for core 

statistical concepts and aggregate statistical concepts employed during reasoning.  An 
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example of each response type is provided for the Hiring Discrimination task (Figure 

3.3). 

Task 7:  Hiring of Managers and Discrimination  
In 1972, 48 bank supervisors were each randomly assigned a personnel file and asked to 
judge whether the person represented in the file should be recommended for promotion to 
a branch-manager job described as “routine” or whether the person’s file should be held 
and other applicants interviewed.   
 
The files were all identical except that half of the supervisors had files labeled “male” 
while the other half had files labeled “female”.  Of the 48 files reviewed, 35 were 
recommended for promotion.  Twenty-one (21) of the 35 recommended files were 
labeled “male”, and 14 were labeled “female.”   
 
If the selection of the 35 candidates were purely fair in terms of gender given equal 
qualifications for promotion, we would expect that half the candidates would be male 
(17.5). 
 
Question:  As a member of a jury, would you confidently support a verdict that the bank 
supervisors discriminated against female candidates? Support your response. 
________________________________________________________________________ 
Sample responses at each level of reasoning to the hiring discrimination task 

 

(P) Prestructural:   Yes, because 
14

48
= 29%.  That means only 29% were females.  

That is a lot lower than 50% to where they could have 
discriminated. 

  
Comment:  The response recognizes the need for proportional 
reasoning, but progresses no further. 

 

(U) Unistructural:   z =
12 −17.5

1.6 / 35
=

3.5

1.6 / 35
=12.9 

 
I would support the verdict that the bank supervisors discriminated 
against female candidates. 
 
Comment:  The response selected a formal method of comparing 
the result to the expected outcome, but does not incorporate 
proportional measures.  The inference generated is based on the 
data, but is not correct. 
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 (M) Multistructural:  

 

21

35
male,

14

35
female

µ =17.5,σ =1.65

z =
(
21

35
−

14

35
)

(.6)(.4)

35
+

(.4)(.6)

35

=1.7078

 

   No, I would not feel confident in supporting a verdict that the bank  
discriminated against female candidates. 
 
Comment:  The response utilizes both a formal method and 
proportional measures to compare the outcome to the expected 
value with only minor errors.  The inference generated is 
reasonable based on the data and context. 

(R) Relational:  z =
( ˆ p 1 − p0)

p0q0

n

=
(
21

35
−

17.5

35
)

(.5)(.5)

35

=1.18 

 
There is no statistically significant evidence even at the .10 level of 
significance that the true proportion of men being recommended 
for promotions is not actually 0.5 (equal chances of being 
promoted as a female).  This sample may have occurred by chance. 
 
Comment:  The response contains the appropriate statistical model  
and associated values.  The inference generated is based on the  
data and context and demonstrates an integrated understanding of  
the formal methods and procedures. 

________________________________________________________________________
Figure 3.3.  Sample formal responses to the hiring discrimination task.  Adapted from Navigating 
through data analysis in grades 9-12 by G. Burrill, C. A. Franklin, L. Godbold, and L. C. Young,  
(2003).  National Council of Teachers of Mathematics, Reston, Virginia, p.104. 
 

Dominant Level of Reasoning 

 The dominant levels of inferential reasoning for each preservice teacher on each 

assessment were determined by converting the level of responses to integer values.  The 

values were 0, 1, 2, and 3 corresponding in order to the response types of P, U, M and R.  

For each preservice teacher, the arithmetic mean was computed and translated to a 

dominant level of reasoning on each assessment.  When an average fell equally between 
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reasoning levels, the response ratings of P, U, M and R were viewed to determine the 

appropriate dominant level of reasoning by finding the modal level of reasoning between 

the two adjacent levels.  For example, if a preservice teacher’s level of reasoning fell 

between the levels of Unistructural and Multistructural reasoning, the individual task 

reasoning levels were viewed to identify the modal level of reasoning between these two 

adjacent levels; that is, analysis was undertaken to determine whether Unistructural or 

Multistructural reasoning was more common.  If Unistructural responses occurred most 

often on the assessment, the dominant level of reasoning was classified as Unistructural.   

It is worth noting that one task, appearing on both the pre- and post-assessments, 

was ultimately excluded from the analysis because of its potentially confounding results. 

Specifically, Task 7 on the pre-assessment (Appendix A) and Task 5 on the post-

assessment (Appendix C) was embedded in a context of assessing the effectiveness of a 

review session.  The majority of preservice teachers responded to this task at the 

Prestructural level on both the pre-assessment (73% of the cohort) and post-assessment 

(52% of the cohort).  The context of the task appeared to override thinking to such an 

extent that most participants ignored the data provided.  Even though the task specified 

that the students who attended the review session were randomly selected, many 

respondents made no reference to the data but instead imposed their own interpretations 

as evidenced by comments such as, “Students who attend the review session might have 

been more likely to study more on their own as well, and I think that is more of the cause 

than strictly the review session.”  Responses to the Review Session tasks on both the pre-

assessment and post-assessment were not representative of the quality of responses 

provided by the cohort.  Preservice teachers, who otherwise reasoned in a consistently 
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sophisticated and statistically sound manner, predominantly reasoned at the Prestructural 

level on this particular task.  Since the responses to this task on both assessments were 

determined to not be representative of the cohort’s inferential reasoning, this particular 

item was ultimately excluded from the data analysis. 

Informal and Formal Inferential Reasoning 

 The relationship between the development of informal and formal inferential 

reasoning was examined through a rank correlational analysis. The preservice teachers’ 

informal responses to inferential tasks were analyzed in comparison to formal responses 

both in absolute and relative terms.  The characterization of response types of P, U, M, 

and R were converted to an interval scale as mentioned previously.  This conversion 

reflects the hierarchical progression of learning within a mode (Biggs & Collis, 1989).  A 

dominant mode of reasoning for the preservice teachers was determined for both informal 

and formal approaches to inference upon completion of the statistics course.  These two 

measures were compared to see if a relationship exists between the two types of 

approaches to inferential tasks.  Since formal methods were introduced during the later 

portion of the semester, the post-assessment task responses were the data source for this 

analysis.  While it was expected that participants would provide formal responses to 

several tasks, four preservice teachers chose to reason exclusively with informal 

approaches.  Hence, a formal inferential reasoning characterization was not created for 

these four participants given that their responses to assessment tasks were exclusively 

based on informal methods.  
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Opportunity to Learn 

All tasks assigned for homework, projects or assessments were gathered and 

analyzed.  In addition, tasks used during instruction were collected.  These tasks provide 

a view of the preservice teachers’ opportunity to learn throughout the course.  In order to 

categorize the content, each task was assigned to one of the three content components 

shown in the conceptual framework:  core statistical concepts, aggregated statistical 

concepts, and methods and procedures.  Within each component, additional specificity 

was provided.  Core statistical concepts include: measures of center, skewness, spread 

and variance.  Aggregate statistical concepts include:  distribution, sampling, and 

sampling variability.  Finally, methods and procedures relate to all formal methods used 

to generate inferences and include:  confidence intervals and hypothesis testing.  Due to 

the high frequency of probability tasks, a category was created specifically for these tasks 

although not included in the conceptual framework.  If a task covered a topic outside of 

these descriptions, a category called “Other” was designated with a description of the 

statistical content associated with completion of the task. 

 The questions posed in writing and verbally by the instructor regarding the tasks 

indicate the emphasis placed on reasoning throughout the course.  The questions were 

categorized based on the mathematical proficiency strands described in the book Adding 

it up (Kilpatrick, Swafford & Findell, 2001).  Each question was assigned to one or more 

of the following four categories:  conceptual understanding, procedural fluency, strategic 

competence, or adaptive reasoning (Figure 3.4).  Questions were not assigned codes 

specific to productive disposition. 
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________________________________________________________________________ 
Figure 3.4.  Strands of mathematical proficiency from Adding It Up. From Adding it up:  Helping 
children learn mathematics, by J. Kilpatrick, J. Swafford and B. Findell, 2001, p. 117. Reprinted 
with permission. 
 

Through this compilation of questions and tasks posed to the preservice teachers 

throughout the statistics course, the demands associated with statistical reasoning are 

viewed in comparison to other types of thinking requirements during the course.  Tasks 

were coded for all content and mathematical strands included.  Therefore, tasks generally 

received more than one statistical content code and one mathematical proficiency code. 

Tasks for the textbook often required multiple steps to be completed and spanned several 

content categories.  In addition, tasks often asked one conceptual understanding question 

followed by several procedural fluency questions.  In summary, the opportunity to learn 

data analysis creates a learning environment context for interpreting the changes in the 

cohort’s inferential reasoning from the beginning to end of the semester.  
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Reliability 

The reliability of the coding schemes for characterizing student responses on 

assessments and the description of course tasks is critical to the integrity and credibility 

of the study.  Therefore, the director of my dissertation research was asked to characterize 

20 of the preservice teachers’ task responses from the pre- and post-assessments 

according to the cognitive frameworks described previously.  The preservice teachers’ 

tasks chosen for establishing reliability represent a stratified random sample with 10 tasks 

originating from the pre-assessment and 10 from the post-assessment.  Through this 

process, 85% of the assessments were coded at exactly the same level of inferential 

reasoning, 10% differed by one level of reasoning, and 5% differed by two levels of 

reasoning.  

In addition, the director of my dissertation research characterized 20 randomly 

selected course tasks in relation to statistical content and the emphasis placed on 

reasoning based on the mathematical strands of proficiency.  With respect to the 

statistical content coding reliability, 90% of the course task codes matched completely, 

5% differed by one content area, and 5% differed by two content areas.  For the 

mathematical strands of proficiency, 95% of the course tasks codes matched completely 

with only 5% differing by one code.  

Differences in codes for both assessment responses and course tasks were 

adjudicated and negotiated codes were used in subsequent analyses. The reliability 

checks occurred after the assessment data were collected and coded by the author.  

Through this design, categorization of the cohort’s responses and course tasks received 

independent verifications to ensure reliability. 
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Limitations of the Study 

 The cohort in the proposed study resides within one statistics class, which may 

limit the generalizability of findings.  However, because steps were taken to characterize 

the opportunity to learn specific to inferential reasoning, results viewed within a learning 

context can be interpreted more broadly.   

 Another potential limitation is common to studies that rely upon constructed-

response assessments.  The reasoning for the cohort is determined by what the preservice 

teachers actually communicated on paper in the case of the pre-assessment and post-

assessment.  The midcourse assessment results are more robust given the opportunity to 

verbally explain answers after each task was completed. 

 Lastly, the tasks within the course were algorithmic in nature and did not 

resemble the tasks on the assessments.  Therefore, participants may have viewed the tasks 

as unrelated to the course content or different enough that transferring course learning 

proved to be difficult.   

Summary 

 The research methodology and data analysis processes described enable a credible 

and detailed characterization of how the cohort’s inferential reasoning changed 

throughout the semester and the associated learning context afforded by the statistics 

course.  An overview of the research setting was described and conveys an ideal situation 

for data collection in that all preservice teachers willingly participated in the study and 

completed all requested assessments.  In addition, the prior education and program 

requirements of the cohort suggest that preservice teacher participants were an able group 

in terms of their mathematical knowledge. The tasks, coding processes and frameworks 
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have been utilized in multiple research studies of educational settings in statistics, which 

lends credibility to findings and builds upon the existing knowledge base.  The 

hierarchical nature of the SOLO taxonomy and multimodal learning approach provide 

flexibility in analyzing the relationship between informal and formal changes in 

inferential reasoning, and also enable a conversion of characterization measures to an 

interval scale for synthesizing findings both at an individual and cohort level.  Research 

findings are offered in detail in the next chapter. 
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CHAPTER 4:  ANALYSIS OF THE DATA AND RESULTS 

 

 Given the rise in prevalence of statistics in the mathematics curriculum for grades 

6 through 12, there exists a pressing need to prepare preservice middle and secondary 

teachers to teach statistical content and processes.  This study examines the statistical 

reasoning of preservice teachers related to inference, characterizing both the change in 

preservice teachers’ reasoning ability and their opportunity to learn key statistical 

content.  First, I present how the cohort of middle and secondary mathematics preservice 

teachers’ inferential reasoning changed over the duration of a statistics course.  Secondly, 

I explore the association between changes in the preservice teachers’ informal and formal 

inferential reasoning.  Lastly, I characterize the preservice teachers’ opportunity to learn 

inferential reasoning.   

Characterizing the Change in the Preservice Teachers’ Inferential Reasoning 

 Results specific to characterizing the preservice teachers’ changes in inferential 

reasoning are presented by examining the variation in responses to tasks at the class level 

and instability of inferential reasoning at the individual level.  Next, dominant levels of 

inferential reasoning at the individual level are discussed for the time points relating to 

the beginning and end of the statistics course.  Finally, the changes in the preservice 

teachers’ inferential reasoning from the beginning to the end of the statistics course are 

characterized and illustrated through representative cases.  

During the first week of the statistics course, the entire cohort (n=33) completed a 

pre-assessment consisting of seven tasks.  Two prerequisite knowledge tasks, Bedtimes 

and Class Scores, were included in the pre-assessment (See Appendix A).  The Bedtimes 
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task assesses preservice teachers’ understanding of core and aggregate statistical 

concepts.  Responses to the Bedtimes task were coded as either correct or incorrect, but 

not used to determine changes in preservice teachers’ inferential reasoning.  The Class 

Scores task responses were coded in the same manner as the inferential task responses 

and received either a Prestructural (P), Unistructural (U), Multistructural (M), or 

Relational (R) designation according to the modified SOLO taxonomy descriptions in 

Tables 3.5 and 3.6.  Variation in the responses given by the preservice teachers was 

observed both at the class level for specific tasks and at the individual level across tasks.   

Variation in Inferential Reasoning Responses at the Class Level 

 In order to determine the level of inferential reasoning on pre- and post-

assessments for a specific task, coded responses were converted from an ordinal 

(categorical) scale to an interval (numerical) scale.  Specifically, each level of cognitive 

reasoning was converted to an integer value of 0, 1, 2, or 3 for Prestructural, 

Unistructural, Multistructural, and Relational, respectively.  In doing so, the mean and 

standard deviation for each task at the cohort level could be computed and compared 

across assessments.   

All assessment tasks were specifically designed to elicit inferential reasoning and 

require evidence to support inferences.  While the data representations and contexts of the 

tasks differed, responses to tasks at the cohort level tended to exhibit commonalities in 

terms of eliciting a wide range of responses.  The standard deviation for tasks at the 

cohort level ranged from 0.35 to 0.99 (approximately one third to one level of inferential 

reasoning) on the pre-assessment, and from 0.79 to 1.08 (approximately one level of 

inferential reasoning) on the post-assessment.  Hence, more variation in levels of 
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inferential reasoning was evident in responses to specific tasks on the post-assessment in 

comparison to the pre-assessment.  Tasks with standard deviation values near 1.0 tended 

to elicit responses across the full spectrum of levels of inferential reasoning.  Those tasks 

with standard deviation values below 0.75 tended to elicit primarily one level of 

inferential reasoning response for the majority of preservice teachers.  

Standard deviation values below 0.75 were observed for two tasks on the pre-

assessment, the Migraine Treatment and Training Programs tasks.  On the Migraine 

Treatment task, preservice teachers exhibited the least variation with a standard deviation 

of 0.35 and a mean of 1.06, which equates to a Unistructural mode of inferential 

reasoning.  In fact, 29 of 33 preservice teachers provided a Unistructural response to this 

task on the pre-assessment. Most preservice teachers only commented on the shorter 

response time of one medication versus the other.  The faster response provided by one of 

the medications was visually apparent, and few participants commented on other 

attributes of the two distributions.  This same task appeared on the post-assessment, but 

elicited a wider range of responses with only 17 of the 33 preservice teachers again 

providing a Unistructural response, a marked decline. In addition to comparing average 

response times, a portion of the cohort attended to other characteristics of the data 

distributions, such as range and spread.  These more detailed and comprehensive 

responses increased the variation in levels of reasoning and concurrently increased the 

standard deviation from 0.35 on the pre-assessment to 0.79 on the post-assessment. 

The second task that elicited a limited range of responses on the pre-assessment 

was the Training Program task, with a standard deviation of 0.69.  A Unistructural level 

of reasoning was again common for this task with 20 of the 33 preservice teachers 



 81

generating a response at this level of inferential reasoning.  This same task appeared on 

the post-assessment and elicited a wider variation in responses with a standard deviation 

0.85 and only 13 preservice teachers provided a Unistructural response.   

The remainder of the tasks elicited responses at all four levels of inferential 

reasoning and did not produce one level of reasoning for the majority of preservice 

teachers.  It is noteworthy that one task, the Review Session, was problematic and 

discarded from data analysis due to context.  This task appeared on the pre- and post-

assessments and was problematic in both cases.  The context for this problem focused on 

the effectiveness of a review session in improving students’ performance on an exam.  

This context evidently triggered biased and emotional responses, with few responding 

analytically.  Preservice teachers’ performance on this task was predominantly 

Prestructural on both assessments. The remainder of the tasks elicited a variety inferential 

reasoning responses and yielded similar levels of variation on both the pre- and post-

assessments.  The two tasks with lower levels of variation on the pre-assessment, 

Migraine Treatment and Training Programs, produced higher levels of variation on the 

post-assessment as the cohort attended to additional attributes of the data distributions 

and gained familiarity in interpreting box plot representations.  

In order to illustrate the typical variation of inferential reasoning responses to a 

given task, archetypal responses of each level of coding are described for the Weight task 

on the pre-assessment, beginning with an example of a Unistructural (U) response in 

Figure 4.1 
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Figure 4.1.  Example of a Unistructural response  

 The description of a Unistructural response is that “inferences are primarily based 

on the data through a single correct comparison or a set of partially correct comparisons 

within or between data displays or sets with some inferences possibly being only partially 

reasonable” (Table 3.5).  In response above, the preservice teacher has identified that the 

larger population curve will be smooth in nature rather than comprised of individual data 
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points or bars of data.  However, the respondent failed to recognize that the shape of the 

data distribution has two distinct mounds and also that students cannot have a weight of 

zero kilograms.  Therefore, the response is categorized as Unistructural because the 

inference is based on a single correct comparison. 

An archetypal Multistructural (M) response is shown in Figure 4.2. 

 

Figure 4.2.  Example of a Multistructural response 
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The description of a Multistructural response is “a partially reasonable inference 

that is primarily based on the data and context through multiple correct comparisons 

within or between data displays and sets.”  In Figure 4.2, the preservice teacher has 

identified that the graph of the population will be smooth in nature and that the range of 

data will be similar to that of the two samples.  The range of the population weights 

begins at 35 kilograms and trails off quickly after 85 kilograms.  Therefore, the response 

reveals attention to multiple correct comparisons, but fails to recognize the shape of the 

distribution from the two samples.  This response reflects a common misconception that 

all populations will resemble the normal distribution (delMas, Garfield, Ooms & Chance, 

2007).   

The most sophisticated level of reasoning is Relational (R), and an archetypal 

response of such is depicted in Figure 4.3. 
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Figure 4.3.  Example of a Relational response 

The description of a Relational response is “makes reasonable inferences based on 

data and the context through multiple correct comparisons within and between data 

displays and sets.”  In Figure 4.3, the preservice teacher has incorporated the (a) range of 

data, (b) shape of the data distribution, and (c) smoothness associated with a large 
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population.  In addition to the graph, the written response acknowledges the 

characteristics of the samples and how this information is used in generating an inference 

related to the population.  Relational responses provide a comprehensive inferential 

argument using all relevant aspects of the data provided, whereas Multistructural 

responses present two relevant aspects often in a disjointed manner or unrelated to the 

context of the problem.   

The aforementioned examples of preservice inferential reasoning at different 

levels depict the variation of responses observed for tasks on the pre- and post-

assessments.  Next, the relative stability of reasoning at the individual preservice teacher 

level across tasks is presented. 

Instability of Inferential Reasoning Across Tasks 

 Pre-assessment.  Using the same process for transforming responses from an 

ordinal to an interval scale, the mean at the cohort level on the pre-assessment is 1.27, 

which equates to an inferential reasoning level between Unistructural and Multistructural, 

but closer to Unistructural.  Therefore, as a class the cohort reasoned slightly above a 

Unistructural level on the pre-assessment.  The average standard deviation on the pre-

assessment for the cohort was 0.84, or slightly less than one level of inferential reasoning 

on the pre-assessment with a range of 0.45 to 1.34 for individual preservice teachers.   

The 11 preservice teachers, or one-third of the cohort, with the highest variation 

in responses across tasks ranged in standard deviation values from 0.96 to 1.34.  This 

portion of the cohort tended to exhibit inferential reasoning responses at three or more 

levels across tasks on the pre-assessment.  In order to categorize individual preservice 

teachers’ reasoning on each assessment, a dominant level of reasoning was determined by 
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first computing the average reasoning level in numerical terms.  For example, one 

preservice teacher provided two Prestructural responses, two Unistructural responses and 

one Relational response for an overall average of 1.0 on the pre-assessment, equating to 

the Unistructural level, with a standard deviation of 1.22.  The preservice teacher was 

generally reasoning at either the Unistructural and Prestructural level.  The presence of 

the Relational response supports the notion of Unistructural as a dominant mode as does 

the average value of 1.0. If the numerical value fell between two possible reasoning 

levels, response levels for individual tasks were viewed to determine which of the two 

adjacent levels occurred most frequently.  Through this process, a dominant level of 

inferential reasoning was obtained for each preservice teacher on the pre- and post-

assessments.  For 9 of the 11 preservice teachers with the highest variation in responses 

on the pre-assessment, the dominant level of inferential reasoning was Unistructural, with 

one preservice teacher classified as Prestructural and another as Multistructural.   

Another group of 11 preservice teachers demonstrated the least variation in 

responses, with standard deviation values ranging from 0.45 to 0.55.  This subset of 11 

preservice teachers provided responses at only two levels of inferential reasoning.  As an 

example, one preservice teacher provided four responses at the Unistructural level and 

one at the Multistructural level.  Therefore, the preservice teacher exhibited more stability 

in the level of inferential reasoning across tasks than those with who responded at three 

levels.  For 10 members in this group, the dominant level of inferential reasoning was 

Unistructural and 1 was classified as Prestructural.   

A summary of the dominant modes of inferential reasoning on the pre-assessment 

is shown in Table 4.1. Percentages in the table have been rounded.  
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Table 4.1  

Dominant Levels of Inferential Reasoning on the Pre-Assessment  

      Prestructural       Unistructural     Multistructural Relational  
Participants     Number (%)        Number (%)        Number (%) Number (%)  
      

 
 

All Preservice Teachers     2  (6%)  23 (70%) 8 (24%)    0  (0%) 
 

Middle School         2  (13%)  11 (69%) 3 (19%)    0  (0%) 
Mathematics Teachers 

 
Secondary Mathematics     0  (0%)  12 (71%) 5  (29%)    0  (0%) 
Preservice Teachers 

 

 

Most preservice teachers’ initial inferential reasoning level was Unistructural in 

nature at the beginning of the statistics course.  Middle school mathematics preservice 

teachers performed at slightly lower levels in comparison to their secondary school peers.  

Two middle school preservice teachers reasoned at the Prestructural level, most (11 of 

16) at the Unistructural level, and three at the Multistructural level.  In comparison, 

approximately two thirds of the secondary teachers reasoned at the Unistructural level 

with the other third reasoning at the higher level of Multistructural. 

Post-assessment. During the last week of the statistics course, the entire cohort of 

preservice teachers completed the post-assessment (See Appendix C).  All of the tasks 

required inferential reasoning.  The mean inferential reasoning level for the cohort on the 

post-assessment was 1.7, which equates to an inferential reasoning level between 

Unistructural and Multistructural, but closer to Multistructural.  Therefore, an increase in 

inferential reasoning was observed, with the cohort reasoning slightly below the 

Multistructural level.  The average standard deviation for the cohort was 0.75 with a 



 89

range of 0.38 to 1.13 for individual preservice teachers, slightly less than was observed 

on the pre-assessment.   

The 11 preservice teachers with the highest variation across tasks ranged in 

standard deviation values from 0.90 to 1.13 (approximately one level of inferential 

reasoning).  This portion of the cohort tended to exhibit inferential reasoning responses at 

three or more levels across tasks on the post-assessment.  For example, one preservice 

teacher provided one response at the Prestructural level, three at Unistructural level, two 

at the Multistructural level, and one at Relational for an average numerical response value 

of 1.4 and a standard deviation of 0.98.  Since the average numerical value fell between 

the equivalent Unistructural and Multistructural levels of reasoning, the frequency of 

tasks coded to each of these two categories was compared in order to determine the 

dominant level of reasoning.  In this case, more Unistructural level codes were assigned 

overall, resulting in a dominant mode of Unistructural.  In terms of the individual 

dominant levels of inferential reasoning, eight of the preservice teachers in this subset 

performed at the Multistructural level with three at the Unistructural level. 

A subset of 11 preservice teachers with the least variation across tasks ranged in 

standard deviation values from 0.38 to 0.58 on the post-assessment.  This subset provided 

responses at only two levels of inferential reasoning, and therefore exhibited significantly 

more stability in their level of inferential reasoning than those with who responded at 

three or all four levels.  As an example, one preservice teacher provided four responses at 

the Multistructural level and three at the Relational level for an average inferential 

reasoning value of 2.4 with a standard deviation of 0.53.  Because more responses were 

present at the Multistructural, the dominant mode of reasoning for this preservice teacher 
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on the post-assessment was also determined to be Multistructural.  Members of this 

subgroup demonstrated dominant inferential reasoning levels across the three highest 

levels with six at the Unistructural level, three at the Multistructural level, and two at the 

Relational level.  

It is worth noting that changes occurred in the level of variation from the pre-

assessment to the post-assessment.  More specifically, 6 of the original 11 preservice 

teachers with the highest degree of variation on the pre-assessment remained in the group 

exhibiting the highest degree of variation on the post-assessment.  By way of contrast, 

only 2 of the original 11 preservice teachers with the least variation in their pre-

assessment responses remained in the group demonstrating the lowest degree of variation 

on the post-assessment. 

A summary of the dominant modes of inferential reasoning on the post-

assessment is shown in Table 4.2.  Percentages in the table have been rounded.  

Table 4.2 

Dominant Levels of Reasoning on the Post-Assessment  
 

           Prestructural      Unistructural   Multistructural Relational 
Participants                   Number (%)      Number (%) Number (%) Number (%)  
      

 
All Preservice Teachers  2  (6%) 11 (33%) 15 (45%) 5  (15%) 

 
Middle School   2  (13%) 8  (50%) 4  (25%) 2  (13%) 
Preservice Teacher 

 
Secondary School   0  (0%) 3  (18%) 11 (65%) 3  (18%) 
Preservice Teachers 
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Upon completion of the statistics course, the dominant level of inferential 

reasoning for the cohort shifted from Unistructural to Multistructural.  However, this shift 

only partially occured for the middle school preservice teachers, as the dominant level of 

reasoning for this set of participants remained at the Unistructural level.  Figure 4.4 

shows the combined results of the pre- and post-assessment for the middle and secondary 

mathematics preservice teachers as two different populations.  The lighter dots represent 

the secondary preservice teachers, while the darker dots represent the middle school 

preservice teachers. 

 

Figure 4.4.  Middle and secondary mathematics preservice teachers’ combined assessment 
results 
 

From the data display in Figure 4.4, movement in inferential reasoning levels (both up 

and down) is observed, with most of the cohort beginning in the Unistructural level of 

reasoning and moving to the Multistructural level.  The middle school preservice teachers 

tend to be grouped in the lower quadrant more than the secondary population and are the 

sole tenants of the Prestructural level.  In addition, secondary preservice teachers reside 

in the Multistructural and Relational levels twice as often as their middle school peers.  
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The movement in each dominant level of reasoning is quantified in Table 4.3. 

Table 4.3 

Shifts in Levels of Inferential Reasoning, Pre- to Post-Assessment 
 

    Down   Remained Up One  Up Two  
Participants   One Level the Same Level  Levels 

 
All Preservice Teachers 4 (12%) 10 (30%) 17  (52%) 2  (6%) 
 
Middle School   3 (19%) 5 (31%) 8  (50%) 0  (0%) 
Preservice Teachers 
 
Secondary School   1 (6%)  5 (29%) 9  (53%) 2 (12%)  
Preservice Teachers 

 

 

Table 4.3 shows that almost one third of the cohort remained at the same 

dominant level of reasoning from the pre- to post-assessment, over half of the cohort 

moved up one or two levels in inferential reasoning, and a smaller percentage moved 

down one level.  The shifts in dominant levels of reasoning were relatively similar 

between the middle and secondary preservice teachers. To illustrate the typical observed 

changes in dominant levels reasoning, I use five illustrative cases to provide a detailed 

accounting of these observed commonalities in responses.  Two cases illustrate stability 

in inferential reasoning over time, two cases are representative of gains in inferential 

reasoning, and one case conveys a decline in inferential reasoning over time. 

Stability in Inferential Reasoning Across Time 

Stable Unistructural thinking. From the beginning of the statistics course 

through completion, 10 of the 33 preservice teachers demonstrated consistency in their 

dominant level of inferental reasoning across time.  Most of these consistent reasoners, 7 

of the 10, displayed a reasoning level of Unistructural on both the pre- and post-
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assessments.  Throughout the study, 21% the cohort consistantly displayed a dominant 

level of reasoning at the Unistructural level.  Within this group, five members were 

middle school preservice teachers and two were secondary.  Dave, a middle school 

preservice teacher, was typical in his stable use of Unistructural thinking across time. 

During the pre-assessment, Dave focused primarily on measures of center, such as mean 

or shifts in clusters of data, when reasoning on inferential tasks.  One such example from 

the pre-assessment is shown in Figure 4.5.   
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Figure 4.5.  Unistructural response to the Migraine Treatment task on the pre-assessment 

In the preceding response, Dave focuses on the average response times of each 

medication and generates an inference based on which medication provides faster relief 

on average.  Reasoning that attends to one aspect of the data is characterized as 

Unistructural.  Other preservice teachers who also remained at the Unistructural level 
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likewise focused primarily on measures of center and generated inferences based on 

differences beween measures of center. 

 During the mid-course assessment, Dave continued to focus on measures of center 

when generating inferences.  In Figure 4.6, Dave reports that the difference in average 

response time is the key factor in considered to generate an inference despite a smaller 

sample.  Since both samples are large, the difference in sample size is immaterial.  

 

Figure 4.6.  Unistructural response to the Ambulance Service task on the midcourse assessment 
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While Dave’s reasoning appears relatively unchanged from the pre-assessment, at times 

he begins to attend to other characteristics of the data distributions.  One such example is 

in relation to a task that gauges the effectiveness of a speed trap designed to lower the 

speed of cars on a section of road.  Initially, Dave’s response appears to be consistent 

with prior arguments focused on measures of center, as depicted in Figure 4.7. 

 

Figure 4.7. Unistructural to Multistructural reponse for the Speed Trap task on the midcourse 
assessment 
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Dave argues that the speed trap is effective as the data is skewed to the right after 

the speed trap was completed.  When Dave was asked to elaborate on this written 

response, he explained that his primary consideration was the reduction in cars that sped 

over 58 miles per hour.   

Dave:  It was effective in slowing traffic down.  ‘Cause it showed, because the dot 
plot is skewed a lot more to the right after, showing the after. 
MH:  OK. 
Dave:  Um, looking from, really looking from about 58 on there were, probably 
about 12 times that were larger, um, to the right of the, to the right of 58 before 
the speed trap and only 3 afterwards. 
MH:  OK. 
Dave:  So, it greatly, um, took down those top numbers. 
MH:  Do you think that could have happened just by chance?  ‘Cause they just 
kind of picked 60 cars. 
Dave:  Um. 
MH:  So, do you think that could have been chance or to you, are you convinced? 
Dave:  To me, it shows that the speed trap did work. 
MH:  OK.  So, for that main focus looking at 58 and above. 
Dave:  Yeah. 
MH:  Is there anything else that kind of supports it? 
Dave:  Um, just that the average. I guess the median would be more towards 
between 50 and 55 where before it was between 53 and 55. 
MH:  OK. 
Dave:  Or 50 and 53, I guess after. 
MH:  OK.  

 

The exchange above demonstrates that Dave is able to consider other aspects of 

the data when reasoning beyond measures of center.  In this particular case, Dave’s main 

focus is on the tail-end of the data.  Dave defines the goal of the speed trap to be a 

reduction in cars that travel in excess of 58 miles per hour.  However, both in his written 

response and verbal explanation, Dave proffers a reduction in central tendancy as 

evidence of a successful speed trap.  During the interview, Dave explains that the speed 

trap is effective because of the reduction in the number of cars that sped over 58 miles 

per hour.  When asked for additional justification, Dave then mentions that the average 
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speed of cars has been reduced, similar to his written response.  These two arguments, 

one based on Dave’s intution about the context and one based on a formal measure of 

center, are not presented in a coordinated fashion in support of an inference that the speed 

trap was effective.  Clearly, Dave has formulated a stance regarding the effectiveness of 

the speed trap based on data comparisons beyond changes in measures of center.  From 

this exchange, either Dave is unable to reconcile his informal inference focused on the 

tail of the data distributions with measures of center or he believes that an argument 

based on measures of center is the correct response.  Regardless, Dave continues to 

exhibit reasoning at the Unistructural level throughout the course.  As shown in Figures 

4.7 and 4.8, Dave’s post-assessment responses to the Migraine Treatment and the Diet 

and Cholesterol tasks reveal how he limits his argumentation to measures of central 

tendancy. 
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Figure 4.7.  Unistructural response to the Migraine Treatment task on the post-assessment 
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
Figure 4.8.  Unistructural response to the Diet and Cholesterol task on the post-assessment 

 The portion of the cohort that remained unchanged in a dominant level of 

reasoning at the Unistructural level similarly tended to focus on measures of center when 

generating inferences and did not coordinate information related to other core statistical 

concepts such as range of the data distribution and variation in results.   
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Stable Multistructural Thinking.  Another portion of the cohort remained 

unchanged in terms of their dominant level of reasoning at the Multistructural level.  

Specifically, eight preservice teachers initially exibited a dominant level of reasoning at 

the Multistructural level, and three of these remained at the same level upon completion 

of the statistics course, which represents appoximately 10% of the cohort.  To illustrate 

the stable use of Multistructural inferential reasoning, consider the case of Cari, a 

secondary preservice teacher.  

During the pre-assessment, Cari attended to measures of center, such as mean or 

shifts in clusters of data and another aspect of the data distribution when reasoning on 

inferential tasks.  One such response from the pre-assessment is shown in Figure 4.9.   
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Figure 4.9.  Multistrucutral response to the Diet and Cholesterol task on the pre-assessment 
 

Cari begins the response by noting that the range in both the before and after data 

distributions are the same.  She then discusses the reduction in average cholesterol levels 

from 260 to approximately 200.  As a final step, Cari coordinates these two pieces of 

information by saying that the diet was effective in part, but did not help those who 

remained unchanged.  
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During the midcourse assessment and post-assessment, Cari generally provided 

Multistructural level responses and a few at the Relational level.  Figure 4.9 shows a 

Multistructural response provided by Cari that coordinates the difference in centers and 

variation between two data distributions. 

 

Figure 4.10.  Multistrucutral response to the Ambulance Service task on the midcourse 
assessment 
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By taking in account differences between the data distributions in terms of  

measures of center and one additional global characteristic such as spread or variation in 

the data, Cari’s response typifies others whose dominant level of reasoning remained at 

the Multistructural level.  In this case, Cari is viewing the modes as indications of the 

variation within each data distribution.  In particular, she argues that Lifetime’s data 

distribution is relatively flat and has multiple modes, where ACME has a clear mode and 

is skewed to the right.  This information further supports that ACME is a better choice 

than Lifetime, since the average response time is lower and there is less variation. 

In addition to providing Multistructural responses on the midcourse assessment, Cari also 

provided one Relational response, which was common for others who remained at this 

level.  An example of Cari’s Relational response to the Speed Trap problem on the 

midcourse assessment is presented in Figure 4.11.  
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Figure 4.11. Relational response to the Speed Trap task on the midcourse assessment 

 In contrast to responses at the Unistructural level, Cari is able to reconcile the 

reduced average speed of the cars with the fact that the range has not changed in regard to 

higher speeds.  Therefore, some cars are still driving at high speeds despite the overall 

reduction in speeds.  Similar to Dave, Cari chooses the speed of 58 miles per hour as 

excessive and determines that there are far less excessive speeders in the range of 58 
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miles per hour and above, which further endorses the success of the speed trap and 

minimizes the fact that the range of the data has not changed.  In contrast, those at the 

Unistructural level struggled to coordinate the small change in average speed with the 

reduction of excessive speeders in the tail of the data distribution.  This response is 

designated as Relational due to all relevant aspects of the data distributions being 

identified and coordinated in order to provide a reasonable inference within the context of 

the problem.  In support of this conclusion, Cari’s verbalization of her reasoning process 

further endorses her coordination of all key aspects of this particular task: 

Cari:  OK, I thought it was effective.  The speed trap was effective because I 
looked at the center, the medians and I estimated that, um, after is about 51 or 52, 
MH:  OK. 
Cari:  And then before it was higher, about 54 or 55, and so, I figured, you know, 
a couple miles per hour, that’s significant enough, um.  Another thing I looked at 
was how high they went up, like the number of drivers who were about 58, so, 
after it was only 3, and then before I counted 13. 
MH:  OK. 
Cari:  And so, they definitely brought down the high, you know. 
MH:  Really speeding, yes. 
Cari:  The drivers who are really fast.  Um, and then I just made a quick note on 
the range, because I noticed that the minimum and maximum were the same for 
both of them.  And I just said for that, well, you’re always going to have the 
drivers who just drive slow, and then you’re always going to have at least a few 
that are just going to keep driving fast no matter what. 
MH:  OK. 
Cari:  So I figured that was to be expected, but overall it was still effective. 

 

 On the post-assessment, Cari continues to reason in a manner similar to the 

midcourse assessment at the Multistructural level.  In the following example, Cari 

focuses on the change in measures of centers between the distributions and then attends 

to one global comparison between data distributions, the range of the data distributions.   



 107

 

Figure 4.12.  A Multistructural response to the Diet and Cholesterol task on the post-assessment 
 

The range in cholestorol values before and after the vegetarian diet remains 

unchanged in the task.  Cari acknowledges the reduction in cholestrol levels for the 

majority of participants, but also incorporates the fact that some people did not benefit to 

provide a qualified inference based on the data.  The response falls short of using all 

available information and data provided, but is qualitatively different than those at the 
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Unistructural level of inferential reasoning.  Incorporating a global comparison in 

addition to considering changes in measures of center is typical of responses provided at 

the Multistructural level. 

Growth in Inferential Reasoning Over Time 

The most common change in dominant level of reasoning from the pre-

assessment to the post-assessment was a one-level increase, with 17 of 33 (52%) 

members of the cohort moving up one level of inferential reasoning.  Within this group, 

12 total preservice teachers changed from the Unistructural reasoning level to the 

Multistructural level, 3 preservice teachers changed from the Multistructural level to 

Relational level, and an additional 2 changed from the Prestructural level to the 

Unistructural level.   

Unistructural to Multistructural.  Because the largest trend in this study in terms 

of changes in inferential reasoning was the move from Unistructural to Multistructural 

reasoning, a set of responses from a middle school preservice teacher named Brandy will 

exemplify the changes documented in this group.  In Figure 4.13, Brandy provides a 

response on a pre-assessment task that focuses on measures of center.   
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Figure 4.13.  A Unistructural response to the Diet and Cholesterol task on the pre-assessment 

 

In this response, Brandy focuses on a change in the center value from before the 

vegetarian diet to after the diet and generates an inference that the diet was effective.  

However, during the post-assessment, Brady incorporates another aspect of the data to 

generate a Multistructural response. 
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Figure 4.14.  A Multstructural response to the Diet and Cholesterol task on the post-assessment 

 
In this response, similar to the response provided by Cari, Brandy recognizes the 

fact that not all participants appear to benefit from the vegetarian diet, as the range has 

not changed in comparison to the original.  Note that she concludes the change in the data 

could have occurred by chance, since the range and overall shape of the data look 

approximately the same.  While the conclusion is not as well connected to the context of 

the problem as the one provided by Cari, Brandy does acknowledge two different aspects 
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of the data, change in central tendancy and lack of change in range, and attempts to 

integrate them together in order to generate an inference.  This particular response is 

typical of those in this group.  In general, those who moved from Unistructural level 

responded to the pre-assessment in a similar manner to Dave and then responded similar 

to Cari on the post-assessment.  While not all members of this particular group 

participated in the midcourse interview, Brandy’s thinking exhibited ascension to a 

Multistructural level of reasoning at this point in the course.   

Prestructural to Unistructural.  Although only two middle school preservice 

teachers reasoned at the Prestructural level on the pre-assessment, both demonstrated 

Unistructural inferential reasoning by the end of the course.  We will consider the case of 

a middle school preservice teacher named Ella, and her response to a complete population 

task given on the pre-assessment in which she struggles to proportionally reason. 
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Figure 4.15.  A Prestructural response to the Class Scores task on the pre-assessment 
 

Ella states that the two classes are equal in terms of their performance.  However, 

by looking at the shape of the two populations, one can see that the Black class clearly 

has a higher percentage or proportion of studenst who scored at the levels of 7, 8 and 9 
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correct.  While the absolute number of students scoring at these levels is the same, the 

proportion of students in the Pink class who scored at these higher values is less than that 

of the Black class.  Ella states that the classes did equally well based on the range of the 

populations being the same.  She also states that the Pink class appears to have performed 

better, perhaps because of the larger number of scores for 3, 4, 5 and 6 correct.  However, 

the absolute frequency of scores for any specific value is irrelevant given that the 

populations are not of equal size.  Because many of the tasks consisted of dot plot 

representations of data distributions, errors in proportional reasoning were observed 

several times in the pre-assessment and this was especially true for the preservice 

teachers classified at the Prestructural level, as well as for several whose dominant 

inferential reasoning level was Unistructural.  Generally, preservice teachers who 

exhibited an inability to reason proportionally on the pre-assessment also struggeld to 

correctly apply proportional reasoning on the post-assessment. 

 In addition to a lack of proportional reasoning, those at the Prestructural level 

tended to answer tasks based on mere opinion statements that lacked any support based 

on the data or information provided.  Ella’s responses to the Training Programs tasks on 

the pre-assessment is provided as representative of this phenomenon.   

 

Figure 4.16.  A Prestructural response to the Training Programs task on the pre-assessment 
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This response highlights that Ella is relying upon her personal opinions perhaps based on 

experiences or other factors in generating inferences.  However, Ella appears to ignore 

the data provided in the task or the structural design of the experiment.   

 During the post-assessment, a substantial change was evident in Ella’s responses, 

which became based on the data provided and consisted of one correct comparison to 

generate an inference.  In the example provided in Figure 4.17, Ella attends to a 

comparison of skewness. 
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Figure 4.17.  A Unistructural response to the Migraine Treatment task on the post-assessment 

  This particular task involves two data distributions that again have the same range 

similar to the pre-assessment task, Class Scores. However, on the post-assessment, Ella 

attends to the difference in skewness of the two data distributions, which indicates that 

one medicine will provide faster relief.  Rather than specifically explaining that the 

skewness of the data distribution indicates faster or slower response times of the 

medicine, Ella simply notes the difference and skewess between the two distributions and 
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makes a claim.  Ella continues throughout the post-assessment to offer justifications that 

are primarily based on the data provided in each task with one correct comparison.  

During the midcourse assessment, an interesting exchange occurred regarding the 

Speed Trap task, revealing Ella’s attention to local attributes of the data distributions 

versus global comparisons.  Similar to the post-assessment, Ella provided a short 

explanation and claim regarding the effectiveness of the Speed Trap task in reducing the 

speed of cars shown in Figure 4.18. 

 

Figure 4.18.  A Unistructural response to the Speed Trap task on the midcourse assessment 
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 The written response focuses on the fact that the overall speed reduced only 

slightly after the speed trap was in place and that the average speed of the cars still 

exceed the desired speed limit of 50 miles per hour.  However, when Ella verbally 

described her stance, the focus was not solely on the change in center, but also was 

concerned with outliers as evident in the following transcript:   

Ella:  This one, I said No, because they weren’t going that much over to start 
with.  Like, they were only going three miles over.  So, just backing off 3 doesn’t 
mean it is a considerable change. 
MH:  OK, so, yeah. 
Ella:  Yeah, but effective, I said, “not”, “somewhat”, but not enough because 
there’s still outliers.  I mean they, still have these up here that weren’t affected. 
MH:  Yeah.  OK.  Alright, so say what you said the first, at the very beginning 
again. 
Ella:  Oh, I said it was not effective because the majority was at 53, and that’s not 
that much higher than 50, so they didn’t really reduce that much of it. 
MH:  Yea.  So, you’re saying because you would like to see, like these under 50, 
is that what you are saying?  For it to be effective, or…? 
Ella:  Or like.  Yeah.   
MH:  OK.  So, they didn’t really move that middle hump very much. 
Ella:  Yeah.  This clump right here.  Or this clump right here really didn’t move, 
cause there’s still some there. 
MH:  And, so that, that is one thing, and then you’re looking at, uh, these ones 
that are way above, you’re saying. 
Ella:  The outliers, yeah. 
MH:  You’re saying didn’t really move.  There’s still, there’s still a group here. 
Ella:  Yeah. 
MH:  Even after.  OK.  Alright. 

 

 Ella deems the speed trap as only somewhat effective based on the fact that there 

are some cars still speeding above 58 miles per hour.  Recall, Dave noticed that the 

number of cars over 58 miles per hour reduced from 12 to 3, which led him to infer the 

speed trap was successful, an inference shared by Cari.  The distinction between Ella’s 

inferential reasoning and that of Dave and Cari is that Ella focused on local events or 

specific outliers; whereas Dave and Cari viewed the tail the distribution as a region and 
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were able to make global compaisons about the changes in this portion of the data 

distribution rather than focusing on specific points within the tail.  

Multistructural to Relational.  Five preservice teachers progressed to the 

Relational level by the end of the course, two middle school and three secondary.  Three 

of these changed from Multistructural to Relational from the pre-assessment to the post-

assessment, and two from Unistructural to Relational.  Rather than provide additional 

examples of Multistructural responses, the focus is on characteristics common to post-

assessment tasks, as responses on the pre-assessment are similar in nature to those 

previously discussed.   

 Bretta, a preservice middle school teacher, represents the case of growth in her 

dominant level of inferential reasoning from Multistructural to Relational.  Bretta had 

taken an introductory statistics course prior to this particular class, as was true of her 

middle school preservice teacher classmates.  However, unlike her peers, Bretta’s 

responses reflect her attention to all data provided in the task and a coordination of key 

statistical aspects with the context to provide a robust and complete response.  As as an 

example of Relational inferential reasoning, consider Bretta’s post-assessment response 

to the Cholesterol and Diet task in Figure 4.19. 
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Figure 4.19.  A Relational response to the Diet and Cholesterol task on the post-assessment 

Bretta outlines the shape of the data distributions and circles where the centers 

may be, and subsequently provides an argument in support of the effectiveness of the diet 

based on an estimated change of 50 mg/dl in the average level of cholesterol, from before 

to after the diet.  In addition to reporting the estimated change, Bretta believes the change 

is “marked”, which supports the notion that the diet may significantly improve 
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cholesterol levels.  However, the fact that some people’s cholesterol levels did not 

decrease casts a measure of uncertainty on this claim.  The response discussed above is 

qualitatively different than those at the Multistructural level because it quantifies the 

change in measures of center in order to provide justification for significance.  Of those 

who responded to this task at a Multistructural level of reasoning, 60% failed to provide 

quantitative justification for significance.  Moreover, in Relational inferential reasoning, 

significance is not rooted in personal opinion, but is rather based on a computation from 

the data presented.  In addition, the small change in average speed lessened the support 

for significance in the minds of some preservice teachers. 

 One final illustrative example of the Relational level is a formal inferential 

reasoning response.  The preservice teachers whose dominant level of reasoning was 

Relational were able to flexibly move between informal and formal approaches to tasks.  

The cohort’s characterization of formal inferential reasoning on the post-assessment will 

be discussed in more detail in this chapter.  In Figure 4.20, Bretta provides a formal 

response to the Speed Trap problem at a Relational level of reasoning. 
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Figure 4.20.  A Relational response to the Speed Trap task on the post-assessment 

Bretta approaches the problem through a hypothesis test focused on the difference 

in means, as she was taught to do in class.  She completes the computation correctly, 

interprets the results correctly, and provides a reasonable inference within the problem 

context.  However, she notes that the speeds are not practically different, which certainly 

is true if the focus is on the average speeds (as opposed to reducing the amount of cars in 

excess of 58 miles per hour, as discussed previously).  The difference of means 
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hypothesis test is not appropriate for this particular problem if the focus is on excessive 

speeders, but Bretta is not equipped with other formal methods.  Her statement saying 

that the results did not match with her practical sense demonstrates that Bretta is 

attempting to make sense of the formal process as she would with informal approaches.  

Those who transitioned to the Relational level were able to demonstrate fluency in both 

formal and informal approaches to inferential tasks on the post-assessment. 

Decline in Inferential Reasoning Over Time 

Unistructural to Prestructural.  While not sharing all of the characteristics of the 

previous group, the two middle school teachers whose informal inferential reasoning 

declined from Unistructural to Prestructural shared some similar characteristics.  Both 

participants struggled with proportional reasoning from the onset of the statistics course.  

To illustrate preservice teachers’ lack of proportional reasoning, consider Mary’s 

response to the Class Scores task on the pre-assessment.  
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Figure 4.21.  A Prestructural response to the Class Scores task on the pre-assessment 

In contrast to Ella’s earlier response focused on local versus global attributes, 

Mary is focusing on absolute frequencies within the data distributions.  Neither Ella nor 

Mary are reasoning from a proportional perspective.  However, on the pre-assessment, 

Mary is able to mainly focus on measures of center on other tasks and perform at the 

Unistructural level.  One such example to the Cholesterol and Diet task is provided in 

Figure 4.22. 
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Figure 4.22.  A Unistructural response to the Cholesterol and Diet task on the pre-assessment 

 Mary’s response to the Cholesterol and Diet task focuses on a shift in the 

“majority” of data points or a change in central tendancy.  However, during the post-

assessment, Mary focuses on a frequency view of the data distributions and exhibits a 

Prestructural dominant level of thinking.  A pair of tasks are shown that depict Mary 
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reasoning at a Unistructural level to Migraine Treatments task on the pre-asssessment and 

then at the Prestructural level on the post-assessment.  

 

Figure 4.23.  A Unistructural response to the Migraine Treatment task on the pre-assessment 

 In the above response, Mary ackowledges that the sample sizes of the two data 

distributions are not equal, and then states that the patients receiving Drug B experienced 

less time waiting for the medicine to be effective, seeming to support the use of 

proportional reasoning to make one correct data comparison to generate an inference. 
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Figure 4.24.  A Prestrurctural response to the Migraine Treatment task on the post-assessment 

Mary ackowledges that the sample size of data in each distribution is different 

once again, but now states that the effect time of both medications is the same and that 

Drug A is a better choice due to the larger sample size.  Note how Mary focuses on the 

frequencies of data points present in each sample from 0 to 40 and determines that the 

medicines provide an equivlanent time to relief of migraines.  This task was generally 

one that most of the cohort addressed at either the Unistructural or Multistructural level 



 127

consistently.  However, on the post-assessment, Mary provides a frequency focused 

response. 

 In addition to a focus on absolute (not relative) frequencies, Mary’s post-

assessment responses also were largely based on mere opinion.  The tasks on the post-

assessment asked the preservice teachers if the differences between data distributions 

were significant.  This wording was used to signal that justification was desired either in 

the form of a hypothesis test, confidence interval or other statistical process.  Mary often 

provided her opinion regarding whether the differences were significant rather than 

justifying significance based on changes or lack of changes in the data.  An example is 

provided in Figure 4.25. 

 

Figure 4.25.  A Prestrurctural response to the Speed Trap task on the post-assessment 
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While Mary’s dominant level of reasoning was Prestructural in nature, similar 

responses to questions of significance were oberved for both Prestructural and 

Unistructural levels of reasoning.  In Mary’s case and her classmate who likewise 

performed at this level, most responses on the post-assessment either failed to incorporate 

proportional reasoning or were based on personal opinions instead of grounded in data.   

Relation to Prior Statistics Coursework 

 The changes in dominant levels of reasoning over the course of the semester were 

unrelated to prior statistical coursework.  The secondary preservice teachers possessed 

less prior statistical coursework, but began the course with higher levels of informal 

inferential reasoning and advanced their abilities at pace with middle school peers.  The 

middle school preservice teachers tended to have more prior statistics coursework, but 

did not exhibit markedly higher levels of thinking than their secondary peers.  In addition, 

the middle school preservice teachers did not demonstrate growth in their inferential 

reasoning that exceeded their secondary preservice teacher counterparts.  

The secondary preservice teachers had less prior statistical coursework, but more 

prior mathematics classes such as calculus.  The majority, 50%, of middle school 

preservice teachers’ dominant level of reasoning on the post-assessment was 

Unistructural in nature versus 65% at the Multistructural level for secondary.  In addition, 

the secondary preservice teachers experienced slightly higher positive changes in 

dominant levels of inferential reasoning than their middle school peers.  Aside from these 

differences, responses to tasks possessed commonalities across the entire cohort, as did 

the patterns of change from one level to another and for those who did not change.   
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Characterization of Formal Inferential Reasoning 

 The findings specific to the cohort’s inferential reasoning, which includes both 

informal and formal approaches on assessment tasks, were included in the 

characterization of the cohort’s change in inferential reasoning.  The characterization 

specific to the of the cohort’s formal inferential reasoning is limited in nature due to 

timing of teaching formal methods in the statistics course.  In particular, because formal 

inferential methods such as hypothesis testing and confidence intervals were taught 

during the last month of the course, preservice teachers were equipped with formal 

methods only for the post-assessment.  Therefore, the cohort’s responses to inferential 

tasks on the pre- and midcourse assessments were exclusively informal in nature.   

Nevertheless, a characterization of the cohort’s formal inferential reasoning can 

be characterized based on responses to the final three items on the post-assessment.  

These items, Speed Trap, Hiring Discrimination, and Ambulance Service, clearly 

signaled that a formal approach to generating inferences was desired (See Appendix C).  

Accordingly, most of the cohort attempted to generate an inference through formal 

approaches.  However, when preservice teachers neglected how to implement a 

procedure or interpret a numerical result, occasionally they would default to informal 

reasoning and address the task similar to others in the assessment.  In cases where a 

complete informal response was offered, the task was coded as being addressed 

informally.   

Task responses were coded in the same manner as the informal inferential task 

responses and received either a Prestructural (P), Unistructural (U), Multistructural (M), 

or Relational (R) designation according to the SOLO taxonomy descriptions in Table 3.6.  
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Variation in the responses given by the preservice teachers was observed both at the class 

level for specific tasks and at the individual level across tasks.  However, because the 

number of tasks addressed formally by the each preservice teacher is small, summary 

results at the individual level across tasks are not provided.   

Variation in Formal Inferential Reasoning Responses at the Class Level.  The 

levels of formal inferential reasoning for the three post-assessment tasks are similar to 

other tasks on the post-assessment.  The mean and standard deviation for three tasks 

addressed primarily through formal methods are:  1.67 and 1.08 for the Speed Trap task, 

1.42 and 0.96 Hiring Discrimination, and 1.91 and 0.95 for the Ambulance Service task.  

Therefore, inferential reasoning response levels to all three tasks were similar to the 

overall mean on the post-assessment of 1.7 and fell between Unistructural and 

Multistructural levels.  In addition, the variation in responses was similar to those 

previous discussed with standard deviation values near 1.0, which elicited responses 

across the full spectrum of levels of inferential reasoning.  To illustrate the typical 

variation of formal inferential reasoning responses to a given task, archetypal responses 

of each level of coding are described for the Speed Trap on the post-assessment.   

An example of a Unistructural (U) response to the Speed Trap task is shown in 

Figure 4.26.  The preservice teacher identifies an appropriate hypothesis test for the task, 

but is unable to appropriately populate the values or draw an inference. 
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Figure 4.26.  A Unistrurctural response to the Speed Trap task on the post-assessment 

The preservice teacher chooses a difference in means hypothesis test, a reasonable 

selection, but incorrectly squares the variance values.  In addition, the interpretation of 

the result is also incorrect, as a z-score of .96 is not indicative of significance.   

Next, an archetypal Multistructural response to this same task is provided with a 

reasonable selection of a hypothesis test, correct population of values in the hypothesis 

test, but an unreasonable interpretation or inference. The Multistructural level response in 

Figure 4.27 entails a reasonable approach to addressing the task through formal methods 
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Figure 4.27.  A Multistructural response to the Speed Trap task on the post-assessment 

The computation produces a z-score test statistics of  3.13, which is a significant result 

for a two-tailed hypothesis test at the 90% confidence level.  Accordingly, this 

interpretation of the hypothesis test and associated inference are not reasonable.  Lastly, 

an archetypal response at the Relational level is provided which integrates all components 

of a formal approach and produces a sound inference. 
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Figure 4.28.  A Relational response to the Speed Trap task on the post-assessment 

The response illustrates a reasonable formal approach, correct population of 

variables, and a logical inference based on the results of the approach.  The preservice 

teacher demonstrates additional knowledge of the procedure by drawing the probability 

distribution associated with the z-score and the fact that a two-tailed hypothesis test was 

selected. 
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Common Problematic Features of Formal Inferential Reasoning.  Two 

common difficulties emerged on the three formal inferential tasks:  (a) interpreting 

significance for 28% of responses, and (b) inputting the incorrect values into the 

appropriate hypothesis test for 32% of responses.  All three tasks entailed a question 

relating to if the difference between two data distributions was significant in nature given 

a specific context.  During the statistics course, significance levels were explicitly stated 

for the preservice teachers during lecture and in homework exercises.  While formal 

approaches to these tasks reported large z-values, many preservice teachers claimed that 

the results did not support a significant difference similar to the response provided in 

Figure 4.27.  Many also noted that the lack of significance made sense because the 

absolute difference in means was quite small in the case of the Speed Trap task and did 

not attempt a formal approach as shown in Figure 4.30. 

 

Figure 4.29.  A Prestructural response to the Speed Trap task on the post-assessment 
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The second problematic characteristic was choosing an inappropriate hypothesis 

test or populating an appropriate choice with incorrect values.  Preservice teachers 

generally had difficulty choosing a correct hypothesis test for a task with a binomial 

distribution.  If they were able to identify the correct test, populating the values correctly 

posed challenges for many of the preservice teachers.  Often, they would square the 

variance, leave  in the equation, and/or put incorrect values in for the sample sizes.  

An example of an incorrect choice of formal approach to the Hiring Discrimination task 

on the post-assessment is provided in Figure 4.30. 

 

Figure 4.30.  A Prestructural response to the Hiring Discrimination task on the post-assessment 

The response shown not only illustrates an incorrect selection of formal test, but a 

nonsensical interpretation of values relating to variables.  Preservice teachers who 

D0
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implemented confidence interval approaches to the last three tasks tended to avoid issues 

related to choice of formal test and reason more effectively.   

In summary, the formal inferential reasoning characterization of the cohort 

specific to tasks on the post-assessment paralleled the overall inferential reasoning 

results.  The cohort tended to reason between the Unistructural and Multistructural levels, 

but closer to Multistructural.  Two problematic areas related to interpreting the statistical 

meaning of significance, choice of appropriate formal methods, and populating values 

incorrectly.   

Association of Informal and Formal Inferential Reasoning 

A comparison of the levels of formal inferential reasoning on the final three tasks 

of the post-assessment was made with the dominant level of informal inferential 

reasoning on the post-assessment.  If the reasoning level of the formal task was the same 

as the dominant informal inferential reasoning level for a specific preservice teacher, the 

task responses was coded as in alignment or concordant.  If the levels of reasoning did 

not match, the task was coded as discordant.  Through this process, 80% of the 49 formal 

inferential reasoning task responses were found to be concordant with the preservice 

teacher’s dominant informal reasoning level on the post-assessment.  Multistructural and 

Relational formal inferential level responses were both coded as concordant to 

Multistructural dominant levels of informal inferential reasoning, since there were no 

dominant Relational levels of informal inferential reasoning on the post-assessment. 

Given the high percentage of agreement in inferential reasoning levels between 

formal and informal approaches for a specific preservice teacher on the post-assessment, 

it appears that a relatively strong relationship exists between a preservice teacher’s ability 
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to inferentially reason both informally and formally.  In addition, the preservice teachers 

tended to reason at the similar levels for both formal and informal approaches on the 

post-assessment.  Figure 4.31 shows the number of formal inferential reasoning responses 

provided at each level on the post-assessment, by area of content certification. 

 

Figure 4.31.  Levels of formal inferetial reasoning responses provided on the post-assessment 
tasks by area of certification 
 

 Given that the responses to tasks on the post-assessment were predominantly 

informal in nature, 182 informal responses compared to 49 formal responses, the 

alignment of formal response levels to dominant levels of informal inferential reasoning 

is remarkable.  For example, middle school preservice teachers tended to provide the bulk 

of lower level responses at the Prestructural and Unistructural levels similar to their 

dominant levels of reasoning on the post-assessment.  Similarly, secondary school 

preservice teachers tended to provide either Multistructural and Relational formal 

responses to tasks aligning with their primary dominant modes of inferential reasoning.  
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Therefore, it appears that a relationship between informal and formal inferential 

reasoning does indeed exist. 

Opportunity to Learn 

 The cohort’s opportunity to learn inferential reasoning is achieved through an 

analysis of the 375 tasks used within the statistics course. In accordance with the 

conceptual framework (See Figure 1.1), each task was coded in relation to core and 

aggregate statistical concepts and use of formal statistical methods such as confidence 

intervals or hypothesis tests.  As previously stated, tasks could be assigned multiple 

codes, for content areas and formal methods.  Therefore, the total number of content and 

methods codes assigned, 696, is larger than the number of total tasks, 375.  On average, 

each task received 1.89 content and methods codes.  In addition to coding for content and 

methods, each task was coded to one or more of the strands of mathematical proficiency 

as outlined in Adding it up (Kilpatrick, Swafford & Findell, 2001).  Again, a single task 

may encompass multiple strands of mathematical proficiency, which resulted in 587 total 

codes for the same 375 tasks, an average of 1.56 codes per task.  Lastly, each task was 

coded to determine if the statistical questions were contextualized.  In total, 254 (or 68%) 

of the tasks were embedded in a context.   

 The course was organized into four sections:  (a) descriptive statistics, (b) 

probability and probability distributions, (c) sampling and estimation, and (d) confidence 

intervals and hypothesis testing.  Table 4.4 displays the proportion of the statistics 

dedicated to each section in terms of percentage of overall class time and the percentage 

of total tasks. 
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Table 4.4 

Proportion of the Course Dedicated to Each Section of Content 

       % of         Weeks of  % of 
     Tasks  Tasks            Class  Class  

 
 

Descriptive Statistics     136   20%     4   27% 
 

Probability and        263   38%    6.5   43% 
Probability Distributions 

 
Sampling and Estimation    103   15%    1.5   10% 
 
Confidence Intervals and    194   28%     3   20% 
Hypothesis Testing 

  

 

The course content was presented in the sequence provided by the required 

textbook, Introduction to Probability and Statistics by Mendenhall, Beaver & Beaver 

(2005) with supplementation from the Quantitative Literacy Series (Mrdulla et al., 1995).  

Specifically, the content began with the first chapter of the textbook related to describing 

data with graphs, and ended with the ninth chapter focused on formal hypothesis testing 

for the difference between means and proportions.  Within the section of descriptive 

statistics, the content areas of graphing, measures of center and variability, and describing 

bivariate data are included.  The second content section of probability and probability 

distributions includes finding probabilities of simple events, combinations, permutations, 

Bayes’ Theorem, and discrete random variables.  In addition, the Poisson and Binomial 

discrete distributions and Normal continuous distribution with associated approximations 

are discussed in this section.  The next section relates to sampling, the Central Limit 

Theorem, experimental design including random sampling, sampling distributions, and 
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sampling variability.  In the fourth and final section, confidence intervals and large-

sample hypothesis testing are approached through traditional (algorithmic) approaches. 

The tasks for the statistics course predominantly originate from the course 

textbook. In addition to exercises to be completed with pencil, paper, charts and 

calculators, computer simulation activities were also assigned from the textbook.  

Depending on directions given by the course instructor, the cohort completed these 

computer simulations either by running an applet provided with the textbook on a CD-

ROM or by executing short Minitab programs in computer labs; the instructor provided 

the programming commands associated with writing and running the Minitab programs.  

Activities from the supplemental materials and were assigned and completed during class 

session by pairs of preservice teachers.  During the class periods, material was introduced 

and explained by the instructor that differed from tasks found with the course materials.  

The tasks introduced by the instructor for instructional purposes were documented as part 

of this analysis as were the questions posed by the instructor verbally.  Lastly, the tasks 

on the four exams were collected and coded.  Table 4.5 summarizes the percentage of 

tasks and the associated source.  In addition, the percentage of statistical content and 

method codes originating from each source is provided.  Similarly, the percentage of 

strands of mathematical proficiency codes related to each source is shown.  
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Table 4.5 

Proportion of the Tasks and Codes Generated from Each Source

        Percentage  Percentage   Percentage 
                 of tasks  of Content Codes of Proficiency Codes  

 
Textbook     54%   54%   51% 
 
Computer Simulations       4%   6%   6% 

 
Instructor     16%   18%   18% 
 
Quantitative Literacy    13%   11%   10% 
Series 

 
Exams      13%   11%   16% 

 

 

Mathematical Strands of Proficiency 

The two dominant strands of mathematical proficiency were conceptual 

understanding and procedural fluency.  The category of productive disposition did not 

receive any codes, and therefore will not be discussed as part of the results section.  The 

categories of strategic competence and adaptive reasoning both received codes from all 

sources proportional to the volume of codes produced by each.  The relative frequency of 

these codes was much lower than the two dominant coding categories with 12% of the 

codes related to adaptive reasoning and only 3% related to strategic competence.   

Textbook.  Slightly more than half of all tasks and codes generated from these 

tasks originate directly from the textbook without modification by the instructor.  The 

problems or tasks assigned after each lesson in the textbook followed a pattern related to 

the mathematical strands of proficiency.  The initial exercises focused on a completion of 

one-step, basic skill, such as finding the probability associated with a z-score in a table.  
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These tasks were coded as procedural fluency.  The next grouping of tasks focused solely 

on understanding a concept, such as the interpretation of the probability associated with a 

z-score, and involved no computation or procedures.  These tasks were coded as 

conceptual understanding.  The next group of tasks required both an understanding of the 

concept, choice and justification of an appropriate procedure, completion of the 

procedure, and an interpretation of the results.  These tasks received multiple codes of 

conceptual understanding, adaptive reasoning, and procedural fluency.  As described by 

the authors of the National Research Council (2001), adaptive reasoning is “the capacity 

for logical thought, reflection, explanation, and justification” (p. 116).  Therefore, the 

choice accompanied with a justification of a procedure was coded as adaptive reasoning. 

 The relative frequency of these multidimensional tasks was low in comparison to 

other tasks, with only 15% of assigned textbook problems requiring adaptive reasoning 

or strategic competence in addition to procedural fluency or conceptual understanding.  

However, these types of tasks were present in most sets of exercises assigned by the 

instructor from the textbook and appeared to be transitional in nature as complex 

procedures were practiced for the first time by the cohort.  The remainder of exercises 

typically consisted of practicing procedures and occasionally interpreting the results.  

These tasks were coded as procedural fluency with conceptual understanding if the task 

required the result to be interpreted beyond simply providing a numerical value. 

Computer simulations.  The computer simulation tasks comprise a relatively 

small percentage of the overall tasks and codes, 4% and 6% respectively.  Since the 

computer simulation tasks consisted of running predetermined programs, these tasks were 

highly structured in nature.  The computer simulations served a dual purpose.  In order to 
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run the simulations, the cohort needed to have some familiarity with how to manipulate 

the software program to run the correct simulation or generate the required results.  Once 

the simulation was complete, the cohort was asked to interpret the results.  Simulation 

tasks were coded as procedural fluency for the steps required to run the simulation and 

conceptual in nature for the interpretation portion of the task.  The results of coding the 

computer simulation tasks for mathematical strands of proficiency produced a balance 

between procedural fluency, 44% of codes assigned to this category, and conceptual 

understanding, 39% of codes assigned to this category.   

Quantitative Literacy Series.  The tasks completed from the Quantitative Literacy 

Series followed a similar pattern, but the emphasis on conceptual understanding was 

more pronounced.  The tasks generally required the cohort to execute a series of 

procedures in order to generate results.  The questions posed regarding the results 

required multiple interpretations of results, leading to heavy emphasis on conceptual 

understanding with 66% of the assigned codes in this category.   

Instructor-generated.  The tasks that originated from the instructor during lecture 

tended to be a balance of procedural fluency and conceptual understanding with a lesser 

amount of emphasis placed on adaptive reasoning and strategic competence.  The 

percentage of codes assigned for each strand of mathematical proficiency are:  (a) 

adaptive reasoning (8%), (b) strategic competence (1%), (c) conceptual understanding 

(39%), (d) procedural fluency (52%).  In comparison to the course level results for all 

tasks, the instructor-generated tasks aligned closely with less emphasis placed on 

adaptive reasoning, 8% compared with 12%, and a higher emphasis placed on conceptual 

understanding, 39% compared with 33%.  
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Exams.  In contrast to the instructor-generated tasks, course exams tended to 

focus heavily on procedural fluency, with 74% of the codes in this category compared to 

52% at the course level.  Less emphasis was placed on adaptive reasoning, 7% compared 

with 12%, strategic competence, 2% compared to 3%, and conceptual understanding, 

18% compared to 32%, on exams than in the course overall.  Therefore, the exams tended 

to emphasize procedural fluency over other mathematical strands of proficiency. 

Chronological View.  Shifting the view from the source of tasks to a 

chronological view of how the emphasis placed on each mathematical strand of 

proficiency changed overall throughout the course, Figure 4.32 conveys the frequency of 

codes with the four main topics of the statistics course. 

 

 

 

 

 

 

 

 

 

 

Figure 4.32.  Fequency of coded tasks by mathematical proficiency strands  
 

 
From this visual representation of how demands change throughout the course, several 

trends emerge.  The most relevant trend related to inferential reasoning is the growing 
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requirement of adaptive reasoning throughout the course.  However, the trend is 

relatively small in comparison to the other strands of mathematical proficiency with 

adaptive reasoning comprising only 12% of the overall codes.  According to the 

Kilpatrick, Swafford and Findell (2001):  

Adaptive reasoning refers to the capacity to think logically about the relationships 

among concepts and situations and to justify and ultimately prove the correctness 

of a mathematical procedure or assertion. Adaptive reasoning also includes 

reasoning based on pattern, analogy or metaphor. (p. 170)  

During the first half of the statistics course, on average one or two tasks per homework 

assignment include a component of adaptive reasoning out of approximately 20 assigned 

problems.  However, in the later portion of the class, the number of tasks requiring this 

ability increases to 9 out of every 20 assigned problems and becomes critical to 

successful completion of inferential tasks in both homework assignments and 

assessments.   

A lesser trend is demonstrated by the growth of the strategic competence strand 

throughout the course.  However, the requirements in this regard are still fairly minimal, 

with 1 of 10 inference tasks requiring strategic competence in comparison to 1 of 23 

earlier in the course. It is important to note that methods for solving statistical tasks were 

almost always explicitly prescribed.  Strategic competence refers to the ability to 

formulate mathematical problems, represent them and ultimately solve them (Kilpatrick 

et al., 2001).  Occasionally, the cohort is asked to choose between several available 

procedures.  However, these decisions do not embody the intent of the strand of 

mathematical proficiency.  Consequently, there were limited opportunities to acquire 
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strategic competence in the course.  While informal approaches to generating an 

inference have the potential to align with the strategic competence strand, at no point in 

the course was the cohort asked to solve an inferential task with an informal approach.  

The tasks that were coded in this category related to generating valid samples, 

randomization, experimental design, one unstructured probability task, and modeling the 

inputs of formal hypothesis testing procedures in hypothetical situation.   

 The other categories of conceptual understanding and procedural fluency remain 

prominent throughout the course.  A spike in procedural fluency is evident in the 

probability portion of the course and corresponds to tasks specific to combinations, 

permutations and multiplication rules. 

In summary, the task analysis outlines the cohort’s opportunity to learn inferential 

reasoning.  The emphasis placed on the mathematical strands of proficiency throughout 

the course depicts the type of thinking advocated by the instructor and the supporting 

course materials.  The data analysis identifies an imbalance of procedural fluency and 

conceptual understanding, thereby dwarfing the areas of strategic competence and 

adaptive reasoning.  Therefore, the course primarily supported the cohort’s 

comprehension of statistical concepts and relationships, as well as, their ability to 

accurately, efficiently and appropriately use procedures.  

Content Analysis 

The intent of the content analysis is to identify how the material was presented in 

terms of the order, the effort expended, and integration of topics.  Figure 4.33 provides a 

summary of the content covered during each of the four main components of the course, 

in chronological order. 
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Consistent with the conceptual framework, the content areas represented are comprised of 

mainly of core statistical concepts and aggregate statistical concepts and the two formal 

methods of confidence interval and hypothesis testing.  One additional category, 

probability, was added due to a large portion of the course tasks dedicated to this topic. 

The large number of probability tasks includes tasks such as finding the probability of 

simple events, combinations, and permutations.  While a significant portion of the class, 

was spent on probability tasks, 38% of the overall content codes were assigned to 

probability, the conceptual framework for this study does not include this content as 

integral to the development of inferential reasoning.  Figure 4.34 shows the same data 

with the probability tasks removed.
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As depicted in Figure 4.34, the course begins with tasks focused on the core 

concepts of measures of center, skewness, variability and range.  In addition, the 

aggregate concept of data distribution also appears at the beginning of the course, which 

can serve as a unifying structure for building relationships between the core conceptions.  

The core concepts of skewness and range appear only in the first section of the course 

related to descriptive statistics and then quickly diminish.  However, measures of center 

and variance remain prominent throughout the course and even increase in the last 

section related to the inferential methods of confidence interval and hypothesis testing.   

 The other aggregate concepts, sampling and sample variance, begin to appear in 

the third portion of the course related to sampling and estimation, comprising 42% of the 

content codes for the third portion of the course, as do the formal methods of confidence 

intervals and hypothesis testing, comprising 3% of the content codes.  Sampling variance 

appears only in the third section, while sampling grows in absolute terms from appearing 

in 30 tasks during sampling and estimation to 42 tasks in the fourth portion of the course 

related to inference.   

During the fourth and final portion of the course, the inferential method of 

confidence interval grows substantially and comprises 26% of the content codes for this 

portion of the course.  The number of tasks associated with confidence intervals is nearly 

double the number of tasks focused on formal hypothesis testing, as hypothesis content 

codes only comprise 14% of the total codes during this course component.  Confidence 

interval methods appear earlier in the textbook than hypothesis testing.  While the 

associated chapter in the book was completed for confidence intervals, the hypothesis test 

chapter was not completed in its entirety by the end of the course.  In addition, 19 in-class 
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tasks from the Quantitative Literacy Series were dedicated to generating confidence 

interval inferences, compared to 0 tasks for hypothesis testing. 

Core concepts.  The emphasis placed on the core concepts throughout the course 

is shown in Figure 4.35.  The vertical axis provides the total number of content code 

assigned for each core concept for the tasks contained within the statistics during the 

main sections of the course. 

Figure 4.35.  Frequency of coded tasks by core concepts 

 
The first portion of the class, descriptive statistics, includes graphing.  The cohort 

is asked to create visual displays of data such as bar charts, stem and leaf graphs, and dot 

plots.  The data distributions are described in terms of measures of center, skew and 

range.  Once graphing is completed in the textbook in the first chapter, graphs of data 

rarely appear again in the textbook.  In total, 10 tasks involve either the creation of graphs 

or interpretation of graphs in the first chapter, but no other graphs are used in tasks 
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afterwards.  Box plots are addressed in a later chapter, but box plots have the potential to 

obscure important details of the shape of the data distribution.  Data are described mainly 

in terms of the mean or proportion, standard deviation, and relationship to probability 

distributions.  Hence, visual representations of core concepts such as skew or range are 

not present in tasks as graphical displays of data are not provided.  The consistent focus 

on measures of center and variance is explained by the fact that data distributions are 

described in these two terms throughout the course. 

Aggregate concepts.  The emphasis placed on the aggregate concepts and formal 

inferential methods throughout the course is shown in Figure 4.36. 

Figure 4.36.  Frequency of coded tasks by aggregate concepts 

 
 Since the textbook chapter for confidence intervals was completed whereas the 

chapter for hypothesis testing was not, more course tasks were dedicated to confidence 
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interval approaches than formal hypothesis methods.  Sampling tasks comprise a larger 

portion of the content in the last half of the course and contain problems related to 

obtaining an adequately large sample, designing a survey to obtain an unbiased sample, 

estimating population characteristics from samples, determining the relationship between 

samples and sample distributions, and creating inferences about a larger population from 

samples.  The transition from sampling to determining a confidence interval for random 

variables with normal, Poisson and binomial distributions are attended to in chapter 8.  

Chapter 9 was partially completed and two hypothesis tests were introduced and 

discussed:  the difference in means test, and the difference in proportions test.   

In summary, the opportunity to learn as characterized by a content analysis of the 

tasks demonstrates that core conceptions of center and variability and the aggregate 

conception of sample were well represented in the tasks for the statistics course.  The 

core conceptions of skewness and range appear primarily in the first portion of the 

course, as does the aggregate conception of data distribution.  Sampling variability is 

relatively unattended to throughout the course.  The formal method of confidence interval 

is developed throughout the latter portion of the course and the number of tasks requiring 

this method is twice as large compared to hypothesis testing tasks.  Hypothesis testing is 

covered near the end of the course.  Incorporating the findings from the classification of 

tasks by mathematical strands of proficiency, an increased demand for adaptive reasoning 

occurs simultaneous with the introduction of formal inferential methods.  Prior to this 

increase in adaptive reasoning demand, the primary strands are conceptual understanding 

and procedural fluency.  Therefore, the content associated with measures of center, 

variability, data distribution and sampling was taught with a focus on concepts and 



 

procedures.  However, the inferential methods were approached with the additional 

element of adaptive reasoning, although the focus on conceptual understand and 

procedural fluency remained dominant in relative terms. 

Results Summary 

 The findings of this study reveal that over the duration of the statistics course a 

slight majority of the cohort improved their ability to informally inferentially reason, 

generally by one level as defined by the SOLO taxonomy.  A smaller percentage 

remained at the same level.  Only a few preservice teachers exhibited lower levels of 

inferential reasoning at the end of the course, utilizing primarily a frequency approach 

instead of employing sound proportional reasoning.  Those whose dominant level of 

reasoning changed from Unistructural to Multistructural tended to incorporate either 

variance or spread into their responses in addition to measures of center.  Those who 

remained at the Unistructural level did not incorporate concepts beyond measures of 

center into their reasoning, although interviews revealed that some participants at the 

Unistructural were in fact noticing variance but elected not to include this element in their 

responses.  Preservice teachers who performed at a Prestructural dominant level of 

inferential reasoning exhibited difficulty in proportional reasoning and regularly offered 

opinion statements rather than data-based arguments.  Finally, the preservice teachers 

who reasoned at the Relational level incorporated all relevant aspects of tasks both in 

terms of statistical information and context to provide a comprehensive and logical 

response.  In addition, those who provided formal approaches to generate inferences on 

the post-assessment tended to maintain their level of reasoning regardless formal or 
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informal approaches.  When formal results conflicted with informal reasoning, the cohort 

tended to default to informal reasoning.   

Analysis of preservice teachers’ opportunity to learn indicates that while some 

core and aggregate statistics concepts such as mean, variance and sampling received 

regular attention throughout the course, other concepts received sporadic attention 

including data distribution, skew, range and sampling variability.  In addition, the formal 

method of using confidence intervals to generate inferences was covered more 

thoroughly than formal hypothesis testing.  Probability content comprised a significant 

portion of the course but was largely unrelated to generating inferences or supporting the 

underpinnings of inferential reasoning.  The mathematical strands of proficiency analysis 

revealed little expectation to develop adaptive reasoning, at least until the end of the 

course, and even less demand was placed on the development of strategic competence.  

On the other hand, throughout the course, a consistent level of conceptual development 

and procedural fluency was maintained. 

In the next chapter, I provide a discussion of results and offer implications for 

middle and secondary school teacher preparation programs and curriculum developers.  

In addition, I discuss the limitations of this study and suggest an agenda for further 

research topics that may result from this endeavor. 
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CHAPTER 5:  DISCUSSION, SUMMARY, AND RECOMMENDATIONS 
 

 

Over the past century, statistics has grown from “relative obscurity in the 

mathematics curriculum to important, fundament topics that should be studied by all 

students at each grade level” (Jones & Tarr, 2010, p. 73).  With regard to statistical 

inference, current national standards for middle and secondary statistics education 

advocate for the introduction of inferential reasoning during middle school through 

informal approaches, followed by formal approaches in secondary years (Franklin et al., 

2007; NGA and CCSSO, 2010).  Research indicates that little is known about the extent 

of knowledge needed to effectively teach statistics in middle and secondary school 

settings (Garfield & Ben-Zvi, 2008), in part because few investigations have been 

conducted with preservice teachers who have had an opportunity to learn statistics 

content (Shaughnessy, 2008).  Accordingly, this study seeks to address this void in the 

literature by characterizing a cohort of middle and secondary mathematics preservice 

teachers’ inferential reasoning while enrolled in a statistics course designed specifically 

for future teachers.  In addition, a relationship is sought between the cohort’s change in 

informal and formal inferential reasoning.  In order to provide a context for such changes, 

the cohort’s opportunity to learn inferential reasoning is characterized through a careful 

analysis of all tasks contained within the course.   

In this study, I address the following research questions: 

1. How can the change in middle and secondary preservice teachers’ inferential 

reasoning abilities be characterized during a statistics course? 
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2. Does a relationship between preservice teachers’ change in informal and formal 

inferential reasoning exist?  If so, how can it be characterized? 

3. What opportunities to learn inferential reasoning are afforded middle and 

secondary preservice teachers during a semester-long statistics course? 

In this chapter, I summarize the study and discuss the findings.  The chapter is 

organized into five sections:  (a) a summary of the study and findings, (b) a discussion of 

findings, (c) limitations of the study, (d) implications for teacher education, and (e) 

recommendations for future research. 

Summary of the Study and Findings 

Researchers have found that despite advancing statistics content 

recommendations, actual changes in classrooms have lagged behind (Jones et al., 2007).  

One possible reason for this is that teachers have not themselves experienced learning 

statistical content in alignment with current standards.  However, knowledge of the 

statistical content to be taught is clearly an essential component. Until recently, many 

middle and secondary school mathematics teachers have not had an opportunity to learn 

statistics content during their college coursework (Shaughenssy, 2007).  This study 

provides a needed assessment of how middle and secondary mathematics preservice 

teachers inferentially reason before and after a statistics content course.   

Methodology 

 The participants (n=33) for this study are middle and secondary mathematics 

preservice teachers enrolled in a statistics course designed for future teachers at a large 

Midwestern university.  In order to characterize the preservice teachers’ change in 

inferential reasoning, three assessments were administered at key points in the course.  
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The entire cohort completed a pre-assessment during the first day of the course; 

representing a wide range in statistical thinking, a stratified random sample (n=12) 

participated in midcourse clinical interviews; and the entire cohort completed a post-

assessment during the final week of the course.  The assessments consisted of tasks 

designed to elicit inferential reasoning responses based on prior research studies (e.g., 

Bakker, 2004; Cobb, 1999; Garfield et al., 2007; Watson, 2002) and embodied the 

following critical attributes of assessment tasks: ill-structured, open-ended, represented 

visually, and embedded within a relevant context.  

 Responses to assessment tasks were classified in accordance with a hierarchical, 

cognitive framework rooted in neo-Piagetian, cognitive psychology and especially 

adapted for statistical reasoning (Biggs & Collis, 1982).  Informal inferential reasoning 

approaches represent the concrete mode of reasoning, and formal approaches represent 

the formal mode.  Informal responses to tasks were assigned to one of four reasoning 

levels using a modified SOLO taxonomy informed by prior research (Mooney, 2002), 

and formal reasoning responses were also assigned to one of four reasoning with the 

original SOLO taxonomy.  For each assessment, responses to tasks were converted to an 

interval scale so that means and dominant levels of inferential reasoning could be 

determined.  When the mean fell between two reasoning levels, the frequency of response 

types were examined in order to determine the modal reasoning level for a given 

preservice teacher. The change in the preservice teachers’ inferential reasoning was 

characterized by reporting differences between dominant levels of inferential reasoning 

from the pre- to post-assessments at the individual level. 
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In addition to characterizing the overall change in the cohort’s inferential 

reasoning, a comparison of the cohort’s informal and formal inferential reasoning was 

undertaken to determine if a relationship existed between the two reasoning approaches 

on the post-assessment.  A dominant informal inferential reasoning mode was determined 

for each preservice teacher using the same procedure described previously.  Because the 

cohort responded to only a few tasks with formal responses, this informal dominant mode 

of reasoning was compared to each formal response provided to determine whether 

response pairs were concordant or discordant.  In this manner, a correlational measure 

was generated that represents the relationship between the cohort’s informal and formal 

inferential reasoning on the post-assessment. 

 Lastly, the cohort’s opportunity to learn inferential reasoning during the statistics 

course was characterized through an analysis of all tasks (n=375) utilized in the course 

including homework problems assigned from the textbook, tasks generated by the 

instructor during lecture, computer simulation activities, in-class group projects, and 

course assessments.  The tasks were analyzed in relation to two important dimensions:  

statistical content necessary to complete the task, and the strands of mathematical 

proficiency (Kilpatrick et al., 2001).  

Results of the Study 

 Preservice middle and secondary mathematics teachers’ inferential reasoning.  

Responses to the three assessments provide evidence of growth in inferential reasoning at 

the class level from the beginning to the end of the statistics course.  From the pre- to 

post-assessment, the average dominant level of reasoning for the cohort as a whole 

shifted from Unistructural in nature, attending to one correct data comparison in order to 
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generate an inference, to Multistructural in nature, incorporating several relevant aspects.  

However, considerable variation at the cohort level within specific tasks, and at the 

preservice teacher level across tasks was evident on both assessments.   

 At the cohort level, the variation in reasoning specific to tasks is measured by the 

standard deviation in levels of inferential reasoning, and ranged from 0.35 to 0.99 on the 

pre-assessment and 0.79 to 1.08 on the post-assessment.  Tasks with standard deviation 

values below 0.75 tended to elicit only one or two different levels of inferential reasoning 

compared to tasks with standard deviation values near 1.0 that tended to elicit the full 

spectrum of possible levels of inferential reasoning.  One task that appeared on both the 

pre- and post-assessment was ultimately excluded from data analysis because its context 

may have yielded responses that were not representative.  

 At the preservice teacher level, stability in inferential reasoning across tasks was 

analyzed in order to determine a dominant level of inferential reasoning for each 

participant on each assessment.  Preservice teachers with the highest degree of variation 

across tasks tended to exhibit responses at three or more levels of inferential reasoning.  

In contrast, the preservice teachers with the lowest level of variation provided inferential 

reasoning responses at only two levels of reasoning.   

 Prior to the course, the cohort reasoned predominantly at the Unistructural level 

because responses typically consisted solely of informal approaches.  More specifically, 

the portion of the cohort at the Unistructural inferential reasoning level generated 

inferences primarily based on changes in measures of center.  Those at the Prestructural 

level either did not provide data-based arguments or neglected to apply proportional 

reasoning.  The relatively small number of preservice teachers at the Multistructural 



 

inferential reasoning level attended to both changes in measures of center and one other 

aspect of the data.  At the end of the course, the cohort’s inferential reasoning was spread 

across the four possible levels, with most at the Multistructural level and demonstrating 

both informal and formal approaches to assessment tasks.  The preservice teachers at the 

Relational inferential reasoning level provided qualitatively different responses that fully 

considered all data provided in the tasks and the context of the task in order to generate 

an inference.   

 The changes in dominant levels of inferential reasoning differed between the 

middle school and secondary preservice teachers.  Although 58% of all participants 

increased their reasoning ability, the growth was more pronounced for secondary teachers 

with 75% increasing one or more levels of inferential reasoning compared with 50% for 

the middle school population.  In addition, 12% of the cohort experienced a one-level 

decline in inferential reasoning, most of whom were middle school preservice teachers.  

The amount of preservice teachers who remained at the same level of inferential 

reasoning was similar between the two groups with 30% overall, 31% specific to the 

middle school population and 29% for the secondary.  While the middle school 

preservice teacher population reported completing more prior statistics coursework than 

their secondary peers, comparable gains in inferential reasoning were not realized.  In 

addition, the secondary preservice teachers completed more advanced mathematics 

coursework than the middle school preservice teachers and more mathematics courses 

overall. 

Commonalities in the inferential reasoning responses were discerned for groups of 

preservice teachers, who reasoned at the same level, advanced one or two levels and 
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decreased by one level.  Of those who remained at the same dominant level of reasoning, 

the largest portion remained at the Unistructural level. These preservice teachers 

primarily focused on measures of center when generating inferences and did not 

coordinate information related to other core statistical concepts such as range of the data 

distribution and variation in results.  Midcourse interview data suggest that some 

preservice teachers at this level of inferential reasoning noticed other elements in the data 

distribution but did not incorporate this information into responses.  Several secondary 

preserivce teachers remained at the Multistructural level of inferential reasoning.  Typical 

responses provided by these preservice teachers accounted for differences in measures of 

center and attended to one additional global characteristic of the data distributions such as 

spread or variation.  The responses tended to fall short of Relational levels of inference 

because they did not consider all data provided or presented justfications in a disjointed 

and sequential fashion rather than an integrated whole. 

The most common change was a one-level increase with the portion advancing 

from the Unistructural level of inferential reasoning to Multistructural.  Typical responses 

at both levels of reasoning follow the examples provided previously.  Two middle school 

preservice teachers changed from Prestructural to Unistructural as their dominant level of 

inferential reasoning. However, opinion statements, additive reasoning and attention to 

local events such as outliers continued to appear sporadically in responses.  The five 

preservice teachers, whose dominant level of inferential reasoning changed from 

Multistructural to Relational, represented the highest performing group.  Characteristic 

trends in responses included attending to all data provided in tasks, coordinating core and 

aggregate statistical concepts to arrive at a comprehensive inference, and providing 
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interpretations anchored in the task context.  In addition, the Relational responses 

quantified changes between data distributions in order to justify significance or the lack 

of signficance.  Lastly, two preservice middle school teachers declined one level in 

inferential reasoning moving from the level of Unistructural to Prestructural.  These two 

preservice teachers shared characteristics with those who began at the Prestructural level. 

Specific to formal inferential reasoning, results followed the trends exhibited in 

the post-assessment overall.  The cohort tended to reason between the Unistructural and 

Multistructural levels, but closer to Multistructural.  Several common errors observed on 

formal responses include:  interpreting the statistical meaning of significance, selecting 

an appropriate formal method, and populating formula values incorrectly. 

Relationship between informal and formal inferential reasoning.  Results from 

the post-assessment support the existence of a relationship between informal and formal 

approaches to inferential tasks.  Given that the frequency of formal responses to tasks 

was low in comparison to informal responses, each formal task response level was 

compared to the associated individual preservice teachers’ dominant levels of informal 

reasoning on the post-assessment.  For a given preservice teacher, 80% of levels assigned 

to formal inferential task responses were concordant with the dominant informal 

inferential reasoning level.  Therefore, a substantial relationship appears to exist as 

preservice teachers tended to reason at similar levels for both formal and informal 

approaches on the post-assessment. 

The opportunity to learn inferential reasoning.  The cohort’s opportunity to 

learn inferential reasoning is characterized through an analysis of the 375 tasks contained 

within the statistics course.  The content analysis was conducted in accordance with the 
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conceptual framework and determined that the core conceptions of center and variability 

and the aggregate conception of sample were well represented in the statistics course.  

The core conceptions of skew and range appear primarily in the first portion of the 

course, as does the aggregate conception of data distribution.  However, the concept of 

sampling variability is sparsely represented throughout the course.  The formal method of 

confidence interval is developed throughout the latter portion of the course, and the 

number of tasks requiring this method is twice as large compared to hypothesis testing 

tasks.  Hypothesis testing is not taught until the end of the course, in the final chapter of 

the textbook.  Graphical displays of data appear in the first chapter of the course related 

to descriptive statistics, but are largely not present afterwards.   

Incorporating the findings from the classification of tasks by mathematical strands 

of proficiency (Kilpatrick et al., 2001), an increased demand for adaptive reasoning 

occurs simultaneously with the introduction of formal inferential methods with 37% of 

inferential tasks requiring adaptive reasoning versus 12% for other tasks in the course.  

Prior to the topic of inferential reasoning, the primary proficiency strands emphasized by 

tasks are conceptual understanding (56%) and procedural fluency (75%).  Therefore, the 

content associated with measures of center, variability, data distributions and sampling 

was taught with a focus on concepts and procedures.  However, the inferential methods 

were approached with the additional element of adaptive reasoning, although the focus on 

conceptual understanding and procedural fluency remained dominant in relative terms. 
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Discussion of Findings 

 The purpose of this study was to characterize changes in the preservice teacher’s 

inferential reasoning while enrolled in a statistics course.  However, the identification of 

specific catalysts for learning and changes in inferential reasoning was beyond the scope 

of the study.   

 The most prevalent trend was a one-level change in inferential reasoning, from 

Unistructural to Multistructural on the pre- to post-assessment, respectively.  Responses 

provided at this level tended to be based on changes in measures of center or shifts in 

modal clumps and add a global comparison between data sets.  Watson (2003) notes in a 

study across grade levels 3, 5, 6, 7, and 9 that reasoning with variation was not a good 

predictor of the successful inferential reasoning, but rather that noticing the shape of the 

data displays assists more strongly in effective decision-making.  In this study, responses 

to tasks incorporated a variety of global characteristics beyond measures of center in 

order to advance inferential reasoning, albeit in a disjointed and uncoordinated manner.  

Hence, findings support that noticing the shape of data displays assists more strongly in 

decision-making, than attending specifically to variation.  Examples of global 

comparisons include range, spread and variance, and these topics were indeed given 

substantial attention in the first half of the statistics course.    

Of interest is the cause for these preservice teachers to attend to additional 

statistical concepts from the beginning to end of the statistics course.  Watson (2003) 

found that student’s inferential reasoning could be advanced through the introduction of 

cognitive conflict in a similar manner to that achieved through maturation.  Given that 

participants in this study were of adult age, one would expect that interactions in the 
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environment that supported the learning of inferential reasoning.  The statistical content 

referenced in Multistructural responses tended to be addressed in the first portion of the 

course.  The concepts of center, range, variance, distribution and skew were discussed in 

first chapter of the statistics course through the use of data displays.  Therefore, it is 

plausible that the coupling of visual data displays with an emphasis on concepts related to 

data distributions provided the necessary opportunity to learn for a portion of the cohort 

who attended to more than just measures of center.  

Another possible explanation for the growth in reasoning may relate to the 

explicit pairing of mean with variance in course tasks.  Results of the content analysis 

revealed that during the last half of the course, rarely was the mean for a data set 

provided without the variance or standard deviation.  Therefore, through these tasks a 

consistent message was implicitly communicated that both concepts were needed to 

describe the data set and generate an inference, and this may have stimulated awareness 

that two pieces of information are needed in justifications.  

A remarkable finding of this study is that no preservice teachers demonstrated 

Relational inferential reasoning prior to the statistics course.  This is somewhat surprising 

given that two-thirds of the cohort had completed either an introductory or advanced 

statistics course prior.  This finding suggests that carefully structured learning 

interactions are required for individuals to advance reasoning to the Relational level.  In 

other words, maturation and unstructured life experiences may not promote full 

development of inferential reasoning ability.  Since inferential reasoning is fraught with a 

number of misconceptions relating to sampling (Tversky & Kahneman, 1971), the need 

for authentic experiences in sampling data and developing a sense of expected variance in 
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samples is critical for the process of generating inferences.  In the content analysis, 

students rarely engaged in authentic sampling of data, and thus misconceptions may not 

have been elicited nor confronted.  In addition, the course tasks did not require adaptive 

reasoning to a substantial level prior to the latter portion of the course.  These two 

omissions might explain why so few preservice teachers attained the Relational level of 

inferential reasoning. 

Only a few preservice teachers, three secondary and two middle school, ascended 

to the Relational level by the end of the course, which is consistent with prior research 

findings that report disappointing results from college level statistics courses related to 

interpreting results of hypothesis tests (e.g. delMas et al., 2007).  While the pre-

assessment dominant reasoning levels of these five preservice teachers were slightly 

higher than the cohort’s average, the only notable difference in the group is that one 

member had previously completed an AP statistics course.  Why these five were able to 

reason at the Relational level and others in the cohort were not by the end of the statistics 

course is worth further exploration.  

The five preservice teachers at the Relational level demonstrated flexibility in 

terms of utilizing both formal and informal approaches on the post-assessment.  Because 

preservice teachers who reasoned at the Relational level responded with both informal 

and formal responses to inferential tasks, this study provides a needed distinction 

between those who can carry out formal procedures and those who understand the 

process of statistical inference.  Previous research indicates that the ability to successfully 

complete a formal hypothesis test or formal process does not ensure an understanding of 

how to apply inferential processes to ill-defined, real-world context (Aquilonius, 2005; 



 

Liu, 2005).  In this study, many preservice teachers at the Multistructural level were able 

to execute formal methods effectively, by choosing appropriate tests and entering correct 

values for variables, but then fell short of interpreting the results by either claiming 

significance or lack of significance inappropriately.  In addition, those who responded at 

the dominant Multistructural level of reasoning fell short of generating a well-supported 

informal inferential response, by failing to provide quantitative support for claims of 

significance.  However, preservice teachers at the Relational level were able to correctly 

interpret results from hypothesis tests and also provide likewise sophisticated responses 

using informal approaches.  

 In general, supporting or refuting significance posed a challenge for preservice 

teachers below the dominant level of Relational inferential reasoning.  As an example, on 

the Speed Trap task many preservice teachers stated that a 1.8 miles/hour reduction in the 

average speed of 60 cars was insignificant without providing any additional justification.  

Prior research has found that upon completion of an introductory, college level, statistics 

course, the least understood concept is significance, and that most students only discuss 

significance through relationships to other topics (Williams, 1999).  For those at the 

Prestructural and Unistructural dominant reasoning levels, judgments regarding 

significance tended to either consist of mere opinion statements or were based on claims 

about absolute (not relative) differences in means without consideration for variance or 

sample size.  For these preservice teachers, significance was determined by the context of 

a given task and absolute differences of only a single measure. One possible explanation 

for the difference between those who pursued quantitative approaches to significance 

versus those who did not is that the former group may understand the reasoning behind 
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the steps necessary to generate an inference (collecting a sample or samples, accounting 

for possible error, determining significance based on p-values), while the latter group 

does not.  The heavy emphasis placed on procedural fluency versus adaptive reasoning in 

the course tasks strongly suggests that carrying out algorithms was privileged over 

understanding why procedures work and how variables relate to generate the an 

inference.  

A key finding of this study is that a considerable portion of the cohort did not 

advance their inferential reasoning from the beginning to end of the course.  The need for 

the discipline of statistics arises from the omnipresence of variability (Moore, 1997) and 

the associated need to attend to variation (Wild & Pfannkuch, 1999).  In contrast to the 

findings of Konold and Pollatsek’s (2002) study, preservice teachers who reasoned at the 

Unistructural level typically attended to measures of center, not variation.  In fact, a large 

portion of the cohort reasoned predominantly with measures of center, as 70% reasoned 

at the Unistructural level on the pre-assessment and 33% on the post-assessment.  

Archetypal responses to inferential tasks on both assessments focused on changes in 

measure of center in the form of either absolute differences in means or estimated shifts 

in modal clumps of data.  Such results are consistent with research conducted with 

inservice secondary mathematics teachers, which found that teachers are generally 

comfortable comparing distributions informally with descriptive statistical measures such 

as mean, but struggle to reason about multiple types of variation both within and between 

data distributions (Makar & Confrey, 2001).  As previously stated, those who reasoned at 

the Unistructural level, as evidenced by the case of Dave, may have noticed variation 

within and between data distributions but nevertheless neglected to include these in 
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written responses.  Since Dave and others were not queried about deficiencies in their 

reasoning, the reasons behind such omissions are unknown.  One possible explanation is 

that those who reasoned at the Unistructural level either believed that these observations 

were not relevant or they were not desired, given their prior experiences in deterministic 

approaches to statistics that emphasize measures of center (Leavy, 2010).  Another 

possible factor may have been the lack of prior advanced mathematics coursework taken 

by the middle school preservice teachers. The secondary school preservice teachers 

tended to reason at higher dominant levels by the end of the course in comparison to their 

middle school peers and most had completed three semesters of Calculus.  The reasoning 

requirements of advanced mathematics courses may have provided experiences that 

prepared the secondary preservice teachers for justification and argumentation demands. 

A common feature of all preservice teachers was the variation in their responses.  

On both the pre- and post-assessments, approximately one third of the preservice teachers 

exhibited three different levels of inferential reasoning on tasks, and this finding is 

consistent with the notion that students’ reasoning is often inconsistent from test-item to 

test-item (Garfield & Ben-Zvi, 2007).  The tasks posed on assessment were fairly similar 

in nature in terms of the statistical content but differed in their contexts and data 

representations.  Therefore, the variation in inferential reasoning seemed to relate more to 

the preservice teachers’ interpretation of the contextual considerations of the problem 

statements and data representations and values provided rather than the tasks themselves.  

Another one third of the cohort was unaffected by these differing data representations, 

values of data, and contexts, but did not perform at higher or lower levels of inferential 

reasoning.  The reasons for the stability or instability in reasoning across items are 
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unclear, but this phenomenon was evident on both assessments.  Moreover, those 

preservice teachers who exhibited the highest level of variation on the pre-assessment did 

not demonstrate as much inconsistency on the post-assessment, suggesting at the 

individual level the presence of considerable variation both within and across 

assessments. 

Limitations of the Study 

 Limitations are inherent in all research studies, and three limitations of this 

research study are discussed below. 

Nature of the Assessment Tasks 

 In order to fully assess preservice teachers’ ability to reason inferentially, 

authentic tasks are needed which allow participants to define the problem statement, 

design an experiment, collect the necessary data and make appropriate interpretations.  

Although the tasks included in the assessments embody recommended attributes of high-

quality tasks (e.g., ill-structured, open-ended), all data within the tasks were provided; 

stated differently, preservice teachers neither generated nor collected any empirical data.  

Hence, data collection choices and the associated implications were not assessed through 

the tasks to a large degree.  In addition, the extent to which the preservice teachers were 

required to define the problem statements was limited in nature, as preservice teachers 

were asked to interpret and parameterize problem statements from an overarching goal.  

Wild and Pfannkuch (1999) advocate the need to expose students to statistical problems, 

which require them to make decisions regarding problem formulation and experimental 

design, as do the authors of the GAISE recommendations (Franklin et al., 2007).  By 
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adding such elements to tasks, additional complexity would have been introduced and 

thereby making it more challenging to hone in on inferential reasoning.  

 In addition, the data sets included in assessments were almost exclusively 

represented as dot plots with only a few cases of box-plots and histograms.  Therefore, 

the reasoning processes associated with generating inferential statements may under 

represent approaches associated with the comparison of data displayed in box-plots and 

histograms. 

Formal Inference Characterization 

With regard to formal inference, this study represents a first attempt to apply the 

SOLO taxonomy to responses of formal inferential tasks.  The characterization of formal 

approaches to inferential tasks is based on three components:  choice of the appropriate 

hypothesis test or formal method, execution of the methods with appropriate values for 

variables, and a reasonable interpretation of results.  By focusing on these three 

components, the reasoning portion of formal methods was relegated to the final step of 

the process, namely the interpretation of results.  By attempting to segregate informal and 

formal approaches, an element of adaptive reasoning was not assessed.  The implications 

regarding the variables that serve as inputs to the formal method (mean, proportion, 

variance and sample size) and the relationships between these inputs were not evaluated.  

Context of the Study 

 The results of this study may not be generalizable to all contexts, as they represent 

a specialized research context of one statistics class taught by a particular instructor.  The 

class was taught once a week for a three-hour block, likely atypical of most statistics 

courses in the country, and used a specific set of course materials.  The impact on 
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inferential reasoning of a different instructor, using alternative curricular materials, and 

offered in another course format is simply unknown.  

Implications for the Statistical Preparation of Teachers 

The results of this study provide insight into the preparation of middle and 

secondary mathematics teachers specific to statistical inference.  In this section, I present 

implications for teacher preparation drawn from these results in the areas of adaptive 

reasoning, proportional reasoning, the role of probability, and informal inferential 

reasoning. 

Greater Emphasis on Adaptive Reasoning 

Through the task analysis, an imbalance in emphasis placed on the mathematical 

strands of proficiency exists in the statistics course with the strands of conceptual 

understanding and procedural fluency dominating the course experience.  Adaptive 

reasoning—“the capacity for logical thought, reflection, explanation, and justification” 

(Kilpatrick et al., 2001, p. 116)—was emphasized only modestly and largely confined to 

the final components of the course.  Because of the inconsistent focus on adaptive 

reasoning, the cohort may have been ill prepared to provide justification for choices made 

in generating inferences that coordinating multiple concepts as demonstrated on post-

assessment tasks.  Therefore, adaptive reasoning in the form of answering questions that 

begin with the word “why” is critical to developing argumentation schemas that organize 

conceptual and factual information.  These schemas will later be called upon in order to 

generate an inference and organize new pieces of information. Means and Voss (1996) 

advocate that adaptive reasoning and argumentation must be developed over time and 

across disciplines.  Therefore leaving this demand unaddressed until the end of the 
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statistics course creates a quantum leap of expectation for preservice teachers who were 

not accustomed to organizing their learning in this fashion. 

Explicit Focus on Proportional Reasoning 

Based on analysis of pre- and post-assessment responses, five middle school 

preservice teachers demonstrated a lack of proportional reasoning and instead favored 

absolute frequency approaches.  Not surprisingly, these preservice teachers reasoned at 

the dominant levels of Prestructural or Unistructural throughout the course. In a cognitive 

conflict research study, Watson (2002) found that it is very difficult to change the 

inferential reasoning of those who favor absolute frequency approaches over proportional 

approaches.  Van Dooren et al. (2005) identified structural components of mathematics 

tasks that cue secondary students to engage in proportional reasoning, and the tasks 

included within this study did not include such cues.  Perhaps the structure of the tasks 

coupled with a rigid conception of when to apply proportion reasoning hindered a subset 

of the cohort.  Due to the lack of positive change in inferential reasoning with these five 

middle school preservice teachers, results of this study support the notion that effective 

use of proportional reasoning is necessary for advancing inferential reasoning ability.  

Therefore, instruction should seek to assess whether students are appropriately reasoning 

proportionally early in statistics coursework.  In addition, remediation is needed for those 

who demonstrate a preference for absolute frequency approaches for comparing sets of 

data or inconsistent use of proportional reasoning.  The lack of proportional reasoning 

among preservice middle school mathematics teachers threatens the prospect of 

developing proportional reasoning in middle school students.  

The Role of Probability: A Tool for Statistics 



 

 Probability is an essential tool for statistics and supports the process of generating 

inferences.  However, probability tasks that focus on counting techniques such as 

combinations and permutations appear unrelated to generating inferences.  If the goal of 

an introductory statistic courses is to teach inference, then all topics within the course 

should relate to that primary objective.  An entire chapter of the course textbook, 

equating to two weeks of course time, was dedicated to applying combinations and 

permutations.  In statistics courses, the time dedicated to content ultimately unrelated to 

generating inferences should be lessened in order to allow for key missing components, 

such as informal approaches to inference.  In addition, probability tasks should not be 

taught in a stand-alone matter but instead should connect to other topics within the course 

to illustrate the role of probability as a tool for statistics.  

Explicit Attention to Informal Inferential Reasoning 

  In order to prepare middle and secondary school mathematics preservice teachers 

adequately to teach statistics in alignment with current recommendations, preservice 

teachers need an opportunity to learn the same content that they will ultimately be 

teaching.  Given the heavy emphasis of informal inferential reasoning in middle school, 

tasks such as these must be included in courses that are specifically designed for teachers.  

At no time during this course, was the cohort asked to use informal approaches to 

compare two data distributions and generate an inference.  Therefore, informal inferential 

tasks need to be added to the curriculum of middle school mathematics preservice 

teachers, as this course represents preservice teachers’ last opportunity to learn informal 

approaches to inference.   
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In addition to not aligning with current content recommendations, formal 

approaches were clearly privileged over other, less formal methods.  Informal inferential 

methods should prevail early in the course and provide a bridge to introducing formal 

methods later parallel to the current mathematics curriculum standards, which place an 

emphasis on informal inference in the middle grades followed by formal methods in 

secondary school.   

While designing separate courses may seem like a logical solution, many 

secondary mathematics preservice teachers pursue dual certification for middle and 

secondary mathematics.  Informal methods must be taught in an authentic manner, 

particularly for those who will teach middle school students, without privileging formal 

approaches to inference.  One possible approach to resolving this issue is to teach both 

formal and informal approaches in tandem.  By working with raw data sets, preservice 

teachers could be asked to provide both a formal approach to generating a hypothesis and 

an informal approach through visual comparisons of data distributions.  By contrasting 

informal and formal approaches, one a concrete representation and the other a symbolic 

representation, preservice teachers have the potential to develop a deeper and more 

connected understanding of inference as well as an understanding of the limitations and 

benefits associated with both approaches.  Arguably, middle and secondary mathematics 

teachers should have an understanding of both approaches to inferential reasoning to be 

effective teachers.   

Recommendations for Future Research 

The findings of this study suggest the need for future research efforts.  In this 

section, I advocate the value of additional research specific to:  the development of 
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inferential reasoning, the characterization of formal inferential reasoning, the relationship 

between informal and formal inferential reasoning, and understanding how context and 

data display within tasks influence inferential reasoning.   

The Development of Inferential Reasoning 

 A key finding of the study was a change from Unistructural to Multistructural 

inferential reasoning.  Since the assessments were administered at the beginning and end 

of the course, this study is unable to conclusively report the degree of improvement 

associated with the first portion of the course focused on core and aggregate concepts 

versus the later portion specific to inferential content.  The core concepts required to 

reason informally through the use of data displays were covered during the early portions 

of the statistics class with an emphasis on concepts and procedures.  From the results of 

the midcourse interviews, a portion of the cohort demonstrated changes in their 

inferential reasoning by attending to additional aspects of the data in their responses.  

However, this study is unable to conclusively report precisely when the change in 

inferential reasoning occurred.  It follows that additional research is required to carefully 

gauge the influence of instruction related to core and aggregate concepts on the 

development of inferential reasoning ability.  The results of such research would provide 

guidance on the sequencing of statistical content and tasks to develop inferential 

reasoning and the role of informal and formal approaches to inference.  In addition, 

studies that assess the influence of various course formats and curricular materials are 

needed to fully understand how inferential reasoning develops.  
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Formal Inference Characterization 

This study addressed calls for additional investigations into the use of the SOLO 

taxonomy.  The utility of the SOLO taxonomy in characterizing formal approaches to 

inference is promising given the results of this study, and warrants additional attention 

and refinement.  Since justification was required after an inference was generated, 

adaptive reasoning was assessed primarily in relation to interpreting the result of the 

formal approach.  One possible way to assess adaptive reasoning throughout formal 

inferential tasks is to require a prediction of the inference and a corresponding 

explanation of why the predication either aligned with the inference generated or did not.  

By requiring a prediction coupled with an explanation of results, a view is provided of 

how well the respondent understand the relationships between core and aggregate 

concepts in generating inferences.  Developing robust descriptions of formal inferential 

reasoning at the four hierarchical reasoning levels based on student responses to formal 

inferential tasks is needed to provide a robust, cognitive framework for characterizing 

growth in this learning mode.  

The Relationship between Informal and Formal Inferential Reasoning 

 In addition to refining characterizations of formal inferential reasoning, the 

relationship between informal and formal inference requires additional research.  

Statistics education leaders have placed their chips on a connection between the two, and 

this study supports that there is a relationship.  However, informal inferential reasoning 

as a precursor to formal inferential reasoning has not yet been confirmed.  In this study, a 

relationship between informal and formal inferential reasoning was identified through a 

correlational analysis.  However, the number of formal responses in this analysis was 
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limited.  Further research is needed to augment the nature of this relationship between 

informal and formal inferential reasoning in terms of the dependency of one reasoning 

approach on the other.  From the results of this study, the SOLO taxonomy has shown to 

a viable approach to characterizing both types of approaches to inferential tasks and 

provides a framework for drawing comparisons. 

Context and Data Representations of Tasks 

 One third of the cohort on each assessment seemed relatively unaffected by 

different contexts and data representations in their inferential reasoning responses.  

However, the majority of the cohort displayed variation in inferential reasoning across 

tasks on both assessments, and the context of tasks and choice of data displays may have 

played a role in the responses provided.  Given the prominence of inferential reasoning in 

the middle and secondary school mathematics curriculum, an item bank of both informal 

and formal inferential reasoning tasks should be created for subsequent use with students 

of all ages as well as preservice mathematics teachers.  Furthermore, responses to the 

items should be collected and analyzed so that the effects of context and data displays on 

inferential reasoning can be ascertained.  The item test bank would also be a helpful tool 

for informing the instruction of middle and secondary students teachers as well as 

mathematics teacher educators. 

Reflections 

 This study addressed an existing void of research focused on middle and 

secondary preservice teachers’ knowledge of inferential reasoning after being afforded an 

opportunity to learn statistical content.  With the increased role of statistics in the middle 

and secondary mathematics curriculum, an understanding of how well prepared teachers 
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are to teach statistics content in alignment with national standards is critical.  Because 

inferential reasoning serves as a unifying topic in the statistics curriculum, a view into 

multiple aspects of the preservice teachers’ knowledge was provided. 

 Upon reflection, certain aspects of the study were extremely helpful in both 

eliciting and characterizing the preservice teachers’ inferential reasoning.  The tasks 

selected as items on assessments were either derived from research studies or included in 

statistics education publications.  Because justification and explanation was required to 

complete the tasks, robust responses were supplied and provided visibility into how the 

preservice teachers were thinking.  Secondly, the SOLO taxonomy provided a means for 

comparing informal and formal inferential reasoning responses on an equivalent scale.  

Since this is the first research study to characterize both modes of inferential reasoning 

with the SOLO taxonomy, the results support Reading’s (2007) recommendations to 

characterize informal and formal inferential reasoning in this manner.  

Formal methods for inferential reasoning are often viewed as more cognitively 

advanced than informal approaches.  From the findings of this research study, the 

possibility that students may advance their levels of reasoning in both informal and 

formal modes within similar timeframes offers an alternative perspective on how people 

learn to inferentially reason.  This finding provides needed information about students’ 

capacity to informally generate inferences and the associated capacity in formal 

approaches (Garfield & BenZvi, 2008).  Integration of formal and informal approaches to 

inferential reasoning should set the stage for new curricular developments at the college 

level.   
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  Lastly, national standards assert that reasoning and sense making should be the 

primary focus of secondary mathematics coursework.  By classifying course content in 

terms of the emphasis placed adaptive reasoning, the degree that courses demand 

reasoning can be determined.  The participants in this study are experiencing college 

courses that unfortunately do not reflect standards regarding reasoning.  The need to alter 

teacher preparation programs to develop preservice teachers’ ability to reason about and 

make-sense of statistical content is urgent given that their own experiences are at odds 

with how they will be asked to teach. 


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APPENDIX A:  PRE-ASSESSMENT 
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Name:__________________________   Date:_________________ 
 
 
Please attempt all tasks to the best of your ability and provide complete explanations 
where requested. 
 
TASK 1:  Middle School Student Bedtimes 
 
Part A:  The bedtimes of middle school students in Columbia were collected at the 
beginning of the school year.  In the chart below are the data provided by one class.  
Please answer the following questions specific to this class. 
 
 

 
 
A. What is the median bedtime value? ______________________ 
 
B. What does the median value represent or tell us about the data?_______________ 
 
________________________________________________________________________ 
 

C. What is the mode bedtime value? ______________________ 

D. What does the mode value represent or tell us about the data?________________ 
 
________________________________________________________________________ 
 

E. What is the average bedtime value? ______________________ 

F. What does the average value represent or tell us about the data?_______________ 
 
________________________________________________________________________ 
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G. What is the range for this set of data? ___________________________________ 

H. Are there any outliers (please list the values, if any)?_______________________ 
 
I. How would you describe the shape of the distribution of data? 

________________________________________________________________________

________________________________________________________________________ 

 
J. How would you describe the bedtimes of this class to someone not looking at the 
data?   
________________________________________________________________________ 

________________________________________________________________________ 

 
 
Part B:  Now, the bedtimes of all the middle school students are shown in the chart 
below. Please answer the following questions specific to this set of data. 
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A. Without computing an exact answer, what would you estimate is the average  
 
bedtime for this large data set?  
 
_______________________________________________________________________ 
 
B. Is the mean, mode or median the best indicator of the general bedtime for middle 

school students?  Why?  

________________________________________________________________________ 

________________________________________________________________________

. 

C. How would you describe the shape of the distribution of this data set? 

________________________________________________________________________ 

________________________________________________________________________ 

 
D. Compare the chart of Mrs. Lewis’ class (in Part A) to the chart of the entire 

school.  Please comment on any notable differences? _____________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

E. What do you think might explain the differences you noticed?________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 
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Task 2:  Which Class Did Better?  
 
Two classes are competing on quick recall math facts.  One class is called the “Pink” 
class, and the other the “Black”.  The two classes both complete a quiz, and the results 
are shown below.  
 

 
 

 
 

Which class did better?  Please provide a complete explanation and any numerical 
information used in your rationale._________________________________________ 
 
_____________________________________________________________________ 

_____________________________________________________________________ 

_____________________________________________________________________ 

_____________________________________________________________________ 

_____________________________________________________________________ 

_____________________________________________________________________ 

_____________________________________________________________________ 

_____________________________________________________________________ 
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Task 3:  Weight of Grade 7 Students 
  
Below are two sets of real data, the first one with 27 values and the second one with 67, 
showing the weights (in kilograms) of grade 7 students from Columbia, Missouri.   

 
Question:  Based on this actual data, what would you estimate the shape of the 
distribution of 1000 grade 7 weights might look like?  Please sketch below and label your 
axes. 

 
 
 
 
 
 
 
 
 
 
 
 

Provide an explanation and rationale for your sketch above.  _______________________ 
 
________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 
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Task 4:  Which Treatment is More Effective? 
 
Data is collected by two different pharmaceutical companies (Company A and Company 
B) on patients who suffer from migraine headaches.  In both cases, the patients were told 
to take the medicine as soon as they experienced a headache and report how long it take 
to feel the relief effect of the medication.  The results from each experiment are shown 
below. 
 

 
 
 
 
Which medicine, Drug A or Drug B, would you recommend? Justify your choice below.  
 
________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 
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Task 5:  Weight-Training Program Effectiveness for Track Athletes 
 
Suppose there is a special summer camp for track athletes. There is one group of 100 
athletes that run a particular race, and they are all pretty similar in their height, weight 
and strength. They are randomly assigned to one of two groups.  One group has an 
additional weight-training program. The other group has the regular program without 
weight-training.  All athletes from both groups run the race and their times are recorded, 
so that the data can be used to compare the effectiveness of the two training programs. 
 
Below are four pairs of boxplots that compare the running times of athletes in the two 
different training programs (one with weight-training and one with no weight-training).  
Examine each pair of boxplots, and think about whether or not the sample data would 
lead you to believe that the difference in running times is caused by these two different 
programs. (Assume that everything else was the same for the students and this was a true, 
well-designed experiment). 
 

 
 
A) Rank the four pairs of graphs on how convincing they are in terms of making an 

argument that the weight-training program was more effective in decreasing students’ 
times from the least convincing to the most convincing evidence.  Explain your 
reasoning. 

________________________________________________________________________

________________________________________________________________________
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________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 

 

B) For the most convincing graph, would you be willing to generalize the effects of the 
training programs to all similar students on track teams based on these samples? Why 
or why not? 
 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________
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Task 6:  Diet and Cholesterol 

High cholesterol is a contributor to heart disease.  A study was conducted to investigate 
the effect of dietary change on cholesterol levels.  Participants in the study voluntarily 
switched from a “standard American diet” to a vegetarian diet for one month.  The data 
shown below are the participants’ cholesterol levels before and after the dietary change, 
in milligrams of cholesterol per deciliter of blood (mg/dL).  

 
 
Assuming that lower levels of cholesterol are the goal, would you say that the change in 
diet is effective for lowering cholesterol or could similar results have been achieved by 
chance?  Provide a detailed explanation below.  
________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 
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Task 7:  Review Session Effectiveness 

Below are two graphs of exam scores. The first one is a graph of exam scores 
representing many sections of students enrolled in an introduction to statistics course. For 
this population, the average score is 74.  A random sample of 50 students in the class 
attended a review session with a teaching assistant prior to the exam. They were given the 
exact same exam as the other students in the population, but the mean exam score for 
these 50 students was 78, as shown in the second graph below. 
 

 

A) Do you think that the teacher can attribute this higher average score to the fact that 
these students attended a review session?  Explain.  

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

B)  Is there anything else that you need to know to help you decide that the higher 
sample mean was or was not due to chance?  Explain. 
 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 
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APPENDIX B:  MIDCOURSE ASSESSMENT 
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Name:________________________    Date:_________________ 
 
 
Please attempt all tasks to the best of your ability and provide complete explanations 
where requested. 
 
Task 1:  Which Class Did Better?  
 
Two classes are competing on quick recall math facts.  One class is called the “Blue” 
class with 27 students, and the other the “Pink” class also with 27 students.  The two 
classes both complete a quiz, and the results are shown below.  
 

 
 

 
 

Which class did better?  Please provide a complete explanation and any numerical 
information used in your rationale. 
_____________________________________________________________________ 

 
_____________________________________________________________________ 

_____________________________________________________________________ 

_____________________________________________________________________ 
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Task 2:  Speed Trap Effectiveness in Slowing Car Traffic 
  
The city of Columbia introduced a police speed trap in a zone with a 50 mile per hour 
speed limit.   The speeds of 60 cars are shown after the speed trap had been in place for 
some time and before.  

 
Based on the data, was the speed trap effective in reducing the speed of traffic?  Provide a 
detailed explanation for your position.  
________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 
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Task 3:  Cuckoos Eggs 

Cuckoos are known to lay their eggs in the nests of other (host) birds. The eggs are then 
adopted and hatched by the host birds. These data give the lengths (mm) of cuckoo eggs 
found in the nests of other birds.  A study investigates the difference in mean egg length 
(mm) of cuckoos’ eggs according to the species of the foster parent.  

 
 
With reference to the boxplot, do you think that there are any significant differences in 
mean egg lengths among the five species? Explain your reasoning.  
________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

_______________________________________________________________________ 
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Task 4:  Which Ambulance Service? 

 
In St. Louis, the Clayton school district needs to select an ambulance service for 
emergencies that occur on school premises for the upcoming academic year.  Two 
different ambulance companies provide service to the area:  Acme and Lifetime.   
 
Both companies provided the response times for emergency calls during the school year 
of 2009-2010 to other Clayton customers, as shown below.   Acme provided data from 
150 ambulance responses, and Lifetime provided data from 205 responses. 

 
 
 
Based on the response times provided, which ambulance service would you recommend? 
Justify your choice below.  
________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________
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Task 5:  Diet and Cholesterol 
High cholesterol is a contributor to heart disease.  A study was conducted to investigate 
the effect of dietary change on cholesterol levels.  Participants in the study voluntarily 
switched from a “standard American diet” to a vegetarian diet for one month.  The data 
shown below are the participants’ cholesterol levels before and after the dietary change, 
in milligrams of cholesterol per deciliter of blood (mg/dL).  

 

 

 
 
Assuming that lower levels of cholesterol are the goal, would you say that the change in 
diet is effective for lowering cholesterol or could similar results have been achieved by 
chance?  Provide a detailed explanation below.  
________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 
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Task 6:  Pennies and Mints 

Read the following scenario (Fong, Krantz & Nesbitt, 1986), and respond to the question 

posed.   

Joanna has a large collection of pennies with dates in the 1970’s.  Donny admires 
her collection and decides to start his own collection of pennies, but decides to 
collect only 1976 pennies because he wants to commemorate the Bicentennial.  
Looking through his pockets, he discovers he has only a dime.  Examining it 
carefully, he finds that it is a 1971 dime, with a “D” (Denver) mint mark.  Donny 
thinks it would be fun to collect 1976 pennies with the same initial as his name 
and asks Joanna what proportion of the 1976 pennies in her collection have a “D” 
mint mark on them. 
 
She doesn’t know, but they decide to find out.  They take the huge jar of her 
pennies out.  Since the jar has thousands of pennies in it, Donny shakes the jar and 
then reaches into it and picks out a handful from the middle of the jar.  Donny 
finds all the 1976 pennies that he scooped out (four of them) and finds that two of 
them have “D” mint marks.   Because of this, he estimates that around 50% of all 
Joanna’s 1976 pennies have the “D” mint mark.   
 
But Joanna looks through the other 36 pennies they have scooped out (dated 
1970-1975 and 1977-1979) and discovers that only 2 of them have the “D” mint 
mark.  She argues that only 4 of the 40 pennies altogether have the “D” mark, and 
estimates that around 10% of the 1976 pennies in her collection are “D” pennies. 
 

Comment on the validity of Joanna’s and Donny’s reasoning.  Whose conclusion about 
the 1976 pennies in Joanna’s collection is more likely to be correct?   Explain. 
________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 
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Task 7:  Hiring of Managers and Discrimination  

In 1972, 48 male bank supervisors were each randomly assigned a personnel file and 
asked to judge whether the person represented in the file should be recommended for 
promotion to a branch-manager job described as “routine” or whether the person’s file 
should be held and other applicants interviewed.   
 
The files were all identical except that half of the supervisors had files labeled “male” 
while the other half had files labeled “female”.  Of the 48 files reviewed, 35 were 
recommended for promotion.  Twenty-one (21) of the 35 recommended files were 
labeled “male”, and 14 were labeled “female.”   
 
Given the results of the simulations of randomly selecting files for promotion and the 
resulting number of “males” recommended for promotion, do you conclude that 
discrimination took place? 

  
Explain why the simulated outcomes either support discrimination or not. 
________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 
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
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Name:__________________________   Date:_________________ 
 
Please attempt all tasks to the best of your ability and provide complete explanations 
where requested. 
 
Task 1:  Which Treatment is More Effective? 
 
Data is collected by two different pharmaceutical companies (Company A and Company 
B) on patients who suffer from migraine headaches.  In both cases, the patients were told 
to take the medicine as soon as they experienced a headache and report how long it took 
until they felt the relief effect of the medication.  The results from each experiment are 
shown below. 
 

 
 
 
Which medicine, Drug A or Drug B, would you recommend? Justify your choice below.  
________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 
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Task 2:  Weight of Grade 7 Students 
  
Below are two sets of real data, the first one with 27 values and the second one with 67, 
showing the weights (in kilograms) of grade 7 students from Columbia, Missouri.   

 
Question:  Based on this actual data, what would you estimate the shape of the 
distribution of 1000 grade 7 weights might look like?  Please sketch below and label your 
axes. 

 
 
 
 
 
 
 
 
 
 
 
 

Provide an explanation and rationale for your sketch above.   
 
________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 
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Task 3:  Weight-Training Program Effectiveness for Track Athletes 

Suppose there is a special summer camp for track athletes. There is one group of 100 
athletes that run a particular race, and they are all pretty similar in their height, weight 
and strength. They are randomly assigned to one of two groups.  One group has an 
additional weight-training program. The other group has the regular program without 
weight training.  All athletes from both groups run the race and their times are recorded, 
so that the data can be used to compare the effectiveness of the two training programs. 
 
Below are four pairs of box plots that compare the running times of athletes in the two 
different training programs (one with weight-training and one with no weight-training).  
Examine each pair of box plots, and think about whether or not the sample data would 
lead you to believe that the difference in running times is caused by these two different 
programs. (Assume that everything else was the same for the students and this was a true, 
well-designed experiment). 
 

 
 
C) Rank the four pairs of graphs on how convincing they are in terms of making an 

argument that the weight-training program was more effective in decreasing students’ 
times from the least convincing to the most convincing evidence.  Explain your 
reasoning. 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________
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________________________________________________________________________

________________________________________________________________________ 

D) For the most convincing graph, would you be willing to generalize the effects of the 
training program to all similar students on track teams based on these samples? Why 
or why not? 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________
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Task 4:  Diet and Cholesterol 

High cholesterol is a contributor to heart disease.  A study was conducted to investigate 
the effect of dietary change on cholesterol levels.  Participants in the study voluntarily 
switched from a “standard American diet” to a vegetarian diet for one month.  The data 
shown below are the participants’ cholesterol levels before and after the dietary change, 
in milligrams of cholesterol per deciliter of blood (mg/dL).  

 
 
Assuming that lower levels of cholesterol are the goal, would you say that the change in 
diet is effective for lowering cholesterol or could similar results have been achieved by 
chance?  Provide a detailed explanation below.  
________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 
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Task 5:  Review Session Effectiveness 

Below are two graphs of exam scores. The first one is a graph of exam scores 
representing many sections of students enrolled in an introduction to statistics course. For 
this population, the average score is 74.  A random sample of 50 students in the class 
attended a review session with a teaching assistant prior to the exam. They were given the 
exact same exam as the other students in the population, but the mean exam score for 
these 50 students was 78, as shown in the second graph below. 
 

 

 

B) Do you think that the teacher can attribute this higher average score to the fact that 
these students attended a review session?  Explain.  

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

C)  Is there anything else that you need to know to help you decide that the higher 
sample mean was or was not due to chance?  Explain. 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 
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Task 6:  Speed Trap Effectiveness in Slowing Car Traffic 
  
The city of Columbia introduced a police speed trap in a zone with a 50 mile per hour 
speed limit.   The speeds of 60 cars are shown after the speed trap had been in place for 
some time and before.  

 
A) Before the speed trap was introduced, the average speed was 54.9 miles per hour for 

the 60 cars shown above, and 53.1 miles per hour afterwards.   Similarly, the variance 
for these two samples was 12.5 squared mph before the speed trap and 7.34 squared 
mph afterwards.   

 
Are the speeds of the cars significantly different after the speed trap was in place?  
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C) As a police officer, would you consider the speed trap to be successful or 
unsuccessful (practical significance)?  Why? 

 
________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 
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Task 7:  Hiring of Managers and Discrimination  

In 1972, 48 bank supervisors were each randomly assigned a personnel file and asked to 
judge whether the person represented in the file should be recommended for promotion to 
a branch-manager job described as “routine” or whether the person’s file should be held 
and other applicants interviewed.   
 
The files were all identical except that half of the supervisors had files labeled “male” 
while the other half had files labeled “female”.  Of the 48 files reviewed, 35 were 
recommended for promotion.  Twenty-one (21) of the 35 recommended files were 
labeled “male”, and 14 were labeled “female.”   
 
If the selection of the 35 candidates were purely fair in terms of gender given equal 
qualifications for promotion, we would expect that half the candidates would be male 
(17.5) with a standard deviation of 1.65 males. 
 
Question:  As a member of a jury, would you confidently support a verdict that the bank 
supervisors discriminated against female candidates? Support your response. 
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Task 8: Which Ambulance Service? 

In St. Louis, the Clayton school district needs to select an ambulance service for 
emergencies that occur on school premises for the upcoming academic year.  Two 
different ambulance companies provide service to the area:  Acme and Lifetime.   
 
Both companies provided the response times for emergency calls during the school year 
of 2009-2010 to other Clayton customers, as shown below.   Acme provided data from 
162 ambulance responses, and Lifetime provided data from 206 responses. 

 
 
 
A)  Based on the response times provided, 

€ 

x acme =11.6 minutes and 

€ 

x lifetime = 12.7 

minutes with samples variances, 

€ 

s 2acme =14.3 and 

€ 

s 2 lifetime =15.0 .  Based on this 
information, is there a significant difference between the two ambulance services? 
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B) As a member of the school district, which ambulance service would you recommend?  
Why? 

 
________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 
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
 


















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
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