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AUTOMATED VECTOR-VECTOR AND VECTOR-IMAGERY 

GEOSPATIAL CONFLATION 

Wenbo Song 

Dr. James Keller, Dissertation Supervisor 

ABSTRACT 

With the rapid advance of geospatial technologies, the availability of geospatial 

data from multiple sources has increased dramatically. Integration of multi-source 

geospatial data can provide insights and capabilities not possible with individual datasets. 

However, multi-source datasets over the same geographical area are often disparate and 

do not match well with each other. Accurately integrating geospatial data from different 

sources is a challenging task. In this dissertation research, we proposed a set of 

innovative geospatial conflation algorithms to attack the multi-source geospatial 

integration/conflation problem. We developed a novel snake-based approach to conflate 

two vector road datasets which has several benefits over traditional conflation methods.  

Since feature matching is one of the most crucial subtasks of conflation, we proposed a 

new relaxation labeling-based point matching algorithm to provide an elegant and well-

motivated solution to the conflation problem. For the vector-to-imagery conflation, we 

presented a comprehensive approach by integrating several vector-based and image-

based algorithms including spatial contextual signature extraction, road intersections and 

terminations extraction, relaxation labeling-based point matching, piecewise rubber-

sheeting transformation, and snake-based refinement. Finally we extended our road 

conflation approach to digital parcel map to make it consistent with high-resolution 

imagery. The experiments on real world geospatial datasets showed excellent results. 
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Chapter 1 

Introduction 

 

 

1.1 Map 

We live in a spatial world and we use spatial information in our everyday life. For 

example, when we drive from a known place to another, we may only subconsciously use 

the ‘virtual map’ in our mind to get there. But when we visit an unknown place, we need 

the real paper road map or digital map on a Global Positioning System (GPS) navigation 

system to guide us. A map (paper or digital) has become an essential tool with variety of 

applications. By definition, a map is a graphical representation of the environment that 

shows the spatial features and their relationships [1]. It’s a depiction of all or part of the 

earth or other geographic phenomenon as a set of symbols and at a scale whose 

representative fraction is less than 1:1 [2]. 

There are many different types of maps such as road maps, land cover maps, 

thematic maps, topographic maps etc. A topographic map is a type characterized by 

large-scale detail and quantitative representation of relief, usually using contour lines in 

modern mapping. A topographic map shows both natural and man-made features [3]. The 

Canadian Centre for Topographic Information provides the following definition [4]: “A 
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topographic map is a detailed and accurate graphic representation of cultural and natural 

features on the ground.” 

Topographic maps have a wide variety of applications, from urban planning, 

engineering, energy exploration, natural resource management, to outdoor activities like 

camping, hiking and fishing, etc. A topographic map is often used as the base map for 

other thematic mapping and applications. It would be helpful to understand its 

mapmaking processes. 

 

1.2 Classic Topographic Mapmaking 

The U.S. Geological Survey (USGS) produced its first topographic map in 1879, 

the same year it was established. Most of the early maps were made using a classic 

mapping technique called plane-table surveying (figure 1.1). A plane-table is a portable 

drawing board which is fixed to a tripod with a sighting device used to observe the 

features of interest in the field. This is a method of survey that allows a surveyor to plot 

those features that could be seen and measured in the field and sketch the map by hand. 

Plane-table surveying remained the dominant USGS mapping technique until the 1940's, 

when it gave way to the aerial photographs and the age of Photogrammetry [5]. By 

definition, photogrammetry is the art, science, and technology of obtaining reliable 

information about physical objects and the environment through the processes of 

recording, measuring, and interpreting photographic images and patterns of 

electromagnetic radiant energy and other phenomena [6]. 
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Figure 1.1 Plane-table surveying by USGS topographers (source: [5]) 

The use of aerial photographs for mapping was pioneered in the 1930's, when the 

USGS assisted the Tennessee Valley Authority in mapping its area of responsibility. This 

project was the first full-scale test of the use of aerial photographs in creating maps. 

Aerial photographs increased dramatically during World War II when its use proved 

crucial for gathering military intelligence. Aerial photographs and Photogrammetry led to 

a revolution in mapmaking. This change has significantly increased map coverage and 

enhanced map standardization [5]. 

However, producing an accurate topographic map is a long and complex process. 

It may take as much as 5 years from the identification of a mapping requirement to the 

printing of a large-scale map like one of the USGS 7.5-minute, 1:24,000-scale quadrangle 

maps. This process requires a team of professionals and a series of closely coordinated 

steps descried in the following [5]. 
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Photographing the area 

The first step in producing a topographic map is acquiring aerial photographs of 

the area being mapped. Each section of ground is photographed from two different angles 

to produce a stereoscopic three-dimensional image (figure 1.2). The sky must be clear, 

and the sun must be at the proper angle for the type of terrain being photographed. 

Seasonal factors must also be taken into consideration. For example, in areas where there 

are deciduous trees, the photos are usually taken between late fall and early spring when 

the trees are bare and the underlying ground features are more visible. 

 

Figure 1.2 Overlapping aerial photographs provide stereoscopic coverage of areas to be 

mapped (source: [5]) 

 

Field surveying the control points and verifying the map features 

After aerial photographs are obtained, field survey work may be required to 

establish and measure the map's basic control points. Horizontal control points are 

surveyed to determine the longitude and latitude, while vertical control points are 

surveyed separately to determine elevations. The control points help the map makers 
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correctly position the aerial photo images and become the framework on which map 

detail is compiled.  

While the surveyors are in the field, they also identify objects that need visual 

verification. Some map features may require additional verification and the surveyors 

verify these features by talking with local residents or consulting local property records. 

The geographic names of place and political boundaries have to be collected and verified 

in the field. 

 

Compiling the map manuscript 

Upon completion of the field survey, a pair of overlapping aerial photographs 

showing the same ground area taken from different position along the flight line is placed 

in a special projector connected to a separate tracing table. The projected photographs are 

viewed through an optical system called a stereoscope that causes the left eye to see one 

photograph and the right eye to see another. The result is a three-dimensional view of the 

terrain from which a cartographer can draw a topographic map. Map features and contour 

lines are manually traced as they appear in the stereo model. As the operator moves a 

reference mark, the tracing is transmitted to the tracing table, producing the map 

manuscript. 

 

Scribing, editing and printing the map 

The finished map manuscript is photographed and a map-size film negative is 

made. This film negative is photochemically reproduced onto several thin plastic sheets 

coated with a soft translucent coating called a scribecoat. The plastic sheets are taken one 
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at a time and placed on a light table, where a soft light shines up through a white plastic 

surface. This illumination from below makes the lines of the map manuscript visible 

through the scribecoat. An engraver carefully cuts away the scribecoat along the lines and 

areas that are to be a certain color on the finished map. For example, one sheet will have 

all the lines for rivers, lakes, and other bodies of water that are to be blue. This process is 

repeated for each color [7]. 

After the scribed sheets are reviewed and edited several times, a color proof sheet 

is made by exposing each sheet under different color light to produce a color print that 

looks very much like the finished map. After further review and editing, the map is ready 

to be printed. 

A press plate is prepared for each map color by exposing the scribed sheets. Paper 

is loaded into a lithographic printing press, and the first color is printed. The press plate 

and ink are changed and the paper is run through the press a second time to print the 

second color. This process is repeated until all the colors have been printed [7].  

Figure 1.3 shows one portion of USGS 1:24,000 topographic map of Columbia, 

Missouri. Geospatial features are shown as points, lines or areas, depending on their size 

and extent. The build-up areas are shown in red and the individual buildings are shown as 

small black squares. Blue areas are lakes/ponds and green are vegetation. Red lines 

represent roads and the topographic contours are represented by brown lines. 
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Figure 1.3 Portion of 1:24,000 USGS topographic map of Columbia, MO  

 

The 1:24,000-scale, 7.5-minute topographic quadrangle map series includes about 

53,000 map sheets which is the only uniform map series that covers the entire area of the 

continental United States in considerable detail. The 7.5-minute mapping program lasted 

from the mid-1940’s until early 1990’s. Since late 1960’s, USGS had established a 

revision program to do minor or basic map revision using aerial photographs to update a 

subset of map features.  Map producers have to manually revise cartographic features via 

photo interpretation. Geographic names and administrative boundaries are updated using 

information from local sources. This manual map revision is very expensive and time-

consuming even for basic revisions. Basic revisions done with USGS government labor 

in 1999 required an average of 280 hours per quadrangle or approximately $17,000. Up 
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to 1400 1:24,000 map sheets can be revised each year. The median currentness date of 

the map series is 1979 even after map revision [8]. Now the USGS 1:24,000 topographic 

maps are more than 30 years old. 

 

Figure 1.4 Currentness of Revised USGS Maps Compared to Original Maps (Source: [8]) 

 

1.3 Digital Mapping Revolution 

With the rapid development of geospatial technology, many of the traditional 

mapmaking processes are being changed or eliminated by digital mapping such as a 

Geographic Information System (GIS). GIS is a collection of computer hardware, 

software, and geographic data for capturing, storing, updating, manipulating, analyzing, 

and displaying all forms of geographically referenced information [9]. Rapid advance of 

information technology and declining hardware cost have made GIS affordable to an 
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increasing wider audience. The use of GIS grew dramatically during the last three 

decades. It is now commonplace for government, academia, business, individuals to use 

GIS for many diverse applications. Many organizations now spend large amounts of 

money to create geospatial databases and build geographic information systems. To be 

used in GIS, the paper maps need to be converted into digital format. This conversion 

process is called geocoding. Studies have shown that finding the right maps, and 

converting these maps from paper to digital form by geocoding, takes up anywhere 

between 60% and 90% of both the time and money spent on a typical GIS project [2].    

 

Figure 1.5 Vector digitizing with a tablet (left), raster scanning with a drum scanner (right) 

 (Source: [10]) 

 

Digitizing and scanning are the two main geocoding technologies (figure 1.5). 

Digitizing mimics the way maps were drafted by hand and involves tracing the map 

feature using a cursor while the map is taped down onto a digitizing tablet. The digitizing 

tablet is a digital and electronic equivalent of the drafting table. The operator traces a map 

feature by hand, using a digitizer cursor to capture the locations of a string of points and 
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sends to the x, y units to computer [2]. A map can have 10 or more different layers such 

as roads, contours, boundaries, surface cover, and manmade features that require 

digitization. 

Scanning is the second digitizing process. Scanning places a map on a glass plate 

and passes a light beam over it, measuring the reflected light intensity. The results are 

raster maps and can be converted into vector format. It needs further editing or tracking 

features on the computer screen. 

After digitizing/scanning, several editing operations remain. For example, 

attribute codes must be added to identify what each digitized line or symbol represents. A 

variety of other tasks must be performed to ensure that information is complete and 

correct, including matching features with adjoining files, matching features relative to 

each other within the file, and controlling the accuracy of attribute coding and positions 

[2]. 

Once the digital geospatial data including both geometric and attribute 

information are ready, it’s much easier to produce, revise, distribute and utilize digital 

maps. Paper maps can be printed. Figure 1.6 shows an example of digital Census 2000 

block map of Columbia, MO. 
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Figure 1.6 Portion of Census 2000 County Block map of Columbia, MO 

 

1.4 Remote Sensing Imagery 

The science and technology of remotely acquired data and information has 

undergone a revolution in the number and type of sensors, data availability, potential 

applications, and governmental and commercialization activities. There has been a 

massive increase in our ability to acquire radiometrically sensitive, geospatially-
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referenced sensor data from aircraft, satellite and undersea instrument platforms [11]. 

With the rapid advancement of remote sensing technology, there are a variety of airborne 

and satellite remote sensing systems that have collected large volumes of imagery data, 

which is invaluable in monitoring the Earth system and the effects of human activities on 

the Earth. 

 

Satellite Systems 

In 1972 the first civil satellite, the Earth Resources Technology Satellite (ERTS-1, 

later renamed Landsat-1) was launched. This is one of a series satellites designed 

specifically to collect data of the Earth’s surface and resources. The newest satellite in the 

series, Landsat 7, carries the enhanced thematic mapper plus (ETM+) with 30 m 

resolution visible and infrared bands and a 15 m resolution panchromatic band. A 30 m 

resolution ETM+ multi-spectral image of Columbia, MO is shown in figure 1.7. Landsat 

represents the world's longest continuously acquired collection of space-based moderate-

resolution land remote sensing data. Nearly four decades of imagery provides a unique 

resource for agriculture, geology, forestry, regional planning, education, mapping, and 

global change research. Landsat data have been used by government, commercial, 

industrial, civilian, military, and educational communities in the United States and 

worldwide [11].  
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Figure 1.7 Landsat 7 ETM+ multispectral 30 m resolution imagery of Columbia, MO  



14 
 

 

Figure 1.8 Multispectral 4 m resolution IKONOS imagery of MU campus, MO 

 

On Sept. 24, 1999 the world’s first privately owned commercial, high-resolution 

imaging satellite IKONOS was launched by Space Imaging Inc. It has a 1 m resolution 

panchromatic band and 4 m resolution multi-spectral bands. A sample of IKONOS 

imagery of MU campus is shown in figure 1.8. Since then, several other high-resolution 

commercial satellite systems such as Quickbird, Worldview etc. were launched also. The 

world’s highest resolution commercial earth-imaging satellite Geoeye-1 was launched in 
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Sept. 2008 with 0.4 m panchromatic band and 1.6 m multi-spectral bands. Many other 

counties such as France, Russia, China, India etc. also launched high resolution satellites.  

Table 1.1 lists several selected high resolution satellite systems. 

 

Satellite Pan Resolution (m) MS resolution (m) Country 
Geoeye-1 0.4 1.6 US 
WorldView-2 0.5 1.8 US 
QuickBird-2 0.6 2.5 US 
IKONOS-2 1.0 4 US 
EO-1 10 30 US 
Landsat 7 15 30 US 
TopSat 2.5 5 UK 
SPOT-5 2.5 10 France 
Monitor-E 8 20 Russia 
Resur DK-1 1 3 Russia 
IRS Resource Sat-1 6 6,23,56 India 
ALOS 2.5 10 Japan 
KOMP Sat-2 1 4 Korea 
Beijing-1 4 32 China 
CBERS-3 5 20 China/Brazil 

 

Table 1.1 Selected high resolution satellite systems 

 

Aerial Photography 

Although aerial photography cannot provide repeated global imagery coverage as 

satellites do, it can be customized according to users’ requirements and collect local or 

regional imagery at even higher spatial resolution. Today aerial photography remains a 

fundamental element of many Earth inventory, environment, and resource applications. 

Airborne photographic systems routinely provide high spatial and spectral resolution data 
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(infrared, color, panchromatic) under requests of local, state, federal government or 

private companies. While commercial satellite imagery is not free to the public, users can 

often access aerial photographs acquired by federal programs free of charge. 

 

USGS Digital Orthophoto Quadrangle (DOQ) 

The National Aerial Photography Program (NAPP) is a multiple agency (U.S. 

Geological Survey, U.S. Department of Agriculture, U.S. Forest service) program 

coordinated by USGS that provides a standardized set of aerial photographs covering the 

United States. The program began in 1987 and ended in 2004. The NAPP photographs 

are available in black & white (B/W) or color-infrared (CIR), depending on location and 

date. The photographs are quarter-quadrangle centered (3.75 minutes of longitude and 

latitude in geographic extent)  and are exposed at a nominal flying height of 20,000 feet 

above mean terrain with a 6-inch focal-length camera (photo scale = 1:40,000). They 

have 1-meter ground resolution [12]. Figure 1.9 shows an example of DOQ for MU 

campus. 

The NAPP photography is the primary source used for the production of digital 

orthophoto quadrangle (DOQ) by scanning its transparency with a precision image 

scanner. A digital orthophoto is a geo-referenced image prepared from a perspective 

photograph, or other remotely-sensed data in which the displacement within the image 

due to sensor orientation and terrain relief has been removed. Orthophotos combine the 

image characteristics of a photograph with the geometric qualities of a map. The digital 

orthophoto is useful as a base layer of a geographic information system and as a tool for 

revising digital vector maps. Image processing algorithms can be applied to the image 
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data to support planimetric image classification, three-dimensional modeling, and many 

other spatial applications [12]. The DOQs are available for free download from USGS. 

 

 

Figure 1.9 Black & white 1 m resolution USGS digital orthophoto quadrangle (DOQ) of 

MU campus, MO 
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USDA National Agriculture Imagery Program NAIP Imagery 

Since the 1930’s, the USDA Farm Service Agency (FSA) has relied on aerial 

photography enlargement (photomaps) to accomplish their farm program management 

requirements. The purpose of the photomap was to provide an accurate geospatial record 

of farm tract and field boundaries and acreages. The tract and field boundary information 

was delineated on the photomaps with ink lines and notes, and measured with planimeters, 

which were linked to tabular data regarding producer information [13]. 

Beginning in 2003, USDA FSA started the National Agriculture Imagery Program 

(NAIP) to acquire aerial imagery during the agricultural growing seasons in the 

continental U.S. on a 5-year cycle, and a three-year cycle began in 2009. NAIP imagery 

is acquired at 1 meter or 2 meters ground sample distance (GSD) with a horizontal 

accuracy that matches within six meters of photo-identifiable ground control points. The 

default spectral resolution is natural color (Red, Green and Blue, or RGB) but beginning 

in 2007, some states have been delivered with four bands of data: RGB and Near Infrared.  

This "leaf-on" imagery is used as a base layer for GIS programs in FSA's County Service 

Centers, and is used to maintain the Common Land Unit (CLU) boundaries. A primary 

goal of the NAIP program is to make digital ortho photography available to governmental 

agencies and to the public. NAIP imagery is available for free download through the 

USDA Geospatial Data Gateway. NAIP is used by many non-FSA public and private 

sector customers for a wide variety of projects [14]. Figure 1.10 shows the infrared NAIP 

imagery of Memorial Stadium of University of Missouri in Columbia, MO. 
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Figure 1.10 Multispectral 1 m Resolution NAIP imagery of Memorial Stadium, Columbia, 

MO 

While the best spatial resolution is one meter for the national aerial photography 

programs, many state and local governments have acquired even higher resolution aerial 

imagery for their own communities. For example, The Missouri’s Imagery for the State 

project acquired 2ft spatial resolution leaf-off digital orthophtography for the entire State 

of Missouri in 2007-2008. A sample 2ft imagery of Memorial Stadium is shown in figure 

1.11. City of Columbia, MO acquired 6 inch resolution imagery for the Natural 

Resources Inventories project to create land cover database to support local planning& 
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management activities such as natural resource assessment, vegetation mapping, land use 

analyses, and energy conservation. Again the imagery of Memorial Stadium is shown in 

figure 1.12. The letter “MISSOURI” and numbers marked on the field are easy to see and 

the individual football player can also be identified from the field. 

 

Figure 1.11 2ft resolution multispectral Imagery of Memorial Stadium, Columbia, MO  
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Figure 1.12 Multispectral 6 inch resolution imagery of Memorial Stadium, Columbia, 

MO 

 

1.5 Need for Conflation 

With the increasing availability of large volume of geospatial datasets such as GIS 

vector layers and remote sensing imagery, there is an urgent need to integrate these 

multiple datasets together. By fusing spatial datasets from different sources, one can 

support more comprehensive geospatial analysis that could not have been achieved by the 
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use of any single dataset in isolation. Also this integration would result in cost savings for 

many applications. 

The National Technology Alliance (NTA) conducted a detailed examination of 

the needs of US government for conflation technologies [15]. A few key US government 

activities involving conflation technology are described in the following. 

 

The Engineer Research and Development Center’s (ERDC) Topographic Engineering 

Center (TEC) 

ERDC TEC has been overseeing research and development of conflation 

technology for over ten years. Many of the conflation software packages such as ESEA’s 

MapMerger, Intergraphs’ Geomedia Fusion, Northrop Grumman’s automated conflation 

service (ACS), and Digitial Engineering’s Conflex were developed in part with TEC 

funding or under TEC leadership. TEC funded them through small business innovation 

research (SBIR) contract, DARPA Terrain and Feature Generator project, Advanced 

Geospatial Management for Information, Integration, and Dissemination (AGMIID) 

program, US Army’s Advanced Concept Technology Automated Feature Extraction 

contract, Geospatial Information Integration and Generation Tools (GIIGT) Science and 

Technology Objective [15]. 

 

National Geospatial-Intelligence Agency (NGA) 

U.S. geospatial intelligence community has moved over the past 10+ years from a 

“mono- to multi-” environment. This “multi-“environment includes multi-sensors, multi-

sources, multi-producers, multi-representation, and multi-answer. However, tools to 
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support this transition have been lagging behind in development. There are few robust 

automated tools to integrate and validate Features, Imagery, and Elevation, and other 

spatial-temporal referenced data sources [15].  

Conflation technology is part of NGA’s future architecture plans. It is mentioned 

in both the Enterprise Engineering and the Geoscout documentation. Conflation 

technology also is stated as a requirement in the Multi-National Geospatial-Intelligence 

Community Partnership (MGCP), and in a Foundation Based Operations (FBO) 

environment that implements a Mission Specific Data (MSD) standard derived from the 

new DGIWIG Feature Data Dictionary (DFDD) [15]. 

One conflation challenge facing NGA was the MC&G database, which uses 

obsolete technology that is difficult and expensive to maintain. The MC&G feature 

database is isolated from newer databases. To “sunset” the MC&G database would be to 

risk losing data that are not included in the newer databases. The solution was to use 

conflation technology in a salvage operation. The GIDI data and MC&G data was 

integrated to derive a “change” dataset, and then ingest the change dataset back into GIDI 

as an update. ESEA, Intergraph, and Northrop Grumman are working with NGA to add 

automation to the process. Maintaining the MC&G database was a substantial annual cost. 

The use of conflation technologies to salvage the MC&G data and retire the system offers 

a satisfactory solution to a corporate dilemma [15]. 

 

U.S. Army 

The Department of Defense’s current Geospatial Information and Services (GI&S) 

are inadequate to support current operations or contingencies that may arise in the near 
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future. Current geospatial data is unavailable or grossly outdated for many key 

geographic areas of the world where future conflicts may arise. In many cases, current 

geospatial data is more than 20 years old and not compatible with current models, 

simulations, systems, or training devices. For example, at the beginning of Operation 

Enduring Freedom in Afghanistan, the United States Department of Defense (DOD) did 

not have an existing inventory of current geospatial data available for immediate use.  

Since traditional data sources cannot provide sufficient geographic coverage, complete 

content, or sufficient accuracy, a number of data sources (NGA Geospatial Database, 

digital map, Imagery, enhanced feature data, field data etc.) may need to be fused and/or 

conflated. Therefore, in the Army Geospatial Data Integrated Master Plan, data 

fusion/integration/conflation is one of the key recommendations for integrating geospatial 

operations into the Battle Command network [16].  

 

U.S Geological Survey (USGS) 

As one of the cornerstones of the U.S. Geological Survey’s National Geospatial 

Program, the National Map is a collaborative effort among the USGS and other federal, 

state, and local partners to improve and deliver topographic information for the Nation. 

The geographic information available from the National Map includes orthoimagery, 

elevation, geographic names, hydrology, boundaries, transportation, structures, and land 

cover. The National Map will serve as a foundation for integrating, sharing, and using 

spatial data easily and consistently and will provide a new approach to provide more 

current information while retaining and improving other valued characteristics, such as 

positional accuracy and content completeness [17]. 
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In the past, USGS played the primary role in the United States for the collection 

of basic geospatial data through the USGS topographic map. Today current, high-

resolution geospatial data often reside with state, local, and tribal governments, the 

private sector, and other federal agencies. These organizations collect, manage, and store 

geospatial data in response to their specific needs. In general, they have no mission 

requirement to make these data available for secondary use or integrate the data on a 

national scale. 

Working with federal, state, local partners, USGS is building the National Map as 

a framework for geographic knowledge that will provide current, accurate, seamless, and 

nationally consistent digital geospatial data. Data will be comprised of the best available 

sources and the USGS will depend on state, local, tribal, and other governments and 

private industry to supply data. The USGS will become a data producer only in cases 

where no other data are available [18].  

However, one primary complexity is the integration of the various resolutions and 

accuracies of data in both horizontal and vertical directions, which is one of massive 

proportion when considering national implementation. Combining spatial data from 

various, disparate sources present many potential data integrity problems [18]. Spatial 

data are not represented consistently among organizations with regard to schema, 

attribution, or geometry. For transportation networks, there may be significant overlap in 

geographic extent between neighboring partners with many of the same road segment 

features represented differently. Geometric inconsistencies across datasets also lead to 

topological accuracy issues when multiple data themes from multiple sources form a 

composite map for a particular geography. Data integration is a significant problem for 
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The National Map. Therefore, developing conflation technology for successful 

integration in the midst of such heterogeneity is the challenge of the National Map. 

 

U.S. Census Bureau 

The Bureau of the Census developed the Topologically Integrated Geographic 

Encoding and Referencing (TIGER) database to provide geographic services and 

products in support of the 1990 decennial and other Census Bureau statistical programs. 

TIGER was built and has been continuously updated using a wide variety of source 

materials and techniques, including the GBF/DIME files, USGS 1:100,000-scale 

topographic maps, local and tribal maps, and enumerator updates of differing positional 

accuracy [19]. 

The U.S. Census Bureau’s mission to count and profile the Nation’s people and 

institutions does not require very high levels of positional accuracy in its geographic 

products. It was not necessary to produce positional accurate files. The main concern was 

the location of geographic features in relation to other geographic features. Its files and 

maps are designed to show only the relative positions of elements. 

Coordinates in the TIGER/Line files are in decimal degrees and have six implied 

decimal places. The positional accuracy of these coordinates is not as great as the six 

decimal places suggest. The positional accuracy varies with the source materials used, but 

at best meets the established National Map Accuracy standards (approximately + ⁄– 167 

feet) where 1:100,000-scale maps from the USGS are the source. The U.S. Census 

Bureau cannot specify the accuracy of feature updates added by its field staff or of 

features derived from the GBF/DIME-Files or other map or digital sources. Thus, the 
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level of positional accuracy in the TIGER/Line files is not suitable for high-precision 

measurement applications such as engineering problems, property transfers, or other uses 

that might require highly accurate measurements of the earth’s surface [19]. 

Whereas relational accuracy once was adequate for census activities, changing 

goals and technologies require that the Census Bureau improve the positional accuracy of 

TIGER. One of the Bureau’s goals for the next decade is to capture the latitude and 

longitude coordinates for living quarters and to equip each field interviewer with portable 

computers equipped with Global Positioning System (GPS) technology to accurately 

locate living quarters requiring a visit. However, to integrate the more accurate 

coordinates that GPS can provide for living quarters (and the streets they are along) with 

the existing MAF (master address file) /TIGER System, current TIGER features must 

have an equivalent level of positional accuracy. Additionally, the Census Bureau has 

found that many local GIS files have a greater positional accuracy; hence, the current 

positional accuracy of TIGER is a limiting factor. It precludes more effective address lists 

and geographic information partnerships with those state, local, and tribal governments 

that have high quality address, street, boundary and related geographic information. The 

successful partnerships with state, local, and tribal agencies rely upon improving the 

positional accuracy of TIGER [20]. 

 

Federal Emergency Management Agency (FEMA) 

Floods are among the most frequent and costly of all natural disasters and have 

great impact in terms of economic and human losses each year. Communities with 

effective and accurate flood maps are prepared to prevent not only economic devastation, 
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but to preserve life as well. FEMA manages the National Flood Insurance Program, 

which was created in 1968 to reduce flood damage by identifying flood risks, 

encouraging sound floodplain management practices, and providing a mechanism 

through which citizens can insure their investments. To help determine insurance 

requirements, FEMA maintains an inventory of over 90,000 flood map panels that detail 

areas at risk; identify where flood insurance is needed; and help limit construction within 

flood zones [21]. 

These flood maps were initially intended to be used principally by insurance 

agents, floodplain managers, and others charged with implementing the National Flood 

Insurance Program. However, over the years the flood maps have come to be much more 

widely used for many purposes, including local planning, emergency preparedness and 

response, and natural resource management. It has become essential tools for a much 

wider range of users, from builders and developers to real estate agents and lenders to 

local planners and citizens attempting to make informed decisions about the degree of 

flood risk faced by particular pieces of property [21]. 

Natural processes and human interventions lead to changes in flooding and 

floodplains. The addition of pavement, impervious roofs, and other forms of development 

alters the natural drainage patterns and the timing and volume of runoff to floodplains, 

leading to changes in the size and extent of floodplains. Therefore, flood maps need to be 

updated accordingly. However, the majority of FEMA’s flood maps are outdated and in 

unalterable paper format that are difficult to update.  

In response to demands for more accurate mapping products, FEMA has 

embarked on flood map modernization program to update and digitize the nation’s flood 
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maps. The objective of flood modernization program is to convert 80% of existing paper 

map panels to digital format with a high-quality base map, update 20% of existing panels 

with new flood risk information while converting them to digital format, add 13700 

completely new panels to cover previously unmapped communities [21]. In addition, 

digital flood insurance rate maps require a digital base map that reflects reference 

features (i.e., roads, street, hydrographic features, political boundaries) needed by users to 

locate properties on maps. 

The map modernization plan includes strategies for working with other federal, 

state, local government entities. FEMA has established and implemented initiatives to 

build federal, state, regional, and local partnerships to formalize cooperation in the flood 

hazard identification and mapping processes. FEMA relies on the combined contributions 

of FEMA staff and flood mapping partners to obtain and maintain accurate, up-to-date 

flood hazard information. FEMA will maximize the use of such partner’s contributions as 

a mean of leveraging limited public funds to the fullest extent possible. For example, 

where accurate local community vector data is available, community vector data will be 

utilized to show base map data as backdrops to flood data layers. If accurate community 

data is not available, digital aerial photography (DOQs) will be utilized as the base map 

layer [21]. 

However, the data are from different sources and are created for different 

purposes by using different specifications. Therefore, integrating the multiple datasets 

from different sources to update flood maps is a challenging task. 
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Geospatial Integration/conflation 

Geospatial technology has provided new ways to collect, maintain, access, and 

use basic spatial data. More and more organizations adopt GIS as a spatial data 

management tool. Rapid adoption of GIS technology has not come without cost. Many 

organizations employing GIS have developed and maintained spatial databases mostly 

independent of other organizations using GIS. This is apparent across all levels of 

government. One example of this problem is the existence of multiple transportation 

databases among government agencies - each one designed to fulfill a particular agency 

mission. The Topologically Integrated Geographic Encoding and Referencing system 

(TIGER) data support the Bureau of the Census mission; Digital Line Graphs support the 

basic topographic mapping mission of the United States Geological Survey (USGS), 

while the Bureau of Transportation Statistics maintains the National Transportation Atlas 

Database. Further, many states and counties have transportation networks that they 

maintain autonomously. These datasets cover many of the same geographic extents and 

real-world features, but have been designed and maintained disparately within distinct 

fiscal budgets. The result is not only redundancy but also diminished data quality. 

Moreover, with budget constraints commonplace, it is very difficult for any one agency 

to maintain a current spatial dataset for geographies of significant extent [22].  

The availability of geospatial data from multiple sources requires the integration 

of this information before using it effectively. However, accurately integrating geospatial 

data from different sources is a challenging task. Current data integration strategies and 

methodologies have not kept pace with advances in data collection. It remains difficult to 

analyze even two spatial data sets acquired at different times, for different purposes, 
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using different datums, positional accuracy (x,y,z), classification schemes, and levels of 

in situ sampling or enumeration precision [23]. This is because such geospatial data may 

have different levels of accuracy and precision in their attributes as well as their spatial 

and temporal dimensions. Furthermore, they may have been created for different 

purposes. All of this leads to discrepancies in the representation of the same features from 

different sources. In addition, the spatial displacement is often non-systematic such that a 

simple global transformation will not solve the problem. 

 

Our Conflation Research 

To attack the conflation problem, we developed an innovative conflation 

approach consisting of several algorithms. Each algorithm is designed to solve a sub-

problem. Appropriate combination of the algorithms has been applied to vector-to-vector 

and vector-to-imagery conflation. Real world datasets such as TIGER roads from U.S. 

Census Bureau, MODOT roads from Missouri Department of Transportation, Vector 

parcel data from county assessor’s office, and high-resolution aerial photograph and 

Satellite imagery are used in our experiments. 

In chapter 2, we proposed a hybrid approach based on the combination of the 

traditional conflation and the snake algorithm. The feature matching and rubber-sheeting 

map alignment processes remain the same as traditional conflation and the attribute 

transfer process is replaced by snake alignments. The snake algorithm moves the TIGER 

roads towards the high accuracy roads. This has advantages over traditional conflation 

approaches. 
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While a simple proximity based feature matching was used in chapter 2, a detail 

study of point feature matching is proposed in chapter 3. A new relaxation labeling based 

point feature matching approach is developed. Its performance is compared with 

proximity based matching method. 

Since imagery is acquired more frequently and more current, conflating vector 

data to imagery is needed. An innovative vector-to-imagery conflation approached is 

presented in chapter 4. This approach uses road intersection detection, relaxation based 

feature matching, rubber-sheeting alignment and snake algorithm to solve the vector-to-

imagery conflation problem. 

In chapters 2-4, we use the road centerlines for conflation. We extend our 

approach to solve parcel conflation problem in chapter 5. The same set of road 

intersection detection, feature matching, and rubber-sheeting algorithm is applied to 

migrate the digital vector parcel data to high resolution imagery. 

In summary, chapter 3 focus on the critical sub-problem of point feature matching. 

The vector-to-vector and vector-to-imagery road conflation approaches are presented in 

chapter 2 and chapter 4 respectively. The scale-up experiment is presented in chapter 5. 

The vector-to-imagery road conflation approach is extended to conflate parcel polygon 

data to imagery in chapter 6. All the problems and solutions are interconnected in those 

chapters. 
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Chapter 2 

A Snake Based Approach for TIGER Road 

Data Conflation 

 

 

The TIGER (Topologically Integrated Geographic Encoding and Referencing) 

system has served the U.S. Census Bureau and other agencies’ geographic needs 

successfully for two decades; however poor positional accuracy has made it extremely 

difficult to integrate TIGER with advanced technologies and data sources such as GPS, 

high resolution imagery, and state/local GIS data. In this chapter an alternative solution to 

conflate TIGER road centerline data with other geospatial data is presented. The first two 

steps of the approach (feature matching and map alignment) remain the same as 

traditional conflation. Following these steps, a third is added in which active contour 

models (snakes) are used to automatically move the vertices of TIGER roads to high 

accuracy roads, rather than transferring attributes between the two datasets. This 

approach has benefits over traditional conflation methodology. It overcomes the problem 

of splitting vector road line segments and can be extended for vector-imagery conflation 

as well. Thus, a variety of data sources (GIS, GPS, and Remote Sensing) could be used 

for the TIGER improvement. Preliminary test results indicate that the approach performs 
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very well. The positional accuracy of TIGER road centerline can be improved from an 

original 100 plus meters’ RMS error to only 3 meters. Such improvement can make 

TIGER data more useful for much broader applications. 

 

2.1 Introduction 

The U.S. Census Bureau’s TIGER database is primarily used to support the 

mapping, geographic analysis, and other GIS activities that serve the various censuses 

and surveys conducted by the Bureau. Initial sources used to create the database were the 

U.S. Geological Survey (USGS) 1:100,000-scale Digital Line Graph (DLG), the U.S. 

Census Bureau’s 1980 geographic base files (GBF/DIME-Files), and a variety of 

miscellaneous maps. In order to maintain a current geographic database, TIGER has been 

continuously updated using a wide variety of source materials and techniques. Some 

updates have come from map annotations made by enumerators as they attempted to 

locate living quarters by traversing every street feature in their assignment area. The 

Census Bureau digitized these updates directly into the TIGER database without geodetic 

controls or the use of aerial photography to confirm the features’ positional accuracy. 

Other corrections and updates were supplied by local participants in various Census 

Bureau programs. Maps were sent to participants for use in various programs, and some 

were returned with updated annotations and corrections. The Census Bureau generally 

added the updates to the TIGER database without extensive checks. Changes made by 

local officials did not have geodetic control [19]. 

 Whereas relational accuracy once was adequate for census activities, changing 

goals and technologies require that the Census Bureau improve the positional accuracy of 
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TIGER. One of the Bureau’s goals for the next decade is to capture the latitude and 

longitude coordinates for living quarters and to equip each field interviewer with portable 

computers equipped with Global Positioning System (GPS) technology to accurately 

locate living quarters requiring a visit. However, to integrate the more accurate 

coordinates that GPS can provide for living quarters (and the streets they are along) with 

the existing MAF (master address file) /TIGER System, current TIGER features must 

have an equivalent level of positional accuracy. Additionally, the Census Bureau has 

found that many local GIS files have a greater positional accuracy; hence, the current 

positional accuracy of TIGER is a limiting factor. It precludes more effective address lists 

and geographic information partnerships with those state, local, and tribal governments 

that have high quality address, street, boundary and related geographic information. The 

successful partnerships with state, local, and tribal agencies rely upon improving the 

positional accuracy of TIGER [20]. 

 The Census Bureau launched the MAF/TIGER enhancement program in 2000.  

The first strategic objective was to improve address/street location accuracy and 

implement automated change detection. The Census Bureau sought to achieve a high 

level of map coordinate accuracy in TIGER by acquiring and using, as a first priority 

among data sources, digital files prepared and provided by state, local and tribal 

governments [24]. 

 Conflation approaches are often used to improve the TIGER road data. However, 

the traditional approach requires two vector datasets. It could not make use of the high 

resolution imagery that is often readily available and more current. In addition, to deal 
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with non one-to-one feature matching, splitting road line segments or attributes are often 

performed manually by human operator which is labor intensive and time-consuming. 

 In this chapter we propose a new hybrid conflation approach that combines 

traditional conflation with active contour models (snakes). Snakes are deformable 

contours that can move iteratively under the influence of internal forces and external 

image forces. The basic processes are feature matching, map alignment, and position 

correction by snakes. The next section presents an overview of traditional conflation 

methodology. This is followed by our snake based conflation approach. Experimental 

results are then presented, followed by discussions and conclusions. 

 

2.2 Traditional Conflation Methodology 

Although local GIS data may have better positional accuracy than TIGER data, 

most do not have richer attributes. To get the best spatial and attribute information from 

both sources, conflation technology was developed. Conflation is the process that 

combines two spatial datasets of the same region to produce a superior dataset that is 

better than either source in spatial and attribute aspects. Through the conflation process 

individual strengths of the source datasets can be combined. A dataset with excellent 

spatial accuracy but little attribute information can be merged with one with rich attribute 

information but poor spatial accuracy to produce a new dataset that is both spatially 

accurate and attribute rich. 

 The history of conflation goes back to the early 1980’s, where the first 

development and application of an automated conflation process occurred during a joint 

U. S. Geological Survey - U.S. Census Bureau project designed to integrate the agencies’ 
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respective digital map files of U.S. metropolitan areas [25]. The implementation of a 

computerized system for this task provided an essential foundation for much of the theory 

and many of the techniques used today. Since then, much progress has been made in both 

research and application. Existing local GIS data were utilized to update and enhance the 

TIGER database [26-27]. Cobb et al. [28] proposed a rule-based conflation approach to 

the National Imagery and Mapping Agency’s (NIMA) Vector Product Format (VPF) 

datasets. Walter and Fritsch [29] developed a statistical approach to match road network 

data of the European standard Geographic Data File (GDF) and the German topographic 

cartographic spatial database. Samal et al. [30] utilized similarity measures for attribute 

matching and proximity graphs to model geographical context in conflating features 

manually extracted from topographic maps and tourist maps. Rahimi et al. [31] presented 

a system design for a multi-agent-based infrastructure to perform distributed conflation. 

Filin and Doytsher [32] developed a local transformation algorithm based on counterpart 

linear features instead of point features.  

 However, the basic idea and procedures of conflation remain the same. Generally 

the conflation process has the following steps: 

 

2.2.1 Feature Matching 

Feature matching is the core strategy to identify the correspondence of features 

from two different datasets as representations of the same geographic object. There are 

three basic types of map features: point, line and polygon. Different matching criteria or 

methods could be applied to these feature types, with the most commonly used criteria 

being geometric, topological and attributes [33]. 
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 Geometric criteria include length, perimeter, area, shape, angle, distance etc. 

Distance (proximity or nearness) between features is the most straightforward way to 

match common objects. A feature within a certain range of another feature in the second 

dataset has a better chance of representing the same object. Euclidean distance is often 

used to calculate the proximity of point features. Hausdorff distance is more suitable for 

line to line matching. Other geometric criteria such as angular information of linear 

objects, or shape similarity of lines or polygons (length, perimeter, area etc) are also 

useful matching criteria [33]. 

 Topology explicitly defines spatial relationships. The principle in practice is quite 

simple; spatial relationships are expressed as lists (e.g., a polygon is defined by the list of 

arcs comprising its border). In many GIS systems the vector data is stored using arc-node 

data structure. The arc-node structure stores and references data so that nodes construct 

arcs and arcs construct polygons. Nodes define the two endpoints of an arc. An arc is 

composed of its two nodes and an ordered series of points called vertices that define its 

shape. Nodes and vertices are represented as x, y coordinates. The arc-node data structure 

supports three major topological concepts [34]: 1) Connectivity: arcs connect to each 

other if they share a common node. 2) Area definition: arcs that connect to surround an 

area define a polygon. 3) Contiguity: arcs have direction and left and right sides. Two 

geographic features which share a boundary are called adjacent. Polygons are contiguous 

if they share a common arc. Contiguity is the topological concept which allows the vector 

data model to determine adjacency. The topology should be consistent in order to match 

features. 
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 Attribute criteria. If two datasets have common attribute fields and the semantics 

of both datasets are known, the attribute item can be used to find the corresponding match. 

If there is conflict or inconsistency, human operators have to deal with it interactively. 

 

2.2.2 Map Alignment 

 For a linear feature dataset such as the TIGER road centerline, node (road 

intersections, dead-ends) matching is the easiest strategy to define and implement in a 

manner that permits topological consistency.  

After identifying the matched node pairs, a rubber-sheeting transformation is 

often used to align the two datasets. A rubber-sheet transformation is local affine 

transformation which subdivides the map areas into triangular-shaped pieces and applies 

local adjustments on each single piece. The Delaunay triangulation is one of the most 

frequently used triangulation methods for rubber-sheeting. A Delaunay triangulation 

partitions the control point set into a group of triangular regions with the property that no 

point falls in the interior of the circumcircle of any triangle (the circle passing through the 

three triangle vertices). The Delaunay triangulation maximizes the minimum angle of all 

the angles in the triangulation, thus avoiding triangles with extremely small angles [35]. 

Matched nodes serve as vertices for the triangles of the space. After rubber-

sheeting, these nodes are moved into perfect alignment and the displacements of other 

intermediate points of road segments are interpolated according to the movements of the 

vertices of the triangles which contain them. 
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2.2.3 Attributes Transfer 

After feature matching and rubber sheeting, the selected attributes of features in 

the source dataset (low positional accuracy, rich attributes) may be copied and transferred 

to the matched features in the destination dataset (high accuracy, poor attributes). As a 

result the conflated dataset will have improved spatial accuracy and richer attributes. 

  While attribute transfer is a relatively trivial task if a one-to-one correspondence 

exists between the source and destination datasets, such ideal cases are rare. In the real 

world, many scenarios arise. For example, one feature in the source may have many 

corresponding features in the destination dataset, or many features in the original can 

have a single corresponding feature in the destination. Figure 2.1 shows a very simple 

case of different matching scenarios. 

 For the traditional conflation approach, to deal with a many-to-one match, the 

feature in the destination needs to be split into smaller segments to create several one-to-

one matches, allowing the desired attributes of the source to be transferred. For the one-

to-many match, some attributes, such as address range in the source dataset, may need to 

be split, and then transferred to target features. Both spatial and attribute splitting have to 

be done in many-to-many matching cases. The manual splitting operation is time-

consuming. In addition, many road datasets may have a route system defined in terms of 

its existing segments. The splitting of segments would likely corrupt any defined route 

system. Manually regenerating route systems after conflation is undesirable [36]. The 

snake-based conflation approach alleviates the problem of segment splitting. It iteratively 

moves the vertices of line segments in source dataset toward the target position, so the 

positional accuracy is improved. 
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                    (a)                        (b)                          (c)                           (d) 

Figure 2.1 The different matching scenarios.  a) one-to-one match   b) one-to-many match  

c) many-to-one match   d) many-to-many match 

 

2.3 Snake Based Conflation Approach 

The concept of snake was introduced by Kass et al. [37]. They defined a snake as 

an energy-minimizing spline, guided by external constraints and influenced by image 

forces that pull it toward features such as edges and lines. Snakes are active contour 

models; they lock onto nearby edges, localizing them accurately. 

 Snakes have been used extensively in many image processing and computer 

vision applications [38-43]. In the geospatial community, snakes have been used as a tool 

for road extraction or road database updating from imagery. 

Gruen and Li [44] utilized LSB-Snakes (Least Squares B-Spline Snakes) to 

extract road features from digital images. A human operator identifies the roads from the 

image and provides a few coarsely distributed seed points along the roads. With these 

seed points as an approximation of the roads’ position and shape, the roads are extracted 

automatically by LSB-Snake. Baumgartner et al. [45] and Laptev et al. [46] proposed an 

approach for automatic road extraction in aerial imagery that exploits the scale-space 
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behavior of roads in combination with geometrically constrained snake-based edge 

extraction, using snake approach to bridge shadows and partially occluded areas between 

two road segments.  

Klang [47] developed a method for detecting changes between an existing road 

database and a co-registered satellite image. First he used the road database to provide 

approximation for subsequent road detection using a snake algorithm to correct road 

location. Then he ran a statistical line-following process to detect a new road starting 

from the existing network.  Fortier et al. [48] extended the above approach by using road 

intersections. Road intersections improve matching between the road database and the 

lines on the image, with hypotheses for new road segments generated from these line 

junctions. Agouris [49] expanded the model of snakes to function in a differential mode 

by introducing an additional energy term that describes the discrepancy between the 

current snake solution and the pre-existing road shape information. This method 

combines object extraction and change detection to update and improve the pre-existing 

GIS information for that object. Bentabet et al. [50] presented an approach for road 

detection from synthetic aperture radar (SAR) images and road databases. The vectors 

provided by the database give an initial estimation of the road location which is refined 

through snakes. Neuenschwander et al. [51] presented the ziplock snake model. The 

optimization process for a ziplock snake starts from the two endpoints and processes 

toward the center of the snake. During the process the image potential is progressively 

turned on to clamp the two ends of the snake onto an image contour. The ziplock snake 

model reduces the initialization requirement, one of the main problems for any snake 

algorithm. 
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In the following section, we propose a new conflation approach that combines 

traditional conflation with snakes. The basic processes are feature matching, map 

alignment, and position correction by snakes. The first two steps are the same as in 

traditional conflation. In the third step we use snakes to correct the road position instead 

of attribute transfer. 

 

2.3.1 Feature matching 

Geometric and topological criteria consisting of node matching and line matching 

are used for feature matching. The source data are TIGER roads and the target data are 

MODOT (Missouri Department of Transportation) roads, derived from a high accuracy 

GPS survey with 3 m root mean square (RMS) error. Both datasets are stored with arc-

node data structure and the topology is created in Arc/Info. First, node matching is 

conducted using all the nodes (road intersections and end points) in MODOT roads as the 

reference and finding their corresponding nodes in the TIGER dataset. The matching 

criteria are nearness between the node pairs and the number of emanating lines from the 

nodes. Second, the matched nodes are used for line segment matching. Several simple 

rules are proposed. If a dangling line segment has an unmatched dangling node, this 

segment cannot be matched. If both nodes of a segment are matched, then this segment is 

a matched line. If a segment is on the shortest path which connects two matched nodes, 

this segment is a matching candidate. 

Figure 2.2 illustrates our matching method. For each node in the MODOT data, 

we find all nodes in TIGER roads within a specified search radius and compute their 

distances. In this example, the search radius is set to 400 m. For MODOT node 4, two 
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nodes, 11 and 12 are found from TIGER data with distance of 330 m and 198 m 

respectively. Next we examine the node types i.e. end point (dangle node), three-way or 

four-way intersections etc. by counting the number of emanating arcs from each node. 

This information can be easily obtained from topology. Node 4 and 12 have one 

connecting arc, and node 11 has three emanating arcs. Therefore, node 11 is out, and 

node 4 and 12 are correspondence. If more than two nodes of the same type are found, 

then the closest node has preference, but the general arc direction is considered also.  

Suppose after node matching, node 12 is matched to node 4, and nodes 8, 9, 10, 

11 are unmatched. Then, the dangling line segments connecting nodes 8-9, 10-11 can be 

marked as unmatched lines. The remaining two longer line segments starting with nodes 

4 and 12 are the matched road lines. 

 

Figure 2.2 Feature matching by geometric and topology criteria. For each node in the 

MODOT road (solid line), all nodes in TIGER data (dashed line) within 400 m radius are 

found. The node matching is based on nearness and node types. 
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2.3.2 Map alignment 

The matched nodes are used as control points to perform the rubber-sheeting 

transformation, bringing these two datasets closer to each other. More importantly, the 

matched nodes in TIGER roads are moved to the exact positions of their corresponding 

nodes in MODOT roads. This facilitates the following snake operation. 

 

2.3.3 Position correction using snakes 

 The snake is an active contour model under the influence of internal and external 

forces. The internal force imposes a piecewise smoothness constraint. The external image 

force pushes the snake toward salient image features like lines and edges [37]. The snake 

can be represented as a parametric curve by 

))(),(()( sysxsv =                                                                                 (2.1) 

where s is proportional to the curve length, and x and y are the curves coordinates. 

 The snake’s total energy function is composed of internal and external 

components and is given by 
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and in discrete form:  

)()(
1

iEiEE External

n

i
InternalSnake ∑

=

+=                                                                  (2.3) 

 Here, i represent a vertex point of the vector road segment and n is the total 

number of vertices of each snake (vector road polyline). 

 The internal energy is usually based on the first and second derivative of the curve, 

constraining the snake to be smooth. In [37], the internal energy is represented as: 
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2/)|)(|)(|)(|)(( 22 svssvsE sssInternal βα +=                                                             (2.4) 

Where νs(s) and νss(s) are first and second derivatives. In discrete form (4) becomes: 
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 The internal energy is composed of a first-order term and a second-order term. 

The first term keeps the snake from stretching or contracting along its length (elasticity) 

and the second term curvature keeps the snake from bending too much. α(s) and β(s) are 

functions of the arc length along the snake and are used to weight the relative importance 

of the elasticity and bending. Usually, α(s) and β(s) can be replaced by constants α and β 

to simplify computations. 

 The external energy represents the image force attracting the snake. It depends on 

image structure, usually the features of interest. The image energy can be defined as 

))((Im svEE ageExternal −=                                                                                                                                       (2.6)  

Where EImage (v(s)) is a function where high values correspond to the feature of 

interest. Usually, EImage (v(s)) can be the image intensity itself, I(x, y), or the magnitude of 

the image gradient, |∇I (x, y)|2. Then the snake is attracted to edges with large image 

gradients. In general, the external energy is calculated from some feature image. 

 To compute the minimum of the snake energy function, we used the approach 

shown in [37]. The energy minimization is solved using the Euler-Lagrange differential 

equation of motion with a discrete representation of the energies. The minimization is 

solved iteratively until convergence is reached. Detailed equations can be found in the 

appendix of Kass et al. [37].  

We have two vector road datasets: one is the TIGER road centerline, the other 

being the high positional accuracy MODOT road centerline data, which are derived from 
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GPS surveys by Missouri Department of Transportation. Since the MODOT roads have 

an estimated Root mean square (RMS) error of about 3 meters, we first create a 3 meter’s 

buffer area to each MODOT road, then translate the buffers into image (raster format) so 

that road pixels have value of 1 and background (non-road) pixels have value of 0. The 

grid cell size is set as 1 meter. Then we simply use this MODOT road buffer image as 

external energy in (2.6). 

Each TIGER road segment (a polyline) has two nodes (endpoints) and may have 

multiple intermediate vertices. After the rubber-sheeting transformation, these two nodes 

have been aligned correctly with the reference. But many of the intermediate vertices are 

not (figure 2.3a). Each vector road segment is treated as a snake. If a vertex falls within 

the MODOT road buffer image, it won’t move. But if a vertex falls outside the MODOT 

road buffer image (in background) where the external image energy is ‘high’, it will 

move toward the MODOT road image where the external energy is ‘low’. The road 

image attracts the vertices toward it. Therefore the road vertices will iteratively move into 

better alignment. 
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                 (a)                                (b)                            (c)                              (d) 

Figure 2.3 Illustration of the movement of snake.   a) After the rubber-sheeting 

transformation, the nodes of each TIGER line segment (red) are in perfect alignment with 

the MODOT road image (grey), but most of the intermediate vertices (green) are not.   b) 

The vertices are moved closer to road buffer image by snake after two iterations.  c) 

Similar results after four iterations.   d) Final vector roads are in very good alignment 

with image. 

 

2.4 Experimental Results 

The snake-based conflation approach described above has been successfully 

implemented in a PC windows environment. The snake algorithm was written in Visual 

C++ and the remaining operations were performed in Arc/Info. 

 We obtained TIGER road centerline data from U.S. Census Bureau and GPS-

derived road data from the Missouri Department of Transportation. Also, we obtained U. 

S. Department of Agriculture (USDA)’s NAIP (National Agricultural Imagery Program) 
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imagery with 1 meter resolution. All three datasets are georeferenced in the same 

coordinate system and can be superimposed together. The MODOT road data has an 

estimated RMS error of about 3 m and the NAIP image has less than 5 m accuracy. The 

TIGER road data has a varied error distribution across the test area.  

 Figure 2.4(a) shows one section of test area in which the TIGER roads and the 

MODOT roads are displayed together. The discrepancy between the two datasets is 

obvious, with TIGER roads having a few more road segments. We conducted node 

matching using all the nodes (road intersections and end points) in the MODOT roads as 

the reference, determining their corresponding nodes in the TIGER dataset. The matching 

criteria are nearness between the node pairs and the number of emanating lines from the 

nodes. The matched nodes are used to check line segment matching using the rules 

described above. Figure 2.4(b) shows the matched road segments. 

 Using the matched nodes as control points, a piecewise rubber sheeting 

transformation is performed to bring the TIGER roads closer to the MODOT roads 

forcing the matched TIGER nodes to the exact position of their corresponding nodes in 

the MODOT layer. The results of rubber sheeting are illustrated in figure 2.4(c). 

 The vector MODOT road buffers are converted into raster format and used as an 

image with a pixel size of 1 meter. The snake algorithm moves the vertices of TIGER 

roads toward MODOT road image. Figure 2.4(d) shows the results of snake operation. 

 Another section of the test area is shown in figure 2.5. The discrepancy between 

the two datasets ranges from 2 meters to 380 meters.  The rubber-sheeting transformation 

drops the discrepancy to within 100 meters. Our snake algorithm corrects the position of 
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TIGER roads and produces a product with high positional accuracy, close to the accuracy 

of MODOT roads. 

 From figure 2.4 and figure 2.5, it can be seen that the positional accuracy of the 

TIGER data has been improved greatly. To show this improvement quantitatively we 

used all the vertices of TIGER roads as the check points and the MODOT roads as 

reference to estimate the RMS errors of original TIGER roads (only matched road 

segments), TIGER roads after rubber sheeting transform, and final TIGER roads after 

snake processing. The improvements are dramatic. The original RMSE for the two test 

sections are 26 m and 124 m respectively. The rubber-sheeting transformation dropped 

the RMSE to 12 m and 26 m. Finally the snake correction further improved the accuracy, 

with RMSE of about 3 m, an incredible accuracy improvement. 
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2.5 Discussions and Conclusions 

Conflating vector datasets together has been a subject of research for over two 

decades and strides are being made. However, much less research has been done with 

conflation between vector and image data. Traditional conflation requires at least two 

existing vector datasets. In many cases a second vector GIS dataset is not available and 

acquiring and collecting such vector GIS data is time-consuming and cost-prohibitive. 

Remote sensing provides an alternative solution. Large amounts of high-resolution 

satellite imagery and aerial photographs are available today, and many of these are free or 

have minimal cost to the public, such as USGS’s DOQ (Digital Orthophoto Quadrangles) 

or USDA’s NAIP imagery. Many agencies may have already acquired some high 

resolution images for other purposes. Making good use of widely available free imagery 

is cost effective for conflation. Our innovative snake based approach opens the door to 

that direction. 

 Using the TIGER road centerline as source and georectified satellite imagery or 

aerial photographs as destination, our approach can be extended from vector-vector 

conflation to vector-imagery conflation. Figure 2.6 demonstrates the vector-imagery 

conflation idea where 2.6(a) shows the original TIGER roads superimposed on the NAIP 

imagery and 2.6(b) indicates the results of conflation for the same section as in figure 2.4. 

The preliminary test is very encouraging. Here we manually identified and extracted the 

road intersections from the NAIP image and matched them to TIGER road intersections.  
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                                   (a)                                                                       (b) 

Figure 2.6 Vector-Imagery conflation for the same section as figure 2.4   a) Matched 

TIGER road segments superimposed on NAIP imagery. b) Final results after snake-based 

conflation. 

 

 In this chapter we presented a hybrid conflation approach to improve the 

positional accuracy of TIGER road centerlines. This approach is based on the 

combination of the traditional conflation and the snake algorithm. The processes are 

similar to the traditional conflation approach except that the attribute transfer is replaced 

by snake alignments. After feature matching and rubber sheeting processes, the snake 

algorithm moves the TIGER road towards the high accuracy road images. This has 

advantages over traditional conflation approaches. No manual line segment splitting 

operation is needed and either vector road data or high-resolution satellite imagery/aerial 

photographs can be used as the destination dataset. Therefore, snake-based conflation is 
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not limited to vector-vector conflation and has much broader applications for integration 

of GIS, GPS and remote sensing data.  

The test results show that this approach can dramatically improve the positional 

accuracy of TIGER road centerlines from originally over 100 m RMS error to a RMS 

error of only 3 m. Such significantly improved TIGER data with rich attributes could lead 

to many new applications for federal, state, and local governments and private industries. 

Feature matching is critical to conflation. Here we applied a simple method based 

on distance and topology. Advanced matching approaches will be exploited in our future 

study. Also we will develop an algorithm to automatically extract the road intersections 

from imagery, thus making our approach fully automatic for vector-to-imagery conflation. 
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Chapter 3 

Relaxation-Based Point Feature Matching 

for Vector Map Conflation 

 
 

With the rapid advance of geospatial technologies, the availability of geospatial 

data from a wide variety of sources has increased dramatically. It is beneficial to integrate 

/ conflate these multi-source geospatial datasets since the integration of multi-source 

geospatial data can provide insights and capabilities not possible with individual datasets. 

However, multi-source datasets over the same geographical area are often disparate. 

Accurately integrating geospatial data from different sources is a challenging task. 

Among the subtasks of integration/conflation, the most crucial one is feature matching, 

which identifies the features from different datasets as presentations of the same real-

world geographic entity. In this chapter we present a new relaxation labeling-based point 

feature matching approach to match the road intersections from two GIS vector road 

datasets. The relaxation labeling algorithm utilizes iterated local context updates to 

achieve a globally consistent result. The contextual constraints (relative distances 

between points) are incorporated into the compatibility function that is employed in each 

iteration’s updates. The point-to-point matching confidence matrix is initialized using the 

road connectivity information at each point. Both traditional proximity-based approach 
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and our relaxation labeling-based point matching approach are implemented and 

experiments are conducted over 18 test sites in rural and suburban areas of Columbia, 

MO. The test results show that our relaxation labeling approach has much better 

performance over the proximity matching approach in both simple and complex 

situations. 

 

3.1 Introduction 

Traditional geospatial mapmaking is a manual and expensive process that 

historically has been the responsibility of large government agencies such as U.S 

Geological Survey (USGS) or National Geospatial-Intelligence Agency (NGA). With the 

rapid advancement of Geographic Information System (GIS), Remote Sensing (RS) and 

Global Positioning System (GPS) technologies, it’s much easier to produce, distribute 

and utilize digital geospatial information. It is now commonplace for government, 

academia, business and individuals to use geospatial information for many applications. 

Today, large amount geospatial information may be produced by and easily obtained 

from federal, state, local governments, commercial geospatial industries and even private 

citizens. 

However, the exploitation of spatial map information from multiple sources often 

results in a disturbing reality: multi-source data over the same geographical area are 

disparate, both spatially and thematically. The disparity can be due to scale, resolution, 

time, compilation standards, source accuracy, registration, sensor characteristics, or errors. 

[52]. In addition, the spatial displacement is often non-systematic. Thus, a simple global 

registration or transformation of the data will not solve the problem. Figure 3.1 shows a 
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real-world example where U.S. Census Bureau’s Topological Integrated Encoding and 

Referencing (TIGER) roads and Missouri Department of Transportation (MODOT)’s 

road centerlines are superimposed together on orthorectified high-resolution aerial 

photography. The problem of nonsystematic displacement is obvious. Accurately 

integrating geospatial data from different sources is a challenging task. Current 

integration strategies and methodologies have not kept pace with advances in data 

collection. It remains difficult to analyze even two spatial datasets acquired at different 

times, for different purposes, using different datums, positional accuracy (x, y, and z), 

classification schemes, and levels of in situ sampling or enumeration precision [23]. 

Map conflation is the process that combines two or more spatial representations of 

the same region to produce a superior dataset that is better than any of the original inputs 

in both spatial and attribute aspects. Through the conflation process, individual strengths 

of each source can be aggregated. For example, a dataset with excellent spatial accuracy 

but little attribute information can be integrated with one that has many attributes but of 

poor spatial accuracy to produce a new representation that has the best spatial and 

attributes from both sources. 

The history of map conflation goes back to the early 1980’s, where the first 

development and application of an automated conflation process occurred during a joint 

U. S. Geological Survey - U.S. Census Bureau project designed to integrate the agencies’ 

respective digital map files of U.S. metropolitan areas [25]. The implementation of a 

computerized system for this task provided an essential foundation for much of the theory 

and many of the techniques used today. Since then much progress has been made in both 

research and application. However, the basic idea and procedures of conflation remain 
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the same. Generally, it has the following steps: feature matching, map alignment, and 

attributes transfer. In this chapter, we focus on feature matching which is the most 

important step for conflation. 

 
Figure 3.1 TIGER roads (blue) and MODOT roads (red) are superimposed on an aerial 

photograph. The nonsystematic discrepancy problem between the two datasets is easy to 

see. 
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3.2 Previous Work on Point Feature Matching 

Feature matching involves the identification of features from different geospatial 

datasets as being representations of the same geographic entity. This is the most critical 

and difficult step of conflation. Once the corresponding features from two spatial datasets 

are identified, the following map alignment and attributes transfer are easier tasks. Many 

ad hoc feature matching approaches in the field of geography have been developed for 

specific dataset pairs. One important approach is the plane-graph node-matching strategy 

used to conflate the Census TIGER files and USGS DLG files [25]. This iterative 

matching approach is based on nearness or proximity of features. The matched points 

serve as vertices for triangulations for rubber-sheeting to align the maps. Cobb et al., [28] 

applied a rule-based feature matching strategy to National Imagery and Mapping Agency 

(NIMA) Vector Product Format (VPF) products. Their feature matching is based on 

semantic similarities of attribute values and shape similarity of linear features. A 

statistical approach was developed to match road network data of the European standard 

Geographic Data File (GDF) and the German topographic cartographic spatial database 

(ATKIS) [29]. The matching problem is mapped onto a communication system, and 

measures derived from information theory are used to find an optimal solution. In [30], 

similarity measures were used for attribute matching and proximity graphs were used to 

model geographical context. A graph representing all possible matches is created and 

searched for groups that most likely represent the same real-world object. A semi-

automated matching was proposed for network database integration [27]. The automated 

algorithm established robust correspondences for nodes, edges, and segments between 

two networks using a cluster-based matching mechanism. The interactive procedure 
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allowed a user to visually check and correct correspondences that were mismatched by 

the automated algorithm.  

Feature matching has also been the topic of research in the fields of remote 

sensing, computer vision and pattern recognition. For example, feature matching is a 

critical step of feature-based image registration. Many feature matching methods have 

been presented such as methods using spatial relations, methods using invariant 

descriptors, graph-based methods, relaxation labeling, pyramids and wavelets [53]. 

While the features may be of different types such as point, line, or region etc., the 

point is the simplest form. It often serves as the basis upon which other more 

sophisticated representations can be built. It can be regarded as the most fundamental of 

all features. Feature-based methods for object recognition, motion analysis and image 

registration often rely on point pattern analysis to establish a correspondence within two 

related point-sets. In this chapter, we focus on the point feature matching methods. 

Numerous point matching algorithms have been proposed in the fields of 

computer vision and pattern recognition. These algorithms include cluster method, graph 

method, spectral method, relaxation-based method etc. Cox & Jager compared several 

point pattern matching methods [54]. A review of selected methods is provided in the 

following. 

Clustering method: The transformation parameters are calculated for all 

combinations of point pairs from both patterns. Correct matches tend to make a cluster. 

The parameter values correspond to the center of densest cluster. The strongest clusters in 

the parameter space then represent the most likely transformation parameters for the best 

match. Stockman [55] used a clustering approach to estimate the transformation 
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parameters and then determine the corresponding points between two point patterns. This 

technique was applied to aerial photographs in which automatically and manually 

detected features were used to register aerial photographs to maps for automatic map 

revision. Goshtasby & stockman [56] used the convex hull property to choose the subsets 

of points for matching in order to reduce computational time.  A least-squares estimation 

approach to determining the optimum parameters that will match two point patterns was 

described by Umeyama [57]. Chang et. al. [58] developed a fast 2-D clustering algorithm 

which reduced the parameter space to two-dimensions (scaling, rotation) from four-

dimensions (scaling, rotation, x translation, y translation). 

Graph matching method is the process of finding a correspondence between the 

nodes and the edges of two graphs that satisfies some constraints ensuring that similar 

substructures in one graph are mapped to similar substructures in the other. Conte [59] 

presented a literature review on graph matching algorithm and the applications of graph-

based techniques over the past 30 years. Caetano provided an approach which model the 

point matching task as a weighed graph matching problem, where weights correspond to 

Euclidean distances between nodes. He then formulated graph matching as a problem of 

finding a maximum probability configuration in a graphical model [60]. Ullman [61] 

proposed a minimal mapping approach, where the probabilistic cost function was based 

on the distance between the points in consecutive frames. In Kumar [62], point pattern 

matching problem was viewed in terms of weighted bipartite graph matching and a 

greedy algorithm was used to solve the correspondence. 

One class of solutions to graph matching problems for point patterns is spectral 

methods which are based on the following observation: the eigenvalues and the 



63 
 

eigenvectors of the adjacency matrix of a graph are invariant with respect to node 

permutations. Hence, if two graphs are isomorphic, their adjacency matrices will have the 

same eigenvalues and eigenvectors. The basic idea common to most methods consists in 

performing spectral analysis in each of the adjacency matrices and comparing the 

eigenvalues /eigenvectors using some matching criteria [59]. There have been a number 

of attempts to use spectral methods for point-set matching. Scott and Longuet-Higgins 

[63] aligned point-sets by performing singular value decomposition on a point association 

weight matrix. This method was extended by Pilu [64] who included neighborhood 

intensity correlation information into the association weight calculation. Shapiro and 

Brady [65] reported a correspondence method which relies on measuring the similarity of 

the eigenvectors of a Gaussian point-proximity matrix. Carcassoni and Hancock [66] 

proposed a spectral method that is based on the use of spectral features to define clusters 

of nodes. This method uses hierarchical matching by first finding a correspondence 

between clusters and then between the nodes in the clusters. 

The iterative closest point (ICP) algorithm [67] utilizes the nearest-neighbor 

relationship to assign a binary correspondence at each step. This estimate of the 

correspondence is then used to refine the transformation. It is a very simple and fast 

algorithm which is guaranteed to converge to a local minimum. Chui and Rangarajan [68] 

described a feature-matching method that is an extension of the iterative closest point 

(ICP) method, determining the transformation function and the feature correspondences 

at the same time while minimizing an energy function. Paragios et al. [69] achieved the 

same by first aligning the feature sets globally through chamfer matching and then 

estimating the local deformations by local searching. 
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Relaxation labeling techniques iteratively assign values to mutually constrained 

objects in such a way to ensure that the values remain consistent. A solution is found 

when these values converge. Ranade and Rosenfeld [70] proposed relaxation algorithm 

based on the relative distance information between points. Their method can handle 

translational differences. Wang et al. [71] extended Ranade and Rosenfeld’s method to 

use feature information associated with each point. This algorithm allows translations and 

rotations of the point patterns, but its time complexity is O (n4), where n is the number of 

points. In [72], the megersort concept was used to speed up this point-matching algorithm 

so that its complexity is reduced from O (n4) to O (n3). Ogawa [73] described a fuzzy 

relaxation labeling technique for point patterns.  

Other methods: Starink & Backer [74] presented a point matching method that 

iteratively changes an arbitrary initial mapping towards the minimal cost mapping based 

on a simulated annealing minimization scheme. Zhang [75] used partial Hausdorff 

distance and presented a genetic algorithm method to solve the incomplete unlabeled 

matching problem under general affine transformation. Yin [76] presented a new point 

pattern matching algorithm based on particle swarm optimization (PSO). The set of 

transformation parameters is encoded as a real-valued vector called a particle. A swarm 

of particles are initiated at random and fly through the transformation space influencing 

each other for targeting the optimal transformation. 

 In our conflation case, the spatial displacement between the two road datasets is 

often non-systematic. A simple global transformation will not solve the problem. 

Therefore, the clustering method is not suitable here. In addition, an exact one-to-one 

correspondence between the two datasets does not often exist. There may be extra or 



65 
 

missing points in one point pattern that have no corresponding points in the other set. 

Since spectral methods have limitations to size difference and structural corruption, 

spectral methods are not appropriate in our case. However, a relaxation labeling approach 

can tolerate local geometric distortion, and we propose it here. It was applied to our 

vector-to-imager conflation application (chapter 4) and is described in the following 

section. 

 

3.3 Methodology 

One of the most commonly used matching criteria is geometric. Geometric criteria 

include length, perimeter, area, shape, angle, distance etc. [33]. Distance (proximity or 

nearness) between features is the most straightforward way to match common objects. A 

feature in one map that is close to a given feature in the second dataset has a better 

chance of representing the same object. Euclidean distance is often used to calculate the 

proximity of point features. Therefore, we implemented the traditional proximity 

algorithm for comparison purpose. 

In most conflation situations, many local distortions and deformations exist due to 

the non-systematic differences between the two modalities. Thus, this is a more 

complicated non-rigid point matching problem. Most approaches to non-rigid shape 

matching use an iterated estimation framework. In our case, the local relationship among 

neighboring points is stronger and more stable than the global one. In addition some 

outliers may exist. Therefore, we chose relaxation labeling because it can tolerate local 

geometric distortions [77]. The basic idea is to use iterated local context updates to 

achieve a globally consistent result. The contextual constraints are expressed in the form 
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of a compatibility function. It is a bottom-up search strategy that involves local rating of 

similarity which depends on the confidence of label assignments of their neighbors. 

These ratings are updated iteratively until the ratings converge or until a sufficiently high 

confidence assignment is found. In fact, Rosenfeld and Kak (1982) recommend only 

running a relation labeling for a few iterations since that is normally sufficient to 

“identify” real correspondences.  The local similarity measures are used to assign 

heuristic, fuzzy, or probabilistic ratings for each location. These ratings are then 

iteratively strengthened or weakened in accordance with the ratings of the neighboring 

measures [77]. An iterative relaxation algorithm was developed for point matching based 

on the relative distance information between points [70]. Here we apply and extend the 

approach as found in [78]. 

Let A = {A1, A2, …, An} be a set of road intersections and terminations from one 

vector road dataset, and B = {B1, B2, …, Bm} be a corresponding set from another vector 

road dataset. Suppose Ai and Bj are postulated as corresponding points. For any other 

point pair (Ah, Bk), their joint compatibility C(i, j; h, k) is defined as a function of how 

much the actual position of Ah relative to Ai differs from the corresponding position of Bk 

relative to Bj [78]. Suppose Bj is shifted to Ai and becomes Bj’, and Bk is shifted the same 

amount to Bk’. Let Dhk’ be the distance between Ah and Bk’. In our application we divide 

Dhk’ by the distance from Ai to Ah (Dih) to make it relative rather than absolute difference. 

Define δ  and the compatibility between this pair of assignments as: 

   ihhk DD /'=δ                            (3.1) 

   )1/(1),;,( 2δ+=khjiC                                                  (3.2) 

Note that C (i, j; h, k) = 1 for δ  = 0 and goes to zero as δ becomes large. 
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 This matrix of point pair compatibilities can be computed once per map pair and 

is used to modify confidence in point-pair assignment confidence between the two maps.   

Suppose Pij represents the confidence of a match between road intersection or termination 

points Ai and Bj. Then, at a given iteration, the set of numbers hkPkhjiC ⋅),;,(  for all 

“neighbors” of Ai and Bj is used to obtain a new estimate of Pij. The new estimate is 

commonly defined as an average of the previous estimate and the other points’ 

assignment confidences. In defining the net contribution of Ah to Pij, it is reasonable to 

use the max, rather than the average of terms hkPkhjiC ⋅),;,( , since if any one of these 

terms is large there is strong support for Pij from Ah, even if all the other terms are small. 

Thus a plausible relaxation formula in this situation is: 

{ }∑
=

=
+ =

n

h

r
hk

m
k

r
ij PkhjiC

n
P

1

)(
1

)1( ),;,(max1
                                              (3.3) 

where r = 0, 1, 2, … is the iteration number. We define C (i, j; h, k) = 1 if h = i; thus the 

self-support term h = i in the average is just Pij. 

The initial estimates of the P’s can be made in various ways. Pij 
(0) can be defined 

with some measure of similarity between Ai and Bj. If the patterns match exactly, the P’s 

do not change under the iteration process, but otherwise they decrease after each 

iteration. However, if a good correspondence exists between some of the A’s and some of 

the B’s, those Pij’s for which Ai corresponds to Bj decrease slowly, since they have 

substantial support, while the other Pij’s decrease much more rapidly [78]. Hence, the 

goal of relaxation labeling is not to iterate until convergence, but instead is to drive the 

assignment confidence matrix toward an easily thresholded version.  The resultant binary 

matrix then produces a one-to-one mapping between subsets of points from the two maps. 
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To successfully implement the relaxation labeling algorithm in our application, 

making use of relevant available information is necessary. Chen et al [35] exploited 

auxiliary information, such as the degree of an intersection (i.e., the number of 

intersected road segments), the density of these intersections, the orientation of roads to 

improve the brute-force point pattern matching algorithm. This efficiently pruned the 

search space. In our algorithm, we only used the road connectivity information (degree of 

intersection) since it is invariant to rotation, and many of the map pairs we process have 

sections that exhibit local rotation. The road intersections and road terminations (i.e., road 

dead ends along the map borders or cul-de-sacs) for both vector datasets have one 

common attribute that indicates the number of road arms emanated from that point. Road 

terminations, 3-way and 4-way road intersections have values of 1, 3 and 4 respectively. 

We use this attribute to initialize the Pij (0) matrix: Pij = 1 if and only if point Ai and Bj 

have the same number of emanated road arms, i.e. the same type of road intersection or 

road termination, otherwise Pij = 0. We do not allow a match between different road 

intersection types. Hence, our original confidence matrix is a many-to-many assignment. 

 In our particular application, the road vector datasets are already georeferenced 

into the same coordinate system but have substantial local distortion. The points in a 

neighborhood of a given point have greater influence than points far away. The 

discrepancy within a neighborhood is relatively similar although the global discrepancy is 

non-systematic. Therefore, we further refine the initial confidence matrix: Pij = 0 if the 

distance between Ai and Bj is larger than a given threshold. A point can only be matched 

to another point within a certain distance. This threshold is determined by checking the 

displacement between the two datasets. The main purpose of setting such a threshold is to 
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eliminate useless computation since we only need to update a point pair assignment 

confidence with assignments and compatibilities of pairs that are relatively close to the 

given pair in the two maps. The actual value of this threshold is not critical as long as it’s 

larger than the displacement between the two datasets. In our experiment, we set it to 300 

meters.  

Similarly, to calculate the new Pij for point Ai during each iteration, we only 

consider the points Ah within a given distance to Ai. If the distance between Ah and Ai is 

larger than a threshold, it has no influence on Pij. 

This initialization and relaxation process works well. Our experiments showed 

that good matches are found after a few iterations, so we only run two iterations. From 

the final P matrix, we find the maximum value for each row i and set the rest to zero. If 

that value is also the maximum in its column j, then we say point pair (Ai, Bj) is a match. 

The pseudo code of relaxation labeling algorithm is listed below. 

Function Relaxation (A, B) 

       Initialize P 

 

       For iteration 1 to n 

              For each pair Ai, Bj 

                     For each pair Ah, Bk satisfying the “closeness” constraints 

                          Compute C(i,j;h,k) based on formula (3.2) 

                     End for 

              Update P[i,j] using formula (3.3) 

             End for 
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      End iteration 

 

   Find the maximum in each row of P matrix 

   Create the Match matrix 

Return 

 

In the following we use a simple example (figure 3.2) to illustrate the entire 

processes. 

Suppose we have TIGER point set A={A1,A2,A3,A4,A5,A6,A7,A8} and MODOT 

point set B = {B1,B2,B3,B4,B5,B6,B7,B8}. Let’s use point A6 to illustrate the process. 

Since A6 is a 3-way intersection, it can only to match to one of the 3-way intersections in 

set B (B3, B6, B7). Therefore, only P63, P66, P67 = 1 in row 6 of the initial P matrix. 

After two iterations, we find the maximum value in each row, and set the other 

values to zero. The value P63 = 0.202, is the maximum value in 6th row of the final P 

matrix. Since it is also the maximum in 6th column, we set M66 = 1 in the match matrix. 

We know Ai matches to Bj if Aij = 1 in the match matrix. In this example, A1->B1,  

A2->B4, A3->B3, A4->B2, A5->B5, A6-> B6, A7->B7, A8->B8. The black arrows in figure 

3.2 indicate the matches. 
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Figure 3.2 The example is used to illustrate the relaxation process. Point set A (white 

polygon shaped symbol) are road intersections and terminations from TIGER road (solid 

blue), and point set B (red dot) are from MODOT road (dashed red). Black lines with 

arrow represent the matched point pairs. The point # of set A is shown inside the polygon 

and the point # of set B is labeled on its upper-right side. 
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Initial P matrix 

1,     1,     0,     1,     1,     0,     0,     1,      

1,     1,     0,     1,     1,     0,     0,     1,      

0,     0,     1,     0,     0,     1,     1,     0,      

1,     1,     0,     1,     1,     0,     0,     1,      

1,     1,     0,     1,     1,     0,     0,     1,      

0,     0,     1,     0,     0,     1,     1,     0,      

0,     0,     1,     0,     0,     1,     1,     0,      

1,     1,     0,     1,     1,     0,     0,     1,      

 

P matrix after first iteration  

0.351,     0.272,     0.000,     0.000,     0.000,     0.000,     0.000,     0.000,      

0.000,     0.000,     0.000,     0.448,     0.300,     0.000,     0.000,     0.000,      

0.000,     0.000,     0.352,     0.000,     0.000,     0.000,     0.000,     0.000,      

0.438,     0.656,     0.000,     0.517,     0.562,     0.000,     0.000,     0.000,      

0.000,     0.308,     0.000,     0.310,     0.431,     0.000,     0.000,     0.000,      

0.000,     0.000,     0.000,     0.000,     0.000,     0.587,     0.000,     0.000,      

0.000,     0.000,     0.000,     0.000,     0.000,     0.000,     0.363,     0.000,      

0.000,     0.000,     0.000,     0.000,     0.000,     0.000,     0.000,     0.241,      

 

P matrix after second iteration 

0.084,     0.054,     0.000,     0.000,     0.000,     0.000,     0.000,     0.000,      

0.000,     0.000,     0.000,     0.136,     0.066,     0.000,     0.000,     0.000,      
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0.000,     0.000,     0.085,     0.000,     0.000,     0.000,     0.000,     0.000,      

0.112,     0.234,     0.000,     0.141,     0.176,     0.000,     0.000,     0.000,      

0.000,     0.070,     0.000,     0.069,     0.127,     0.000,     0.000,     0.000,      

0.000,     0.000,     0.000,     0.000,     0.000,     0.202,     0.000,     0.000,      

0.000,     0.000,     0.000,     0.000,     0.000,     0.000,     0.082,     0.000,      

0.000,     0.000,     0.000,     0.000,     0.000,     0.000,     0.000,     0.040,      

 

Find the maximum value in each row, and set the rest to zero 

0.084,     0.000,     0.000,     0.000,     0.000,     0.000,     0.000,     0.000,      

0.000,     0.000,     0.000,     0.136,     0.000,     0.000,     0.000,     0.000,      

0.000,     0.000,     0.085,     0.000,     0.000,     0.000,     0.000,     0.000,      

0.000,     0.234,     0.000,     0.000,     0.000,     0.000,     0.000,     0.000,      

0.000,     0.000,     0.000,     0.000,     0.127,     0.000,     0.000,     0.000,      

0.000,     0.000,     0.000,     0.000,     0.000,     0.202,     0.000,     0.000,      

0.000,     0.000,     0.000,     0.000,     0.000,     0.000,     0.082,     0.000,      

0.000,     0.000,     0.000,     0.000,     0.000,     0.000,     0.000,     0.040,      

 

The final match matrix 

1,     0,     0,     0,     0,     0,     0,     0,      

0,     0,     0,     1,     0,     0,     0,     0,      

0,     0,     1,     0,     0,     0,     0,     0,      

0,     1,     0,     0,     0,     0,     0,     0,      

0,     0,     0,     0,     1,     0,     0,     0,      
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0,     0,     0,     0,     0,     1,     0,     0,      

0,     0,     0,     0,     0,     0,     1,     0,      

0,     0,     0,     0,     0,     0,     0,     1,      

 

The relaxation labeling algorithm was coded in C# and implemented as plug-in tool 

within ArcMAP 9.3, ESRI’s Desktop ArcGIS product. 

 

3.4 Experiments 

To evaluate our relaxation based feature matching algorithm, we obtained both U.S 

Census Bureau’s TIGER road centerline data and Missouri Department of Transportation 

(MODOT)’s road data from Missouri Spatial Data Information Service. The two vector 

datasets are already georeferenced in the same coordinate system and can be 

superimposed together. The TIGER road data has poor positional accuracy with varied 

error distribution across the area whereas the MODOT road map has good positional 

accuracy. The feature matching algorithms were run on 18 small test areas. Each area has 

the same size of 2 km by 2 km as seen for example in figures 3.3 and 3.4. Those 18 areas 

represent typical rural and suburban scenes in Columbia, MO. From figure 3.3 and figure 

3.4, the non-systematic discrepancy between the two datasets is easy to see. 
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Figure 3.3 TIGER roads (solid blue) and MODOT roads (dashed red) of 9 rural test areas 

in city of Columbia, MO 
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Figure 3.4 TIGER roads (solid blue) and MODOT roads (dashed red) of another 9 test 

areas in City of Columbia, MO 

 

We first extract the road intersections and road terminations from the road 

centerline files. These point sets are used by point matching algorithms. For comparison, 

two point matching methods are implemented. One approach uses the traditional 

proximity matching, where, for each point in set A, the algorithm finds its nearest point in 
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Set B that has the same type (i.e., road termination, 3-way or 4-way intersection). The 

second approach is our relaxation labeling approach described in section 3. The two point 

matching approaches are performed on each of the 18 test areas separately. 

To evaluate the performance of matching, two criteria correctness and 

completeness are used, defined as follows. Correct match (CM) is the number of 

correctly detected matches. Incorrect match (IM) is the number of incorrectly detected 

matches. Undetected match (UM) is the number of actual matches which are not detected 

by the algorithm. Correctness and completeness are then defined as following: 

ݏݏ݁݊ݐܿ݁ݎݎ݋ܥ ൌ  ஼ெ
஼ெାூெ

                                                                       (3.4) 

ݏݏ݁݊݁ݐ݈݁݌݉݋ܥ                     ൌ  ஼ெ
஼ெା௎ெ

                                                         (3.5) 

Hence, correctness is the number of correct matches (CM) divided by the total 

number of matches found by algorithm (CM + IM). Completeness is the number of 

correct matches divided by the total number of actual true matches (CM + UM). The 

correctness and completeness provide two complementary measures for evaluating the 

point matching. 

 

In figure 3.4, we notice the roads in the left side of the test areas are quite sparse, 

so we group these left three test areas into rural. Therefore, there are 12 rural test areas 

and 6 suburban teat areas. 
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Figure 3.5 The matching result produced by proximity algorithm for one rural test area. 

The black lines with arrow are links from TIGER (solid blue) to MODOT (dashed red) 

road that represent the matched point pairs. 
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3.6a) 
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3.6b) 

Figure 3.6 Comparison of the matching results for one portion of suburban test area. The 

black lines with arrow are links from TIGER (solid blue) to MODOT (dashed red) road 

that represent the matched point pairs. Figure 3.6a shows the result produced by 

proximity algorithm where incorrect matches are marked with symbol ‘X’. Figure 3.6b 

shows the results of relaxation labeling algorithm. 
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 In rural areas, the matching situation is quite simple. There are at most 1 or 2 

incorrect or missed matches in each rural test area. However, the correctness and 

completeness seem low for some areas due to the very small total number of matches. For 

example, in figure 3.5, only 2 out of the 9 matches by the proximity algorithm are 

incorrect, so the correctness is 7/9=78%. In figure 3.5, for point C in the TIGER road, the 

proximity algorithm found the nearest matching point B* in the MODOT road, which is 

wrong. Our relaxation labeling approach considers the relationship among a set of nearby 

points. Therefore, such errors are avoided.   

Table 3.1 shows the performance of two algorithms over the 18 test areas. For the 

12 rural test areas, the average correctness and completeness are 90% and 92% for 

proximity algorithm, and the average correctness and completeness are 94% and 96% for 

our relaxation labeling algorithm. Both the measures for relaxation approach are 4% 

higher than proximity approach. Our relaxation labeling algorithm has better performance 

than the traditional proximity approach even for simple road situations in rural areas. 

 In suburban areas, the road network is more dense and complex. It is quite 

common that the nearest point is not the correct match. Figure 3.6 shows one portion of a 

suburban test area. It can be seen that several matches detected by proximity algorithm 

are incorrect (marked by ‘x’ in figure 3.6a). However, the relaxation labeling algorithm 

still did good job to find the right matches (figure 3.6b). Since TIGER roads are older 

than MODOT roads, there are some updates in MODOT roads. Point a is a road 

termination in TIGER, it could not match to the real counterpart (point a*) in MODOT 

road, which is a 4-way intersection. It matched to the wrong point b* and that in turn 



82 
 

caused point m1 to miss the corresponding true match. In some cases, missed matches 

such as m2 and m3 are proper because they don’t have counterparts in MODOT roads. 

 

Table 3.1 Performance evaluation of two point matching approaches 

 Proximity Approach Relaxation  Approach 

 Correctness Completeness Correctness Completeness 

Rural01 100% 83% 100% 83% 

Rural02 100% 100% 100% 100% 

Rural03 88% 100% 100% 100% 

Rural04 85% 92% 91% 83% 

Rural05 85% 92% 92% 92% 

Rural06 100% 100% 100% 100% 

Rural07 60% 75% 67% 100% 

Rural08 78% 75% 89% 100% 

Rural09 100% 100% 100% 100% 

Suburban01 100% 100% 100% 100% 

Suburban04 100% 100% 100% 100% 

Suburban07 88% 88% 88% 88% 

Rural Average 90% 92% 94% 96% 
     

Suburban02 78% 100% 82% 100% 

Suburban03 76% 85% 96% 96% 

Suburban05 78% 85% 93% 93% 

Suburban06 84% 91% 96% 100% 

Suburban08 72% 81% 93% 92% 

Suburban09 77% 82% 95% 91% 

Suburban Average 78% 87% 93% 
             

95% 
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 The accuracy measures in table 3.1 confirm this observation. For the 6 suburban 

test areas, the average correctness and completeness are 93% and 95% for relaxation 

labeling algorithm. Its performance in suburban areas only slightly decreased (1%) over 

simple rural areas. The performance of the proximity algorithm in suburban areas is much 

worse. The average correctness and completeness dropped to78% and 87% respectively. 

They are 15% and 8% lower than the relaxation labeling algorithm on the same suburban 

areas. 

  

3.5 Summary of Point Feature Matching 

Feature matching is the most crucial element of conflation. The quality of feature 

matching determines the success of conflation. In this chapter we present a relaxation 

labeling point feature matching approach to match road intersections from two vector 

road datasets. The relaxation labeling algorithm considers local context and calculates the 

compatibility of nearby points. It is more robust and consistent both in simple rural areas 

and complex suburban areas. The test results clearly showed that our relaxation labeling 

approach has better performance over the proximity matching method commonly used in 

traditional conflation.  

 Once the features are correctly matched, we can either apply the traditional 

conflation approach to transfer the attributes from one dataset to another, or use our 

snake-based conflation approach (Song et al. 2006) to move the road networks from one 

dataset to correct locations in another vector dataset or imagery. Therefore, the final 

result has good spatial accuracy and rich attributes producing a product better than the 

original datasets. 
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Chapter 4 

Automated Geospatial Conflation of Vector 

Road Maps to High Resolution Imagery 

 

 
As the availability of various geospatial data increases, there is an urgent need to 

integrate multiple datasets to improve spatial analysis. However, since these datasets 

often originate from different sources and vary in spatial accuracy, they often do not 

match well to each other. In addition, the spatial discrepancy is often non-systematic such 

that a simple global transformation will not solve the problem. Manual correction is 

labor-intensive and time-consuming and often not practical. In this chapter, we present an 

innovative solution for a vector-to-imagery conflation problem by integrating several 

vector-based and image-based algorithms. We only extract the different types of road 

intersections and terminations from imagery based on spatial contextual measures. We 

eliminate the process of line segment detection which is often troublesome. The vector 

road intersections are matched to these detected points by a relaxation labeling algorithm. 

The matched point pairs are then used as control points to perform a piecewise rubber-

sheeting transformation. With the end points of each road segment in correct positions, a 

modified snake algorithm maneuvers intermediate vector road vertices toward a 

candidate road image. Finally a refinement algorithm moves the points to center each 
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road and obtain better cartographic quality. To test the efficacy of the automated 

conflation algorithm, we used U.S. Census Bureau’s TIGER vector road data and U.S. 

Department of Agriculture’s 1-meter multispectral near infrared aerial photography in our 

study. Experiments were conducted over a variety of rural, suburban, and urban 

environments. The results demonstrated excellent performance. The average correctness 

measure increased from 20.6% to 95.5% and the average root-mean-square error 

decreased from 51.2 meters to 3.4 meters.  

 

4.1 Introduction 

With the rapid advancement of Geographic Information Systems (GIS), Remote 

Sensing (RS), and Global Positioning System (GPS) technologies, the application of 

geospatial information for a wide variety of problems has grown dramatically. A wealth 

of geospatial data can be easily accessed and obtained through internet mapping services 

or geospatial data clearinghouses provided by government agencies (U. S. Geological 

Survey, U.S. Census Bureau, GIS departments of local governments, etc.), public 

organizations or the private mapping industry.  

As the availability of various geospatial datasets increases, there is an urgent need 

to integrate multiple datasets together. By fusing spatial datasets from different sources, 

one can support more comprehensive geospatial analysis that could not have been 

achieved by the use of any single dataset in isolation. Also this integration would result in 

cost savings for many applications. 
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Figure 4.1 The TIGER vector roads (red) are superimposed on an aerial photograph.  The 

non-systematic discrepancy ranges from a few meters to over 100 meters, and has diverse 

directions. 

 

However, accurately integrating geospatial data from different sources is a 

challenging task. This is because such geospatial data may have different levels of 

accuracy and precision in their attributes as well as their spatial and temporal dimensions 

[79]. Furthermore, they may have been created for different purposes. All of this leads to 

discrepancies in the representation of the same features from different sources. For 

example, one widespread problem occurs when vectors representing road segments do 

not line up with roads in background imagery. In addition, the spatial displacement is 

often non-systematic. Figure 4.1 shows a real-world example where vector road 

centerlines extracted from U.S. Census Bureau Topological Integrated Encoding and 
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Referencing (TIGER) database are superimposed on orthorectified high-resolution (1 

meter) aerial photography. Here and in following figures we display the near infrared 

imagery in grayscale for a better view of the road vectors. The non-systematic 

displacement is obvious where the spatial displacements range from a few meters to over 

100 meters, and the displacement is in different directions across the image. Thus, a 

simple overlay or global transformation of the data will not solve the problem. Manual 

correction is labor-intensive and time-consuming. Automated or semi-automated 

algorithms are needed to attack this vector-to-imagery integration problem. 

Current data integration strategies and methodologies have not kept pace with 

advances in data collection. It remains difficult to analyze even two spatial data sets 

acquired at different times, for different purposes, using different datums, positional 

accuracy (x,y,z), classification schemes, and levels of in situ sampling or enumeration 

precision [23]. The University Consortium for Geographic Information Science (UCGIS) 

has identified data integration as a long term (5-15 year) research challenge entitled 

Spatial Data Acquisition and Integration and particular aspects of the problem, Geospatial 

Data Fusion, as a short-term (3-5 years) research priority [23]. 

The word conflation is often used as a synonym for integration of multiple sets of 

spatial data from different sources. Conflation is the process that combines two or more 

spatial representations of the same region to produce a superior dataset that is better than 

any of the original inputs in both spatial and attribute aspects. Through the conflation 

process, individual strengths of each source can be aggregated. For example, a dataset 

with excellent spatial accuracy but little attribute information can be integrated with one 
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rich in attribute information but of poor spatial accuracy to produce a new representation 

that is both spatially accurate and attribute rich. 

The history of map conflation goes back to the early 1980’s, where the first 

development and application of an automated conflation process occurred during a joint 

U. S. Geological Survey - U.S. Census Bureau project designed to integrate the agencies’ 

respective digital map files of U.S. metropolitan areas [25]. The implementation of a 

computerized system for this task provided an essential foundation for much of the theory 

and many of the techniques used today. Since then much progress has been made in both 

research and application. Existing local GIS data were utilized to update and enhance the 

U.S. Census Bureau’s TIGER database [26, 27, 80]. A rule-based conflation approach 

was applied to the National Imagery and Mapping Agency’s (NIMA) Vector Product 

Format (VPF) datasets [28]. A statistical approach was developed to match road network 

data of the European standard Geographic Data File (GDF) and the German topographic 

cartographic spatial database (ATKIS) [29]. In [30], similarity measures were used for 

attribute matching and proximity graphs were used to model geographical context. This 

approach was utilized to conflate features manually extracted from topographic maps and 

tourist maps. Reference [31] presented a system design for a multi-agent-based 

infrastructure to perform distributed conflation.  A semi-automated matching was 

proposed for network database integration [27]. The automated algorithm established 

robust correspondences for nodes, edges, and segments between two networks using a 

cluster-based matching mechanism. The interactive procedure allowed a user to visually 

check and correct correspondences that were mismatched by the automated algorithm. A 

local transformation algorithm based on counterpart linear features instead of point 
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features was developed in [32, 81]. Kovalerchuk [82] developed an approach to 

conflation/registration of images that utilized invariant algebraic properties of linear 

features identified in each image. In [83], a distance measure between two polylines and 

an algorithm for conflating or optimally matching two polylines, i.e., determining the 

rotation and translation which minimizes the distance between two polylines was 

proposed. 

Matching and integrating vector datasets together has been a subject of research 

for over two decades and strides are being made. Several specialized commercial 

conflation software packages are available for vector-to-vector conflation. However, 

much less research has been done with matching and fusing vector and image data. 

On the other hand, automated feature extraction (road, building etc.) from 

remotely sensed imagery has been an active research topic for many years. Research on 

automated road extraction from imagery can date back to late 1970’s and early 1980’s. A 

procedure for tracking road segments in aerial imagery was described in [84]. Local road 

evidence obtained from multiple line detectors was combined and the road was tracked 

by finding a best path using the F* algorithm [85]. Reference [86] described a road 

tracking system that uses multiple cooperative methods. An intermediate process was 

developed to connect road-like fragments [87]. Antiparallel edge pairs were utilized to 

construct road hypotheses followed by linking [88]. A road tracing algorithm based on 

least squares profile matching and the Kalman filter was presented in [89]. An active 

testing model for tracking roads from satellite images was proposed in [90]. In [91], 

geometric-probabilistic models and MAP (maximum a posteriori probability) estimation 

were used to find main roads in aerial images. Steger [92] developed a line detector based 
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on differential geometry. A multi-resolution approach was presented in [45]. Lines are 

extracted using the Steger’s algorithm [92] in a reduced-resolution image and edges are 

extracted from the original high-resolution aerial photograph. Then the results were fused 

and grouped. An approach based on road network topology was proposed in [93]. 

Reference [94] used a feature-based hypothesis and verify paradigm to extract a street 

grid in an urban environment. A model-based method for linear feature extraction from 

aerial images was described [95]. A self-organizing road map algorithm for road 

extraction in classified high-resolution image was proposed in [96]. In [97], an approach 

of urban road network extraction by integrating knowledge about roads and their context 

using scale-dependent models was presented. Here we only mentioned a few citations. 

Several collections of road extraction research can be found in [98-101], and an extensive 

bibliography is provided in [102]. 

However, most of these approaches still have difficulty in practice due to the 

complexity of earth imagery. Normally, automatically extracted cartographic features 

need considerable post editing. In addition, the extracted features are of very limited 

value without attributes such as street names, address ranges, speed limits, road 

conditions, etc. Those attributes cannot be obtained from imagery. Therefore, the 

extracted features need to be integrated with other existing GIS data sets containing such 

attributes. 

Existing vector datasets can also provide knowledge to assist feature extraction 

from imagery. Some research has explored the integration of vector geospatial data and 

imagery for update and refinement of spatial databases. Maps, GIS data or other ancillary 

data can be used to facilitate road extraction. An object-oriented expert system was used 
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to extract roads from SPOT imagery [103]. Reference [104] constructed knowledge-

based semantic models for interpretation of road networks in aerial images. In [105], a 

map-guided procedure was combined with a back-propagation neural network. A map-

based road detection algorithm from space borne SAR images was presented in [106]. 

Markov random fields were used to locally register cartographic road networks on SPOT 

satellite images [107]. A graph-based approach for road verification from aerial imagery 

was presented in [108]. Reference [109] presented a system for 3-D road network 

reconstruction from aerial images using knowledge-based image analysis, while reference 

[110] surveyed the state of the art in automatic road extraction for GIS update from aerial 

and satellite imagery. One such approach is the active contour model (snake) which has 

been used for semi-automatic road extraction or road database update from imagery.  

LSB-Snakes (Least Squares B-Spline Snakes) were utilized to extract road features from 

digital images in [44]. A human operator identifies roads from an image and provides a 

few coarsely distributed seed points along the roads. With these seed points as an 

approximation of the roads’ position and shape, the roads are identified automatically by 

the LSB-Snake. Another approach proposed for automatic road extraction in aerial 

imagery exploits the scale-space behavior of roads in combination with geometrically 

constrained snake-based edge extraction.  Here the snake approach is used to bridge 

shadows and partially occluded areas between two road segments [46]. 

A method was developed for detecting changes between an existing road database 

and a co-registered satellite image in [47]. First the road database was used to provide an 

approximation for subsequent road detection using a snake approach to correct road 

location. Then a statistical line-following process was run to detect a new road starting 
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from the existing network.  Reference [48] extended the above system by using road 

intersections. Road intersections improve matching between the road database and the 

lines on the image, with hypotheses for new road segments generated from these line 

junctions. In [49], the model of snakes was expanded to function in a differential mode 

by introducing an additional energy term that describes the discrepancy between the 

current snake solution and the pre-existing road shape information. This method 

combines object extraction and change detection to update and improve pre-existing GIS 

information for that object. An algorithm to match synthetic aperture radar (SAR) images 

and road databases was presented in [50]. Vectors provided by the database give an initial 

estimation of the road location that is refined through snakes. The ziplock snake model 

was developed in [51]. The user-supplied end points and the automatically computed 

edge gradients in their vicinities served as anchors. The image term is then turned on 

progressively from the snake’s extremities toward its middle section. As a result, the 

snake is progressively clamped onto an image contour. 

However, a well known problem of active contour models is that they require 

very good initialization and are very sensitive to noise in imagery. In most of the snake-

based applications, it is assumed that the initial position of the snake is relatively close to 

the desired solution. When the snake’s initial position is far away from the desired result 

or the image contains considerable noise, the snake often gets stuck in an undesirable 

local minimum. 

In our application, the initial positions of vector roads are often far away from 

their counterpart in the imagery (figure 4.1). The results are undesirable if we apply a 

traditional snake algorithm directly without any preprocessing as will be seen in section 
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II-E. To overcome this problem, here we develop an innovative solution to this vector-to-

imagery conflation problem by integrating and coordinating several vector-based and 

image-based algorithms. The heart of our approach is to automatically detect tie points 

between the road segment vectors and the image so that an active contour model can 

successfully conflate the two sources. The principal features we exploit are roadway 

intersections and terminal ends. Note that we do not perform road line extraction from 

imagery. Our work takes attribute-rich vector road maps with large non-systematic spatial 

discrepancies and improves the spatial accuracy by conflating it to image data using 

evidence of roads derived from the imagery. Details of these processes will be described 

in the next section, followed by experiments and accuracy assessment. Some discussions 

and conclusions are given in the final section. 

 With this approach we are addressing the errors of misalignment, attribution 

differences, or simply elements that have been generalized in their representation.  These 

types of error are common place and exist in geospatial data as they are moved between 

scales of representation as well as through time.  For example, a parcel map may have 

been created over 50 years ago and maintained on mylar separates until recently.  These 

files are then digitized or scanned to create a digital version of these original files.  This 

process typically faithfully reproduces any and all error inherent in these source files.  

When combined with the higher accuracy imagery files now prevalent in the industry 

these map files do not line up and show highly variable patterns of error across the 

mapped area.  The ability to use higher accuracy imagery to help guide the conflation 

process allows local governments or other organizations to leverage their data investment 

in these systems as they increase positional accuracy.  This function is of great benefit, 
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both fiscally and politically, to the jurisdiction.  Fundamentally, the attributes on the 

poorer quality line work can be migrated to a new positional accuracy (that of the 

imagery) while maintaining all the attributes and relational linkages associated with those 

attributes. 

 

4.2 Methodology 

 Conflation requires that associations can be determined to move the geometry 

and/or attributes of one set of feature representations to another more spatially accurate 

representation.  The determination of these associations is based on the ability to extract 

and recognize tie-points between files.  When matching vector-to-vector, the nodes, 

valences, lengths, and pattern of these relationships are well described within their 

inherent topologies.  However, within an image, these point- and line-based relationships 

must be built from extracted information created through a series of processes outlined in 

figure 4.2.  The major steps include spatial contextual information extraction, automated 

road intersection and road termination extraction from imagery, a novel point pattern 

matching approach by relaxation labeling, piecewise local affine transformation, position 

correction by snakes, and position refinement.  As with all automated systems, parameter 

choices must be made or learned.  We set those parameters (mostly thresholds) based on 

some preliminary experiments and then held them fixed for the results shown later.  We 

underlined our choices of the values needed for the various steps.  While we do not show 

a sensitivity analysis, we have found subjectively that results are not overly dependent on 

exact choices of the parameters. 
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Figure 4.2 The work flow of vector-to-imagery conflation process 

 

4.2.1 Spatial Contextual Information Extraction 

Generally roads are long narrow linear features and buildings are generally 

rectangular shapes. In [111] a spatial length-width contextual measure was developed to 

increase discrimination between the road and building classes for urban land cover 

classification. The context of each pixel was examined by measuring the spatial 

dimensions of groups of spectrally similar connected pixels. Here we applied and 

extended this approach for road intersection detection and candidate road image creation. 

We emphasize that we are not performing road extraction from an image as described 

above. Our approach only needs a rough “optimistic” binary mask of the image that 

contains most of the road areas.  
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Vegetation and road surfaces have significant difference in spectral reflectance 

characteristics. Green vegetation generally reflects 40%-50% of the incident near-infrared 

energy, with the chlorophyll in the plants absorbing 80%-90% of the incident energy in 

the visible part of the spectrum [112]. Road surfaces generally have higher reflectance in 

the visible region and lower reflectance in near-infrared than vegetation. The Normalized 

Difference Vegetation Index (NDVI) is commonly used to measure vegetation amount. 

As the NDVI value grows, so does the amount of photosynthesizing vegetation present. 

NDVI is calculated as: 

)/()( RedNIRRedNIRNDVI +−=                                   (4.1) 

Where NIR is the reflectance value of the near-infrared band and Red is the reflectance 

value of the red band.  

Therefore, we first mask out vegetation by applying a threshold (0.2 in our 

experiments) to NDVI to reduce the computational load, leaving roads and other non-

vegetated regions for further processing. For a grey scale image, a brightness threshold 

separates the image into two parts (bright and dark). Then the spatial contextual 

extraction algorithm runs only on the bright or dark part depending on whether roads are 

brighter or darker than the background.  

 A median filter is applied to the image to remove noise because of its inherent 

properties of reducing tonal variations while retaining edges. It was found that if the data 

were median filtered before the length-width algorithm was applied, then the length-

width measurements were more accurate representations of the scene content [111]. 

 Next the spatial contextual measure extraction algorithm is run on the processed 

image. For each pixel in the image, we search its surrounding pixels along each of the 
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360 directions (0-359 degrees) radiating from the central pixel. If the spectral similarity 

between the new pixel and the central pixel is less than a given threshold, the search 

continues outward. The Euclidian spectral distance is used as the similarity measure. For 

mulitspectral image, the dynamic ranges between different channels may have significant 

difference. Each channel is normalized or stretched to the same range (0-255) based on 

its statistical properties. Let two pixels i and j be characterized by their B-dimensional 

normalized feature vectors Vi = (vi1, vi2,…, viB) and Vj = (vj1, vj2, …, vjB), the Euclidian 

spectral distance is defined as: 

∑
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A similarity threshold is experimentally set based on simple examination of the 

image characteristics. A value of 50 works well in our application. Generally the roads 

consist of groups of spectrally similar connected pixels and have a significant spectral 

difference with their background. Therefore, the algorithm is not too sensitive to the 

similarity threshold. 

 The maximum of the sum of traced lengths along two opposing directions is used 

as the length measure and the minimum is used as the width measure. This is called the 

spatial length-width contextual measure. Generally road pixels have a bigger value for 

the length measure and smaller one for the width measure since roads are linear features. 

By combining those two measures, a candidate road image can be created by setting a 

length threshold and a width threshold. For a pixel, if its length measure is larger than the 

length threshold and its width measure is less than the width threshold, then it is assigned 

as a candidate road pixel. Here, based on the image characteristics, the length threshold is 

set to 50 meters and width threshold is set to 30 meters. Finally a morphological opening 
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is applied to the candidate road image to remove noise. All candidate road pixels have a 

unique value of one and other pixels are set to zero. This image is used later in the 

external image energy function in our snake algorithm. Note that this is a simple process 

that does not extract roads, but only provides areas where roads are likely. 

 

4.2.2 Road Intersection and Road Termination Extraction 

Road intersections and road terminations (endpoints) are generally very reliable 

and stable across different datasets. They represent robust information that makes them 

very useful for feature matching. However, few approaches make use of such pertinent 

information in the large amount literature on automated road extraction from remotely 

sensed imagery.  

 A line junction and line termination detection method was proposed in [113]. 

Given the lines already extracted from the original image, the local line curvature was 

measured. Two measures of curvature were presented: rate of change of the orientation 

vector’s direction along the line and the mean of the dot products of orientation vectors 

within a given neighborhood. Since junction and termination locations do not necessarily 

correspond to local maxima of curvature, additional processing based on low curvature 

endpoints was done to localize junctions and terminations. Reference [114] classified the 

image into road class and background class. Then they utilized intersection shape models 

(crossroads, T-junctions, Y-junction) that consisted of elongated rectangles as templates. 

The intersections in the image were detected by model-based template matching. 

Similarly, in [115], image pixels were classified into on-road/off-road categories. A 

template around each intersection from the vector road network was generated using 
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information such as road widths and road directions. The localized template matching 

found the best corresponding point from the image in a rectangular area centered at the 

road intersection of vector data. Barsi and Heipke presented a feed-forward neural 

network road junction operator applied in a running window to decide whether or not it 

contained a 3 or 4-arm road junctions [116]. In [117], a wavelet transform was applied to 

the image to obtain wavelet coefficients at different levels. The road junctions and 

centerline pixels were detected based on the analysis of the characteristics of road pixels 

in the wavelet domain. 

 The approach in [113] requires lines extracted before junction detection. If the 

lines were converted into vector format and topology was created, it would be trivial to 

get the correct line junctions. In addition, the simple line detection algorithm they used 

often produced fragmented results that lead to many false intersections. For the template 

matching methods [114-115], only limited shape models can be provided. The angle and 

road branch width may vary significantly even for one type of intersection in a real image, 

and this causes matching issues. Using TIGER roads for the localized template matching, 

only 62% precision and 39.5% recall were obtained in [115].  

 Here we present a novel algorithm for road intersection and road termination 

extraction based on spatial contextual information. In the previous step, we calculated the 

spatial contextual information along each of the 360 directions for a given pixel. 

Therefore, we can construct a histogram to represent each pixel’s spatial context. The x-

value of the histogram is the direction range from 0 to 359 and the y-value is the distance 

between current pixel and the furthermost connected pixel within a certain similarity 

range along that direction.  
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Intuitively, we know that a point in the middle of a road will have two peaks with 

opposite directions in the histogram, while a point at a 3-way road intersection will have 

three peaks corresponding to the three radiating road arms. Similarly, four-way 

intersections have four peaks and road terminations (end points) have one peak in the 

histogram. Based on automatic identification of the number of peaks from the histogram, 

we can classify each pixel into different categories: 1 peak => road termination; 2 peaks 

=> middle of road; 3 peaks => 3-way road intersection; 4 peaks => 4-way road 

intersection, etc. 

 First, we smooth the histogram to remove small bumps and dips that would hinder 

peak detection. We replace each value with the average value in a small neighborhood. 

Here, five neighboring cells are chosen. The new value is the mean of the histogram 

value of the current, its two left neighbors, and its two right neighbors.  

 For a point x in the histogram to represent a peak location, the y-value should 

gradually increase from the left side and decrease as we move to the right side within a 

neighborhood. The peaks are found by making use of the first derivative information. 

Also, the y-value at the peak must be larger than a given length threshold 50 meters is 

chosen. Based on general knowledge about the angles between two nearby road arms at 

an intersection, we can merge two adjacent peaks if the angle between them is too small, 

say less than 300.  

Since roads in 1-meter resolution imagery are about 15 pixels/meters wide in Fig. 

1, a cluster of pixels is detected at each road intersection and termination. A 

morphological opening is performed to remove noise, and small clusters are deleted also. 

For each remaining cluster, its centroid is chosen as a representative location for that road 
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intersection. For the test area in Fig. 1, all road intersections and road terminations 

corresponding to the vector road dataset, except for three, are successfully identified and 

correctly labeled. The three missed road intersections and terminations are extracted later 

by lowering the length threshold during the peak detection process. There are also a few 

incorrect road intersections and terminations, and these will be identified during the point 

matching step. 

 

4.2.3 Point Matching by Relaxation Labeling 

Feature matching is used to identify the correspondence from two different 

datasets as representations of the same geographic object. This is the most critical step of 

conflation. There are three basic types of map features: points, lines and polygons. 

Different matching criteria or methods can be applied to these feature types, with the 

most commonly used criteria being geometric, topological, and attributes [33]. 

Geometric criteria include length, perimeter, area, shape, angle, distance etc. 

Distance (proximity or nearness) between features is the most straightforward way to 

match common objects. A feature within a certain range of a given feature in the second 

dataset has a better chance of representing the same object. Euclidean distance is often 

used to calculate the proximity of point features. Hausdorff distance is more suitable for 

line to line matching. Other geometric criteria such as angular information of linear 

objects, or shape similarity of lines or polygons (length, perimeter, area etc) are also 

useful matching criteria. 

 Topology explicitly defines spatial relationships. The principle in practice is quite 

simple; spatial relationships are expressed as lists (e.g., a polygon is defined by the list of 
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arcs comprising its border). In many GIS systems, the vector data is stored using an arc-

node data structure. The arc-node structure stores and references data so that nodes 

construct arcs and arcs construct polygons. Nodes define the two endpoints of an arc. An 

arc is composed of its two nodes and an ordered series of points which define its shape, 

called vertices. Nodes and vertices are represented as (x, y) coordinates. The arc-node 

data structure supports three major topological concepts [34]: 1) Connectivity; arcs 

connect to each other if they share a common node. 2) Area definition; arcs that connect 

to surround an area define a polygon. 3) Contiguity; arcs have direction and left and right 

sides. Two geographic features which share a boundary are called adjacent. Polygons are 

contiguous if they share a common arc. Contiguity is the topological concept that allows 

the vector data model to determine adjacency. The topology should be consistent in order 

to match features. 

For the attribute criteria, if two datasets have some common attribute fields and 

the semantics of both sets are known, the attribute can be used to find the corresponding 

match. For example, the street name is frequently used for matching two vector road 

datasets. 

In our road vector to imagery conflation application, there are no street names 

available from imagery and we have no intention to extract road centerlines from the 

imagery. Only the road intersections and terminations are readily computable from both 

the vector and image datasets. Therefore, a robust point matching approach is needed to 

find the feature correspondence. 

Many point matching algorithms including clustering techniques, inter-point 

distance, relaxation etc. have been developed for feature-based image registration [77, 
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53]. Generally a global matching and transformation is sufficient for image registration. 

In our case, many local distortions and deformations exist due to the non-systematic 

differences between the two modalities. Thus, this situation is a more complicated non-

rigid point matching problem.  

The correspondence and the transformation are unknown in the point matching 

problem. Since solving for either without information regarding the other is quite difficult, 

most approaches to non-rigid shape matching use an iterated estimation framework. 

Given an estimate of the correspondence, the affine transformation may be estimated and 

used to update the correspondence [118]. The iterated closest point (ICP) algorithm 

assumes two point patterns are roughly aligned, for each point in one dataset, the closest 

point in the other data set is taken as the current estimate of the correspondence [67]. A 

non-rigid point matching TPS-RPM algorithm was proposed in [68], with the thin-plate 

spline (TPS) as the parameterization of the non-rigid transformation and the soft assign 

for the correspondence. In [119], another method for non-rigid point matching was 

proposed. The shape context is assigned to each point, which describes the distribution of 

the remaining points relative to this point. The solution that minimizes the overall shape 

context distances is the optimal match. In [118], point matching was formulated as an 

optimization problem to preserve local neighborhood structures during matching. Shape 

context distance was used to initialize graph matching, followed by a relaxation labeling 

process to refine the match. However, their algorithm was tested on the synthesized data 

only. 

In our case, the local relationship among neighboring points is stronger and more 

stable than the global one. In addition some outliers may be generated from the image by 
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the road intersection detection algorithm, and some road intersections may not be 

extracted due to shadows, etc. Therefore, we chose the relaxation approach because it can 

tolerate local geometric distortions [77]. The basic idea is to use iterated local context 

updates to achieve a globally consistent result. The contextual constraints are expressed 

in the compatibility function. It is a bottom-up search strategy that involves local rating 

of similarity which depends on the ratings of their neighbors. These ratings are updated 

iteratively until the ratings converge or until a sufficiently good match is found. The local 

similarity measures are used to assign heuristic, fuzzy, or probabilistic ratings for each 

location. These ratings are then iteratively strengthened or weakened in accordance with 

the ratings of the neighboring measures [77]. An iterative relaxation algorithm was 

developed for point matching based on the relative distance information between points 

[70]. Here we apply and extend the approach as found in [78]. 

Let A = {A1, A2, …, An} be a set of road intersections and terminations from the 

vector road map, and B = {B1, B2, …, Bm} be a corresponding set from imagery. Suppose 

Ai and Bj are corresponding points. For any other point pair (Ah, Bk), their compatibility 

C(i, j; h, k) was defined as a function of how much the actual position of Ah relative to Ai 

differs from the desired position of Bk relative to Bj [78]. Suppose Bj is shifted to Ai and 

becomes Bj’, and Bk is shifted the same amount to Bk’. The magnitude of the relative 

difference δ is the distance Dhk’ between Ah and Bk’. Then the compatibility is defined as 

1 / (1 + δ2), that is, 1 for δ = 0 and going to zero as δ becomes very large. In our 

application we divide δ by the distance from Ai to Ah (Dih) to make it relative rather than 

absolute difference. The compatibility values are always nonnegative. 

ihhk DD /'=δ                                                                     (4.3) 
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 Suppose Pij represents the probability of a match between Ai and Bj. Then C (i, j; 

h, k) Phk is used as a contribution to a new estimate of Pij. The new estimate is commonly 

defined as an average of the previous estimate and the other points’ contributions. In 

defining the net contribution of Ah to Pij, it is reasonable to use the max, rather than the 

average of terms C (i, j; h, k) Phk, since if any one of these terms is large there is strong 

support for Pij from Ah, even if all the other terms are small. Thus a plausible relaxation 

formula in this situation is: 
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Where r = 0, 1, 2, … is the iteration number. We define C (i, j; h, k) = 1 if h = i; thus the 

self-support term h = i in the average is just Pij. 

The initial estimates of the P’s can be made in various ways. Pij 
(0) can be defined 

with some measure of similarity between Ai and Bj. If the patterns match exactly, the P’s 

do not change under the iteration process, but otherwise they decrease after each iteration. 

However, if a good correspondence exists between some of the A’s and some of the B’s, 

those Pij’s for which Ai corresponds to Bj decrease slowly, since they have substantial 

support, while the other Pij’s decrease much more rapidly [78]. 

To successfully implement the relaxation algorithm in our application, making 

use of all available information is necessary. The road intersections and road terminations 

for both vector and image representations have one common attribute that indicates the 

number of road arms emanated from that point. Road termination have a value of one, 3-

way and 4-way road intersections have values of 3 and 4 respectively, etc. We use this 

attribute to initialize the Pij (0) matrix: Pij = 1 only if point Ai and Bj have the same 
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number of emanated road arms, i.e. the same type of road intersection or road termination, 

otherwise Pij = 0. We do not allow a match between different road intersection types. 

 In our particular application, the road vector dataset is already roughly registered 

but has substantial local distortion. The points in a neighborhood have greater influence 

than points far away. The discrepancy within a neighborhood is relatively similar 

although the global discrepancy is non-systematic. Therefore, we further refine the initial 

probability matrix: Pij = 0 if the distance between Ai and Bj is larger than a given 

threshold; 200 meters works well. A point can only be matched to another point within a 

certain distance. 

Similarly, to calculate the new Pij for point Ai during each iteration, we only 

consider the points Ah within a given distance to Ai. If the distance between Ah and Ai is 

larger than a threshold of 300 meters, it has no influence to Pij. 

This initialization and relaxation process works well for our application. 

Generally one iteration is enough to produce good results. We are only interested in 

finding the best matches. From the final P matrix, we find the maximum value for each 

row i, and if that value is also the maximum in its column j, then we say point pair (Ai, Bj) 

is a match. 

In the test area shown in Fig. 1, there are 26 points from the vector road dataset. 

Among these points, 8 points are road terminations; 16 points are 3-way road 

intersections; and 2 points are 4-way road intersections. For the 31 points extracted from 

imagery, 13 points are classified as road terminations, 16 points are classified as 3-way 

intersections and 2 being called 4-way road intersections. The relaxation algorithm found 

23 matches. Only 1 match was wrong and the other 22 matches were correct matches. For 
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the 26 points from vector dataset, 3 points did not find their correct correspondence 

because those road intersections / terminations were not detected from imagery. 

To extract these missed road intersections and terminations, we run the road 

intersection detection algorithm again but lower the length threshold from 50 meters to 

40 meters. Other parameters are kept unchanged. Therefore, more points are extracted, 

but there is more noise also. Since we are only interested in finding the missed 

intersections, we select those points close to the three unmatched road intersections of 

vector road, and add them to the originally extracted image point set from the first run. 

We perform the relaxation algorithm again. This time, all of the 26 matches are correctly 

found in Fig. 1. The 26 point pairs are used as control point in the next rubber-sheeting 

transformation. The remaining unmatched points are discarded.  

In theory, this process could be iterated, but we have found that the two-stage 

intersection match was sufficient. 

 

4.2.4 Piecewise Local Affine Transformation (Rubber-Sheeting) 

A rubber-sheeting transformation is a local affine transformation which 

subdivides the map areas into pieces and applies local adjustments on each single piece, 

preserving topology in the process. This technique derives its name from the logical 

analogy of that of stretching a piece of rubber to fit over some object. Rubber-sheeting 

techniques typically subdivide the map areas into triangular-shaped regions. One such 

triangulation method is the Delaunay triangulation, considered by some to be the “best” 

triangulation for rubber-sheeting. Two characteristics distinguish the Delaunay 

triangulation: (1) no vertex other than the three forming a triangle is contained within the 



108 
 

circumscribing circle of that triangle, and (2) the minimum angles of the triangles formed 

are maximized [28]. The Delaunay triangulation maximizes the minimum angle of all the 

angles in the triangulation, thus avoiding triangles with extremely small angles. 

Since the TIGER roads have non-systematic spatial errors, localized rubber-

sheeting is especially suited for the vector-to-image conflation purpose. We use the 

matched road intersections and road terminations as control points to generate the 

Delaunay triangulation and perform the local piecewise transformation. The control 

points serve as vertices for triangulations to subdivide the map space. After rubber-

sheeting, these control points (matched road intersections and road terminations) are 

moved into exact alignment and the displacements of other road points are interpolated 

according to the movements of the vertices of the triangles which contain them. The 

rubber-sheeting transform brings the vector roads much closer to true road locations in 

the image. Thus, the positions of the vector roads have been greatly improved. 

 

4.2.5 Snake-based Position Correction  

While the rubber-sheeting transform improves the positional accuracy 

significantly, there still are quite a few road segments that are not in correct alignment. 

An active contour model (snake) is used to deal with the residual displacement errors. In 

our earlier work [120], we applied the snake algorithm for conflating two vector road 

layers. Here we use the extracted length-width contextual information to create a 

candidate road image based on length/wide ratio. Then a mathematical morphology 

opening is used to clean the candidate road image. The cleaned candidate road image is 

used to generate the image energy function for a snake. Each vector road segment 
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consists of a sequence of vertices. We further densify the vertices at 30 meters’ interval to 

better fit the curved roads. The road vertices are moved iteratively toward the candidate 

road image by the snake algorithm. 

The snake is an active contour model under the influence of internal and external 

forces. The internal force imposes a piecewise smoothness constraint. The external image 

force pushes the snake toward salient image features like lines and edges [37]. The snake 

can be represented as parametric curve by 

))(),(()( sysxsv =                                                                                           (4.6) 

Where s is proportional to the curve length, and x and y are the curves coordinates. 

The snake’s total energy function is composed of internal and external 

components, given by 
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and in discrete form:  
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Here, i represent a vertex point of the vector road segment. 

The internal energy is usually based on the first and second derivative of the curve, 

constraining the snake to be smooth. In [37], the internal energy is represented as: 

2/)|)(|)(|)(|)(( 22 svssvsE sssInternal βα +=                                                                 (4.9) 

Where νs(s) and νss(s) are first and second derivatives. In discrete form (9) becomes: 

2/)|2|||()( 2
11
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The internal energy is composed of a first-order term and a second-order term. 

The first term keeps the snake from stretching or contracting along its length (elasticity) 



110 
 

and the second term (curvature) keeps the snake from bending too much. Also α(s) and 

β(s) are functions of the arc length along the snake and are used to weight the relative 

importance of the elasticity and bending. Usually, α(s) and β(s) can be replaced by 

constants α and β to simplify computations. 

The external energy represents the image force attracting the snake. It depends on 

image structure, usually the features of interest. The image energy can be defined as 

))((Im svEE ageExternal −=                                                                                                                                               (4.11)  

Where EImage (v(s)) is a function where high values correspond to the feature of interest. 

Normally, EImage (v(s)) is the image intensity itself, I(x, y), or the magnitude of the image 

gradient, |∇ I (x, y)|2. For the latter case, the snake is attracted to positions with large 

image gradients. In general, the external energy is calculated from some feature image, 

called f (i) in what follows. 

The image gradient image or line plausibility map generated using the line 

detector algorithm in [92] is too noisy in our case. The snakes will easily get stuck in 

local minimum and it is unlikely that a good solution can be found. Therefore, we use the 

binary candidate road image that was already created from length-width contextual 

measures. Candidate road pixels have value one and background pixels have value zero. 

This image provides a much ‘cleaner’ snake external image force. 

To compute the minimum of the snake energy function, we used the approach 

shown in [37]. The energy minimization is solved using the Euler-Lagrange differential 

equation of motion with a discrete representation of the energies. The minimization is 

solved iteratively until convergence is reached. Detailed equations can be found in the 

appendix of [37].  
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Assuming that α(s) =α, and β(s) = β are constants, minimizing the energy 

functional of equation (7) gives rise to the following two independent Euler equations: 

           0)( =++ ifxx xssssss βα                                                                                            (4.12) 

  0)( =++ ifyy yssssss βα                                                                                            (4.13)       

Here, xss, yss are second derivatives, xssss, yssss are fourth derivatives,
x
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=)( , where the derivatives are approximated by the finite difference in the x 

and y direction, respectively. 

In our application, if a snake point (a vertex of the vector road) is located in the 

middle of background with value of zero, it won’t feel any external force. To make the 

snake point move toward roads, we modify fx(i) and fy(i) according the following 

algorithm. 

Suppose a snake has a sequence of points (v1, v2, …, vn). We assume that v1 and vn 

are end points that have been moved the correct positions by the rubber-sheeting 

transformation. For any intermediate snake point vi, we draw a line through vi which is 

perpendicular to line vi-1vi+1. Given a standard coordinate axes, label that direction θi. We 

count the number of road pixels on each side of vi along the line over a range of 50 

meters. If the number on one side falls into a certain range, determined by information 

about road width, we move that point in the direction θi. The fx and fy are defined by the 

direction θi.   

2
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2
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This assignment pushes the point in the correct direction. Once a snake point falls 

on a road pixel, it will stop moving. Only the points in the background will move. After a 

few iterations, most snake points will move to road pixels. Since the candidate road 

image often still contains noise, some points may get stuck in local minima. We 

implemented a simple perturbing algorithm to force the point move out of a local 

minimum.  

In our experiments, the initial TIGER roads have bad positional accuracy. We do 

not care to keep the initial vector road shape. We are interested to move the vector as 

close as possible to candidate road image. Therefore, we set the snake parameters α = 0.1 

and β = 0. Thus, the snakes have considerable freedom of stretching and bending. 

 

4.2.6 Refinement 

Generally at this stage, the vector points fall on roads, but not necessarily in the 

center of roads because the snake algorithm moves the vector points to the edge of road 

image due to nature of the energy minimization. To make the result better, we developed 

an algorithm to move the vector points to the center of each road by using directional 

context information.  

The centralizing algorithm works similar to the previous approach in finding a 

good moving direction for snake points. Suppose the point vi is on a road pixel, we draw 

a line passing through vi with the direction perpendicular to line vi-1vi+1. Then we find the 
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two points intersecting with the edges of the road. The middle point of the two 

intersecting edge points is used as the estimation of road central point. 

Finally, we use some standard GIS operations to generalize and smooth the road 

centerlines. The refinement operation further improved the quality of vector roads. The 

vector roads are in very good alignment with imagery. 

 

4.3 Experiments and Accuracy Assessment 

To evaluate the performance of our automatic vector-to-imagery conflation 

approach, we ran the conflation system on several test areas with various global contexts 

such as rural, suburban, and urban. We manually extracted the corresponding roads from 

each test image as a reference for assessment. Then we compared the original TIGER 

road, rubber-sheeting transformed road, and final conflated result to the reference to 

illustrate how positional accuracy is improved.  

We used two measures for the accuracy assessment: correctness and root-mean-

square error (RMSE). First, buffer zones were generated around the reference roads. The 

chosen buffer width was approximately half of the actual road width. Then, by using GIS 

overlay analysis, road sections within the buffer zone of reference were found. The 

correctness is defined as the percentage of length of road segments that fall within the 

buffer over the total length of roads (18). For each vertex of the vector road, we 

calculated its shortest distance to the reference road. The RMSE can be estimated by (19). 
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We tested our vector-to-image approach using data covering Boone County, 

Missouri. The vector road centerline data are from the U.S. Census Bureau TIGER 

database. The orthorecitified multispectral near infrared aerial photographs are from the 

National Agriculture Imagery Program (NAIP). The USDA acquires NAIP imagery in 

the continental U.S. The NAIP imagery used for this conflation study has a one meter 

ground resolution. 

We chose 21 tiles of size 700 x 700 m in rural, suburban, and urban areas. Figure 

4.4 shows a rural test area, while figure 4.3 depicts a typical suburban scene. Table 4.1 

illustrates the quality measures (correctness and RMSE) for all test areas. Note that the 

RMSE does not represent the true positional accuracy. It is relative accuracy using the 

NAIP image as a reference. NAIP imagery typically has a horizontal accuracy on the 

order of 5 m or less. 
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Figure 4.3 Comparison of original TIGER roads (green) and final conflation result (red) 

for test area shown in Fig. 4.1  

 

Figure 4.4 Comparison of original TIGER roads (green) and final conflation result (red) 

for a rural area.  Our modified snake algorithm works well even some of the initial 
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vectors are far away (>300 pixels) from the correct positions. The gap caused by shadow 

in the middle of the road is not a problem. 

 

Table 4.1 Accuracy assessment for 21 test areas 

 
 

From table 4.1, we can see that original TIGER roads have poor positional 

accuracy with an average RMSE of 51.2 meters and correctness of only 20.6%. Several 

test areas have an over 100m’s RMSE and many areas have correctness values of less 

than 10%. Our conflation approach improves the accuracy significantly. In fact, the 

average correctness reaches 95.5% and the average RMSE is only 3.4 m. This is an 
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incredible accuracy improvement. Note that in test area #12, no snake operation was 

performed since the road network is in a grid pattern with a line segment consisting of 

two end points. A human operator can iteratively correct a few imprecise road 

intersections for even further improvement. 

 

4.4 Discussions and Conclusion 

In this chapter, we presented a novel vector-to-image conflation approach. This 

technique uses a variety of algorithms to automatically detect and classify different types 

of road intersections and terminations based on spatial contextual measures. The vector 

road intersections are matched to extracted point sets by a relaxation labeling algorithm. 

The matched point pairs are used as control points to perform a piecewise rubber-

sheeting transformation. With the end points of each road in correct position, a modified 

snake algorithm moves intermediate road points toward the road image. Finally, a 

refinement algorithm moves the points to center of each road to obtain the best 

cartographic quality. 

Other snake-based road extraction approaches use simple filtering to detect lines 

from imagery and create line plausibility image. Often the simple line detector will create 

many false alarms and the line plausibility image is noisy. It requires that the initial 

vectors must be very close (within a few pixels) to solution. This definitely won’t work in 

our application in which many of the initial vector roads are many tens or even hundreds 

of pixels away from desired positions. Additionally, in our conflation approach, there is 

no need to detect lines from imagery, only the points of intersection and termination are 

extracted. Although the spatial contextual information extraction process takes 
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considerable computational effort, the generated candidate road image is ‘cleaner’ and 

much better suited for snake application.  So the far away vector roads still can be 

corrected and it is not sensitive to snake parameters. 

Additionally, spatial contextual information is normally calculated in the Center 

for Geospatial Intelligence (CGI) at the University of Missouri for other purposes, such 

as feature extraction. Hence, in a normal operation mode, we are making use of already 

computed data. 

Experiments show our vector-to-image conflation approach has excellent 

performance. The positional accuracy was improved significantly from 51.2 m RMSE to 

3.4 m, and the average correctness increased from 20.6% to 95.5%. The improved 

TIGER roads with rich attributes could lead to many new applications for federal, state, 

and local governments as well as for private mapping industries. 

However, some issues remain to be solved. To make the snake algorithm work, a 

good candidate road image created by spatial contextual information is necessary. In 

some areas, trees overshadow the roads or black bridges overpass bright roads, and 

length-width measure ratio thresholding may also cause some fragments in the candidate 

road image. If the gap is in the middle of road, the snake still can close the gap 

successfully. But if the gap is near intersection, that road intersection cannot be correctly 

identified. Snake algorithms may have trouble in such areas. In further research, we will 

develop a gap closing algorithm in the spatial contextual information processing. A small 

jump will be allowed. This should solve some of the problems. In some old residential 

areas, if the roads are almost completely overshadowed by trees, there is no way for the 

algorithm to succeed. Other “leaf-off” images need to be acquired or GPS technology 
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must be used in such areas. 

 Currently, we use a simple algorithm to find the moving direction for snake points. 

The direction of motion of each point is calculated independently. We intend to improve 

the algorithm by considering the movement of other points in a neighborhood. Each point 

will have repelling force to keep others away. 

 In this study, we integrated and conflated existing vector roads to imagery. A 

better road dataset is created by improving the positional accuracy while keeping the 

existing attributes. Generally the imagery is more current than the vector data because 

traditional map compilation and production are time consuming processes. Newly 

constructed roads are often not shown in vector datasets. The unmatched road 

intersections from imagery may provide useful clues for automatic extraction of new 

roads from imagery, which will facilitate map updating. In our next step, we will 

combine this vector-to-imagery conflation approach and an automatic road extraction 

approach to address the digital map revision and updating issue. 
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Chapter 5 

Scale-up Experiment of Vector-to-Imagery 

Conflation 

 

 

5.1 The need for scale-up experiment 

In chapter 4, we already selected 21 tiles of size 700 m by 700 m in rural, 

suburban, and urban areas (figure 5.1) to test our vector-to-imagery conflation algorithm. 

The selection criteria are following: there exist obvious displacements between vector 

roads and imagery; majority of the roads are easy to see in imagery to facilitate image 

processing; and the vector roads have good one-to-one correspondences to imagery. 

Although our algorithm works well on those selected small test areas as shown in 

table 4.1, a scale-up experiment is needed to find out any potential issues and make 

improvement to the algorithms. Thus to make our algorithms useful to solve a real world 

conflation problem, two big test areas, each with 6000 m by 6000 m dimension are 

selected (figure 5.2). They represent typical rural and suburban scenes respectively in 

Columbia, MO. Each of the two big areas is subdivided into 3 by 3 tiles of size 2000 m x 

2000 m (figure 5.3 & 5.4). The vector-to-imagery conflation algorithm run on those 18 

tiles separately.  
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Figure 5.1 Selected test tiles used in table 4.1 
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Figure 5.2 Two big scale-up test areas in Columbia, MO 
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Figure 5.3 TIGER roads (blue) of nine test sections in rural area of Columbia, MO, each 

section has 2000 m * 2000 m dimension. 
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Figure 5.4 TIGER roads (blue) of nine test sections in suburban area of Columbia, MO, 

each section has 2000 m * 2000 m dimension. 

 
 
5.2 Use classified road imagery to speed up the process 

 In chapter 4, to calculate the spatial contextual measures and extract the road 

intersections, the algorithms need to examine each pixel and search its surrounding pixels 

along given directions radiating from the central pixel. Then the algorithm calculates its 
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similarity with surrounding pixels. This task is very time-consuming. It may take hours 

for larger areas since this is done on the original imagery. Much of computing is useless 

for non-road regions in imagery such as forest, grass, water etc. 

 To improve this process, a simple idea is to classify the imagery into two classes: 

road and non-road. Here we use the standard ISODATA unsupervised learning algorithm 

to generate clusters and interactively label each cluster as road or non-road class. Then 

we run our algorithm only on the classified road regions. Figure 5.5 shows a suburban 

test area and the classified results are shown in figure 5.6. However, since buildings, 

parking lots have similar spectral attribute with roads, they are connected to roads to form 

bigger regions. This caused a problem during the thresholding process (figure 5.7). If we 

choose a bigger threshold, we can get clean major roads, but many shorter road segments 

were removed (figure 5.8). If a smaller threshold is used, the result is quite noisy and 

includes driveways and buildings (figure 5.9). The snake operation may get stuck on the 

noisy road image. 

 In this scale-up experiment, we used the 4-bands color infrared aerial photography 

obtained from city of Columbia. It has very high resolution (0.15m). Obviously many 

small details can be captured in such a high-resolution imagery. Since we are dealing 

with road centerlines in our conflation application, it’s not harmful to resample the 

imagery to lower resolution. We decide to resample the 0.15 m imagery to 1 m resolution. 

This will help to remove small details and speed up the process. 

 When we closely examine the imagery, we found that the majority of roads are 

brighter and buildings are relatively darker, but some roads are dark colored in selected 
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areas. We reassign the previous established clusters into three classes: brighter road, 

darker road & building, and non-road class.   

 

Figure 5.5 Color infrared image of one suburban test area. 
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Figure 5.6 The road/building regions for figure 5.5 
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Figure 5.7 The grayscale image of length measure.  
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Figure 5.8 Result of road image using bigger threshold (Length > 100 m) 
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Figure 5.9 Result of road image using smaller threshold (Length > 30 m) 
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Figure 5.10 The classification results. Bright roads are red. Darker roads and buildings 

are green. Black are non-road class. 
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Figure 5.11 The final result after removing smaller regions 

 

Figure 5.10 showed the 3-class classification results. Since buildings are darker, 

they can be separated from bright roads (red). Fortunately the driveways are bright (red) 

in darker road regions, thus make the buildings disconnect to dark roads. Therefore, we 

process the dark class to remove the buildings using an area threshold since they are 

smaller rectangular shaped regions, while the roads are bigger connected linear regions. 

Finally, we add the processed dark class back into the bright class to create the final road 

image class (figure 5.11).  It can be seen that most of buildings are removed successfully. 

This will facilitate the next spatial context measure extraction. A single threshold will 

generate very clean results (figure 5.12). 
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Figure 5.12 The road image is generated by thresholding the length measure.  

 

5.3 Accuracy assessment 

Our vector-to-imagery conflation algorithms were run on the 18 test areas. All of 

the images used in experiment and results are listed appendix A. To evaluate the result, 

we use the high accuracy MODOT roads from Missouri Department of Transportation 

(MODOT) as the reference. The original TIGER roads and final conflated results 

generated by our vector-to-imagery conflation algorithm are assessed to show the 

positional accuracy improvement. 

The same accuracy assessment measures (correctness and root-mean-square error 

RMSE) used in chapter 4 are used again. In addition, several criteria are added: total 
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length of roads, length of road in correctness zone, number of different node types 

(intersections & terminations), and the maximum offset distance. The accuracy 

assessment is performed in ArcGIS and results for all the test areas are listed in table 5.1. 

Table 5.1 Accuracy assessment for 18 scale-up test areas 

 Original TIGER Roads Conflated Results 

 Total 
Length  

Correct 
Length 

No of  Nodes 
types (1,3,4) 

Correc
tness 

RMSE Max Total 
Length  

Correct 
Length 

Correc
tness 

RMSE MAX 

Rural01 3364 88 7, 1,0=8 2.6% 450 1126 3474 1578 45.4% 445 1165 

Rural02 3780 522 6,2,0=8 13.8% 220 772 3999 2658 66.5% 215 788 

Rural03 6789 1144 8,4,1=13 16.9% 90 429 6918 4170 60.3% 55 386 

Rural04 5438 68 10,4,0=14 1.3% 159 418 5924 2622 44.3% 32 110 

Rural05 5204 178 10,4,0=14 3.4% 94 360 5528 3240 58.6% 70 358 

Rural06 3633 109 7,5,0=12 3.0% 176 533 3785 1668 44.1% 140 495 

Rural07 2792 136 6,2,0=8 4.9% 115 326 2777 1006 36.2% 117 307 

Rural08 4447 125 8,4,0=12 2.8% 131 321 4072 2914 71.6% 37 238 

Rural09 4077 331 5,3,0 = 8 8.0% 198 595 4257 1802 42.3% 150 570 

Average    6% 181    52% 140  

            

Urban01 2941 337 5,3,0=8 11.5% 115 269 2752 2540 92.3% 20 116 

Urban02 4731 1315 11,3,0=14 27.8% 29 116 4393 3826 87.1% 22 100 

Urban03 9654 2203 18,10,0=28 22.8% 97 405 10356 8544 82.5% 68 399 

Urban04 2699 366 5,3,0=8 13.6% 32 98 2684 2572 95.8% 7 39 

Urban05 13610 5960 24,34,5=63 43.8% 21 192 14715 12763 86.7% 15 180 

Urban06 15104 3970 47,31,5=83 26.3% 38 289 15171 12248 80.7% 32 302 

Urban07 5718 198 5,5,0=10 3.5% 179 512 5284 5029 95.2% 9 50 

Urban08 20921 5080 77,65,15=157 24.3% 31 146 22628 19516 86.2% 12 158 

Urban09 31973 8443 92,98,23=213 26.4% 255 196 34613 29283 84.6% 12 168 

Average    22% 89    88% 22  

            

Downtown 20600 16188 18,50,49=117 78% 14 43 20531 19262 94% 10 39 
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From table 5.1, we know that the original TIGER roads have really bad positional 

accuracy. The average correctness is only 6% for rural area and 22% for suburban area. 

The root-mean-square error is 181 m and 89 m for rural and suburban area respectively. 

Our vector-to-imagery conflation approach greatly improved the TIGER roads. 

The correctness increased to 52% and 88% for rural and suburban area. The RMSE 

decreased to 140 m and 22 m for rural and suburban area respectively. That is a very 

significant improvement. 

Although the correctness increase from 6% - 52%, 22% - 88% are significant, the 

absolute value of 52% is not satisfying. We further check and compare the TIGER roads, 

the conflated roads, MODOT reference road and imagery. There are a few reasons for 

this low correctness and high RMSE. 

First, the original TIGER roads have errors. The errors have no corresponding 

parts in reference roads.  In figure 5.12, the TIGER road segments within the black oval 

are errors. They have no counterparts in the reference and proved to be nonexistence in 

reality when they are overlaid on imagery (figure 5.13). 

Secondly, the TIGER roads were created in 1999 by the U.S. Census Bureau for 

census 2000. MODOT roads are maintained and frequently updated by Missouri 

Department of Transportation and the most current version was created in 2009. The two 

agencies have different responsibilities and may use different methods and standards to 

create the data. For example, in figure 5.15, MODOT only cares about the major roads, 

but the U.S. Census Bureau needs to present each road as detail as possible. That caused 

some mismatch between the two datasets. 
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Figure 5.13 The TIGER Roads are overlaid on top of MODOT road buffer zone (red). 
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Figure 5.14 The TIGER roads are overlaid on imagery. The road segments within the 

black oval are errors. Actually they do not exist.  
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Figure 5.15 TIGER roads are overlaid with MODOT road buffer zone (red). TIGER and 

MODOT Roads are generated by different agencies and using different standard. In case 

like this, MODOT picks up only the major roads and TIGER has more detailed minor 

roads. 
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Figure 5.16 The conflated TIGER roads are overlaid on buffer zone generated from 

MODOT roads. 
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Figure 5.17 The conflated TIGER roads are overlaid on road image. Tree shadows cause 

gaps in classified road image and short road segments are removed during our conflation 

process. Therefore, some roads could not find their correspondences in road imagery. 
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Thirdly, the high resolution aerial image was acquired in summer season. The 

shadows cast by trees caused some gaps in road image. The following image processing, 

such as clean-up and thresholding further removed those short road segments. As shown 

in figure 5.16, some vector roads could not find their correspondences in road imagery. 

Therefore, the situations mentioned above make the assessment results 

unreasonably low when all the data are used. The missing/unmatched road segments need 

to be eliminated to do a true evaluation. Thus, we removed the major parts of 

missing/unmatched road segments from original TIGER roads and conflated roads.  Then 

run the accuracy assessment again. The results are listed in table 5.2. 

 By comparing tables 5.1 and 5.2, we noticed that the correctness measures are 

only slightly better for TIGER roads: 6% - 8% for rural and 22% - 23% for suburban area. 

The RMSE decreased a lot from 181 m to 79 m for rural, 89 m to 56 m for suburban area. 

Generally the original TIGER roads still have bad positional accuracy. 

 In contrast, after eliminating the major part of missing/unmatched roads, the 

conflated roads have very good accuracy. The correctness is 83% and RMSE is 5 m for 

rural area, and the correctness is 93% and RMSE is 9 m for suburban area. The statistic 

numbers as well as the graphics shown in appendix A prove that our vector-to-imagery 

conflation approach greatly improved the positional accuracy of TIGER road data. 
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Table 5.2 Accuracy assessment for 18 scale-up test areas after removing major 

unmatched roads 

 TIGER Roads Conflated Roads 

 Total 
Length  

Correct 
Length  

Correct
ness 

RMSE Max Total 
Length 

Correct 
Length 

Correct
ness 

RMSE MAX 

Rural01 1749 88 5.0% 68 147 1717 1477 86.0% 5 32 

Rural02 2696 455 16.9% 40 113 2602 2548 97.9% 3 16 

Rural03 5606 763 13.6% 27 91 5535 4054 73.2% 6 34 

Rural04 3435 27 0.8% 200 418 2661 2304 86.6% 3 8 

Rural05 4087 169 4.1% 96 360 3608 3016 83.6% 3 6 

Rural06 2357 100 4.2% 69 164 2416 1767 73.1% 10 45 

Rural07 1152 128 11.1% 62 147 973 909 93.4% 2 7 

Rural08 3813 125 3.3% 114 302 3637 2900 79.7% 4 22 

Rural09 2436 316 13.0% 35 63 2499 1853 74.1% 8 35 

Average   8% 79    83% 5  

           

Urban01 2941 337 11.5% 115 268 2650 2583 97.5% 4 19 

Urban02 4731 1315 27.8% 29 116 4393 3826 87.1% 22 100 

Urban03 8104 2199 27.1% 51 265 8586 8446 98.4% 4 25 

Urban04 2699 366 13.6% 33 98 2684 2572 95.8% 7 39 

Urban05 12332 5647 45.8% 16 76 13146 12131 92.3% 8 49 

Urban06 12940 3543 27.4% 23 84 12943 12025 92.9% 7 53 

Urban07 5718 198 3.5% 179 511 5284 5029 95.2% 9 50 

Urban08 20506 4830 23.6% 31 146 21180 19084 90.1% 7 63 

Urban09 31973 8483 26.5% 25 196 34613 29283 84.6% 12 168 

Average   23% 56    93% 9  

           

Downtown 20600 16188 78% 14 43 20531 19262 94% 10 39 
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 Over the entire conflation process, the contextual signature extraction algorithm is 

the most time-consuming. Since we have the same 2000 m by 2000 m image size for 

each tile, we calculate the total number of classified road pixels in each tile and record 

the execution time of contextual signature extraction algorithm. The result is listed in 

table 5.3. It is obvious that it takes more time to process denser road regions. The 

algorithm is run on a DELL Optiplex 755 with Intel Core 2 Duo E4500 2.2 GHz CPU 

and 2GB RAM. 

 

Table 5.3 Execution time for spatial contextual signature extraction algorithm 

 Number of Classified 
Road Pixels  

Execution Time 
(Minute) 

Rural01 20092 3.4 

Rural02 31673 3.5 

Rural03 94110 4.4 

Rural04 93382 4.3 

Rural05 35335 3.6 

Rural06 24568 3.4 

Rural07 27896 3.5 

Rural08 30020 3.5 

Rural09 76698 4.0 

Urban01 133812 4.7 

Urban02 227745 5.6 

Urban03 216951 5.8 

Urban04 93474 4.2 

Urban05 197356 5.3 

Urban06 320800 7.1 

Urban07 78541 4.1 

Urban08 574985 9.5 

Urban09 509017 9.5 

Downtown 612890 8.7 
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5.4 Edge Matching 

Since we run the vector-to-imagery conflation on each 2000 m by 2000 m chip 

individually, there are some scale-up issues when the results from individual chips are put 

together. Figure 5.18 shows all the conflated roads in the 9 chips of the rural test area. We 

can see some gaps near the edges of chips. This is a common edge matching problem in 

GIS world. ArcGIS has existing tools to deal with the edge matching issues. In the edge 

matching process, the features along the boundaries of adjoining tiles are spatially 

aligned to ensure the features are continuous and will meet at the join. 

First we append all the conflated roads from the 9 chips together into one big new 

data layer. Since the chips have fixed size and locations, we run a script to automatically 

generate several buffer zones along the edges of the adjoin chips with a given buffer size. 

Figure 5.19 shows an example of the generated buffer zones. Here the buffer distance is 

set as 50 m. Then the script selects all the road endpoints within the buffer zones. Only 

those selected endpoints will be further processed and leave other road features 

unchanged.  

Snapping is one of the edge matching tools that can be used to make sure the 

features properly connect together, including avoiding gaps and overlaps. Snapping is the 

easiest ways to more accurately position features and establish exact locations in relation 

to other features. There are two parameters need to be specified for the snapping 

environment: snapping tolerance and search method.  

The snapping tolerance is the distance within which a feature is snapped to 

another location. Two points are automatically snapped together if they fall within a 
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given distance of each other specified by the snapping tolerance. If a feature A such as a 

vertex or endpoint is within the distance to another feature B, it will be automatically 

snapped to feature B. 

Snapping search method defines how to search the snapping points. There are two 

options: first and closest. When the search method is set to first, the selected point will be 

snapped to the fist point found within the snapping tolerance. The closest method will 

search the entire area inside the snapping tolerance from the point under consideration 

and snap to the closest point found. It requires more processing time and may be slightly 

slower than using first method, but the result is better and more predictable since if there 

is more than one point within the search distance, the first point found may not be the 

closest. 

In our study, we set the snapping tolerance to 50 m and choose the closest search 

method. Therefore, the snapping tool automatically moves the selected endpoints along 

the edges to their closest endpoints found within the snapping tolerance. Figure 5.20 give 

an example to illustrate the edge matching result. The final edge matching results for 

rural and suburban test areas are shown in figure 5.21 and figure 5.22. Almost all of the 

gaps along the edges are closed successfully. 
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Figure 5.18 the conflated roads in rural areas before edge matching. Some gaps along the 

edge of chips are obvious. 
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Figure 5.19 The generated buffer zones (gray areas) along the edges of adjoin tiles. 
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a) Roads before edge matching 

 
b) roads after edge matching 

Figure 5.20 a simple example of edge matching. After edge matching, the gaps are closed 

and the roads are connected. 
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Figure 5.21 The final result in rural area after edge matching 
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Figure 5.22 the final result in suburban area after edge matching 

 

5.5 Performance Issues 

 Since we use the real world vector data and imagery to run our vector-to-imagery 

conflation algorithm, it is unrealistic to have 100% correct matching. The matched road 

intersections found by the relaxation algorithm do contains errors, especially for some 
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complex situations such as figure 5.23. The incorrectly matched road intersections caused 

the snake to snap the road to the wrong location. 

 ,  

Figure 5.23 some road pattern is very complex, the incorrectly matched road intersections 

cause the roads snapped to wrong location in imagery. 
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 Similarly, suppose we add a new parallel road to test area Urban07. This might 

happen if the image chip and the vector road chip are significantly shift relative to one 

another.  In this example, the two end points of one vector road are matched to two 

different roads in the image (figure 5.24). The incorrect initialization caused the snake 

convergence to be split across both roads (figure 5.25). 

 

Figure 5.24 Original TIGER roads (red) in test area Urban07 are overlaid on the road 

mask with an additional road edited in to demonstrate a limitation of a fully automated 

approach. The green dashed lines indicate the matched road intersections found by 

relaxation labeling algorithm. 

New 
Road 
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Figure 5.25 The final conflated TIGER roads (green) with vertices (red dot) are overlaid 

on road imagery. 

 

Currently we do not correct the wrong matches on purpose to see how our 

automatic conflation algorithm works. If a perfect map is required, a human GIS analyst 

may need to examine and edit the road intersection matching result and final conflated 

roads to make sure the final map is 100% correct. 

 



154 
 

5.6 Additional Snake Experiment 

It is supposed that both ends of a snake are in correct positions after piecewise 

transformation in our snake application. Therefore, we fix the end points and only move 

the intermediate vertices in previous snake algorithm. However, not all of the end points 

are in perfect places in the real world situation. To solve such problem, we modify and 

add a new snake function to relax the end points of a snake.  In general, we run the 

normal snake function first to move the intermediate vertices, then run the relax version 

of snake to move the end points if needed.  

To test the robustness of our snake algorithm, we run additional experiments 

using an interesting real world example (figure 5.26). We move a few points (end points 

or intermediate vertices) to different extremely bad locations to examine the movements 

of the snake. As shown in appendix B, even when the vector road vertices are far away 

from imagery, or both of the end points are not in correct locations, our snake algorithm 

still can move the vector roads to correct imagery location as long as a clean road image 

is provided. 
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Figure 5.26 An interesting real world case. After point matching and rubber-sheeting 

transformation, the adjusted TIGER road (green) with vertices (red dot) is overlaid on 

road imagery. Note only the end points of road are in correct locations. 
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5.7 Experiment in downtown area  

 Although the experiment results in rural and suburban areas are excellent, it is 

interesting to see how our conflation algorithms perform in urban area. We run the same 

processes on the downtown area of Columbia, MO (figure 5.27). There is less vegetation, 

and the roads, buildings and parking lots have quite similar spectral characteristics.  It is 

really difficult to distinguish roads from other regions in the classified image (figure 5.28) 

based on spectral information only.  

 

Figure 5.27 TIGER roads (green) are overlaid on multi-spectral aerial photo in the 

downtown area of Columbia, MO. 
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Figure 5.28 The classified road image in downtown area of Columbia, MO. The roads, 

buildings, and parking lots have similar spectral characteristics. It is difficult to separate 

them based on imagery information only. 
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Figure 5.29 The vector building footprints (yellow polygons) are used as mask to clip out 

buildings from road image. 

 

 To solve this problem, we use existing vector building footprints (figure 5.29) 

obtained from city of Columbia to remove the building regions from the image,  and then 

we run our algorithms as usual.  Since most roads in the downtown area are connected 

with two intersections, no snake operation is needed. The potential road image is shown 

in figure 5.30 and the final conflated results are shown in figure 5.31.  Again we 

conducted the acuucary assessment using MODOT roads as reference. We improved the 

correctness from original 78% in TIGER roads to 94% and reduced the RMSE from 14 m 

to 10 m. The result has been added into tables 5.1-5.3. Although there are a few errors 
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caused by unmatched/mismatched road intersections, our conflation algorithm still 

performed well in a dense downtown area. 

 

Figure 5.30 The potential road image generated by spatial contextual algorithm 
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Figure 5.31 The final conflated TIGER roads (green) are overlaid on imagery.  
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Chapter 6 

Improving the Positional Accuracy of 

Digital Parcel Map through Vector-to-

Imagery Conflation 

 

 
Local governments frequently use maps or spatial data for decision-making, but 

many of these data are often inaccurate and outdated which may have a negative 

influence on the expected outcome. Remote sensing can provide accurate and current 

data. However, one major bottleneck to the integration of remotely sensed imagery into 

existing geographic information systems is the issue of positional accuracy of the existing 

line-work within the vector database, making it difficult to match the imagery. This 

chapter presents a vector-to-imagery conflation approach to improve the positional 

accuracy of digital parcel map by moving the vector parcel map to make it consistent 

with high-resolution imagery. The road intersections are automatically extracted from 

imagery and used as control points. Our relaxation labeling algorithm is used to find the 

matches between road intersections from vector database and road intersections extracted 

from imagery. The links are created from the matched road intersection point pairs and 
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are used to perform the piecewise rubber sheeting transformation. The test results show 

that this approach can improve the accuracy of vector parcel map significantly. It’s a very 

cost-effective method and has great potential to save considerable time and money for 

local governments to upgrade their inaccurate vector datasets. 

 

6.1 Introduction 

Parcel maps indicate the location, size and shape of each property, and are 

indispensable reference tools for tax assessment, zoning, utility construction, etc. Many 

city or town officials (assessors, planners, engineers, and others) use parcel maps on a 

daily basis [121]. 

Due to the rapid advances in information technology, many local governments 

have begun to use the geographic information systems (GIS) and millions of dollars have 

been invested to transfer paper parcel maps and other data into digital format. 

Unfortunately, many parcel maps lack positional accuracy. Unaware of accuracy 

requirements, local governments continue to digitize parcel maps which are often used as 

a base to compile other data such as zoning, utilities, etc. Therefore, while positionally 

inaccurate, the maps can keep the relative relationship between features.  

However, when these vector data are overlaid to remotely sensed imagery with 

higher accuracy, the problem of positional accuracy is obvious. For example, many 

parcel lines cut through houses. The inaccurate vector data have to be adjusted, but 

traditional transformation methods are believed to be ineffective because the process of 

parcel mapping often pieces together data from multiple sources, each with their own 

distortion characteristics. Therefore, no one function has shown the ability to transform 
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the entire map space effectively [122]. One solution is extensive manual editing. This is 

labor intensive and time-consuming. Another possible solution is re-mapping the entire 

area. This also is too expensive for most agencies. 

 This chapter presents a conflation approach to improve the positional accuracy of 

existing digital vector parcel data. It utilizes the available remotely sensed imagery such 

as aerial photographs, or high-resolution satellite imagery. All processes are automatic, 

making it very cost-effective. The next section briefly reviews some parcel mapping 

methods and transformation techniques. The following section describes the vector-to-

imagery conflation methodology. Finally the test results and conclusions are presented. 

 

6.2 Parcel Mapping Methods and Transformation Techniques 

6.2.1 Parcel Mapping Methods 

There are several ways to create digital parcel maps: digitizing from analog maps, 

coordinate geometry (COGO) conversion, positioning property corners with GPS (global 

positioning system), etc [121]. 

COGO uses land surveys or deeds to produce information about each parcel in 

terms of geometric distances and angles from control points (benchmarks) that are 

converted to create a geometrically accurate parcel polygon. Unfortunately, not all 

parcels have property boundary descriptions and the information could be inaccurate for 

those that do. Hence, not all of the parcel polygons can be created. Field work is often 

required, which is time-consuming and costly. 

With the rapid development of GPS technology, it has become relatively easy to 

get coordinates for the property corners. Digital parcel maps can be obtained by 
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connecting these corners. However, parcel corners may be invisible on the ground and 

this field method is labor intensive. 

Digitizing paper maps is a basic method commonly used by many local 

governments and mapping companies. This can be done either using a digitizing board or 

scanning and then digitizing on a screen. This process is also labor intensive and time-

consuming. If the map is in very good condition, automatic vectorization may be used. 

However most of the analog map inaccuracies will be very accurately reproduced on 

digital maps.  

Due to the positional accuracy issue, one process often used during digitizing is 

called occupational adjustment [123]. There are two major approaches: shift-and-digitize 

& cut-and-paste. The shift-and-digitize method first registers a planimetric map on a 

digitizer table. The corresponding parcel map, at the same scale and on transparent 

medium, is moved around until one or more city blocks fit as well as possible inside the 

road-casing polygons in the planimetric map. Next, the parcel map is lightly taped to the 

table. The block or blocks of parcels are then digitized. When complete, the parcel map is 

shifted until the best concordance is reached for the next set of blocks. For the cut-and-

paste method, a copy of a parcel map is cut into many sections, each of them including a 

number of city blocks. Each piece is then placed on a planimetric map and shifted and 

rotated until the best fit is achieved. Then, adjoining pieces are taped together. The whole 

ensemble is digitized or scanned into digital database. These approaches highlight the 

same issue was found in TIGER roads: no global transformation can be found to register 

large areas – local geometry needs to be exploited. 
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6.2.2 Transformation Techniques 

Many transformation techniques have been used in GIS. The traditional 

techniques based on polynomials are the conformal transformation, the affine 

transformations, and high order polynomial transformation. The advanced techniques 

include least squares adjustment using indirect observations, least squares adjustment 

using indirect observations with geometric constraints, and piecewise transformation 

[122]. 

The traditional methods use one model with limited parameters for the entire 

space. Therefore, they are not suitable for parcel maps where distortions vary over space. 

Adjustment with indirect observations attempts to maintain the topological 

consistency between all lines by distributing errors along all the lines. The observation 

equations represent each line length by the difference between the x, y coordinates of the 

endpoints. The least square adjustment is used to minimize residuals of the differences 

between line vertices.  

Piecewise transformation based on Delaunay triangulation uses localized 

transformations whereby the vertices of the Delaunay triangles are the control point 

locations. Distinct transformation parameters are used on each triangle facet. The 

piecewise nature of this method is able to account for variations of error throughout the 

map space.  

Lembo and Hopkins’ research [122] showed that the advanced techniques are 

superior to the traditional approach in terms of improving the accuracy of parcel maps in 

a GIS. Piecewise transformation with adequate control points provides the best accuracy.  
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However, automatically acquiring adequate control points is still a critical 

problem and remains a challenging task for GIS research. Normally these control points 

are collected manually by human analysts from high accurate maps, GPS or imagery. 

Then the human analysts interactively identify and match the control point pairs on maps 

for performing the piecewise transformation. The control point collecting and matching 

processes may become quite labor intensive if the mapping area is large. Therefore, 

automated control point collecting and matching approaches need to be exploited. Our 

automated road intersection extraction and matching approach presents a promising 

solution. 

 

6.3 Vector-Imagery Conflation Methodology 

To conflate/migrate vector parcel map to high-resolution imagery, an adequate set 

of control point pairs is needed. The control points should be clearly visible and easily 

identifiable from both vector map and imagery. One such example is road intersections 

which are frequently used as control points to perform map/imagery registration and 

transformation.  

In previous chapters, we already developed a set of conflation algorithms to 

automatically extract road intersections from high-resolution imagery, match the road 

intersection pairs from vector map and imagery, and conflate vector roads to imagery. As 

an added benefit, we can easily apply the same approach to parcel map conflation. Here 

we only need to add one process which is to generate vector road centerline from a parcel 

map if no road centerline layer is available. The rest of processes (road intersection 
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extraction from vector and imagery, point feature matching and rubber-sheeting 

adjustment) are exactly the same as what we described chapter 4. 

 

6.3.1 Generate Vector Road Centerline from Parcel Map 

 If a GIS database does not have a road centerline layer, it can be automatically 

created from dual-line features such as road casings or parcel data [124]. From the 

original parcel map, we create a new block layer which only contains the parcel polygon 

outlines of each street block. Then we create the road centerline layer from the block 

layer. Creating single centerline from dual-line features is a typical generalization 

operation in GIS. Since the road centerlines are created from the parcel map, their relative 

relationship is consistent with parcel map. Therefore, later when we apply the same 

rubber-sheeting transformation to both road centerlines and parcel map, the results are 

still consistent. 

 

6.3.2 Extract Road Intersections from Vector Road Centerline 

 Since the vector road centerlines are digital files, we can create the topology to 

describe the spatial relationship between features. Then one simple node-to-point 

operation can generate a new intersection point layer from the road centerlines. We use 

the topology information to assign one attribute to each intersection. The value is the 

number of roads connected at each road intersection. For example, the value is 3 for 3-

way intersection and 4 for 4-way intersection. 
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6.3.3 Extract Road Intersections from Imagery 

 The same road intersection extraction algorithm described in section 4.2.2 is used. 

Again, the extracted intersections have one attribute: number of road arms connected at 

that point.  

 

6.3.4 Point Feature Matching  

Similarly, the same relaxation labeling-based point matching algorithm described 

in section 4.2.3 is used here. The relaxation labeling algorithm finds the matches between 

the two road intersection point sets, and the links are automatically created by using the 

coordinates of each corresponding matching point pair. Each link consists of one from-

point (vector road intersection) and one to-point (intersection extracted from imagery). 

  

 6.3.5 Piecewise Transformation 

Piecewise transformations have been developed and used by computer 

cartographers over the last 30 years [123]. They are characterized by the subdivision of 

the maps in pieces and by the use of different transformation parameters in each piece. 

The aim is to adjust maps showing deformations that do not follow a clear trend. Such 

deformations are easily found in parcel maps compiled piecemeal from non-

contemporary survey documents of diverse origins and scales. Our vector-to-imagery 

conflation approach utilizes existing ArcGIS piecewise transformations tool. 

This piecewise transformation tool requires a set of deformation vectors, also 

called links. These links show where coordinates are to be moved. In our experiment, the 

links are generated from matched road intersection pairs. Each link has two points, a 
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from-point and a to-point. The from-points are road intersections from vector map and to-

points are road intersections extracted from imagery. The piecewise transformation uses a 

triangulation method to divide the entire area into local transformation pieces. Here we 

use the Delaunay triangulation which is a triangulation of the point set with the property 

that no point falls in the interior of the circumcircle of any triangle. The triangle vertices 

are represented by from-end of links. After the transformation, the matched road 

intersections are moved into exact alignment with imagery and the displacements of other 

road vertices are interpolated according to the movements of the vertices of the triangles 

which contain them. 

We use the same piecewise transformation parameters to adjust road centerlines 

and parcel map. Therefore, the adjusted road centerlines are still consistent with adjusted 

parcel map. 

 

6.4 Experiment Results 

We tested the vector-to-imagery conflation approach using real world data. We 

obtained digital parcel maps from city of Springfield, Missouri and high resolution 

satellite IKONOS imagery (1 meter panchromatic band and 4 meter multispectral bands) 

from previous NASA research project. The geo-referenced IKONOS imagery has much 

better positional accuracy than do the parcel maps. 

We selected one 1000 m by 700 m test area in Springfield. The parcel data is 

shown in figure 6.1 and IKONOS imagery is shown in figure 6.2. When the parcel map is 

overlaid on the IKONOS frame (figure 6.3), it is clear that it does not line up. As can be 
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observed, many parcel lines cut through houses, and some parcel lines even fall into 

another street block.  

Using ArcGIS software package, we generate the new street block layer (figure 

6.4) automatically from the parcel map (figure 6.1). Then we create the road centerlines 

(figure 6.5) from the street blocks. Therefore, the road centerlines are consistent with the 

parcel map. 

 

 

Figure 6.1 Digital parcel map of the test area in city of Springfield, MO 
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Figure 6.2 Multispectral IKONOS imagery of the test area in city of Springfield, MO 
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Figure 6.3 Original parcel lines (yellow) overlaid on the high-resolution IKONOS 

imagery. It is obvious that many parcel lines cut through houses. 
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Figure 6.4 Street block layer generated from parcel map 

 

Figure 6.5 Road centerlines (red) generated from street blocks 
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Figure 6.6 Road image created by spatial contextual signatures using the methods 

described in chapter 4. 
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Figure 6.7 after running vector-to-imagery conflation, the adjusted parcels (green) and 

road centerlines (red) are in line with imagery.  
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Figure 6.8 Zoom-in section of the parcel lines (green) and road centerlines (red) after 

vector-to-imagery conflation 

 

We run the ISODATA unsupervised learning algorithm on IKONOS imagery and 

assign the clusters into two classes: road and others. Then the spatial contextual 

signatures are extracted to create the road image (figure 6.6). Next we automatically 

extract the road intersections from the road image. The relaxation labeling algorithm 

finds the matches between road intersections from vector road centerlines and 

intersections extracted from image. Finally the rubber-sheeting transformation adjusts the 



177 
 

parcel map and road centerlines using the links created by the matched pairs. The final 

results for entire test area are shown in figure 6.7 and figure 6.8 shows a zoomed-in 

section. The adjusted parcel polygons are within the correct block and line up with 

imagery very well. There is no clear problem of parcel lines transecting houses. The test 

results are visually satisfactory. 

The same piecewise transformation can be used to conflate other vector layers 

that have already aligned with the original parcel layer. Therefore, the relative 

relationship between features still does not change after transformation.  

 

6.5 Discussions and Conclusion 

In our previous conflation work, we developed a set of automatic algorithms to 

extract road intersections from imagery, match the point pairs from vector and imagery, 

and conflate the road centerlines to high-resolution imagery. As an added benefit, the 

same conflation approach was extended to parcel map conflation in this chapter. 

The experiment showed that the presented vector-to-imagery conflation 

methodology has been proved to be valuable for improving the positional accuracy of an 

existing digital parcel map. This approach is very cost-effective by using available 

remotely sensed imagery. This method can easily be performed and used by many local 

governments and mapping companies. 

The key to success for the piecewise transformation is to have sufficient and well-

distributed control points. Road intersections can be clearly identified from vector and 

imagery and are frequently used as control points. Normally human operators 

interactively collect and match the control points. We developed algorithms to 
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automatically extract and match these control points. Our automated approach will 

greatly improve the efficiency and can also be applied to other applications such as map 

registration etc. 

Local governments often use the parcel map as a baseline with which many other 

data layers are aligned. Once the transformation parameters are determined, the same 

transformation can be used to adjust those layers as well. Therefore, all the adjusted data 

layers are still aligned well with each other. 

 Currently we visually evaluated the results of the transformation and did not 

conduct a statistical accuracy assessment due to lack of ‘true’ parcel data.  If the high 

accuracy parcel data is available, further assessments can be conducted and the statistical 

results can be obtained to show how much this approach may improve the positional 

accuracy of digital vector parcel map. 

Users must consider the quality of data used to produce a GIS dataset. The use of 

existing data, without careful review of the accuracy, may mean that the quality of the 

final GIS result is poor, out-of-date, or incomplete [125]. Remotely sensed imagery 

provides a very good media to upgrade and update digital vector data. The proposed 

vector-to-imagery conflation approach utilizes GIS and Remote Sensing technologies, 

and should be very suitable for improving the positional accuracy of digital parcel map. 
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Chapter 7 

Conclusion and Future Work 

 

7.1 Summary of Completed Research 

The availability of geospatial data from multiple sources requires 

integration/fusion of multi-source datasets. However, accurately integrating geospatial 

data from different sources is a challenging task. In this dissertation research, we 

developed an innovative geospatial conflation approach consisting of several algorithms 

to attack the multi-source geospatial integration/conflation problem. Appropriate 

combinations of the algorithms are applied to vector-to-vector and vector-to-imagery 

conflation.  

Conflation is real world problem in GIS field. To make our approach suitable to 

solve the real world problem, we obtained real world datasets such as TIGER roads from 

U.S. Census Bureau, MODOT roads from Missouri Department of Transportation, vector 

parcel maps from Greene county assessor’s office, high-resolution aerial photographs 

from city of Columbia and multi-spectral IKONOS satellite imagery. All of our 

algorithms are tested on those real world datasets. 
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7.1.1 Vector-to-vector Conflation 

In chapter 2, we proposed a hybrid approach based on the combination of the 

traditional conflation and a snake algorithm. The feature matching and rubber-sheeting 

map alignment processes remain the same as traditional conflation and the attribute 

transfer process is replaced by snake alignments. The snake algorithm moves the TIGER 

roads towards the high accuracy roads. Our approach has benefits over traditional 

conflation methodology in that it overcomes the problem of splitting vector road line 

segments and can be extended for vector-imagery conflation as well.  

Traditional conflation requires at least two existing vector datasets. In many cases 

a second vector GIS dataset is not available. Acquiring and collecting such vector GIS 

data is time-consuming and cost-prohibitive. On the other hand, large amounts of high-

resolution satellite imagery and aerial photographs are available today, and many of these 

are free or have minimal cost to the public. Many agencies may have already acquired 

some high resolution images for other purposes. Making good use of widely available 

free imagery is cost effective for conflation. Our snake-based conflation can make use of 

both vector and imagery data to conduct conflation. Therefore, it has much broader 

applications for integration of GIS, GPS and remote sensing data.  

Our unique contribution is to present a novel snake-based approach which is a 

brand new idea for vector-to-vector conflation, with this same approach applied to both 

vector-to-vector and vector-imagery conflation. 

This work was published and featured as cover page in Cartography and 

Geographic Information Science. Our paper is of interest to a broad section of readers in 
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GIS field. In fact, it made the list of top contributions to CaGIS as one of the most 

downloaded papers over a certain time period. 

 

 

 

Song, W., Haithcoat, T., Keller, J., “A Snake-based Approach for TIGER Road Data 

Conflation”, Cartography and Geographic Information Science, Vol. 33, No. 4, 2006, 

pp. 287-298. 

 

7.1.2 Point Feature Matching by Relaxation Labeling 

Feature matching is the most crucial element of conflation. The quality of feature 

matching determines the success of conflation. In chapter 3 we presented a new 

relaxation labeling-based point feature matching approach to match the road intersections 

from two GIS vector road datasets. The relaxation labeling algorithm utilizes iterated 
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local context updates to achieve a globally consistent result. The contextual constraints 

(relative distances between points) are incorporated into the compatibility function that is 

employed in each iteration’s updates. The point-to-point matching confidence matrix is 

initialized using road connectivity information at each point. Both the traditional 

proximity-based approach and our relaxation-based point matching approach are 

implemented and experiments are conducted over 18 test sites in rural and suburban areas 

of Columbia, MO. The test results show that our relaxation labeling approach is more 

robust and has much better performance over the proximity matching approach in both 

simple and complex situations. 

 Once the features are correctly matched, we can either apply the traditional 

conflation approach to transfer the attributes from one dataset to another, or use our 

snake-based conflation approach presented in chapter 4 to move the road networks from 

one dataset to correct locations in another vector dataset or imagery. Therefore, the final    

result has good spatial accuracy and rich attributes, which is better than both of the 

original datasets. 

Our contribution is to propose a new relaxation labeling-based point matching 

approach for vector map conflation. We believe that we are the first to present this 

approach to the conflation field. Our approach provides an elegant and well-motivated 

solution to the problem. This new point matching algorithm produces much better results 

than previous techniques and greatly improved the accuracy of point matching so that the 

manual workload can be significantly reduced.  

The work is accepted and will be published in Transactions in GIS. 
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Song, W., Keller, J., Haithcoat, T., Davis, C., “Relaxation-Based Point Feature 

Matching for Vector Map Conflation”, in Press Transactions in GIS 

 

7.1.3 Vector-to-imagery Conflation 

Since imagery is acquired more frequently and is more current, conflating vector 

data to imagery has higher demands. An innovative vector-to-imagery conflation 

approached was presented in chapter 4 by integrating several vector-based and image-

based algorithms. We only extract the different types of road intersections and 

terminations from the image frames based on spatial contextual measures. We eliminate 

the process of line segment detection which is often troublesome. The vector road 

intersections are matched to these detected points by a relaxation labeling algorithm. The 

matched point pairs are then used as control points to perform a piecewise rubber-

sheeting transformation. A modified snake algorithm maneuvers vector road vertices 

toward a candidate road image. Finally a refinement algorithm moves the points to center 

each road and obtain better cartographic quality. Experiments were conducted over a 

variety of rural, suburban, and urban environments. The results demonstrated excellent 

performance. The average correctness measure increased from 20.6% in original TIGER 

road to 95.5% in the conflated results and the average root-mean-square error decreased 

from original 51.2 meters to 3.4 meters in our final results.  

There are several related vector-to-imagery papers. Some require the vector roads 

to be very close to the corresponding roads in an image, and other methods stop at 

rubber-sheeting without further refinement. We believe our work is the most 

comprehensive vector-to-imagery conflation research. We use the TIGER roads with 
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very bad positional accuracy, where some road segment may be over 100 meters away 

from the truth.  We applied spatial contextual signature extraction algorithm [111] to 

generate the potential road image. This road image is much cleaner and facilitates the use 

of a snake algorithm. We made several significant improvements to the snake operations 

in this research. We developed a new road intersection extraction algorithm by using the 

spatial contextual information. It is more reliable than other approaches. As one reviewer 

said, “The authors deserve a compliment for producing a nice work in this paper.” This 

vector-to-imagery conflation research was published in IEEE transactions on Image 

processing.  

 

Song, W., Keller, J., Haithcoat, T., Davis, C., “Automated Geospatial Conflation of 

Vector Road Maps to High Resolution Imagery”, IEEE Transactions on Image 

Processing, Vol. 18, No. 2, 2009, pp. 388-400. 

 

7.1.4 Vector-to-imagery Scale-up Experiment 

 In chapter 4, we tested the vector-to-imagery conflation approach on selected 

small areas. Those selected areas are ideal real world data where vector roads have one-

to-one matches and roads are relatively easy to see in general.  

 To make our approach applicable in more general situations, we made several 

improvements and tested it on big rural, suburban, and downtown areas where the 

situation may not be ideal for conflation. Originally, we ran spatial contextual signature 

extraction and road intersection extraction algorithm on the raw image. This is time-

consuming for large image data. In chapter 5, we first classified the image into road and 
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non-road classes, and ran the spatial contextual signature extraction algorithm on road 

region only. Then we ran the road intersection extraction algorithm on the thresholded 

road image. This greatly reduced the computation time. It also overcame the problem at 

locations where roads with significant different spectral characteristics meet together.  

 In our previous snake application, we supposed that both ends of a snake are in 

correct positions. We fixed the end points and only move the intermediate vertices. We 

added a new function to relax the end points after several normal snake movements. As 

shown in appendix B, even when the vector road vertices are far away from imagery, or 

both of the end points are not in correct locations, our snake algorithm still can move the 

vector roads to correct imagery location as long as a clean road image is provided. 

 

7.1.5 Parcel Map Migration through Vector-to-imagery Conflation 

In previous chapters, we used the road centerlines for conflation. We extended our 

approach to solve parcel migration problem in chapter 6. We developed a vector-to-

imagery migration approach to improve the positional accuracy of a digital parcel map by 

moving it to make it consistent with high-resolution imagery. The road intersections are 

automatically extracted from imagery and used as control points. A relaxation labeling 

algorithm is used to find the matches between road intersections from the vector database 

and the road intersections extracted from imagery. The links are created from the 

matched road intersection point pairs and are used to perform a piecewise rubber sheeting 

transformation. The test results show that this approach can improve the accuracy of 

vector parcel map significantly. It is a very cost-effective method and has great potential 
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to save considerable time and money for local governments to upgrade their inaccurate 

vector datasets. 

In addition, we conducted another conflation project to integrate vector buildings 

with imagery. The building outlines are extracted from high-resolution imagery via a 

shape-driven level set scheme. Shape and relative position features are then computed for 

the image-extracted buildings and for vector buildings from GIS database. These two 

features are used by a graph-matching procedure that finds the correspondences between 

the two sets of buildings. This work was published in IEEE Geoscience and Remote 

Sensing Letters.   

 

Sledge, I., Keller, J., Song, W. and Davis, C. “Conflation of Vector Buildings with 

Imagery”, IEEE Geoscience and Remote Sensing Letters, Vol. 8, No. 1, 2011, pp. 83-87. 

 

7.2 Future Work 

 After reviewing the whole conflation process (image classification, spatial 

contextual signature exaction, potential road image creation, road intersection extraction, 

matching by relaxation labeling, rubber-sheeting transformation, and snake-based 

alignment), we think that creating a very good road image is the most important step. The 

following road intersection extraction and snake movement are all dependent upon the 

road image.  

 In the scale-up experiment, we only use the standard ISODATA unsupervised 

learning algorithm to generate clusters, and assign the clusters to road and non-road 

classes. Some specialized classifiers can be explored to classify the object-specific 
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geographic features. For example, machine learning algorithms can exploit the attributes 

of size, shape, color, texture, pattern, shadow, and spatial association to efficiently extract 

user-defined features such as roads, buildings etc. Currently we utilize the spectral 

information and spatial contextual separately in two sequential steps. We could explore 

ways to integrate both spectral and spatial information in a road-specific classification. 

This should create better classification results, and hence, better overall conflation results. 

 Having a clean road image is critical to the success of our conflation approach. 

We will further study the image clutter (noise) removing techniques. All kinds of 

geometric attributes such as size, length, and shape could be explored to remove non-

linear clutter. Smoothing operators can be developed to remove the small spurs on the 

linear objects.  

For the relaxation labeling algorithm, we just simply implemented Rosenfeld’s 

original point matching algorithm. The computational complexity is O (n4). Even for a 

very big dataset, the number ‘n’ in relaxation loop is a relatively small constant since we 

limit the computation in a small neighborhood. The constant is determined by the radius 

of the neighborhood and the density of points. The true computational complexity is O 

(n2) since we need to pre-compute the distance between each point pair. Since both input 

datasets are already georeferenced in the same coordinate system, we could create a 

spatial index for the data. Therefore we limit the distance computation to a small 

neighborhood also and improve the computation efficacy. 

Our conflation approach did not extract road centerlines from imagery although 

we did generate a potential road image. Since the imagery is more current than vector 

data, some road extraction and update work is needed in newly developed areas. The 
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unmatched information between vector road intersections and imagery intersections 

could provide useful hints to identify the areas where new roads can be found. Further 

clean-up and vectorization of the potential road image in identified areas will create new 

vector road centerlines. 

 

7.3 List of Publications 

Currently there are four different journal articles have been published. They are 

listed below. In the future, we plan to write two more papers to address the scale-up issue 

and parcel map conflation.   

  

Song, W., Haithcoat, T., Keller, J., “A Snake-based Approach for TIGER Road Data 

Conflation”, Cartography and Geographic Information Science, Vol. 33, No. 4, 2006, 

pp. 287-298. 

 

Song, W., Keller, J., Haithcoat, T., Davis, C., “Automated Geospatial Conflation of 

Vector Road Maps to High Resolution Imagery”, IEEE Transactions on Image 

Processing, Vol. 18, No. 2, 2009, pp. 388-400. 

 

Song, W., Keller, J., Haithcoat, T., Davis, C., “Relaxation-Based Point Feature Matching 

for Vector Map Conflation”, in Press Transactions in GIS 

 

Sledge, I., Keller, J., Song, W. and Davis, C. “Conflation of Vector Buildings with 

Imagery”, IEEE Geoscience and Remote Sensing Letters, Vol. 8, No. 1, 2011, pp. 83-87.  
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Appendix A   Scale-up Experiment Results 

Appendix A lists all the 18 test areas used in scale-up experiment. For each test area, 

three figures are included (Original TIGER roads, rubber-sheeting adjusted TIGER roads, 

and final conflated TIGER roads). 

 
Test area Rural_01. Original TIGER roads (red) are overlaid on road imagery. The green 

dashed lines indicate the matched road intersections found by relaxation labeling 

algorithm. 
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Test area Rural_01. The rubber-sheeting adjusted TIGER roads (green) with vertices (red 

dot) are overlaid on road imagery. 
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Test area Rural_01. The final conflated TIGER roads (green) with vertices (red dot) are 

overlaid on road imagery. 
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Test area Rural_02. Original TIGER roads (red) are overlaid on road imagery. The green 

dashed lines indicate the matched road intersections found by relaxation labeling 

algorithm. 
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Test area Rural_02. The rubber-sheeting adjusted TIGER roads (green) with vertices (red 

dot) are overlaid on road imagery. 
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Test area Rural_02. The final conflated TIGER roads (green) with vertices (red dot) are 

overlaid on road imagery. 
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Test area Rural_03. Original TIGER roads (red) are overlaid on road imagery. The green 

dashed lines indicate the matched road intersections found by relaxation labeling 

algorithm. 
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Test area Rural_03. The rubber-sheeting adjusted TIGER roads (green) with vertices (red 

dot) are overlaid on road imagery. 
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Test area Rural_03. The final conflated TIGER roads (green) with vertices (red dot) are 

overlaid on road imagery. 
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Test area Rural_04. Original TIGER roads (red) are overlaid on road imagery. The green 

dashed lines indicate the matched road intersections found by relaxation labeling 

algorithm. 
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Test area Rural_04. The rubber-sheeting adjusted TIGER roads (green) with vertices (red 

dot) are overlaid on road imagery. 
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Test area Rural_04. The final conflated TIGER roads (green) with vertices (red dot) are 

overlaid on road imagery. 
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Test area Rural_05. Original TIGER roads (red) are overlaid on road imagery. The green 

dashed lines indicate the matched road intersections found by relaxation labeling 

algorithm. 
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Test area Rural_05. The rubber-sheeting adjusted TIGER roads (green) with vertices (red 

dot) are overlaid on road imagery. 
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Test area Rural_05. The final conflated TIGER roads (green) with vertices (red dot) are 

overlaid on road imagery. 
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Test area Rural_06. Original TIGER roads (red) are overlaid on road imagery. The green 

dashed lines indicate the matched road intersections found by relaxation labeling 

algorithm. 
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Test area Rural_06. The rubber-sheeting adjusted TIGER roads (green) with vertices (red 

dot) are overlaid on road imagery. 
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Test area Rural_06. The final conflated TIGER roads (green) with vertices (red dot) are 

overlaid on road imagery. 
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Test area Rural_07. Original TIGER roads (red) are overlaid on road imagery. The green 

dashed lines indicate the matched road intersections found by relaxation labeling 

algorithm. 
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Test area Rural_07. The rubber-sheeting adjusted TIGER roads (green) with vertices (red 

dot) are overlaid on road imagery. 
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Test area Rural_07. The final conflated TIGER roads (green) with vertices (red dot) are 

overlaid on road imagery. 
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Test area Rural_08. Original TIGER roads (red) are overlaid on road imagery. The green 

dashed lines indicate the matched road intersections found by relaxation labeling 

algorithm. 
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Test area Rural_08. The rubber-sheeting adjusted TIGER roads (green) with vertices (red 

dot) are overlaid on road imagery. 
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Test area Rural_08. The final conflated TIGER roads (green) with vertices (red dot) are 

overlaid on road imagery. 
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Test area Rural_09. Original TIGER roads (red) are overlaid on road imagery. The green 

dashed lines indicate the matched road intersections found by relaxation labeling 

algorithm. 
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Test area Rural_09. The rubber-sheeting adjusted TIGER roads (green) with vertices (red 

dot) are overlaid on road imagery. 
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Test area Rural_09. The final conflated TIGER roads (green) with vertices (red dot) are 

overlaid on road imagery. 
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Test area Urban_01. Original TIGER roads (red) are overlaid on road imagery. The green 

dashed lines indicate the matched road intersections found by relaxation labeling 

algorithm. 
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Test area Urban_01. The rubber-sheeting adjusted TIGER roads (green) with vertices 

(red dot) are overlaid on road imagery. 
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Test area Urban_01. The final conflated TIGER roads (green) with vertices (red dot) are 

overlaid on road imagery. 

 



229 
 

 
 
 

Test area Urban_02. Original TIGER roads (red) are overlaid on road imagery. The green 

dashed lines indicate the matched road intersections found by relaxation labeling 

algorithm. 
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Test area Urban_02. The rubber-sheeting adjusted TIGER roads (green) with vertices 

(red dot) are overlaid on road imagery. 
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Test area Urban_02. The final conflated TIGER roads (green) with vertices (red dot) are 

overlaid on road imagery. 
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Test area Urban_03. Original TIGER roads (red) are overlaid on road imagery. The green 

dashed lines indicate the matched road intersections found by relaxation labeling 

algorithm. 
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Test area Urban_03. The rubber-sheeting adjusted TIGER roads (green) with vertices 

(red dot) are overlaid on road imagery. 
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Test area Urban_03. The final conflated TIGER roads (green) with vertices (red dot) are 

overlaid on road imagery. 

 

 



235 
 

 
 
 

Test area Urban_04. Original TIGER roads (red) are overlaid on road imagery. The green 

dashed lines indicate the matched road intersections found by relaxation labeling 

algorithm. 
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Test area Urban_04. The rubber-sheeting adjusted TIGER roads (green) with vertices 

(red dot) are overlaid on road imagery. 
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Test area Urban_04. The final conflated TIGER roads (green) with vertices (red dot) are 

overlaid on road imagery. 

 



238 
 

 
 
 
Test area Urban_05. Original TIGER roads (red) are overlaid on road imagery. The green 

dashed lines indicate the matched road intersections found by relaxation labeling 

algorithm. 
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Test area Urban_05. The rubber-sheeting adjusted TIGER roads (green) with vertices 

(red dot) are overlaid on road imagery. 

 



240 
 

 
 
 

Test area Urban_05. The final conflated TIGER roads (green) with vertices (red dot) are 

overlaid on road imagery. 
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Test area Urban_06. Original TIGER roads (red) are overlaid on road imagery. The green 

dashed lines indicate the matched road intersections found by relaxation labeling 

algorithm. 
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Test area Urban_06. The rubber-sheeting adjusted TIGER roads (green) with vertices 

(red dot) are overlaid on road imagery. 
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Test area Urban_06. The final conflated TIGER roads (green) with vertices (red dot) are 

overlaid on road imagery. 
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Test area Urban_07. Original TIGER roads (red) are overlaid on road imagery. The green 

dashed lines indicate the matched road intersections found by relaxation labeling 

algorithm. 
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Test area Urban_07. The rubber-sheeting adjusted TIGER roads (green) with vertices 

(red dot) are overlaid on road imagery. 
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Test area Urban_07. The final conflated TIGER roads (green) with vertices (red dot) are 

overlaid on road imagery. 
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Test area Urban_08. Original TIGER roads (red) are overlaid on road imagery. The green 

dashed lines indicate the matched road intersections found by relaxation labeling 

algorithm. 
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Test area Urban_08. The rubber-sheeting adjusted TIGER roads (green) with vertices 

(red dot) are overlaid on road imagery. 
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Test area Urban_08. The final conflated TIGER roads (green) with vertices (red dot) are 

overlaid on road imagery. 
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Test area Urban_09. Original TIGER roads (red) are overlaid on road imagery. The green 

dashed lines indicate the matched road intersections found by relaxation labeling 

algorithm. 
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Test area Urban_09. The rubber-sheeting adjusted TIGER roads (green) with vertices 

(red dot) are overlaid on road imagery. 
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Test area Urban_09. The final conflated TIGER roads (green) with vertices (red dot) are 

overlaid on road imagery. 
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Appendix B Snake Experiment Results 

Appendix B shows an interesting real world example used in chapter 4. Suppose we have 

generated clean road image, we manipulate a few key vector vertices to different extreme 

locations to see how the snake perform. 

 
Figure 1. After point matching and rubber-sheeting transformation, the adjusted TIGER 

road (green) with vertices (red dot) is overlaid on road imagery. Note only the end points 

of road are in correct locations. 
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Figure 2. The snake algorithm moved all the vertices (red dot) to correct locations on 

road imagery. 
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Figure 3. We manually move one intermediate vertex to extreme location near bottom of 

image border. 
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Figure 4. The movements of each snake iteration are shown and the algorithm has no 

problem to move the vertices to correct locations. 
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Figure 5. Similarly we manually move one intermediate vertex to extreme location near 

top of image border. 
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Figure 6. From the movements of each snake iteration, we can see that the algorithm still 

has no problem to move the vertices to correct locations. 
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Figure 7.  In previous figures, both of the end points of road are in correct locations. Now 

we move one end point to wrong location. 
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Figure 8. In our normal snake operation, we fix the end points and only move the 

intermediate vertices. Therefore, a few vertices near the right end are not corrected. 
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Figure 9. Another relaxed snake function is run to relax the end points and the 

movements are shown. 
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Figure 10. After normal and relaxed snake operations, all vertices are moved to correct 

locations. 
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Figure 11. We move the left end point away to wrong location. 
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Figure 12. The movements of normal snake operations are shown. 
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Figure 13.  The left part of road segment could not find any external energy since we use 

smaller search distance, it becomes straight. 
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Figure 14. We increase the search distance and run the relaxed version of snake algorithm 

to move all the vertices to correct locations. 
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Figure 15. We move both ends of road to wrong location. 
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Figure 16. The movements of normal snake iterations are shown. 
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Figure 17. After normal snake operation, most vertices are in correct locations. The 

vertices near both ends need further correction. 
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Figure 18. The relaxed snake operation move the vertices near road ends to correct 

locations. 
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